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SUMMARY
Developing high-performance alloys is essential for applications in advanced electromagnetic energy con-
version devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through
amachine learning (ML) framework, which used bothmulti-propertyMLmodels andmulti-objective Bayesian
optimization to design compositions with predicted high values of saturation magnetization, Curie tempera-
ture, and Vickers hardness. Experimental validation was conducted on two promising compositions synthe-
sized using three different methods: arc melting, ball milling followed by spark plasma sintering (SPS), and
chemical synthesis followed by SPS. The results show that the experimental property values of arc melted
samples deviated less than 14% from predicted values. This work further explains how structural variations
across synthesis methods impact property behavior, validating the robustness of ML-predicted composi-
tions and highlighting a pathway for integrating processing conditions into alloy development.
INTRODUCTION

In the context of escalating energy demands and advancing tech-

nology, the significance of magnetic materials is pronounced due

to their wide-ranging applications across a plethora of industries,

encompassing transformers, motors, generators, sensors, medi-

cal devices, inductors, and many more.1–4 Recent review articles

by Chaudhary et al. (2020) and Talaat et al. (2021) highlight how

additivemanufacturing and nanocomposites enable tailoredmag-

netic properties for various applications, but they also underscore

significant challenges related to scalability and balancing struc-

tural integrity with magnetic functionality.1,3 Energy demands

are projected to increase by 14% by 2050, accompanied by a

tripling of electricity consumption.5 This highlights the urgent

need for innovating efficient, low cost, sustainable energy technol-

ogies such as high-power density rotating electric machines

which are crucial across sectors such as industrial motors,

wind-based renewable energy, and diverse transportation sys-

tems.6–9Magneticmaterials are a pivotal component in such tech-

nologies and developing the next generation of these materials

with a harmonious blend of structural, functional, and mechanical

properties can help achieve substantial performance gains. This

dynamic interplay betweenmagneticmaterials, energy dynamics,

and technological progress holds promise for developing next-
iScience 28, 111580, Janu
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generation materials for innovative, more efficient, and sustain-

able technologies.

Despite considerable advancements in magnetic alloy

research, a significant gap persists within the current landscape.

The pursuit of magnetic alloy compositions integrating an

optimal combination of desired properties remains an ongoing

challenge. The desired technical properties of interest for these

materials include high permeability (m), low coercivity (Hc), high

electrical resistivity (r), large saturation magnetization (Ms),

high Curie temperature (Tc), and high mechanical stability.10–12

Widely used alloys such as Ni78Fe17Mo5 (Supermalloy) and

Fe49Co49V2 (Permendur) exemplify the challenge of achieving a

balanced mix of properties. Supermalloy offers high m (100 3

103–800 3 103) and r (60 mU cm) with low Hc (0.003–0.008 Oe)

but at the sacrificial cost ofMs (69 emu/g), Tc (673 K), and Vickers

hardness (HV) (160 HV).13,14 Conversely, Permendur exhibits

high Ms (2.4 T) and Tc (1203 K) and decent HV (180–220 HV)

yet has lower m (5 3 103–50 3 103), higher Hc (0.2–5 Oe), and

lower r (27 mU cm).14,15 Moreover, the alloy Fe53Ni30Co17,

commercially used mainly for glass-to-metal seals due to its

good thermal expansion properties matching that of borosilicate

glass and alumina ceramic, exhibits a Ms of 114.4 emu/g, Hc of

0.85 Oe, HV of 160 HV, Tc of 703K and r of 43 mU cm.16 These

varied property values across alloys underscore the complexity
ary 17, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of achieving an optimal combination in the Fe-Co-Ni alloy sys-

tem. This ternary alloy system offers a promising route to bridge

this gap, providing the potential for novel compositions with a

more balanced mix of magnetic, electrical, and mechanical

properties.

A recently developed Fe-Co-Ni-based alloy, Fe32.6Ni27.7Co27.7
Ta5Al7, illuminates the prospect of tailoredmulti-property optimi-

zation through strategic element selection, achieving tensile

strength of 1336 MPa, Hc of 0.98 Oe, r of 103 mU cm, and Ms

of 100 emu/g.17 This alloy’s strength has been attributed to engi-

neered nanoprecipitates, but it faces a trade-off in magnetic per-

formance, showing lower saturation magnetization due to the

paramagnetic nature of the precipitates.18 Similarly, another

recently developed alloy, FeCo-1.5V-0.5Nb-0.4W (wt. %),

achieved a strong balance of strength and magnetic properties,

with yield strength of 742 MPa, Hc of 1.91 Oe, and Ms of 228.3

emu/g.19 This alloy’s performance results frommultiple strength-

eningmechanisms, including fine grain strengthening, solid solu-

tion strengthening from Nb and W, and the Orowan effect due to

secondary phase particles, which are retained through precise

annealing to reduce dislocation density and maintain magnetic

performance. Apart from composition, the processing condi-

tions influence the properties of the same composition, and

finding the appropriate condition is a challenge. For example,

Ni-Co alloys synthesized by arcmelting versus spark plasma sin-

tering show significant differences in the crystal structure, Hc, r,

and HV, emphasizing the impact of synthesis methods on pro-

cessing-structure-property relationships.20 These complexities

have recently spurred interest in machine learning (ML) ap-

proaches to designing new alloys with a balance of multiple

properties.

