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Abstract. We simulate the electrical response of multiple disjoint biological three-dimensional
cells undergoing an electropermeabilization process. Instead of solving the boundary value problem in
the unbounded volume, we reduce it to a system of boundary integrals equations---the local multiple
traces formulation---coupled with nonlinear dynamics on the cell membranes. Though in time the
model is highly nonlinear and poorly regular, the smooth geometry allows for boundary unknowns
to be spatially approximated by spherical harmonics. This leads to spectral convergence rates in
space. In time, we use a multistep semi-implicit scheme. To ensure stability, the time step needs
to be bounded by the smallest characteristic time of the system. Numerical results are provided to
validate our claims, and future enhancements are pointed out.
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1. Introduction. Electropermeabilization designates the use of short high volt-
age or electric field pulses to increase the permeability of the cell membrane and its
potential to allow the access of nonpermeant molecules [19, 26]. This technique is used
to deliver therapeutic molecules such as drugs and genes into cells to treat cancer,
perform genetic engineering, and screen drugs, among others applications (cf. [18]).

Theoretically, several models have been proposed to describe the reversible mem-
brane electropermeabilization mechanism without rigorous proof. For instance, dur-
ing electropermeabilization it is thought that aqueous pores are formed along the cell
membrane---electroporation---thereby increasing the permeability of the membrane.
Yet, this has not been experimentally observed to occur for voltages used in practice.
The pores are either too small to be seen by optical microscopy or too fragile for elec-
tron imaging. Only molecular dynamics' simulations have been able to demonstrate
pore formation (cf. [19, section 3], [3, section 2.1]). Moreover, the application of
external electric pulses triggers other physical and chemical cell mechanisms, many of
them not fully understood due to the complex interactions at multiple length scales:
from nanometers at the cell membrane to centimeters in tissues [19]. ``Therefore, while
the term electroporation is commonly used among biologists, the term electroperme-
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B954 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

abilization should be preferred in order to prevent any molecular description of the
phenomenon"" [26].

Still, mathematical models and numerical methods can lead to a better under-
standing of the different underlying phenomena. For instance, Neu and Krassowska
[23] consider a pure electroporation process by modeling the nanoscale phenomena
involved in the creation and resealing of the cell membrane pores, and they apply
homogenization theory to derive nonlinear-in-time dynamics. Well-posedness of the
Neu--Krassowska model and a new one including anisotropies are derived in [2]. Al-
ternatively, in [17] the authors propose a phenomenological model that forgoes the ab
initio understanding of the mechanisms involved. A more complete phenomenologi-
cal model splits the electroporation process into two different stages: conducting and
permeable [20]. This model also takes into account the diffusion and electric trans-
port of nonpermeable molecules. In [10, 22], the authors discard particle diffusion
and transport in [20] to then apply the Voronoi Interface Method [9] for its numerical
approximation. Specifically, they construct a Voronoi mesh of the volume coupled to
a ghost fluid method to capture discontinuous boundary conditions. Further compu-
tational enhancements via parallelization are given in [22].

Instead of solving the volume boundary value problem, we recast the problem
onto cell membranes via the local multiple traces formulation (MTF) [13, 4, 14, 5, 16].
Originally introduced to solve acoustic wave transmission problems in heterogeneous
scatterers, the local MTF considers independent trace unknowns at either side of the
subdomains' boundaries to then enforce continuity conditions weakly via Calder\'on
identities. In [12, 11] the method was successfully applied to model the electrical
behavior of peripheral neurons by coupling the Laplace boundary integral operators
with Hodgkin--Huxley nonlinear dynamics. The volume Laplace equations in intra-
and extracellular media arise when assuming a quasi-static electromagnetic regime,
and one can show that for two and three dimensions the model is well-posed. Nu-
merically, the authors prove stability and convergence of the multistep semi-implicit
time discretizations with low- and high- (spectral) order spatial boundary unknown
representations. Moreover, the numerical method proposed can be extended to model
other nonlinear dynamics.

Following [12, 11], we employ the above boundary integral equations to simulate
the electric potential response of multiple disjoint cells in three dimensions when
subject to electric pulses. Spatially, the boundary unknowns will be approximated
by spherical harmonics, thereby allowing for spectral convergence rates in space. The
nonlinear dynamics of the cell membrane follow [17] and are solved by a multistep
semi-implicit scheme. As we will see, the dynamic model is in fact highly nonlinear
and portrays poor regularity, reason for which convergence rates in time are low when
compared to spatial ones.

The rest of the paper is organized as follows. In section 2 we formulate the problem
and the corresponding nonlinear dynamic model, and derive MTF. In section 3, we
present a numerical scheme for spatial and time-domain discretizations, as well as
discuss advantages and limitations of the proposed method. Computational results
are provided in section 4. Code validation experiments with analytic and overkill
solutions confirm our theoretical results and open new avenues of research.

2. Problem statement and boundary integral formulation.

2.1. Dirichlet and Neumann traces. In what follows we will need the notion
of Dirichlet and Neumann traces, which we introduce below. Let \Omega \subset \BbbR d, d= 1,2,3,
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CELL ELECTROPERMEABILIZATION MODELING B955

be an open nonempty domain not necessarily bounded with a Lipschitz boundary \Gamma .
For u\in C\infty (\Omega ), Dirichlet and Neumann traces operators are defined as

\gamma Du := u| \Gamma , \gamma Nu := (\nabla u \cdot \widehat n) | \Gamma ,
where \widehat n is the exterior unit normal and \nabla denotes the gradient. For a Lipschitz
\Gamma , the Dirichlet trace has a unique extension to a linear and continuous operator
\gamma D :H1

loc(\Omega )\rightarrow H1/2(\Gamma ), where1

\| v\| 
H

1
2 (\Gamma )

:=

\biggl\{ 
inf

u\in H1(\Omega )
\| u\| H1(\Omega ) : \gamma Du= v

\biggr\} 
.

The space of bounded linear functionals on H
1
2 (\Gamma ) is denoted by H - 1

2 (\Gamma ). Let \Delta 
denote the Laplace operator, and define

H1
loc(\Delta ,\Omega ) :=

\bigl\{ 
u\in H1

loc(\Delta ,\Omega ) : \Delta u\in L2
loc(\Omega )

\bigr\} 
.

One can also show that the Neumann trace operator \gamma N : H1
loc(\Delta ,\Omega ) \rightarrow H - 1

2 (\Gamma ) is
continuous (see [27, sections 2.6--2.8]). H

1
2 (\Gamma ) and H - 1

2 (\Gamma ) are referred to as Dirichlet
and Neumann trace spaces, respectively [27, sections 2.4, 2.6, and 2.7].

2.2. Cell electropermeabilization model. We now present a continuous
model used for the electropermeabilization process. Specifically, we assume a quasi-
static electromagnetic problem in the intra- and extracellular domains coupled with
nonlinear dynamics at the cells' membranes. This coupling relies on enforcing adequate
transmission conditions for potentials and currents across the cells. By a quasi-static
regime, we imply that the frequency of the electric fields is low enough to discard any
time delay in electromagnetic wave propagation [25].

We consider the electric interaction of \scrN \in \BbbN disjoint spherical cells located at
pj \in \BbbR 3 with radii Rj \in \BbbR +, j \in \{ 1, . . . ,\scrN \} . We define the interior space of the jth
cell by \Omega j := \{ x \in \BbbR 3 : \| x - pj\| 2 < Rj\} , with its membrane being the boundary
\Gamma j := \partial \Omega j = \{ x \in \BbbR 3 : \| x - pj\| 2 = Rj\} . The extracellular medium is defined as the

complement to the intracellular domain: \Omega 0 :=\BbbR 3 \setminus 
\bigcup \scrN 

j=1\Omega j . An illustration for three
cells is presented in Figure 1.

For j \in \{ 0, . . . ,N\} , each cell \Omega j is assumed to have constant conductivity \sigma j \in \BbbR +.
For T \in \BbbR +, let \phi e : [0, T ]\times \Omega 0 \rightarrow \BbbR be a given external potential. Let u0 : [0, T ]\times \Omega 0 \rightarrow 
\BbbR be the electric potential without excitation in the extracellular medium, so that the

Fig. 1. A system of three cells \scrN = 3.

1We use the subscript loc for locally integrable spaces, in particular, when \Omega is unbounded (cf.
[21]).
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B956 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

total external potential is utot0 := u0 + \phi e. We denote by uj : [0, T ] \times \Omega j \rightarrow \BbbR ,
j \in \{ 1, . . . ,\scrN \} , the electric potential inside the jth cell, as in Figure 1.

Across cell membranes \Gamma j the potential is discontinuous, the difference vj :=
uj  - u0 is called the membrane or transmembrane potential, and the flux is assumed
to be continuous. Thus, our boundary value problem becomes2

div (\sigma j\nabla uj) = 0, (t,x)\in [0, T ]\times \Omega j , j \in \{ 0, . . . ,\scrN \} ,
 - \gamma 0jD u0 + \gamma jDuj = vj + \gamma 0jD \phi e, (t,x)\in [0, T ]\times \Gamma j , j \in \{ 1, . . . ,\scrN \} ,

\sigma 0\gamma 
0j
N u0 + \sigma j\gamma 

j
Nuj = - \sigma 0\gamma 0jN \phi e, (t,x)\in [0, T ]\times \Gamma j , j \in \{ 1, . . . ,\scrN \} .

Observe that Neumann jumps consider the inherited normal outward direction for
each subdomain, so that \gamma 0jN = - \gamma jN .

For the electropermeabilization process, we adopt the phenomenological model
presented in [17]. Specifically, at each cell j \in \{ 1, . . . ,\scrN \} , one has

cm,j\partial tvj + Iepj (vj ,Zj) = - \sigma j\gamma jNuj on [0, T ]\times \Gamma j ,

Iepj (vj ,Zj) = vj(SL,j +Zj(t, vj(t,x))(Sir,j  - SL,j)) on [0, T ]\times \Gamma j ,

with cm,j denoting the membrane capacitance per unit area, and Iepj being the elec-
tropermeabilization current. This last quantity depends on the transmembrane poten-
tial vj and a C1-function Zj : [0, T ]\times \Gamma j \rightarrow [0,1] (cf. [17, Lemma 7]). For brevity, and
slightly abusing the notation, we write Zj(t,x) instead of Zj(t, vj(t,x)). The variable
Zj(t,x) ``measures in some way the likelihood that a given infinitesimal portion of the
membrane is going to be electropermeabilized"" [17, p. 247]. Specifically, Zj enforces
the surface membrane conductivity to take values between two parameters: the surface
conductivity Sir,j for which the electropermeabilization process becomes irreversible,
and the lipid surface conductivity SL,j . Indeed, when Zj = 0, the membrane conduc-
tivity equals the lipid conductivity, and there is no electropermeabilization; if Zj = 1,
the membrane conductivity takes the maximal value above which electropermeabi-
lization is irreversible. Following [17], Zj satisfies the ordinary differential equation:3

\partial tZj(t, \lambda ) =max

\biggl( 
\beta j(\lambda ) - Zj(t, \lambda )

\tau ep,j
,
\beta j(\lambda ) - Zj(t, \lambda )

\tau res,j

\biggr) 
.