In recent years, ML techniques have been widely utilized to

design alloys by focusing mainly on optimizing a single property

or a single class of properties.21–23 Examples include enhance-

ments of hardness in complex alloy systems24–26; low Young’s

modulus in b-Ti alloys27; single phase stability in HEAs28; ductility

and strength in Ni-based superalloys,29 amorphous metallic al-

loys,30 and Al-Zn-Mg-Cu alloys31; thermal expansion coeffi-

cients in HEAs,32 Tc in ferromagnetic alloys,33 and soft magnetic

properties (saturation induction (Bs),Hc, Tc, m, andmagnetostric-

tion (l)) of Fe-based nanocrystalline soft magnetic material,

FINEMENT,34 among others. Nelson and Sanvito (2019) applied

different ML models to predict the Curie temperature of ferro-

magnetic alloys, focusing on optimizing magnetic performance

while ensuring thermal stability—a key factor for applications

requiring robust magnetic properties at high operating tempera-

tures.33 Similarly, Wang et al. (2020) developed a random forest

(RF) regressionmodel to predict magnetic properties and utilized

different evolution (DE) algorithms to design FINEMET-like com-

positions (via arc melting and melt spinning) and heat treatment

conditions (annealing temperature and time) for enhanced mag-

netic performance.34

While these studies illustrate the effectiveness of applying ML

algorithms in a single property or a single class of property opti-

mizations, research focused on multi-property optimization for

alloy design remains limited. Kusne et al. (2014) demonstrated

an on-the-fly machine-learning approach for high-throughput

experiments to discover rare-earth-free permanent magnets,
2 iScience 28, 111580, January 17, 2025
combining crystal structure and magnetic hysteresis properties

in Fe-Co-X (X = Mo, W, Ta, Zr, Hf, and V).35 Conduit et al.

(2019) utilized probabilistic neural networks to optimize different

mechanical, oxidation resistance, phase, and physical (density

and elemental cost) properties in Ni-based alloys designed for

direct laser deposition, addressing challenges in property

trade-offs through probabilistic design methods that allow for

balanced muti-property predictions.36 Similar studies on opti-

mizing mechanical and phase properties on superalloy systems

were also performed.37–40

Recently, there has been growing interest in multi-property

optimization for soft magnetic alloys. Milyutin et al. (2024) em-

ployed machine learning to optimize soft magnetic properties

(saturation polarization (Js), Hc, and m) and electrical resistivity

(r) in ternary Fe–Si–Al alloys, focusing on achieving a good

combination of these properties for energy applications, as

mentioned earlier.41 In another recent study, Kano and Koga

(2024) applied deep learning-assisted high-throughput

screening to the Fe–Co–Ni ternary system, utilizing first-princi-

ples calculations to balance multiple material characteristics

such as phase stability and magnetic properties (Ms and Tc),

showcasing ML’s potential together with computational

modeling in streamlining multi-property optimization in com-

plex alloy systems.42

Our previous work established an ML framework for Fe-Co-

Ni magnetic alloys that optimizes multiple target properties

(magnetic, electrical, and mechanical) using a diverse, hetero-

geneous database of alloy data sourced from various synthe-

sis techniques.43 This database incorporated both historical

and contemporary literature, spanning methods such as cast-

ing, powder metallurgy, electrodeposition, and additive

manufacturing, where synthesis and heat treatment condi-

tions were often incomplete, especially for earlier sources

and commercial alloys. Leveraging this heterogeneous data-

base, ML models, such as extra trees and neural network re-

gressors, were developed to indirectly incorporate process-

related variations, especially for properties such as coercivity

(Hc), hardness (H), and electrical resistivity (r). Through multi-

objective Bayesian optimization, two promising compositions,

Fe61.9Co22.8Ni15.3 (C1) and Fe66.8Co28Ni5.2, were identified

with predicted high values for saturation magnetization (Ms),

Curie temperature (Tc), and Vickers hardness (HV).

In the present work, these twoML-designed Fe-Co-Ni compo-

sitions were synthesized by three different synthesis routes: arc

melting, ball milling followed by spark plasma sintering, and

chemical synthesis followed by spark plasma sintering, followed

by the annealing of the samples. These distinct synthesis routes

were selected to systematically examine how different process-

ing conditions influence the structural, magnetic, electrical, and

mechanical properties of the alloys and to validate the ML-pre-

dicted performance across real-world processing scenarios.

Both as synthesized and annealed samples were investigated

to understand the influence of synthesis routes and processing

conditions on the properties of the alloys. By comparing the

experimental results to ML predictions, the synthesis method

that yielded properties closer to the predicted values was iden-

tified, thus offering insight into processing effects on ML-guided

alloy design.
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Methodology
Machine learning predicted Fe-Co-Ni alloys and their

properties

A diverse collection of Fe-Co-Ni based alloy data, sourced from

a variety of processing techniques, was compiled through an

extensive review of existing literature encompassing research

articles, review articles, standard handbooks, and established

reference texts. This curated database comprises 1208 distinct

entries, each accompanied by an array of property information

spanning magnetic, mechanical, and electrical properties. The

gaps in the properties data were addressed by employing an

ML-based imputation approach.

Further, this imputed database was utilized to develop multi-

input multi-output regression models. The model development

was performed in two sets: one set of models was developed

mapping alloy composition to properties, and the other set of

models was developed mapping alloy composition along with

physical descriptors to properties. The physical descriptors

(Wen alloy features24) were obtained from the WenAlloys featur-

izer package in Matminer.44 The ETR model in conjunction with

the BO was chosen which resulted in superior composition pre-

dictions across all properties, particularly with enhanced accu-

racy for Ms, Tc, and HV.

The Fe-Co-Ni compositional space was systematically

explored in our previous work through a multi-objective

Bayesian optimization (MOBO) approach, and high-throughput

data from 40 compositions were used to validate the predictions

across six sets of target properties (Ms, Tc, and Cost of the ma-

terial). Among the compositions identified in this validation,

Fe61.9Co22.8Ni15.3 (C1) and Fe66.8Co28Ni5.2 (C2), demonstrated

superior multi-property performance with high values of satura-

tion magnetization (Ms), Curie temperature (Tc), and Vickers

hardness (HV) and were chosen for further study in this work.

The details of the ML framework, including the imputation strat-

egy, multi-property models and optimization approach em-

ployed, are elaborated in our previous work.43 To evaluate how

synthesis routes influence the accuracy of these ML-predicted

properties, the three synthesis methods–arc melting (ArM), ball

milling (BM) followed by spark plasma sintering (SPS), chemical

synthesis (CS) via chemical reduction followed by SPS–were

selected. The details are provided later in discussion.