Here, \beta j \in W 1,\infty (\BbbR ; [0,1]) := \{ u\in L\infty (\BbbR ; [0,1]) : D\alpha u\in L\infty (\BbbR ; [0,1]), | \alpha | \leq 1\} . If
\beta j(vj) - Zj(t, vj) is positive, the electric pulse is sufficiently intense to enlarge the elec-
tropermeabilized region with a characteristic time \tau ep,j . Contrarily, if \beta j(vj) - Zj(t, vj)
is negative, the pulse is not strong enough to allow electropermeabilization and the
membrane returns to its resting state, with a characteristic resealing time \tau res,j . Ex-
perimental observations suggest that \tau res,j \gg \tau ep,j .

Remark 2.1. In general [17], one can use any function \beta j such that \beta j \in W 1,\infty (\BbbR ),
v\beta \prime 

j(v) \in L\infty (\BbbR ), \beta j is nondecreasing in (0,\infty ), 0 \leq \beta j(v) \leq 1, limv\rightarrow \infty \beta j(v) = 1. In
our case, we set \beta j as

\beta j(v) :=
1+ tanh(kep,j(| v|  - Vrev,j))

2
,(2.1)

2Observe that the Dirichlet and Neumann operators only act in the spatial variable x. For a
collection of spheres, we have added superindices to emphasize where the traces are taken from, i.e.,
0j for the traces arising from \Omega 0 onto \Gamma j , and j for the ones from \Omega j to \Gamma j .

3One can see that functions Zj will portray poor regularity---at most C1---a fact later observed
numerically.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CELL ELECTROPERMEABILIZATION MODELING B957

wherein two additional parameters are introduced: the electropermeabilization switch
speed kep,j between Sir,j and SL,j , and Vrev,j , the transmembrane potential threshold
for electropermeabilization to occur. The chosen \beta j (2.1) satisfies the above condi-
tions. This can be checked by recalling the properties of the hyperbolic functions
tanh : \BbbR \rightarrow [ - 1,1] and sech : \BbbR \rightarrow [0,1]. We will assume that the threshold potential
Vrev is constant throughout the electropermeabilization process.

In summary, the full electropermeabilization dynamic problem reads as follows.

Problem 2.2. Given T \in \BbbR +, an external potential \phi e \in C([0, T ],H1
loc (\Omega 0)),

and the initial conditions u0j \in H1 (\Omega j) and Z0
j \in H

1
2 (\Gamma j) for j = 1, . . . ,\scrN , we seek

uj \in C([0, T ],H1 (\Omega j)), vj \in C([0, T ],H
1
2 (\Gamma j)), and Zj \in C([0, T ],H

1
2 (\Gamma j)) for j \in 

\{ 1, . . . ,\scrN \} such that for t\in [0, T ], the following holds:

div (\sigma 0\nabla u0) = 0 in \Omega 0,(2.2a)

div (\sigma j\nabla uj) = 0 in \Omega j ,(2.2b)

 - \gamma 0jD u0 + \gamma jDuj = vj + \gamma 0jD \phi e on \Gamma j ,(2.2c)

\sigma 0\gamma 
0j
N u0 + \sigma j\gamma 

j
Nuj = - \sigma 0\gamma 0jN \phi e on \Gamma j ,(2.2d)

cm,j\partial tvj + Iepj (vj ,Zj) = - \sigma j\gamma jNuj on \Gamma j ,(2.2e)

uj(0,x) = u0j , Zj(0,x) =Z0
j in \Omega j ,(2.2f)

u0(0,x) = u00 in \Omega 0,(2.2g)

u0 =\scrO (\| x\|  - 1
2 ) as \| x\| 2 \rightarrow \infty ,(2.2h)

with Iepj defined as

Iepj (vj ,Zj) := vj (SL,j +Zj(t, vj)(Sir,j  - SL,j)) ,(2.3)

where the Zj(t, \lambda ) satisfy

\partial tZj(t, \lambda ) =max

\biggl( 
\beta j(\lambda ) - Zj(t, \lambda )

\tau ep,j
,
\beta j(\lambda ) - Zj(t, \lambda )

\tau res,j

\biggr) 
(2.4)

with \beta j given by (2.1) and parameters \tau ep,j , \tau res,j described above.

As above, we write Zj(x,x) =Zj(t, vj(t,x)). Observe that (2.2h) is the standard
decay condition for the Laplace problem in three dimensions that guarantees that the
problem is well-posed. Finally, the parameters of each cell cm,j , Vep,j , \tau ep,j , and \tau res,j
might differ from cell to cell. In practical applications, these parameters depend on
the cell type, e.g., cancer cells possess material properties different from healthy cells
in the same tissue [24].

2.3. Boundary integral formulation. Due to the unboundedness of the do-
main as well as the constant conductivity values inside intra- and extracellular do-
mains, one can write Problem 2.2 using boundary integral operators, thereby reducing
the volume problem to a boundary one as in [13, 12, 11]. Moreover, this significantly
reduces the degrees of freedom required to solve the problem.

2.3.1. Boundary integral potential and operators. The free space funda-
mental solution of the Laplace equation for a source located at x\prime satisfying the decay
condition (2.2h) is [15, section 1.7]

g (x,x\prime ) :=
1

4\pi \| x - x\prime \| 2
, x \not = x\prime .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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B958 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

We recall the standard single and double layer operators defined for smooth densities
\psi and x\in \BbbR 3 \setminus \Gamma j :

DL0j(\psi ) (x) :=

\int 
\Gamma j

\psi (x\prime )\nabla g (x,x\prime ) \cdot \widehat n0jd\Gamma 
\prime , SL0j(\psi ) (x) :=

\int 
\Gamma j

\psi (x\prime )g (x,x\prime )d\Gamma \prime ,

DLj(\psi ) (x) :=

\int 
\Gamma j

\psi (x\prime )\nabla g (x,x\prime ) \cdot \widehat njd\Gamma 
\prime , SLj(\psi ) (x) :=

\int 
\Gamma j

\psi (x\prime )g (x,x\prime )d\Gamma \prime ,

with the gradient being taken with respect to r\prime , \widehat nj being the exterior normal vector
of \Omega j . Since for each subdomain the normal is oriented outwardly, it holds that\widehat nj =  - \widehat n0j . It can be shown that these operators are linear and continuous (cf. [27,
section 3.1], [11, section 3.1]) in the following Sobolev spaces:

DL0j :H
1
2 (\Gamma j)\rightarrow H1

loc

\bigl( 
\BbbR 3 \setminus \cup \scrN 

j=1\Gamma j

\bigr) 
, SL0j :H

 - 1
2 (\Gamma j)\rightarrow H1

loc

\bigl( 
\BbbR 3 \setminus \cup \scrN 

j=1\Gamma j

\bigr) 
,

DLj :H
1
2 (\Gamma j)\rightarrow H1

loc

\bigl( 
\BbbR 3 \setminus \cup \scrN 

j=1\Gamma j

\bigr) 
, SLj :H

 - 1
2 (\Gamma j)\rightarrow H1

loc

\bigl( 
\BbbR 3 \setminus \cup \scrN 

j=1\Gamma j

\bigr) 
.

We will write uj in terms of these boundary potentials, and since we aim at rendering
Problem 2.2 onto the cells' boundaries, we will take traces of these potentials. This
leads to boundary integral operators (BIOs), which are defined by taking the following
averages [27, section 3.1.2]:

V 0
i,j :=

1

2

\bigl( 
\gamma iDSL0j + \gamma 0iDSL0j

\bigr) 
, Vj :=

1

2

\Bigl( 
\gamma 0jD SLj + \gamma jDSLj

\Bigr) 
,

K0
i,j :=

1

2

\bigl( 
\gamma iDDL0j + \gamma 0iDDL0j

\bigr) 
, Kj :=

1

2

\Bigl( 
\gamma 0jDDLj + \gamma jDDLj

\Bigr) 
,(2.5)

K\ast 0
i,j :=

1

2

\bigl( 
 - \gamma iNSL0j + \gamma 0iNSL0j

\bigr) 
, K\ast 

j :=
1

2

\Bigl( 
 - \gamma 0jN SLj + \gamma jNSLj

\Bigr) 
,

W 0
i,j := - 1

2

\bigl( 
 - \gamma iNDL0j + \gamma 0iNDL0j

\bigr) 
, Wj := - 1

2

\Bigl( 
 - \gamma 0jNDLj + \gamma jNDLj

\Bigr) 
.

One can show that these operators are linear and continuous [27, Theorem 3.1.16] in
the following Sobolev spaces:

V 0
i,j :H

 - 1
2 (\Gamma j)\rightarrow H

1
2 (\Gamma i), Vj :H

 - 1
2 (\Gamma j)\rightarrow H

1
2 (\Gamma j),

W 0
i,j :H

1
2 (\Gamma j)\rightarrow H - 1

2 (\Gamma i), Wj :H
1
2 (\Gamma j)\rightarrow H - 1

2 (\Gamma j),

K0
i,j :H

1
2 (\Gamma j)\rightarrow H

1
2 (\Gamma i), Kj :H

1
2 (\Gamma j)\rightarrow H

1
2 (\Gamma j),

K\ast 0
i,j :H

 - 1
2 (\Gamma j)\rightarrow H - 1

2 (\Gamma i), K\ast 
j :H - 1

2 (\Gamma j)\rightarrow H - 1
2 (\Gamma j).

For smooth domains, the jump relations for the potentials across a closed boundary
[27, Theorem 3.3.1] yield

V 0
i,j = \gamma 0iDSL0j , Vj = \gamma jDSLj ,

W 0
i,j = - \gamma 0iNDL0j , Wj = - \gamma jNDLj ,

K0
i,j = \gamma 0iDDL0j with i \not = j, K\ast 0

i,j = \gamma 0iNSL0j with i \not = j,

K0
j,j(\psi ) =

1

2
\psi + \gamma 0jDDL0j(\psi ), Kj(\psi ) =

1

2
\psi + \gamma jDDLj(\psi ),

K\ast 0
j,j(\psi ) = - 1

2
\psi + \gamma 0jN SL0j(\psi ), K\ast 

j (\psi ) = - 1

2
\psi + \gamma jNSLj(\psi ).

The next theorem allows us to reconstruct the electric potentials uj and u0 from
boundary layer operators.
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CELL ELECTROPERMEABILIZATION MODELING B959

Theorem 2.3 ([27, section 3]). The integral representation formulas for uj \in 
H1(\Omega j), u0 \in H1

loc(\Omega 0) read as

u0 = - 
\scrN \sum 
i=1

DL0i

\bigl( 
\gamma 0iDu0

\bigr) 
+

\scrN \sum 
i=1

SL0i

\bigl( 
\gamma 0iNu0

\bigr) 
,(2.6a)

uj = - DLj

\Bigl( 
\gamma jDuj

\Bigr) 
+ SLj

\Bigl( 
\gamma jNuj

\Bigr) 
\forall j \in \{ 1, . . . ,\scrN \} ,(2.6b)

where uj are zero-valued on the complement of \Omega j for j = 0, . . . ,\scrN .