Synthesis using arc melting

The compositions C1 and C2 were prepared using elemental Fe

foil (1.5 mm thick and purity of 99.5% from Sigma Aldrich, CAS

No. 7439-89-6), Ni foil (0.787 mm thick and purity of 99.5%

from Alfa Aesar, CAS No. 7440-02-0), and Co pieces (99.5%,

Sigma Aldrich, CASE No. 7440-48-4) in an arc melter (Edmund

B€uhler GmbH, Bodelshausen, Germany, MAM-1) under argon

gas atmosphere. Both the samples were melted 5 times by flip-

ping over to achieve homogeneous mixing of the alloys. The

samples of both compositions were cut into two flat slices, one

slice was labeled ‘‘ArM,’’ and the other slice was annealed at

900�C for 4 h in a 95% Ar + 5% H2 atmosphere and labeled

‘‘ann-ArM.’’

Synthesis using ball milling followed by spark plasma

sintering

Gas atomized Fe (purity R99.95%) and Ni (purity R99.95%)

from Sandvik Osprey Ltd (United Kingdom) and Co (purity
R99.95%) powders from Tosoh SMD Inc (United States) were

used as received. These powders were milled in appropriate ra-

tios in a Fritch Pulverisette-7 planetary ball mill for 5 h at a speed

of 500 rpm to obtain alloy powders of C1 and C2. Before starting

the milling, a small quantity of ethanol was added to the milling

vial to prevent cold welding. Tungsten carbide vials and 10 mm

diameter balls were used and the ball to powder ratio was kept

at 10:1.

The C1 and C2 BM alloy powders were individually consoli-

dated by SPS to 15 mm diameter pellets using a graphite die.

SPS was performed using a Fuji Electronic Industrial SPS-

211LX equipment at a vacuum level below 8 Pa. Sintering was

conducted at 950�C for 15 min under a pressure of 40 MPa.

The sintered samples were vertically cut into two sections, one

section was labeled ‘‘BM-SPS,’’ and the other section was an-

nealed at 900�C for 4 h in a 95% Ar + 5% H2 atmosphere and

labeled ‘‘ann-BM-SPS.’’

Synthesis using chemical synthesis via chemical

reduction followed by spark plasma sintering

Iron (II) chloride tetrahydrate (FeCl2$4H2O, 98%,CASNo. 13478-

10-9), nickel (II) chloride hexahydrate (NiCl2$6H2O, 98%, CAS

No. 7791-20-0), and cobalt (II) chloride hexahydrate

(CoCl2$6H2O, 98%, CAS No. 7791-13-1) from Sigma Aldrich,

ethanol (EtOH, 99.8%, CAS No. 64-17-5) from Fisher Scientific,

hydrazine monohydrate (N2H4$H2O, 80% solution in water,

CAS No. 7803-57-8) from Merck, sodium hydroxide (NaOH,

CAS No. 1310-73-2) pellets from Schedelco, and deionized wa-

ter (DI H2O, Type II+, Elga) were used as received.

In a typical experiment for synthesis of C1 and C2 powders,

the appropriate amounts of FeCl2$4H2O, NiCl2$6H2O, and

CoCl2$6H2O were weighed, placed in a flask, and stirred until

the chloride salts dissolved in the solvent of EtOH and DI H2O

in the ratio of 3:1. Subsequently, 4M NaOH solution was added,

followed by hydrazine monohydrate. The molar ratios of the pre-

cursors, 4MNaOH and 80% hydrazine monohydrate were main-

tained at 1:2.5:16. The reaction flask was then sealed and main-

tained at 60�C for 1 h with a needle inserted to vent the evolved

gases. The synthesized alloy particles were washed with ethanol

several times to remove the by-products using magnetic decan-

tation with a permanent magnet and then dried in a vac-

uum oven.

The C1 and C2 CS alloy powders were individually consoli-

dated by SPS into 10 mm diameter pellets in a graphite die.

SPS was performed using the same equipment at the same vac-

uum level, heating, and sintering conditions asmentioned above.

The sintered samples were vertically cut into two sections, one

section was labeled ‘‘CS-SPS,’’ and the other section was an-

nealed at 900�C for 4 h in a 95% Ar + 5% H2 atmosphere and

labeled ‘‘ann-CS-SPS.’’ The frequently used acronyms and cor-

responding details are given in Table 1.

Characterization and property assessment

The elemental mapping of the bulk samples (both as synthesized

and annealed) was performed using an energy dispersive X-ray

spectrometer (EDS) attached to the JEOL JSM-7600F field emis-

sion scanning electron microscope (FESEM). Electron back

scattered diffraction (EBSD) crystal orientation, phase analysis,

and grain size analysis were conducted on a JEOL 7800F Prime

FESEM in back-scattered electron mode, with images acquired
iScience 28, 111580, January 17, 2025 3



Table 2. Nominal and actual compositions of the ML predicted

Fe-Co-Ni alloy prepared by different synthesis routes and after

annealing

C1 C2

Fe

(at.%)

Co

(at.%)

Ni

(at.%)

Fe

(at.%)

Co

(at.%)

Ni

(at.%)

ML predicteda 61.9 22.8 15.3 66.8 28 5.2

As synthesized

ArM 61.6 23.2 15.2 66.3 28.3 5.4

BM-SPS 54.8 22.5 22.7 66.6 27.2 6.2

CS-SPSb 66 20.5 13.5 69.8 25.1 5.1

After annealing at 900�C for 4 h

ann-ArM 61.5 23.3 15.2 65.4 28.6 6

ann-BM-SPS 61.4 26.6 12 67.7 27 5.3

ann-CS-SPS 62.5 22.8 14.7 66.3 28.1 5.6
anominal.
bafter excluding oxygen content.