2.3.2. Multiple traces formulation for Problem 2.2. We now write the
MTF of Problem 2.2 by taking traces of the integral representation formula (cf. [13]
and later references).

For j \in \{ 1, . . . ,\scrN \} , we introduce the Cartesian product of Hilbert spaces \bfitH j :=
H

1
2 (\Gamma j)\times H - 1

2 (\Gamma j), with graph norm \| \cdot \| \bfitH j
= \| \cdot \| 

H
1
2 (\Gamma j)

+ \| \cdot \| 
H - 1

2 (\Gamma j)
. Let be \bfitphi ,

\bfitxi \in \bfitH j , such that \bfitphi = (\phi D, \phi N ) and \bfitxi = (\xi D, \xi N ). We introduce the cross-product
over \Gamma j [13, section 2.2.1] by \langle \bfitphi ,\bfitxi \rangle \times ,j := \langle \phi D, \xi N \rangle j + \langle \xi D, \phi N \rangle j , where for brevity we
denote \langle \xi D, \phi N \rangle j := \langle \xi D, \phi N \rangle 

H
1
2 (\Gamma j)\times H - 1

2 (\Gamma j)
.

We define also the flip-sign operator \sansX j :\bfitH j \rightarrow \bfitH j , \bfitgamma 
0j :H1

loc(\Delta ,\Omega 0)\rightarrow \bfitH j , and
\bfitgamma j :H1(\Delta ,\Omega j)\rightarrow \bfitH j as

(2.7) \sansX j :=

\Biggl[ 
I 0

0  - \sigma 0

\sigma j
I

\Biggr] 
, \bfitgamma 0j :=

\Biggl( 
\gamma 0jD

\gamma 0jN

\Biggr) 
, and \bfitgamma j :=

\Biggl( 
\gamma jD

\gamma jN

\Biggr) 
, j \in \{ 1, . . . ,\scrN \} ,

with I being the identity operator understood in the corresponding functional space.
Then, we succinctly write Dirichlet and Neumann boundary conditions, (2.2c) and
(2.2d), respectively, as

 - \sansX j\bfitgamma 
0ju0 + \bfitgamma juj =\sansX j(vj , 0)

t +\sansX j\bfitgamma 
0j\phi e,(2.8a)

\bfitgamma 0ju0  - \sansX  - 1
j \bfitgamma juj = - (vj , 0)

t  - \bfitgamma 0j\phi e,(2.8b)

with superscript t denoting transposition, and where both equations are equivalent.
Taking Dirichlet and Neumann traces of both (2.6a) and (2.6b), and rewriting in
terms of BIOs, we obtain

\gamma 0jD u0 = - 

\Biggl( 
 - 1

2
I
\Bigl( 
\gamma 0jD u0

\Bigr) 
+

n\sum 
i=1

K0
j,i

\bigl( 
\gamma 0iDu0

\bigr) \Biggr) 
+

n\sum 
i=1

V 0
j,i

\bigl( 
\gamma 0iNu0

\bigr) 
,

\gamma 0jN u0 =

n\sum 
i=1

W 0
j,i

\bigl( 
\gamma 0iDu0

\bigr) 
+

\Biggl( 
1

2
I
\Bigl( 
\gamma 0jN u0

\Bigr) 
+

n\sum 
i=1

K\ast 0
j,i

\bigl( 
\gamma 0iNu0

\bigr) \Biggr) 
,

\gamma jDuj = - 
\biggl( 
 - 1

2
I
\Bigl( 
\gamma jDuj

\Bigr) 
+Kj

\Bigl( 
\gamma jDuj

\Bigr) \biggr) 
+ Vj

\Bigl( 
\gamma jNuj

\Bigr) 
,

\gamma jNuj =Wj

\Bigl( 
\gamma jDuj

\Bigr) 
+

\biggl( 
1

2
I
\Bigl( 
\gamma jNuj

\Bigr) 
+K\ast 

j

\Bigl( 
\gamma jNuj

\Bigr) \biggr) 
.

After some algebra, one can write

\bfitgamma 0ju0 = 2

\scrN \sum 
i=1

\sansA 0
j,i \bfitgamma 

0iu0, \bfitgamma juj = 2\sansA j \bfitgamma 
juj , j \in \{ 1, . . . ,\scrN \} ,

with \sansA 0
j,i :=

\bigl[  - K0
j,i V 0

j,i

W 0
j,i K\ast 0

j,i

\bigr] 
and \sansA j :=

\bigl[  - Kj Vj

Wj K\ast 
j

\bigr] 
. By substituting \bfitgamma 0ju0, \bfitgamma 

juj into (2.8b)

and (2.8a), we obtain
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B960 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

2

n\sum 
i=1

\sansA 0
j,i \bfitgamma 

0iu0  - \sansX  - 1
j \bfitgamma juj = - (vj , 0)

t  - \bfitgamma 0j\phi e,

 - \sansX j\bfitgamma 
0ju0 + 2\sansA j \bfitgamma 

juj =\sansX j(vj , 0)
t +\sansX j\bfitgamma 

0j\phi e on \Gamma j .

We define the Cartesian product space of multiple traces \BbbH := \Pi \scrN 
j=1\bfitH j and

\BbbH (2) := \BbbH \times \BbbH = \Pi \scrN 
j=1\bfitH j \times \Pi \scrN 

j=1\bfitH j ; the multiple trace spaces reordering \BbbH D :=

\Pi \scrN 
j=1H

1
2 (\Gamma j), \BbbH N := \Pi \scrN 

j=1H
 - 1

2 (\Gamma j); and the cross-product

\langle \bfitphi ,\bfitxi \rangle \times =

\scrN \sum 
j=1

\langle \bfitphi 0j ,\bfitxi 0j\rangle \times ,j +

\scrN \sum 
j=1

\langle \bfitphi j ,\bfitxi j\rangle \times ,j ,

with \bfitphi = (\bfitphi 01, . . . ,\bfitphi 0\scrN ,\bfitphi 1, . . . ,\bfitphi \scrN ) and \bfitxi = (\bfitxi 01, . . . ,\bfitxi 0\scrN ,\bfitxi 1, . . . ,\bfitxi \scrN ).
The local MTF operator [13, section 3.2.3] \bfsansM \scrN : \BbbH (2) \rightarrow \BbbH (2) for the problem

presented in section 2 takes the form

\bfsansM \scrN :=

\biggl[ 
2\bfsansA 0,\scrN  - X - 1

\scrN 
 - X\scrN 2\bfsansA 1,\scrN 

\biggr] 
, with \bfsansA 0,\scrN :=

\left[     
\sansA 0
1,1 \sansA 0

1,2 . . . \sansA 0
1,\scrN 

\sansA 0
2,1 \sansA 0

2,2 . . . \sansA 0
2,\scrN 

...
. . .

...

\sansA 0
\scrN ,1 \sansA 0

\scrN ,2 . . . \sansA 0
\scrN ,\scrN 

\right]     ,(2.9)

and diagonal operators \bfsansA 1,\scrN := diag (\sansA 1, . . . ,\sansA \scrN ) and X\scrN := diag (\sansX 1, . . .\sansX \scrN ). With
the MTF operator, the interface conditions (2.2b), (2.2c), and (2.2d) (Problem 2.2)
can be written as

\bfsansM \scrN 

\biggl( 
\bfitgamma 0
u

\bfitgamma u

\biggr) 
=

\biggl( 
 - I2\scrN \times \scrN v
X\scrN I2\scrN \times \scrN v

\biggr) 
+

\biggl( 
 - \bfitgamma 0

\phi e

X\scrN \bfitgamma 0
\phi e

\biggr) 
,(2.10)

where we use the notation

\bfitgamma 0
u :=

\bigl( 
\bfitgamma 01u0,\bfitgamma 

02u0, . . . ,\bfitgamma 
0\scrN u0

\bigr) t
, \bfitgamma u :=

\bigl( 
\bfitgamma 1u1,\bfitgamma 

2u2, . . . ,\bfitgamma 
\scrN u\scrN 

\bigr) t
,

\bfitgamma 0
\phi e

:=
\bigl( 
\bfitgamma 01\phi e,\bfitgamma 

02\phi e, . . . ,\bfitgamma 
0\scrN \phi e

\bigr) t
, v :=

\bigl( 
v1, v2, v3, . . . , v\scrN 

\bigr) t
,

and the operator I2\scrN \times \scrN :\BbbH D \rightarrow \BbbH defined as

I2\scrN \times \scrN :=

\left(           

I 0 . . . 0
0 0 . . . 0
0 I . . . 0
0 0 . . . 0
...

...
...

0 0 . . . I
0 0 . . . 0

\right)           
.

Notice that the identity operators act on the corresponding Dirichlet traces.
The following result is a consequence of [11, Propositions 3.9 and 3.10] along with

the Fredholm alternative.

Theorem 2.4 (existence, uniqueness, and stability). The operator \bfsansM \scrN is a lin-
ear, injective, and coercive operator in \BbbH (2). For all \bfitxi \in \BbbH (2), there exists a unique
weak solution \bfitlambda \in \BbbH (2) of

(\bfsansM \scrN \bfitlambda ,\bfitphi )\times = (\bfitxi ,\bfitphi )\times \forall \bfitphi \in \BbbH (2)

that satisfies the stability estimate \| \bfitlambda \| \BbbH (2) \leq c\| \bfitxi \| \BbbH (2) for a constant c > 0.
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CELL ELECTROPERMEABILIZATION MODELING B961

2.3.3. Boundary integral formulation of Problem 2.2. Until this point, we
have not introduced the membrane dynamics of Problem 2.2. In the following, we will
use the theory presented in [12, 11] to combine the MTF with the nonlinear dynamics.
Indeed, thanks to Theorem 2.4 we can take the inverse of the MTF operator, and
(2.10) becomes \Biggl( 

\bfitgamma 0
u

\bfitgamma u

\Biggr) 
=\bfsansM  - 1

\scrN 

\Biggl( 
 - I2\scrN \times \scrN v

X\scrN I2\scrN \times \scrN v

\Biggr) 
+\bfsansM  - 1

\scrN 

\Biggl( 
 - \bfitgamma 0

\phi e

X\scrN \bfitgamma 0
\phi e

\Biggr) 
.

The even components of the vector \gamma u (the interior Neumann traces), related to
the nonlinear dynamics of the problem by (2.2e), can be retrieved as follows:\left(     

\sigma 1\gamma 
1
N (u1)

\sigma 2\gamma 
2
N (u2)
...