Table 1. List of acronyms used and corresponding details

Acronym Detailed description

C1 Fe61.9Co22.8Ni15.3

C2 Fe66.8Co28Ni5.2

ArM Arc melted

ann-ArM Arc melted samples annealed at 900�C for

4 h in a 95% Ar + 5% H2 atmosphere

C1 ArM Fe61.9Co22.8Ni15.3 (C1) processed by arc melting

C2 ArM Fe66.8Co28Ni5.2 (C2) processed by arc melting

C1 ann-ArM Fe61.9Co22.8Ni15.3 (C1) processed by arc

melting and annealed at 900�C for 4 h in a

95% Ar + 5% H2 atmosphere

C2 ann-ArM Fe66.8Co28Ni5.2 (C2) processed by arc melting

and annealed at 900�C for 4 h in a 95%

Ar + 5% H2 atmosphere

BM Ball milling

SPS Spark plasma sintering

C1 BM-SPS Fe61.9Co22.8Ni15.3 (C1) alloy powder

synthesized by ball milling and sintered by

spark plasma sintering

C2 BM-SPS Fe66.8Co28Ni5.2 (C2) alloy powder synthesized

by ball milling and sintered by spark plasma

sintering

C1 ann-BM-SPS Fe61.9Co22.8Ni15.3 (C1) alloy powder synthesized

by ball milling and sintered by spark plasma

sintering, and then annealed at 900�C for 4 h

in a 95% Ar + 5% H2 atmosphere

C2 ann-BM-SPS Fe66.8Co28Ni5.2 (C2) alloy powder synthesized

by ball milling and sintered by spark plasma

sintering, and then annealed at 900�C for 4 h

in a 95% Ar + 5% H2 atmosphere

CS Chemical synthesis

C1 CS-SPS Fe61.9Co22.8Ni15.3 (C1) alloy powder synthesized

by chemical method and sintered by spark

plasma sintering

C2 CS-SPS Fe66.8Co28Ni5.2 (C2) alloy powder synthesized

by chemical method and sintered by spark

plasma sintering

C1 ann-CS-SPS Fe61.9Co22.8Ni15.3 (C1) alloy powder

synthesized by chemical method and sintered

by spark plasma sintering, and then annealed

at 900�C for 4 h in a 95% Ar + 5% H2

atmosphere

C2 ann-CS-SPS Fe66.8Co28Ni5.2 (C2) alloy powder synthesized by

chemical method and sintered by spark plasma

sintering, and then annealed at 900�C for 4 h in

a 95% Ar + 5% H2 atmosphere
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by an Oxford Instruments Symmetry S2 detector at a step size of

0.06mm.

The crystal structures of the ball milled powder samples and

all the bulk samples were identified by X-ray diffraction (XRD)

using a Bruker D8 Advance diffractometer (Cu Ka radiation,

l = 0.154 nm). The phase fractions and lattice parameters of

the samples were calculated via Rietveld refinement in TOPAS.

To study the phase evolution of the BM alloy powders, XRD of

themixed elemental powders in the appropriate ratio and a small
4 iScience 28, 111580, January 17, 2025
amount of powder retrieved after 2 h of ball milling for both com-

positionswas performed. Themagnetic properties (Ms andHc) of

the bulk samples were measured using a LakeShore Cryotronics

7400 VSM. The Curie temperature (Tc) of the samples was

measured using a thermogravimetric analysis (TGA) setup with

a permanent magnet near the TGA pan, as reported in earlier re-

ports.20,45–48 The microhardness of the bulk samples was

measured using a Vickers hardness tester (Future-Tech) at a

load of 5 kgf. The I-V curve of the bulk samples was obtained us-

ing a four-point probe (4PP) tester (Keithlink). The electrical resis-

tivity (r) of the samples was calculated using the following

equation20,47,49:

r = R,
pt

ln

0
BB@

sinh

�
t=s

�

sinh

�
t=2s

�
1
CCA

where R, t, and s are the resistance, sample thickness and probe

spacing respectively.

RESULTS

The nominal compositions (predicted by MLmentioned above in

Machine Learning (ML) predicted Fe-Co-Ni alloys and their prop-

erties) and actual compositions prepared by the three different

synthesis routes and after annealing obtained by EDS are shown

in Table 2.

Arc melted (ArM) samples
The characterization and property assessment results of C1 and

C2 ArM samples (both as-ArM and ann-ArM) are presented in

Figure 1.

Figure 1A shows the XRD patterns of ArM and ann-ArM of C1

and C2 samples. All the samples exhibit a single body centered

cubic (BCC) phase.



Figure 1. Characterization and property assessment of arc melted samples

(A) X-ray diffraction (XRD) patterns of C1 and C2 samples.

(B–E) EBSD phase maps of (B) C1 ArM, (C) C2 ArM, (D) C1 ann-ArM, and (E) C2 ann-ArM samples.

(F) Phase percentage from EBSD-SEM (solid bars) and Rietveld refinement of XRD plots (check bars) comparison plot.

(legend continued on next page)

iScience 28, 111580, January 17, 2025 5

iScience
Article

ll
OPEN ACCESS



iScience
Article

ll
OPEN ACCESS
Figures 1B and 1C show the EBSD phase maps of C1 and C2

ArM samples, while Figures 1D and E show the EBSD phase

maps of C1 and C2 ann-ArM samples with grain boundaries. Fig-

ure 1F shows the phase distribution determined fromEBSD scans

(in solid bars) and from XRD patterns (in check bars) of C1 and C2

for both ArM and ann-ArM samples. The ArM samples of C1 and

C2, both as synthesized and annealed, show 100% pure BCC

phase. Figure 1G shows the grain size determined from the

EBSD scans of C1 and C2 for both ArM and ann-ArM samples.

The grain sizes of C1 samples are in the range of 12–13 mm, how-

ever the grain sizes of C2 samples are in the range of 24–31 mm.

Themagnetic properties,Ms andHc, of the samples are shown

in Figures 1H and 1I, respectively. Ms of C1 samples are in the

range of 197–207 emu/g and C2 samples are in the range of

217–229 emu/g. Hc of C1 samples are in the range of 38–43

Oe and C2 samples are in the range of 21–26 Oe. The Curie tem-

peratures of C1 ann-ArM and C2 ann-ArM samples were ob-

tained to be 1088 K and 1205 K, respectively, and is further dis-

cussed in Curie Temperature (Tc).

Electrical resistivity (r) and Vickers hardness (HV) of the sam-

ples with their error bars are shown in Figures 1J and 1K, respec-

tively. The C1 samples show a combination of high r (range of

17–19 mU cm) and HV (range of 317–354 HV) among the ArM

samples.

Ball milling followed by spark plasma sintering samples
The characterization and property assessment results of C1 and

C2 BM-SPS samples (both as-BM-SPS and ann-BM-SPS) are

presented in Figure 2.

Figure 2A shows the XRD patterns of BM-SPS and ann- BM-

SPS of C1 and C2 samples. C1 samples exhibit two phases of

face centered cubic (FCC) and BCC, while C2 samples exhibit

a single BCC phase.

Figures 2B and 2C show the EBSD phase maps of C1 and C2

BM-SPS samples, while Figures 2D and 2E show the EBSD

phase maps of C1 and C2 ann- BM-SPS samples with grain

boundaries. Figure 2F shows the phase distribution determined

from EBSD scans (in solid bars) and from XRD patterns (in check

bars) of C1 and C2 for both BM-SPS and ann- BM-SPS samples.

It can be observed that the phase information fromboth XRD and

EBSD are in accordance with each other. Figure 2G shows the

grain size determined from the EBSD scans of C1 and C2 for

both BM-SPS and ann- BM-SPS samples. The grain sizes of

the samples are in the range of 5–7 mm.

Themagnetic properties,Ms andHc, of the samples are shown

in Figures 2H and 2I, respectively. Ms of C1 samples are in the

range of 193–195 emu/g and C2 samples are in the range of

210–223 emu/g. Hc of C1 samples are in the range of 39–45

Oe and C2 samples are in the range of 39–51 Oe. The Curie tem-

peratures of C1 ann- BM-SPS and C2 ann- BM-SPS samples

were obtained to be 1070 K and 1181 K, respectively, and is

further discussed in curie temperature (Tc).
(G) Average grain size (calculated from EBSD scans) comparison plot of C1 and

(H) saturation magnetization (Ms) comparison plot of C1 and C2 samples.

(I) coercivity (Hc) comparison plot of C1 and C2 samples.

(J) electrical resistivity (r) comparison plot of C1 and C2 samples; and (K) Vickers

represented as mean ± SD.
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The Electrical resistivity (r) and Vickers hardness (HV) of the

samples with their error bars are shown in Figures 2J and 2K,

respectively. Similar to ArM samples, the C1 samples show a

combination of high r (range of 92–104 mU cm) and HV (range

of 322–394 HV) among the BM-SPS samples.

Chemical synthesis via chemical reduction followed by
spark plasma sintering samples
The characterization and property assessment results of C1 and

C2 CS-SPS samples (both as-CS-SPS and ann-CS-SPS) are

presented in Figure 3.

Figure 3A shows the XRD patterns of CS-SPS and ann- CS-

SPS of C1 and C2 samples. The CS-SPS samples exhibited ox-

ide phases which are eliminated after annealing.

Figures 3B and 3C show the EBSD phase maps of C1 and C2

CS-SPS samples, while Figures 3D and 3E show the EBSD

phase maps of C1 and C2 ann- CS-SPS samples with grain

boundaries. Figure 3F shows the phase distribution determined

from EBSD scans (in solid bars) and from XRD patterns (in check

bars) of C1 and C2 for both CS-SPS and ann- CS-SPS samples.

It can be observed that the phase information from both XRD and

EBSD are in accordance with each other. Figure 3G shows the

grain size determined from the EBSD scans of C1 and C2 for

both CS-SPS and ann- CS-SPS samples. The grain sizes of

the samples are in the range of 1.7–3.9 mm.

Themagnetic properties,Ms andHc, of the samples are shown

in Figures 3H and 3I, respectively. Ms of C1 samples are in the

range of 90–210 emu/g and C2 samples are in the range of

137–237 emu/g. Hc of C1 samples are in the range of 31–104

Oe and C2 samples are in the range of 31–56 Oe. The Curie tem-

peratures of C1 ann- CS-SPS and C2 ann- CS-SPS samples

were obtained to be 1108 K and 1199 K, respectively, and is

further discussed in Curie Temperature (Tc).

The electrical resistivity (r) and Vickers hardness (HV) of the

samples with their error bars are shown in Figures 3J and 3K,

respectively. It can be observed that the CS-SPS samples ex-

hibited higher values of r and HV compared to that of ann-CS-

SPS samples.

DISCUSSION

The synthesized alloys’ experimental properties were compared

with the ML-predicted values to evaluate the predictive robust-

ness of the model. Notably, 3 distinct synthesis methods—arc

melting, ball milling with spark plasma sintering, and chemical

synthesis with spark plasma sintering—were purposefully cho-

sen to test the model’s accuracy across varied processing con-

ditions. This approach mimics the heterogeneous synthesis

routes within the database used to develop the MLmodel, which

included data from diverse sources and varying levels of synthe-

sis and heat treatment information. By examining the influence of

these controlled synthesis routes on the predicted properties,
C2 samples.

hardness (HV) comparison plot of C1 and C2 samples. Data with error bars are



Figure 2. Characterization and property assessment of ball milled followed by spark plasma sintering samples

(A) X-ray diffraction (XRD) patterns of C1 and C2 samples.

(B–E) EBSD phase maps of (B) C1 ArM, (C) C2 ArM, (D) C1 ann-ArM, and (E) C2 ann-ArM samples.

(F) Phase percentage from EBSD-SEM (solid bars) and Rietveld refinement of XRD plots (check bars) comparison plot.

(legend continued on next page)
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the model’s robustness and predictive validity were assessed,

accounting for process-dependent variations inherent in real-

world alloy design.

Composition analysis
Both C2-ArM and C2-ArM samples have the actual composi-

tions closest to the nominal compositions. The actual compo-

sitions of C1 CS-SPS samples are relatively close to the nom-

inal composition, although they exhibit Fe content slightly in

excess. For the C1 BM-SPS sample, the actual composition

determined by EDS was observed to be relatively far off

compared to the nominal composition. This can be attributed

to the non-homogenous mixture of elemental powders during

the ball milling, this effect is reflected in the post-SPS sample.

The actual composition after annealing is near to the nominal

composition, which can be due to homogenization during an-

nealing. For C2, the actual compositions of all samples pro-

cessed with the different methods are close to the nominal

composition.