\sigma \scrN \gamma 
\scrN 
N (u\scrN )

\right)     =\bfitsigma \scrN \times 4\scrN \bfsansM  - 1
\scrN 

\biggl( \biggl( 
 - I2\scrN \times \scrN v
X\scrN I2\scrN \times \scrN v

\biggr) 
+

\biggl( 
 - \bfitgamma 0

\phi e

X\scrN \bfitgamma 0
\phi e

\biggr) \biggr) 
,

where the dimensions of \bfitsigma \scrN \times 4\scrN are \scrN \times 4\scrN , the first half containing only zeros:

\bfitsigma \scrN \times 4\scrN :=

\left(     
0 . . . 0 \sigma 1I 0 0 . . . 0
0 . . . 0 0 0 \sigma 2I . . . 0
...

...
...

...
...

...
0 . . . 0 0 0 0 . . . \sigma \scrN I

\right)     .

Now, we define the Dirichlet-to-Neumann operators \scrJ \scrN : \BbbH D \rightarrow \BbbH N and \Phi :
H1

loc(\Omega 0)\rightarrow \BbbH N as

\scrJ \scrN (v) :=\bfitsigma \scrN \times 4\scrN \bfsansM  - 1
\scrN 

\Biggl( 
 - I2\scrN \times \scrN v

X\scrN I2\scrN \times \scrN v

\Biggr) 
and \Phi (\phi e) :=\bfitsigma \scrN \times 4\scrN \bfsansM \scrN 

\Biggl( 
 - \bfitgamma 0

\phi e

X\scrN \bfitgamma 0
\phi e

\Biggr) 
.

(2.11)

Theorem 2.5 (Lemma 4.3 in [11]). The operator \scrJ \scrN : \BbbH D \rightarrow \BbbH N is continuous
and coercive.

Now we can finally rewrite4 Problem 2.2 as an abstract parabolic equation on \Gamma j .

Problem 2.6. Let us assume the following as given: a final time T \in \BbbR +, an
external potential \phi e \in C([0, T ],H1

loc (\Omega 0)), and initial conditions vj(0) = v0 \in H
1
2 (\Gamma j),

Zj(0) = Z0
j \in H

1
2 (\Gamma j) for j \in \{ 1, . . . ,\scrN \} . We seek v = (v1, . . . , v\scrN )t, with vj \in 

C([0, T ],H
1
2 (\Gamma j)), and Z= (Z1, . . . ,Z\scrN )t, Zj \in C([0, T ],H

1
2 (\Gamma j)), for j \in \{ 1, . . . ,\scrN \} ,

such that

Cm\partial tv= - Iep(v,Z) - \scrJ \scrN (v) - \Phi (\phi e) on [0, T ]\times \Gamma j ,(2.12)

where Cm is a diagonal matrix diag(cm,1, . . . , cm,\scrN ) and the operators \scrJ \scrN (v) and
\Phi (\phi e) are defined in (2.11). The vector Iep(v,Z) = (Iep1 (v1,Z1), . . . , I

ep
\scrN (v\scrN ,Z\scrN ))t

satisfies (2.3), (2.4), and (2.1).

4The MTF (2.9) is almost equal to the one in [11] and [12]. Specifically, (2.9) is multiplied by a
factor two and the first row does not have a factor \sigma j as in [12] and [11].
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B962 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

3. Numerical approximation. In this section we propose a numerical solu-
tion of Problem 2.6. We use a multistep semi-implicit time scheme or implicit-explicit
method (IMEX), similar to one used in [12, 11] (see section 3.1). For the space dis-
cretization, we follow an approach analogous to the two-dimensional case presented in
[11] using spherical harmonics. Since we do not work with complex-valued functions,
we employ real spherical harmonics to approximate boundary unknowns. We recall
that our dynamic model leads to poorly regular solutions in time.

3.1. Multistep semi-implicit time scheme. Let \scrT S := \{ ts\} Ss=0 denote the
uniform partition of the time interval [0, T ], with T \in \BbbR + and S \in \BbbN , where the time
step is \tau = T/S and ts = s\tau . Write

ts+ 1
2
:= ts +

\tau 

2
, s\in \{ 0, . . . , S  - 1\} ,

for the mid-step between ts and ts+1. For a time-dependent quantity \phi (t), we write
\phi (s) = \phi (ts), and we define the following quantities

\phi (s+
1
2 ) := \phi (ts+ 1

2
), \phi 

(s+ 1
2 ) :=

\phi (s+1) + \phi (s)

2
,

\^\phi (s+
1
2 ) :=

3\phi (s)  - \phi (s - 1)

2
, \partial \phi (s) :=

\phi (s+1)  - \phi (s)

\tau 
.

With these, we approximate in time (2.6) and (2.4) as follows:

Cm\partial v
(s) = - Iep

\Bigl( \widehat v(s+ 1
2 ), \widehat Z(s+ 1

2 )
\Bigr) 
 - \scrJ \scrN 

\Bigl( 
v(s+ 1

2 )
\Bigr) 
 - \Phi (\phi 

(s+ 1
2 )

e ),

\partial 
(s)
Zj =max

\left(  \beta j(\widehat v(s+ 1
2 )

j ) - \widehat Zj

(s+ 1
2 )

\tau ep,j
,
\beta j(\widehat v(s+ 1

2 )
j ) - \widehat Zj

(s+ 1
2 )

\tau res,j

\right)  .

From these expressions, we can notice the following:
(i) At each iteration, the approximation at ts+1 requires two previous steps,

ts and ts - 1, but we only have information about the time t0. Thus, we
will estimate the values for the time t1 with a predictor-corrector algorithm
introduced later in this section.

(ii) Provided with values for the two previous time steps, unknowns for the next

time are obtained in terms of \partial v(s), v(s+ 1
2 ), and \partial 

(s)
, which are linear. Non-

linear terms are evaluated with values already known, i.e., they are explicit
terms, unlike the others. Hence, we use the adjective semi-implicit or IMEX
for the multistep method employed.

(iii) At each time step, the discrete problem to be solved is linear. One could
choose time-domain schemes with implicit nonlinear parts. However, more
information about Iep may be needed. In contrast, our semi-implicit time
only requires us to evaluate the function Iep.

The predictor-corrector algorithm can be found in detail in [29, Chapter 13], [12,
Algorithm 1]. Set w(0) = v(0) and Q(0) =Z(0). Then, proceed as follows:

(I) Predictor. First, construct predictions w(1) and Q(1) by solving

Cm\partial w
(0) = - Iep

\Bigl( 
w(0),Q(0)

\Bigr) 
 - \scrJ \scrN 

\Bigl( 
w( 1

2 )
\Bigr) 
 - \Phi 

\Bigl( 
\phi 
( 1
2 )

e

\Bigr) 
,

\partial Q
(0)
j =max

\Biggl( 
\beta j(w

(0)
j ) - Q

(0)
j

\tau ep,j
,
\beta j(w

(0)
j ) - Q

(0)
j

\tau res,j

\Biggr) 
\forall j \in \{ 1, . . . ,\scrN \} .
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CELL ELECTROPERMEABILIZATION MODELING B963

(II) Corrector. Then, correct w(1) and Q(1) to obtain final values for v(1) and
Z(1) through

Cm\partial v
(0) = - Iep

\Bigl( \widehat w( 1
2 ), \widehat Q( 1

2 )
\Bigr) 
 - \scrJ \scrN 

\Bigl( 
v( 1

2 )
\Bigr) 
 - \Phi 

\Bigl( 
\phi 
( 1
2 )

e

\Bigr) 
,

\partial 
(0)
Zj =max

\left(  \beta j( \widehat w( 1
2 )

j ) - \widehat Qj

( 1
2 )

\tau ep,j
,
\beta j( \widehat w( 1

2 )
j ) - \widehat Qj

( 1
2 )

\tau res,j

\right)  \forall j \in \{ 1, . . . ,\scrN \} .

Then, from the corrector equations, v(1) and Z(1) are obtained implicitly.

Remark 3.1. The predictor-corrector algorithm is only used for obtaining the first
time step, as required by the multistep semi-implicit time scheme. One could think
of a predictor-corrector algorithm at all time steps, but this would entail a higher
computational cost and reassess the theoretical convergence results in [12].

Finally, before tackling the spatial discretization, we recall the following result.

Theorem 3.2 ([12, Lemma 7]). Let \phi \in C2([0, T ];L2(\Gamma j)), j \in \{ 1, . . . ,\scrN \} ; then
it holds that \bigm\| \bigm\| \bigm\| \phi (s+ 1

2 )  - \phi (s+
1
2 )
\bigm\| \bigm\| \bigm\| 
L2(\Gamma j)

\leq \tau 2

4
max

t\in [ts,ts+1]

\bigm\| \bigm\| \partial 2t \phi (t)\bigm\| \bigm\| L2(\Gamma j)
,\bigm\| \bigm\| \bigm\| \^\phi (s+ 1

2 )  - \phi (s+
1
2 )
\bigm\| \bigm\| \bigm\| 
L2(\Gamma j)

\leq 5\tau 2

16
max

t\in [ts - 1,ts+1]

\bigm\| \bigm\| \partial 2t \phi (t)\bigm\| \bigm\| L2(\Gamma j)
.

3.2. Spatial discretization. We now spatially discretize Problem 2.6. We start
by introducing real spherical harmonics used as the spatial basis for the Dirichlet and
Neumann traces (3.3). Then, we proceed with BIO discretization (see Theorem 3.4).
Finally, the multistep semi-explicit time method and the spatial discretization are
combined into a fully discrete scheme (see Problem (3.8)).

3.2.1. Spherical coordinates and spherical harmonics. A vector is written
as r = (r,\varphi , \theta )

t
, with r \in [0,\infty ), \varphi \in [0,2\pi ), and \theta \in [0, \pi ], which in Cartesian

coordinates is equivalent to r= r (sin\theta cos\varphi , sin\theta sin\varphi , cos\theta )
t
. Spherical harmonics of

degree l and order m are defined using spherical coordinates as in [31, section 2], [7,
Example 4.3.33]:

Yl,m (\theta ,\varphi ) :=

\sqrt{} 
(2 - \delta m,0)

(2l+ 1) (l - m)!

4\pi (l+m)!
Pm
l (cos\theta ) cosm\varphi , and(3.1a)

Yl, - m (\theta ,\varphi ) :=

\sqrt{} 
(2 - \delta m,0)

(2l+ 1) (l - m)!

4\pi (l+m)!
Pm
l (cos\theta ) sinm\varphi ,(3.1b)

with l \in \BbbN 0, m \in \BbbZ such that 0\leq m\leq l. If m= 0, \delta m,0 = 1, and it is zero otherwise.
Pm
l are the associated Legendre functions of degree l and order m defined as

Pm
l (x) := ( - 1)m

\bigl( 
1 - x2

\bigr) m
2
dm

dxm
Pl(x), with Pl (x) :=

1

2ll!

dl

dxl
(x2  - 1)l.

Here, the term ( - 1)m is the Condon--Shortley phase factor. Spherical harmonics
are dense in C(\BbbS 2), with \BbbS 2 the surface of the unit sphere, and form a complete
orthonormal system in L2(\BbbS 2) [8, sections 7.3 and 7.5].