Crystal structural analysis
Phase diagram

The Fe-Co-Ni phase diagrams for C1 and C2 samples were

calculated using CALPHAD and are shown in Figure S1.

In Figure S1A, the Co mole fraction was kept fixed at 0.228

(corresponding to the sample C1 nominal composition), and

the phase changes with respect to Ni content are shown

from room temperature to 1600�C. In Figure S1B, the Co

mole fraction was kept fixed at 0.28, and phase changes

with respect to the Ni content are shown from room tempera-

ture till 1600�C. In both cases, the high-temperature phase is

100% face centered cubic (FCC), while between room temper-

ature to 500�C, both FCC and body centered cubic (BCC) can

be observed.

The FCC phase was found to be FeNi-rich, while the BCC

phase was FeCo-rich. For lower Ni content as in the sample

C2, 100% the BCC phase can be obtained up to 970�C. Hence,
to obtain higher BCCphase content, annealingwas performed at

900�C. This is because the BCC phase exhibits larger saturation

magnetization than the FCC phase.50–52

Crystal structure of arc melting samples

Both C1ArMandC2 ann-ArM samples exhibited the BCC crystal

structure, as shown in Figure 1A. In the XRD patterns of ArM

samples, the intensity of the (110) diffraction peak of C1 is higher

compared to that of C2, suggesting the growth of more crystal-

lites in the 110-plane direction in C1. Further, the peak intensity

of 110 decreased and the peak intensity of 200 increased in C1

after annealing, which suggests that annealing results in the

preferred grain growth in the 200-plane direction. The results

are in agreement with the phase stability results obtained using

other techniques such as chemical synthesis with spark plasma

sintering,47 additive manufacturing53 and thin films.54–56
(G) Average grain size (calculated from EBSD scans) comparison plot of C1 and

(H) saturation magnetization (Ms) comparison plot of C1 and C2 samples.

(I) coercivity (Hc) comparison plot of C1 and C2 samples.

(J) electrical resistivity (r) comparison plot of C1 and C2 samples; and (k) Vickers

represented as mean ± SD.
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Crystal structure of ballmilling followedby spark plasma

sintering samples

The XRD patterns of Fe-Co-Ni powders mixed and milled at 0, 2,

and 5 h for C1 and C2 is shown in Figures S2A and S2B, respec-

tively. The elemental powders without milling exhibited the

FCC + BCC + hexagonal close packed (HCP) crystal structures.

The intensity of the (110) peak of HCP is quite low compared to

that of the (111) peak of FCC and the (110) peak of BCC. After

milling for 5 h, the (110) peak of HCP is reduced significantly

but not completely absent. Further, it can be observed that

with a decrease in Ni content from C1 to C2, the peak intensity

of (200) and (220) peak of FCC also decreased, suggesting

that the dominant phase in C2 is BCC after 5 h of milling. This

is broadly in agreement with the observed BCC phase in

Fe60Co40 ball milled alloy nanoparticle,57,58 Fe70Co30 alloy nano-

particles,59 Fe67Co33 chemically synthesized nanoparticles,60

and Fe50Co30Ni20 ball milled alloy nanoparticles.61

In Figure 2A, it can be observed from the XRD patterns that C2

samples exhibited only the BCC crystal structure, similar to the

ArM samples, while C1 samples exhibited BCC + FCC crystal

structures. Further, it can be observed that the FCC phase in

C1 decreased significantly after annealing, suggesting that

BCC + FCC is metastable, and the BCC phase is the thermody-

namically equilibrium phase.

Crystal structure of chemical reduction followed by

spark plasma sintering samples

In Figure 3A, it can be observed that the C1 CS-SPS sample ex-

hibited FCC + FeO + CoFe2O4 crystal structures and the C2 CS-

SPS sample exhibited BCC + FeO crystal structures. Comparing

the intensities of BCC peaks and FeO peaks in C2 CS-SPS, the

major phase is BCC and FeO is the minor phase. In contrast, C1

CS-SPS contains the FCC phase with a significant content of the

FeO phase and the CoFe2O4 phase as the minority phase.

Further, after annealing, C1 has a majority BCC phase, with

some FCC phase content; C2 is a single BCC phase. The oxide

phases are removed by annealing the samples in gas containing

hydrogen, as reported earlier.47,62

Electron back scattered diffraction-based phase

information

From the EBSD phase maps shown in Results, it can be inferred

that the ArM samples exhibit the largest grain size, followed by

BM-SPS samples and CS-SPS samples, respectively. Another

key observation is that the grains of the FCC phase in BM-SPS

C1 samples (both BM-SPS and ann-BM-SPS) are larger

compared to the grains of the BCCphase. The SEMmicrographs

and the crystallographic planes mapping with inverse pole figure

(IPF) of all the samples are displayed in Section S3 of the SI

(Figures S3–S8).

The phases of all the samples determined by EBSD are in

accordance with those determined by XRD as shown in results,

except for slight variation in CS-SPS samples. In Figure 1F, the

ArM samples of C1 and C2, both as synthesized and annealed,
C2 samples.

hardness (HV) comparison plot of C1 and C2 samples. Data with error bars are



Figure 3. Characterization and property assessment of chemically synthesized followed by spark plasma sintering samples

(A) X-ray diffraction (XRD) patterns of C1 and C2 samples.

(B–E) EBSD phase maps of (B) C1 ArM, (C) C2 ArM, (D) C1 ann-ArM, and (E) C2 ann-ArM samples.

(F) Phase percentage from EBSD-SEM (solid bars) and Rietveld refinement of XRD plots (check bars) comparison plot.

(legend continued on next page)
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exhibited a 100% pure BCC phase. The C1 BM-SPS sample

consists of 58% BCC and 42% FCC which converts into 49%

BCC and 51% FCC after annealing which is depicted in Fig-

ure 2F. Owing to the processing conditions, the CS-SPS sam-

ples C1 and C2 show 8.5% and 20.1% ferrous oxide content,

respectively, which disappear after annealing as depicted in Fig-

ure 3F. The C1 CS-SPS sample also shows higher FCC phase

fraction which reduces after annealing to yield a BCC-rich ma-

trix. Both BM-SPS and CS-SPS C2 samples exhibited some

FCC phase which disappeared after annealing.