Let be j \in \{ 1, . . . ,\scrN \} . We define the reference system j as the one centered at
pj with the same orientation as the system centered at the origin. Furthermore, we
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B964 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

denote by Yl,m,j the spherical harmonic Yl,m centered at the origin of the jth reference
system. Thus, if (rj ,\varphi j , \theta j) are the vector spherical coordinates of rj in the reference
system j, we have that Yl,m,j (rj) = Yl,m (\theta j ,\varphi j).

For L\in \BbbN 0 and j \in \{ 1, . . . ,\scrN \} , we define subspaces

(3.2) \scrY L (\Gamma j) := span\{ Yl,m,j : l \in \BbbN 0,m\in \BbbZ , l\leq L, | m| \leq l\} ,

equipped with the L2(\Gamma j)-norm. Notice that the dimension of each subspace is (L+
1)2, and that the sequence of subspaces \{ \scrY L (\Gamma j)\} L\in \BbbN 0

is dense in H
1
2 (\Gamma j) and in

H - 1
2 (\Gamma j). The result follows from the density of spherical harmonics in the spaces

of continuous functions. This last result justifies the discretization of all boundary
Dirichlet and Neumann unknowns with spherical harmonics. At a given time t, for
j \in \{ 1, . . . ,\scrN \} , we write uLD,0j , u

L
N,0j , u

L
D,j , u

L
N,j , v

L
j , and ZL

j in \scrY L(\Gamma j) for the

approximations of \gamma 0jD u0, \gamma 
0j
N u0, \gamma 

j
Duj , \gamma 

j
Nuj , vj , and Zj , respectively. They can be

written as the following series expansions:

uLD,0j =
L\sum 

l=0

l\sum 
m= - l

ul,mD,0jYl,m,j , uLN,0j =
L\sum 

l=0

l\sum 
m= - l

ul,mN,0jYl,m,j ,(3.3a)

uLD,j =

L\sum 
l=0

l\sum 
m= - l

ul,mD,jYl,m,j , uLN,j =

L\sum 
l=0

l\sum 
m= - l

ul,mN,jYl,m,j ,(3.3b)

vLj =

L\sum 
l=0

l\sum 
m= - l

vl,mj Yl,m,j , ZL
j =

L\sum 
l=0

l\sum 
m= - l

Zl,m
j Yl,m,j(3.3c)

with ul,mD,0j , u
l,m
N,0j , u

l,m
D,j , u

l,m
N,j , v

l,m
j , and Zl,m

j being constants in space but varying in
time. Notice that the norm in \scrY L (\Gamma j) of any of these functions is the square root of
the sum of squared coefficients times the radius of \Gamma j , i.e.,

(3.4)
\bigm\| \bigm\| vLj \bigm\| \bigm\| 2\scrY L(\Gamma j)

=Rj

L\sum 
l=0

l\sum 
m= - l

(vl,mj )2.

Finally, let \BbbY L := \Pi \scrN 
j=1\scrY \scrL (\Gamma j), and define the following vectors in \BbbY L:

vL :=
\bigl( 
vL1 , . . . , v

L
j , . . . , v

L
\scrN 
\bigr) t
, ZL :=

\bigl( 
zL1 , . . . ,Z

L
j , . . . , z

L
\scrN 
\bigr) t
,(3.5a)

uL
D,0 :=

\bigl( 
uLD,01, . . . , u

L
D,0j , . . . , u

L
D,0\scrN 

\bigr) t
, uL

D :=
\bigl( 
uLD,1, . . . , u

L
D,j , . . . , u

L
D,\scrN 

\bigr) t
,(3.5b)

uL
N,0 :=

\bigl( 
uLN,01, . . . , u

L
N,0j , . . . , u

L
N,0\scrN 

\bigr) t
, uL

D :=
\bigl( 
uLN,1, . . . , u

L
N,j , . . . , u

L
N,\scrN 

\bigr) t
.(3.5c)

The norm for a function in \BbbY L, for example, vL, is \| vL\| 2\BbbY L
=
\sum \scrN 

j=1 | | vLj | | 2\scrY L(\Gamma j)
.

3.2.2. BIO discretization. The fundamental solution can be expanded using
spherical harmonics [7, Theorem 4.3.29, Lemma 4.4.1, and Remark 4.4.2], as the
following result shows.

Theorem 3.3. Let r, r\prime be vectors whose spherical coordinates in the reference
system j are (rj , \theta j ,\varphi j) and

\bigl( 
r\prime j , \theta 

\prime 
j ,\varphi 

\prime 
j

\bigr) 
, respectively. For rj > r

\prime 
j we have that

(3.6) g (r,r\prime ) =

\infty \sum 
l=0

1

2l+ 1

r
\prime l
j

rl+1
j

l\sum 
m= - l

Yl,m,j (r)Yl,m,j (r
\prime ) .

Moreover, the series (3.6) and its term-by-term first derivatives with respect to rj
or r\prime j are absolutely and uniformly convergent on compact subsets with rj > r\prime j [6,
section 2.3, pp. 23 and 24].
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Theorem 3.4. The diagonal forms of the BIOs (2.5) are

V 0
j,j (Yl,m,j) =

1

2l+ 1
RjYl,m,j , Vj (Yl,m,j) =

1

2l+ 1
RjYl,m,j ,

K0
j,j (Yl,m,j) =

1

2(2l+ 1)
Yl,m,j , Kj (Yl,m,j) = - 1

2(2l+ 1)
Yl,m,j ,

K\ast 0
j,j (Yl,m,j) =

1

2l+ 1
Yl,m,j , K\ast 

j (Yl,m,j) = - 1

2(2l+ 1)
Yl,m,j ,

W 0
j,j (Yl,m,j) =

l(l+ 1)

2l+ 1

1

Rj
Yl,m,j , Wj (Yl,m,j) =

l(l+ 1)

2l+ 1

1

Rj
Yl,m,j .

Proof. The result follows from Theorem 3.3, the orthonormality of spherical har-
monics, and the definitions of the BIOs presented in (2.5). Similar diagonal forms can
also be found in [30, section 3 and Table 2], where the result is stated for complex
spherical harmonics on the unit sphere.

Corollary 3.5. The following holds:\bigl( 
V 0
j,j (Yl,m,j) , Yp,q,j

\bigr) 
L2(\Gamma j)

= (Vj (Yl,m,j) , Yp,q,j)L2(\Gamma j)
=

R3
j

2l+ 1
\delta l,p\delta m,q,\bigl( 

K0
j,j (Yl,m,j) , Yp,q,j

\bigr) 
L2(\Gamma j)

= - (Kj (Yl,m,j) , Yp,q,j)L2(\Gamma j)
=

R2
j

2(2l+ 1)
\delta l,p\delta m,q,

\bigl( 
K\ast 0

j,j (Yl,m,j) , Yp,q,j
\bigr) 
L2(\Gamma j)

= - 
\bigl( 
K\ast 

j (Yl,m,j) , Yp,q,j
\bigr) 
L2(\Gamma j)

=
R2

j

2(2l+ 1)
\delta l,p\delta m,q,\bigl( 

W 0
j,j (Yl,m,j) , Yp,q,j

\bigr) 
L2(\Gamma j)

= (Wj (Yl,m,j) , Yp,q,j)L2(\Gamma s)
=
l(l+ 1)

2l+ 1
Rj\delta l,p\delta m,q,

with \delta l,p, \delta m,q denoting the standard Kronecker deltas. Also, for the scalar identity
operators presented in section 2.3, it holds that (I(Yl,m,j), Yp,q,j)L2(\Gamma j) =R2

j\delta l,p\delta m,q.

Cross-interaction operators, e.g., V 0
i,j for i \not = j, are nonsingular and generally

nondiagonalizable. The double and single layer operators' analytic expressions can be
used to compute the nonsingular integrals for i \not = j:

\bigl( 
V 0
i,j (Yl,m,j) ;Yp,q,i

\bigr) 
L2(\Gamma i)

=

\int 
\Gamma i

SL0j(Yl,m,j)Yp,q,i d\Gamma i,(3.7a) \bigl( 
K0

i,j (Yl,m,j) ;Yp,q,i
\bigr) 
L2(\Gamma i)

=

\int 
\Gamma i

DL0j(Yl,m,j)Yp,q,i d\Gamma i,(3.7b) \bigl( 
K\ast 0

i,j (Yl,m,j) ;Yp,q,i
\bigr) 
L2(\Gamma i)

=

\int 
\Gamma i

\widehat n0i \cdot \nabla SL0j(Yl,m,j)Yp,q,i d\Gamma i,(3.7c) \bigl( 
W 0

i,j (Yl,m,j) ;Yp,q,i
\bigr) 
L2(\Gamma i)

= - 
\int 
\Gamma i

\widehat n0i \cdot \nabla DL0j(Yl,m,j)Yp,q,i d\Gamma i.(3.7d)

Approximations of the integrals (3.7) are provided via Gauss--Legendre quadra-
tures. Specifically, along \theta , we use the change of variable u = cos\theta . Then, variable
functions are sampled at the zeros of the Legendre polynomial of degree Lc+1, whereas
the trapezoidal rule is applied to equally spaced nodes in \varphi , with 2Lc + 1 points. If
the function being integrated has a spherical harmonic expansion with coefficients
equal to zero for degrees higher than Lc, then the quadrature yields the exact result,
assuming that there are not other sources of error [31]. Moreover, quadrature in \varphi 
can be computed using the fast Fourier transform.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

7/
25

 to
 8

1.
23

4.
14

3.
4 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



B966 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

Remark 3.6. One would expect Lc to be greater than p and l in (3.7). Yet,
without further analysis, it is not known whether a polynomial of degree Lc is a good
approximation for SL0j(Yl,m,j)Yp,q,i, DL0j(Yl,m,j)Yp,q,i, \nabla SL0j(Yl,m,j)\cdot \widehat n0i Yp,q,i, and
\nabla SL0j(Yl,m,j) \cdot \widehat n0i Yp,q,i, since, as the translation theorems for spherical harmonics
highlight, the translation of only one spherical harmonic is expressed as another infi-
nite series of spherical harmonics. Also, notice that (3.7) can also be computed using
a translation theorem for real spherical harmonics as in [1]. In this case, the integral
has an explicit expression and does not need to be computed numerically. Instead,
the computing efforts focus on calculating the coefficients given by the translation
theorem.

Corollary 3.7. The following holds:\bigl( 
V 0
i,j (Yl,m,j) ;Yp,q,i

\bigr) 
L2(\Gamma i)

=
\bigl( 
V 0
j,i (Yp,q,i) ;Yl,m,j

\bigr) 
L2(\Gamma j)

,\bigl( 
K0

i,j (Yl,m,j) ;Yp,q,i
\bigr) 
L2(\Gamma i)

= - l

Rj

\bigl( 
V 0
i,j (Yl,m,j) ;Yp,q,i

\bigr) 
L2(\Gamma i)

,\bigl( 
K\ast 0

j,i (Yp,q,i) ;Yl,m,j

\bigr) 
L2(\Gamma j)

=
\bigl( 
K0

i,j (Yl,m,j) ;Yp,q,i
\bigr) 
L2(\Gamma i)

,\bigl( 
W 0

i,j (Yl,m,j) ;Yp,q,i
\bigr) 
L2(\Gamma i)

=
l

Rj

\bigl( 
K\ast 0

i,j (Yl,m,j) ;Yp,q,i
\bigr) 
L2(\Gamma i)

.

Proof. The result follows from Theorem 3.3 and the orthonormality of spherical
harmonics, along with the definition of the BIOs.

This last corollary allows all cross-interaction integrals between spheres i and j
(3.7) to be derived from expression (3.7a), thereby saving computational effort.

3.3. Fully discrete scheme. Following section 3.1, we state the multistep semi-
implicit in time and space numerical discretization of Problem 2.6.

Problem 3.8. Let vL,(0) and ZL,(0) in \BbbY L be given. Then, for s\in \{ 2, . . . , S - 1\} ,
we seek vL,(s), ZL,(s) in \BbbY L such that

\Bigl( 
Cm\partial v

L,(s) +\scrJ \scrN 

\Bigl( 
vL,(s+ 1

2 )
\Bigr) 
+ Iep

\Bigl( 
\^vL,(s+ 1

2 ), \^ZL,(s+ 1
2 )
\Bigr) 
+\Phi 

\Bigl( 
\phi 
(s+ 1

2 )
e

\Bigr) 
,y
\Bigr) 
\BbbY L

= 0,

(3.8)

\partial 
(s)
ZL
j =max

\left(  \beta j(\widehat vL,(s+ 1
2 )

j ) - \widehat Zj

L,(s+ 1
2 )

\tau ep,j
,
\beta j(\widehat vL,(s+ 1

2 )
j ) - \widehat Zj

L,(s+ 1
2 )

\tau res,j

\right)  (3.9)

for all y \in \BbbY L. For s = 1 we use the equivalent weak formulation of the corrector-
predictor algorithm presented in section 3.1.

In order to solve Problem 3.8, at each time step, with the exception of the
predictor-corrector algorithm, we solve the weak linear system equivalent to

\Biggl[ 
4\bfsansA 0,\scrN  - 2X - 1

\scrN I2\scrN \times \scrN 
 - 2X\scrN 4\bfsansA 1,\scrN  - X\scrN I2\scrN \times \scrN 

\bfitsigma \scrN \times 4\scrN 
1
\tau C\bfm 

\Biggr] \left(     
u

L,(s+1/2)
D,0

u
L,(s+1/2)
N,0

u
L,(s+1/2)
D

u
L,(s+1/2)
N

vL,(s+1)

\right)     =

\left(      
 - 
\Biggl( 
2\bfitgamma 0

\phi 
L,(s+1

2
)

e

+I2\scrN \times \scrN vL,(s)

\Biggr) 

X\scrN 

\Biggl( 
2\bfitgamma 0

\phi 
L,(s+1

2
)

e

+I2\scrN \times \scrN vL,(s)

\Biggr) 
1
\tau C\bfm vL,(s) - Iep

\Bigl( 
\^vL,(s+1

2
),\^ZL,(s+1

2
)
\Bigr) 

\right)      ,

(3.10)
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CELL ELECTROPERMEABILIZATION MODELING B967

where the test function is in \BbbY L \times \BbbY L \times \BbbY L \times \BbbY L \times \BbbY L. Notice that we obtain
mid-steps (s+ 1/2) for traces of extra- and intracellular potentials, whereas only the
transmembrane potential is obtained at time steps s.

Remark 3.9. With the exception of the scalar operators inside of \bfsansA 0,\scrN and Iep,
which are computed numerically, all other matrices are diagonalizable and analytic
for the geometry considered here (Corollary 3.5). Thus, the discrete matrix used
to solve at each time step is almost entirely block diagonal. Note that changing Iep

without modifying the dynamics for the transmembrane potentials leads to a modified
right-hand side in the linear system of (3.10).

Remark 3.10. The time step needs to be bounded by the smallest characteristic
time of the system to ensure stability. In the work [11], the bound is independent of
the spatial discretization but depends on the parameters of the nonlinear problem.
Moreover, given the poor regularity of functions Zj , we cannot guarantee high-order
convergence in time. Yet, the use of spherical harmonics in space greatly reduces
the overall number of degrees of freedom and leads to better convergence rates than
first-order boundary element discretizations [28].

4. Numerical results. In this section, we verify and test the proposed com-
putational scheme. To this end, we first check the MTF implementation for single
and multiple cells to then combine it with the multistep semi-implicit time-domain
method. Next, we perform tests for linear and nonlinear dynamics. Physical param-
eters used throughout are given in [22, Table 1] and [17, Table 1].

4.1. Hardware and code implementation. Numerical results were obtained
in a machine with Quad Core Intel Core i7-4770, 1498MHz, 31,982.1 MiB RAM (90\%
available for computations), with operating system Linux Mint 20.3 Una and Kernel:
5.4.0-131-generic x86 64. Simulation codes were programmed on Python 3.10. Its
installation was achieved via the open-source platform Anaconda,5 Conda6 4.13.0,
and using the conda-forge repository.7 With the numpy library, we take advantage of
vectorized computations. Moreover, we only use direct solvers, without any paral-
lelization or matrix compression, which of course can be performed.

4.2. Code validation. In order to validate our code, we check that computed
solutions fulfill discrete Calder\'on identities at the boundaries as well as discrete jump
conditions. Being approximations, these properties do not hold exactly; thus we define
the following errors:

\bullet Discrete Calder\'on exterior and interior errors, respectively:\bigm\| \bigm\| \bigm\| \bigm\| (2\bfsansA 0,\scrN  - I)

\biggl( 
u

L,(s+1)
D,0

u
L,(s+1)
N,0

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
\BbbY L\times \BbbY L

,

\bigm\| \bigm\| \bigm\| \bigm\| (2\bfsansA 1,\scrN  - I)

\biggl( 
u

L,(s+1)
D

u
L,(s+1)
N

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
\BbbY L\times \BbbY L

.(4.1)

\bullet Jump error:\bigm\| \bigm\| \bigm\| \bigm\| \biggl( u
L,(s+1)
D,0

u
L,(s+1)
N,0

\biggr) 
 - X - 1

\scrN 

\biggl( 
u

L,(s+1)
D

u
L,(s+1)
N

\biggr) 
+ I2\scrN \times \scrN vL + \bfitgamma 0j\phi Le

\bigm\| \bigm\| \bigm\| \bigm\| 
\BbbY L\times \BbbY L

\approx 0.(4.2)

5https://www.anaconda.com/products/distribution
6https://docs.conda.io/projects/conda/en/stable/
7The following packages were installed explicitly: pyshtools 4.10 [31] (conda install pysh-

tools= 4.10), numpy 1.23.1, scipy 1.9.0, and matplotlib-base 3.5.2.
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Here the norm \| \cdot \| \BbbY L\times \BbbY L
is computed as\bigm\| \bigm\| \bigm\| \bigm\| \biggl( u

L,(s+1)
D

u
L,(s+1)
N

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
\BbbY L\times \BbbY L

=
\bigm\| \bigm\| \bigm\| uL,(s+1)

D

\bigm\| \bigm\| \bigm\| 2
\BbbY L

+
\bigm\| \bigm\| \bigm\| uL,(s+1)

N

\bigm\| \bigm\| \bigm\| 2
\BbbY L

.

In what follows, we will use the following notation:
\bullet Relative error in L2(\Gamma j):

re2(\phi 1, \phi 2)j :=
\| \phi 1  - \phi 2\| L2(\Gamma j)

\| \phi 1\| L2(\Gamma j)

.(4.3)

This error is computed for spherical harmonics expansions when possible (3.4)
or using the numerical quadrature presented at the end of section 3.2.2.

\bullet Relative error in C0
\bigl( 
(0, T ),L2(\Gamma 1)

\bigr) 
:

re\infty ,2(\phi 1, \phi 2)j :=
maxts\in Ts

\| \phi 1(ts + \tau /2) - \phi 2(ts + \tau /2)\| L2(\Gamma j)

maxts\in Ts
\| \phi 1(ts + \tau /2)\| L2(\Gamma j)

.(4.4)

\bullet Relative error in L2
\bigl( 
(0, T ),L2(\Gamma 1)

\bigr) 
:

re2,2(\phi 1, \phi 2)j :=
\| \phi 1  - \phi 2\| L2((0,T ),L2(\Gamma 1))

\| \phi 1\| L2((0,T ),L2(\Gamma 1))

.(4.5)

The approximation of the time integral is done by a composite trapezoidal
rule using the points of the computed time mid-steps.

4.2.1. MTF validation. We verify first the MTF method without time evo-
lution, by solving (2.10) for four different geometrical configurations and sources.
In all four experiments, we set v = 0 and use the point source function \phi e =
1/(4\pi \sigma 0\| r - p0\| 2) as the external applied potential.

\bullet Example 1: One sphere centered at the origin with intracellular conductivity
\sigma 1 different from \sigma 0.

\bullet Example 2: Three (aligned) spheres. The first and the third have conductivity
\sigma 0 (phantom spheres), while the one in the middle has a different conductivity
\sigma 1.

The parameters used for validation for Examples 1 and 2 for a single sphere
are presented in Table 1, and additional parameters for Example 2 are presented
in Table 2. In Example 1, the sphere has a different conductivity from that of the
extracellular space, and an analytic solution can be obtained. In Figure 2 the relative
errors in L2(\Gamma 1) (4.3) of the computed solutions for different L against the analytic

Table 1
Parameters used in section 4.2.1 for Examples 1 and 2 for the MTF validation. Conductivity

values are from [17, Table 1], and cell radius is from [22, Table 1].

Parameter Symbol Example 1 Unit

Intensity a 1 \mu A
Source position p\bfzero (0, 0, 20) \mu m

Extracellular conductivity \sigma 0 5 \mu S/\mu m

Intracellular conductivity \sigma 1 0.455 \mu S/\mu m
Cell radius R1 10 \mu m

Maximum degree of spherical harmonics L 50
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Table 2
Parameters used for the MTF verification with \phi e = 1/(4\pi \sigma 0\| r - p\bfzero \| 2) in Example 2, section

4.2.1. Conductivities are given in [17, Table 1], and radii are in [22, Table 1].

Parameter Symbol Value Unit

Cell 1 intracellular conductivity \sigma 1 0.455 \mu S/\mu m

Cell 2 and 3 intracellular conductivity \sigma 2, \sigma 3 5 \mu S/\mu m
Cell 1 radius R1 10 \mu m

Cell 2 radius R2 8 \mu m

Cell 3 radius R3 9 \mu m
Cell 1 center position p\bfone (0, 0, 0) \mu m

Cell 2 center position p\bftwo (25, 0, 0) \mu m

Cell 3 center position p\bfthree (-24, 0, 0) \mu m
Maximum degree of spherical harmonics L 50

Quadrature degree Lc 100

Fig. 2. Error convergence for traces in Example 1 (section 4.2.1). The relative error L2(\Gamma 1)
(4.3) is computed against the analytic solution with parameter values in Table 1.