The difference in phase formation for different processing con-

ditions can be rationalized as follows: in ArM, since the sample is

quenched from the melt, only the high-temperature phase (BCC)

is obtained, whereas in BM-SPS and CS-SPS samples, since the

metastable powders are compacted using fast sintering, it leads

to FCC + BCC phase formation, which after annealing leads to a

higher fraction of the BCC phase.

X-ray diffraction-based phase information

It can be observed in Figure 1F that the ArM samples exhibited a

single BCC phase similar to the phase distribution values from

EBSD. Unlike the phase distribution analysis from EBSD scans,

the phase distribution analysis from XRD scans reveal that the

C1 BM-SPS sample consists of a higher BCC phase content

both before (81%) and after (92%) annealing.

Similar to the EBSD scans, the CS-SPS samples C1 and

C2 show oxide phases in the phase distribution analysis from

XRD patterns. However, the CS-SPS C1 sample shows 55%

FCC +45% oxide phases in the XRD scan, unlike the 62%

FCC +29.5% BCC +8.5% oxide phases in the EBSD scan. Simi-

larly, the CS-SPSC2 sample shows 91%BCC+9%oxide phases

in the XRD scan, unlike 65.7% BCC +14.2% FCC +20.1% oxide

phases in the EBSD scan.

After annealing of CS-SPS samples, both the EBSD scan and

the XRD scan show a similar phase distribution, as depicted in

Figure 3F. The phase fractions and lattice parameter values of

all the samples have been calculated via Rietveld refinement in

TOPAS and tabulated in Table S1. Phase fractions of BCC and

FCC phases in both sets of samples (ann-BM-SPS and ann-

CS-SPS) are similar. However, the lattice parameters of the

BCC and FCC crystal structures are slightly smaller for CS sam-

ples as compared to BM samples, likely due to the actual com-

positions of the alloys deviating slightly from the nominal

compositions.

Grain size

From the average grain size comparison plots of the C1 and C2

samples for different synthesis routes as shown in Results, it can

be inferred that the average grain size of the samples increased

after annealing except for the C1 BM-SPS sample which ex-

hibited similar average grain size before and after annealing.

This could be due to the interplay of the BCC and FCC phase

transition during annealing. Moreover, the ArM samples ex-

hibited the largest grain size, followed by the BM-SPS and
(G) Average grain size (calculated from EBSD scans) comparison plot of C1 and

(H) saturation magnetization (Ms) comparison plot of C1 and C2 samples.

(I) coercivity (Hc) comparison plot of C1 and C2 samples.

(J) electrical resistivity (r) comparison plot of C1 and C2 samples; and (k) Vickers

represented as mean ± SD.
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then the CS-SPS samples. This can be attributed to the fact

that arc melting is a bulk synthesis method, ball milling is a

top-down synthesis method and chemical synthesis is a bot-

tom-up synthesis method. Another key observation is that the

average grain sizes of all the samples are in mm regime.

These grain size differences significantly impactmaterial prop-

erties. Larger grains in ArM samples typically reduce Hc by

lowering domain wall pinning, beneficial for magnetic applica-

tions.63,64 Conversely, the smaller, more refined grains in BM-

SPS samples contribute to increased HV due to higher grain

boundary density,65,66 while the CS-SPS samples, with similarly

fine grains but potential porosity after oxide phase removal,

exhibit lower HV than expected.45,67 Furthermore, smaller grain

sizes in CS-SPS samples may increase electron scattering,

which impacts r.68–70 Such structural characteristics are essen-

tial for interpreting the synthesis-dependent variations in mag-

netic, electrical, and mechanical properties observed across

the samples.

Magnetic properties
Saturation magnetization (Ms)

The variation inMs for a particular composition with different syn-

thesis routes can be attributed to the difference in phases and

their distribution observed in the samples. Further, a variation

of Ms in as synthesized and annealed samples for each compo-

sition was observed. For C1, the Ms of the ArM sample

decreased by 4.6%, the BM-SPS sample decreased by 0.5%,

and the CS-SPS sample increased by 130.8% after annealing.

For C2, the Ms of the ArM sample decreased by 4.9%, the

BM-SPS sample decreased by 5.5%, and the CS-SPS sample

increased by 72.7% after annealing.

The steep increase in Ms of CS-SPS C1 and C2 samples after

annealing can be attributed to the removal of the oxide phase, as

discussed earlier from the XRD results in crystal structure of

chemical reduction followed by spark plasma sintering samples,

which also revealed a phase transformation toward a BCC-rich

structure. The BCC phase is known to enhance saturation

magnetization compared to the FCC phase due to its favorable

atomic arrangement, which promotes stronger magnetic align-

ment.71–73 Additionally, the slight variation of Ms observed in

ArM and BM-SPS samples can be due to compositional or

microstructural changes.74–76

Coercivity (Hc)

A variation ofHcwas observed for each composition across syn-

thesis and annealing treatments. For C1, the Hc of the ArM sam-

ple decreased by 9.2%, the BM-SPS sample decreased by

11.5%, and the CS-SPS sample decreased by 69.8% after an-

nealing. For C2, the Hc of the ArM sample increased by 18.9%,

the BM-SPS sample decreased by 22.2%, and the CS-SPS

sample decreased by 43.2% after annealing.