Fig. 3. Field u50
0 of Example 2 (section 4.2.1) with parameters from Table 2.

solution are presented. The image shows the expected exponential convergence with
respect to the maximum degree of the spectral basis L. Example 2 involves three
spheres, two of which have the same properties as the external medium, while the one
in the middle is different (see Figure 3). Therefore, the traces of the latter should
be equal to the ones computed without the first two, i.e., the same as in Example 1.
The relative L2(\Gamma 1) error of the difference between the analytic solution for the four
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B970 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

traces and the numerical one corresponding to the sphere with different conductivity
is 6.06 \cdot 10 - 15. In Figure 3, u500 is plotted where the only sphere showing a response to
\phi e is the sphere in the middle that has different properties compared to the external
medium. Discrete Calder\'on and jump errors are of order 10 - 16 considered as zero.

4.2.2. Multistep semi-implicit time approximation validation: Linear
case. We validate the proposed time scheme by solving problem (3.8) for a linear
current with only one cell,

cm,1\partial tv1 +
1

rm,1
vj = - \sigma 1\gamma 1Nu1,

where instead of Iep1 (v1,Z1) we use r - 1
m,1vj . Additionally, we assume that \phi e can be

factorized as \phi e(t,r) = \phi time(t)\phi space(r). If \phi space is expanded in spherical harmonics,

the coefficients for the equivalent expansion of v1, denoted by vl,m1 , can be obtained
by solving

\partial tv
l,m
1 + \alpha l,m

1 vl,m1 = - \beta l,m
1 \phi time(t),

with

\alpha l,m
1 :=

1

cmRm
+

\sigma 0\sigma 1l(l+ 1)

cmR1(\sigma 0(l+ 1) + \sigma 1l)
, \beta l,m

1 :=
\sigma 0\sigma 1l(bd,l,m(l+ 1) - bn,l,mR1)

cmR1(\sigma 0(l+ 1) + \sigma 1l)
,

where bd,l,m and bn,l,m are the coefficients of degree l and order m for the Dirichlet
and Neumann trace expansions of \phi space on the cell's membrane, respectively. Then,
the spherical harmonic expansion coefficients of v1 are

vl,m1 (t) = - \beta l,m
1 e - \alpha l,m

1 t

\int t

0

\phi time(s)e
\alpha l,m

1 sds+ vl,m1 (0)e - \alpha l,m
1 t.

We present simulation results for two different time behaviors for \phi e, \phi time - exp = e - t,
and \phi time - cte = 1. We use a point source function for the spatial part of \phi e. Parame-
ters are presented in Table 3. In Figure 4, the absolute error of the difference between
v231 (for \tau = 2.5 \cdot 10 - 2\mu s) and v1 in space is presented for each time mid-step. We com-

pute also \tau 2

4

\bigm\| \bigm\| \partial 2t v1\bigm\| \bigm\| L2(\Gamma j)
to validate the first bound in Theorem 3.2. For \phi time - exp,

the absolute error satisfies the first bound in Theorem 3.2 everywhere except for the

Table 3
Parameters used for the time scheme validation in section 4.2.2 where linear dynamics are

assumed. The external potential is \phi e = I(t)/(4\pi \sigma 0\| r  - p\bfzero \| 2), and only one cell is considered.
Conductivity values are given in [17, Table 1], the cell radius and the specific membrane capacitance
are given in [22, Table 1], and the specific membrane resistance is from [12, Table 1].

Parameter Symbol Values Unit

Intensity I(t) e - t and 1 \mu A

Source position p\bfzero (0, 0, 50) \mu m
Extracellular conductivity \sigma 0 5.00 \mu S/\mu m
Intracellular conductivity \sigma 1 4.55 \cdot 10 - 1 \mu S/\mu m

Specific membrane capacitance cm,1 9.50 \cdot 10 - 3 pF/(\mu m)2 (=F/m2)
Specific membrane resistance rm,1 1.00 \cdot 105 M\Omega (\mu m)2

Cell radius R1 7.00 \mu m

Length time step \tau 2.50 \cdot 10 - 2 \mu s
Final time T 2.50 \mu s

Maximum degree of spherical harmonics L 25
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CELL ELECTROPERMEABILIZATION MODELING B971

Fig. 4. Absolute error in L2(\Gamma 1) between v251 (discrete approximation) and v1 (analytic solu-

tion), as well as \tau 2

4
\| \partial 2

t v1(t)\| L2(\Gamma j)
, plotted to verify the bound given by Theorem 3.2 for the time

scheme from section 4.2.2 where linear dynamics are assumed. The time step \tau is 2.5 \cdot 10 - 2 \mu s, and
the rest of the parameters used are in Table 3.

Fig. 5. Absolute values of the analytically obtained second derivatives for the three most sig-
nificant coefficients for the linear dynamics example from section 4.2.2 with \phi time - ext(t) = e - t. It
can be seen that the dip for l= 1 matches the dip from Figure 4(a).

range between 0.4 \mu s and 0.7 \mu s, where a dip in \tau 2

4 \| \partial 2t v1(t)\| L2(\Gamma j) occurs. This is
due to the second derivative of the most significant term (l= 1) approaching zero (see
Figure 5). In contrast, for \phi time - cte the bound is fulfilled at all times.

Finally, Figure 6 presents the relative error in time and space for decreasing
values of \tau . We compute the error using two norms: an approximation of the
C0
\bigl( 
(0, T ),L2(\Gamma 1)

\bigr) 
-norm taking the maximum value at mid-steps (4.4), and an ap-

proximation of the L2
\bigl( 
(0, T ),L2(\Gamma 1)

\bigr) 
-norm, using a composite trapezoidal rule evau-

ated at the computed mid-steps (4.5). We observe that the slope of the errors in the
log-log plot is close to two, therefore the error decreases as \tau 2.

4.3. Numerical results for a single cell with nonlinear dynamics. After
having verified our numerical scheme for the linear dynamics, we now study the non-
linear dynamics for a single cell (Problem 2.6). Note that in [11, Theorem 6.14] error
estimates are given in two dimensions for the Hodgkin--Huxley model. The estimates
depend on four terms. The first two are the norms of the difference between initial
conditions and approximated ones used in the computations. The third error term is
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B972 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

Fig. 6. Error convergence for diminishing time steps \tau for the time scheme in section 4.2.2
where linear dynamics are assumed. Slopes on the log-log plot show error converges as \tau 2. Relative
errors re\infty ,2(v1, v251 )1 and re2,2(v1, v251 )1 are given in (4.4) and (4.5), respectively. Simulation
parameters can be found in Table 3.

Table 4
Parameters used for the simulation of a single cell with nonlinear dynamics (2.2e) in section

4.3.1 when studying the time convergence with fixed L. Parameters used are found in [17, Table 1].

Parameter Symbol Values Unit

Cell radius R1 1.00 \cdot 101 \mu m

Time part of \phi e \phi time 1.00
Spatial part of \phi e \phi spatial 5 z \cdot 10 - 2 V

Extracellular conductivity \sigma 0 5.00 \mu S/\mu m

Intracellular conductivity \sigma 1 4.55 \cdot 10 - 1 \mu S/\mu m
Lipid surface conductivity SL,1 1.90 \cdot 10 - 6 \mu S/(\mu m)2

Irreversible surface conductivity Sir,1 2.50 \cdot 102 \mu S/(\mu m)2

Specific membrane capacitance cm,1 9.50 \cdot 10 - 3 pF/(\mu m)2

Transmembrane potential threshold Vrev,1 1.50 V

Electropermeabilization switch speed kep,1 4.00 \cdot 101 V - 1

Characteristic time of electropermeabilization \tau ep,1 1.00 \mu s
Characteristic resealing time \tau res,1 1.00 \cdot 103 \mu s

Final time T 2.60 \cdot 101 \mu s

Maximum degree of spherical harmonics L 1
Quadrature degree Lc 2

related to the spatial discretization, where a spectral basis in two dimensions is used,
and this term is proved to decay exponentially with the total number of functions
in the spatial discretization basis. Finally, the fourth error term is due to the time
approximation, converging as \tau 2. Here, we expect a similar behavior. In other words,
fixing the maximum degree of spherical harmonics L used in the space discretization
and decreasing the length of the time step \tau , we expect to see the error converging to
a constant depending on L. Similarly, if we fix \tau and increase L, we expect the error
to converge to a constant depending on \tau .

4.3.1. Time convergence for a fixed \bfitL . We use the parameters presented in
Table 4 to solve the nonlinear discrete Problem 3.8, with external applied potential
\phi e = 5z \cdot 10 - 2 and initial conditions equal to zero. Since we no longer possess an
analytic solution for comparison, we check for convergence as time steps become
smaller. We remark that L is fixed, and we use L= 1, along with Lc = 2.

Table 5 displays the error norms between two successively refined solutions for
different time steps. These results show a linear convergence rate as the time step
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CELL ELECTROPERMEABILIZATION MODELING B973

Table 5
Error convergence for the nonlinear problem with one cell from section 4.3.1 for fixed L. Com-

puted norms are the difference between two successive solutions. Parameters used are in Table 4.

\tau i Value [\mu s] maxt\in [0,T ]

\bigm\| \bigm\| \bigm\| v1,\tau i+1
1  - v

1,\tau i
1

\bigm\| \bigm\| \bigm\| 
L2(\Gamma 1)

maxt\in [0,T ]

\bigm\| \bigm\| \bigm\| Z1,\tau i+1
1  - Z

1,\tau i
1

\bigm\| \bigm\| \bigm\| 
L2(\Gamma 1)

\tau 1 2.6 \cdot 10 - 3 -- --

\tau 2 2.6 \cdot 10 - 4 8.8 \cdot 100 4.64 \cdot 10 - 3

\tau 3 2.6 \cdot 10 - 5 9.0 \cdot 10 - 1 3.02 \cdot 10 - 4

\tau 4 2.6 \cdot 10 - 6 9.7 \cdot 10 - 2 3.59 \cdot 10 - 5

\tau 5 2.6 \cdot 10 - 7 9.7 \cdot 10 - 9 3.15 \cdot 10 - 6

Fig. 7. Evolution of v11 at the north pole of the cell (\theta = 0) for different lengths of time step \tau 
illustrating the time convergence for fixed L, section 4.3.1. The image at the right is zoomed near
to the maximum value of v11. Parameters employed are given in Table 4.

decreases, and thus we do not obtain the same convergence rate reported in [11]. This
is due to the lesser regularity in time of the solutions; Z1 is not twice differentiable, as
can be noticed from (2.4). In Figure 7, we plot the evolution of the transmembrane
potential v11 for three different values of \tau . Though the solution shapes are similar,
peaks appear at different locations and coincide as the time step decreases. Specif-
ically, between \tau = 2.6 \cdot 10 - 3\mu s and \tau = 2.6 \cdot 10 - 4\mu s, there is a delay of less than
1.6 \cdot 10 - 1 \mu s, while between \tau = 2.6 \cdot 10 - 4\mu s and \tau = 2.6 \cdot 10 - 5\mu s, the delay is less than
1.7 \cdot 10 - 2 \mu s.

4.3.2. Spatial convergence with nonlinear dynamics. We now present nu-
merical results for different maximum degrees of the spherical harmonics, L= 51 and
L\in [1,2, . . . ,36], computed with Lc = 150. Given that we use a spectral discretization
in space, we expect an exponential decrease in the error when increasing the max-
imum degree8 L---recall that the number of spatial discretization functions basis is
(L+1)2. The external applied potential is \phi e = 5z \cdot 10 - 2 until t= 5 and equal to zero
thereafter. Initial conditions are set to zero, and the length of the time step used is
\tau \approx 2.4 \cdot 10 - 3.

We compute the relative errors between vL1 and v511 and between ZL
1 and Z51

1 . The
results are shown in Figure 8. The plots are in a log-linear scale, and the errors tends
to form a straight line with the slope of order 10 - 2, which suggests an exponential rate
of convergence. Recall that in our case \beta (cf. (2.1)) is only C0-continuous due to the
discontinuity of the derivative at the origin and Z1 is only twice differentiable in time

8The parameters used are provided in Table 6. Notice that extra- and intracellular conductivities
have different values from the previous simulations, and were changed to obtain a response of the
impulse sooner.
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B974 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

Fig. 8. Spatial convergence for the nonlinear dynamics of section 4.3.2. Relative norms are
computed against an overkill of L = 51. On the left are results for vL1 , while on the right ZL

1
is displayed with time step \tau \approx 2.4 \cdot 10 - 2 \mu s. The x-axis indicates the maximum degree used for
discretization. Convergence starts from L = 11. Plots are in log-linear scale, and error tends to
form a straight line with slope of approximately  - 10 - 2, i.e., exponential convergence. Parameters
are given in Table 6. The expressions for the relative errors re\infty ,2(v511 , vL1 )1 and re2,2(v511 , vL1 )1 are
given in (4.4) and (4.5), respectively.

Fig. 9. Evolution of the transmembrane potentials v171 , v241 , v351 , and v511 at the north pole of
the cell (\theta = 0) obtained in section 4.3.2 where the spatial convergence for one cell in the nonlinear
case is studied. The time step used is \tau \approx 2.4 \cdot 10 - 2 \mu s, with parameters given in Table 6.

(2.4), worsening the rate of convergence. However, as shown in [28], the numerical
method presented should converge faster than a first-order boundary element method
and twice as fast with respect to the number of functions used to construct the
approximation in the worst case. While the obtained Z1 is an even function in space,
v1 is an odd one. Thus, the nonlinear current is an odd function in space. Since the
external applied potential is an odd function, we expect v1 to have an odd component,
while Z1 is defined by an ordinary differential equation that takes v1 into an even
function. Finally, in Figure 9 we plot the evolution in time of v171 , v241 , v351 , and v511
at the north pole. The differences between the results are more noticeable after the
peak of the potential and when the cell tries to stabilize it.

4.4. Results with multiple cells. In previous sections, the convergence of the
numerical method was studied for a single cell. We proceed now with the case of mul-
tiple cells to perform five experiments in the nonlinear case. The examples presented
highlight how the distance among cells affects the results as all cell conductivities are
set to the same value \sigma 1.
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CELL ELECTROPERMEABILIZATION MODELING B975

Table 6
Parameters used in the numerical simulations in sections 4.3.2 and 4.4, with the nonlinear

dynamics of the electropermeabilization model. The specific choice of extra- and intracellular con-
ductivities, different from the previous simulations, allows us to obtain a response of the impulse
sooner in time. The rest of the parameters are from [17, Table 1]. The external applied potential
used is equal to zero after t= 5 \mu s.

Parameter Symbol Values Unit

Cell radius R1 1.00 \cdot 101 \mu m
External applied potential \phi e 5 z \cdot 10 - 2 V

Extracellular conductivity \sigma 0 1.50 \cdot 101 \mu S/\mu m

Intracellular conductivity \sigma 1 1.50 \mu S/\mu m
Specific membrane capacitance cm,1 9.50 \cdot 10 - 3 pF/(\mu m)2 (=F/m2)

Lipid surface conductivity SL,1 1.90 \cdot 10 - 6 \mu S/(\mu m)2

Irreversible surface conductivity Sir,1 2.50 \cdot 102 \mu S/(\mu m)2

Transmembrane potential threshold Vrev,1 1.50 V

Electropermeabilization switch speed kep,1 4.00 \cdot 101 V - 1

Characteristic time of electropermeabilization \tau ep,1 1.00 \mu s
Characteristic resealing time \tau res,1 1.00 \cdot 103 \mu s

Final time T 1.00 \cdot 101 \mu s

Table 7
Center positions for Examples 3 and 4 from section 4.4, where nonlinear dynamics are simulated.

Center position Symbol Example 3 Example 4 Unit

Cell 1 p\bfone (0, 0, 0) (0, 0, 0) \mu m
Cell 2 p\bftwo (200, 0, 0) (25, 0, 0) \mu m

Cell 3 p\bfthree (-200, 0, 0) (-25, 0, 0) \mu m

Table 8
Positions of cells in Example 5 from section 4.4, where nonlinear dynamics are simulated.

Center position Symbol Value in \mu m Center position Symbol Value in \mu m

Cell 1 p\bfone (0, 0, 0) Cell 5 p\bffive (0, 0, 25)

Cell 2 p\bftwo (25, 0, 0) Cell 5 p\bfsix (25, 0, 25)

Cell 3 p\bfthree (0, 25, 0) Cell 7 p\bfseven (0, 25, 25)
Cell 4 p\bffour (25, 25, 0) Cell 8 p\bfeight (25, 25, 25)

\bullet Example 3: Three cells aligned along the x-axis and far from each other, with
distance between cells 18R1.

\bullet Example 4: Three cells aligned along the x-axis, near to each other, with
distance between cells 1

2R1.
\bullet Example 5: Eight cells aligned in a cubic lattice, the nearest distance between

two cells is 1
2R1, the first sphere is at the origin.

Cell radii and physical parameters used for Examples 3--5 are presented in Table 6.
Extra- and intracellular conductivity values were changed so as to obtain a response
sooner. Cells centers in Examples 3 and 4 are given in Table 7 and sketched in
Figure 10, while those in Example 5 are located at the corners of a cube of length 25
\mu m (cf. Table 8). Throughout initial conditions are set to zero. The external applied
potential in Examples 3--5 is \phi e = 5z \cdot 10 - 2 until t= 5 \mu s and zero thereafter.

In what follows, we present results for a time step \tau \approx 6.1 \cdot 10 - 4. The maximum
degree of spherical harmonics used for Examples 3 and 4 is L= 35, while for Example
5 we set L= 25. Quadrature degree used in all examples is Lc = 100. Figures 11, 12,
and 14 showcase the evolution of the transmembrane potentials vLj and the variables
ZL
j for each cell at their north pole.
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B976 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

Fig. 10. Illustration of cells positions for Examples 3 and 4 in section 4.4.

Fig. 11. Evolution of v35j and Z35
j at the north pole of each j cell (\theta = 0), from Example 3 in

section 4.4. The time step is \tau \approx 6.1 \cdot 10 - 4. Parameters employed are found in Tables 6 and 7.

Fig. 12. Evolution of v35j and Z35
j at the north pole of each j cell (\theta = 0), from Example 4 from

section 4.4. Cells are near each other and the interaction among them influences the transmembrane
potential v35j and Z35

j (cf. Example 3 in contrast). The only difference between Examples 3 and 4 is

the distance between successive cells. The time step is \tau \approx 6.1 \cdot 10 - 4, and the parameters employed
are given in Tables 6 and 7.

In Example 3, the cells are aligned along the x-axis and \phi e = 5z \cdot 10 - 2. Therefore,
the external excitation from \phi e is the same for the three spheres, i.e., the contribution
of \phi e to the right-hand side is the same for each sphere. Since the cells are relatively
far from each other, there is almost no interaction among them and the potentials
v35j and Z35

j look similar for all j (see Figure 9). In Example 4, we take the same
parameters as in Example 3, but the distance between cells is reduced to 1

2R1. Hence,
the interaction among cells is stronger, and, as expected, the shapes of the potentials
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CELL ELECTROPERMEABILIZATION MODELING B977

v35j and Z35
j change (see Figure 12). One should compare these results with the

previous example in Figure 11. Due to the symmetry and the form of \phi e = 5z \cdot 10 - 2,
cells 2 and 3 should have the same response at the north pole. However, they are
slightly different, hinting at further time step refinement. To check this, in Figure 13
we present results for a second simulation with a refined time step, between 6 \mu s
and 8 \mu s, using the previous simulation at that time as initial condition. One can
immediately see that the transmembrane potentials recover the stated symmetry.

Finally, in Example 5 eight cells close to each other are simulated. In Figure 14,
the corresponding transmembrane voltage v25j and Z25

j at the north pole are presented.
The cells with the centers in the plane z = 0 show similar response---see Table 8 for
the center position of each cell---while the cells with centers in the plane z = 25 have
similar response, too, while differing from cells beneath them. Figure 15 shows six

Fig. 13. Evolution of v35j and Z35
j at the north pole of each j cell (\theta = 0), from a simulation with

a refinement in time of Example 4 from section 4.4. Cells are near each other and the interaction
among them influences the transmembrane potential v35j and Z35

j (cf. Example 3 in contrast). The
only difference between Examples 3 and 4 is the distance between successive cells. The time step is
\tau \approx 4.9 \cdot 10 - 4.

Fig. 14. Evolution of v25j and Z25
j at the north pole of each cell (\theta = 0), from Example 5 from

section 4.4. The first four cells are in the plane z = 0, while the others are in the plane z = 25. The
time step is \tau \approx 6.1 \cdot 10 - 4\mu s. The rest of parameters employed are given in Tables 6 and 7.
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B978 MART\'INEZ \'AVILA, JEREZ-HANCKES, AND PETTERSSON

Fig. 15. Transmembrane voltages v25j obtained in Example 9 of section 4.4 at different times.

The length of the time step is \tau \approx 6.1 \cdot 10 - 4. Parameters employed are given in Tables 6 and 7.

snapshots of the transmembrane voltages for the eight cells. The transmembrane
voltage starts changing earlier on parts of the surface closest to the rest of the cells.

5. Conclusions and future work. We studied the electropermeabilization of
disjoint cells following the nonlinear dynamics from [17] and recast the volume bound-
ary value problem via an MTF to obtain a parabolic system of boundary integral
equations on the cell membrane. This extends significantly the numerical method
presented in [11]. Still, the multistep semi-implicit time scheme though stable re-
quires relatively small time steps with low convergence rates due to the poor regular-
ity in time. For simplicity, we assumed spherical cells, but other shapes can be easily
considered with similar spectral convergence rates in space.

The present model can be directly adapted to different dynamical models as long
as this only involves changing the nonlinear term and/or variables independent of the
transmembrane potential. This leads to modifying only the right-hand side of the
system (3.10). Further improvements to the numerical method to be implemented
in the future are matrix compression and parallelization techniques, along with an
efficient solver for linear systems at each time step.
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