These changes in Hc can be attributed to structural factors

unique to each synthesis route. ArM samples, for instance,
C2 samples.

hardness (HV) comparison plot of C1 and C2 samples. Data with error bars are



Table 3. Saturation magnetization and coercivity of the alloy compositions for all the synthesis routes with as synthesized, annealed,

and % change after annealing values

Composition Properties

ArM BM-SPS CS-SPS

As syn Ann % change As syn Ann % change As syn Ann % change

C1 (Fe61.9Co22.8Ni15.3) Ms (emu/g) 207.2 197.7 �4.6 194.7 193.8 �0.5 90.8 209.6 130.8

Hc (Oe) 42.4 38.5 �9.2 44.5 39.4 �11.5 104.1 31.4 �69.8

C2 (Fe66.8Co28Ni5.2) Ms (emu/g) 228.5 217.4 �4.9 222.5 210.1 �5.6 137.2 237 72.7

Hc (Oe) 21.7 25.8 18.9 50.8 39.5 �22.2 56 31.8 �43.2
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generally show lower Hc due to larger grain sizes, which reduce

domain wall pinning, leading to a decrease in Hc for the C1 ArM

sample post-annealing.77,78 In the C2 ArM sample, however,

slight increases in dislocation density or changes in phase stabil-

ity during annealingmay have enhanced domain wall pinning, re-

sulting in a small increase in Hc.
79,80

BM-SPS samples exhibit distinct coercivity characteristics

due to the combined effects of ball milling and spark plasma sin-

tering (SPS). The ballmilling step refinesgrain size andmay induce

slight compositional non-uniformity, increasing domain wall

pinning.81–83 During the subsequent SPS process, rapid heating

and pressure facilitate densification while stabilizing the fine-

grained structure, which reduces residual stress and further influ-

ences coercivity.84–86 This annealing and stress-relieving effect of

SPS contributes to the observed Hc reduction in the BM-SPS

sample after annealing. Furthermore, the decrease of Hc in the

BM-SPS C2 sample after annealing can also be attributed to the

increase in grain size.87–89The CS-SPS samples, on the other

hand, exhibited a substantial drop in Hc after annealing, largely

due to the removal of oxide phases.47,90

Overall, it can be observed that Hc decreased for the samples

after annealing, except for the ArM C2 sample which exhibited

Hc value only 4 Oe higher after annealing. This can be attributed

to the decrease in Hc with an increase in grain size in the mm

regime91 as discussed in grain size. Further, the increase in grain

size after annealing is significant in ArM C2 and not very signifi-

cant in ArM C1 which could be the reason why Hc did not in-

crease after annealing.

TheMs andHc values of all samples before and after annealing

along with the change in their values after annealing for both C1

and C2 are tabulated in Table 3. Further, the room temperature

field dependence of magnetization of C1 and C2 samples syn-

thesized via different routes and the annealed samples is shown

in Figure S9.

Among the as synthesized C1 and C2 samples, as-ArM ex-

hibited the best magnetic properties performance: a Ms of

207.2 emu/g and Hc of 42.4 Oe for C1 (Fe61.9Co22.8Ni15.3), a Ms

of 228.5 emu/g and Hc of 21.7 Oe for C2 (Fe66.8Co28Ni5.2). After

annealing, ann-CS-SPS exhibited the best performance for C1

with an Ms of 209.6 emu/g and Hc of 31.4 Oe. The performance

of the ann-ArM C1 sample was comparable with a Ms of 197.7

emu/g and Hc of 38.5 Oe. Amongst the annealed C2 samples,

the ann-CS-SPS sample exhibited the highest Ms of 237 emu/

g and ann-ArM exhibited the lowest Hc of 25.8 Oe.

Curie temperature (Tc)

The Tc of annealed samples of C1 and C2, as discussed in re-

sults, are presented in Table 4. After annealing, the oxide phases
of as-CS-SPS samples were removed and homogenized sam-

ples were obtained, hence they were chosen for Tc measure-

ments. The highest Tcwas obtained for the ann-CS-SPS sample

for C1 (Fe61.9Co22.8Ni15.3) and the ann-ArM sample for C2 (Fe66.8-
Co28Ni5.2). It can be observed that Tc increased with a decrease

in Ni content or an increase in Fe and Co content from C1 to C2

samples, which agrees closely with the previously reported

literature.47,87,92,93

The observed deviations inmagnetic properties, especiallyHc,

can be attributed to microstructural differences introduced by

each synthesis route. ArM samples exhibit a larger grain size

and a uniform BCC phase due to rapid solidification, which con-

tributes to lower Hc than in samples synthesized by ball milling

and SPS. These variations highlight the robustness and limita-

tions of the ML predictions, showing that the predicted compo-

sitions remain close to the expected performance, especially for

ArM samples. When synthesis-induced microstructural changes

are introduced, the structure-dependent properties, such as Hc,

vary significantly.

Electrical and mechanical properties
Electrical resistivity (r)

Similar to magnetic properties, a variation of r in as synthesized

and annealed samples for each composition was observed. For

C1, the r of the ArM sample decreased by 4.5%, the BM-SPS

sample decreased by 10.8%, and the CS-SPS sample

decreased by 97.9% after annealing. For C2, the r of the ArM

sample increased by 5.3%, the BM-SPS sample decreased by

7.8%, and the CS-SPS sample decreased by 70.1% after

annealing.

The values of r for as-ArM were 18.15 mU cm for C1 and

17.3 mU cm for C2 and ann-ArM were 14.93 mU cm for C1 and

15.72 mU cm for C2. These values are in the same range as the

reported r value for two nearby compositions in the ternary

space: 12.63 mU cm for Fe50.4Co31Ni18.6 and 15.11 mU cm for

Fe57.7Co21Ni21.3 in as rolled samples and 11.42 mU cm for

Fe50.4Co31Ni18.6 and 17.44 mU cm for Fe57.7Co21Ni21.3 in samples

homogenized at 500�C for 24 h.92

Post-annealing, the CS-SPS samples exhibited the highest

r values, likely due to the formation of pores after removal

of the oxide phases during annealing.47 Moreover, it can be

observed that the r of BM-SPS samples increases compared

to that of both as synthesized and annealed ArM samples.

This is due to lower grain size in BM-SPS samples compared

to that of the ArM samples, as discussed in grain size,

and therefore enhanced electron scattering in the BM-SPS

samples.
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Table 4. Curie temperature of the alloy compositions after

annealing

Process

C1 (Fe61.9Co22.8Ni15.3) C2 (Fe66.8Co28Ni5.2)

Tc (K) Tc (K)

ann-ArM 1088 1205

ann-BM-SPS 1070 1181

ann-CS-SPS 1108 1199
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Vickers hardness (HV)

Similarly, a variation of HV in the as synthesized and annealed

samples for each composition was observed. For C1, the HV of

the ArM sample increased by 11.2%, the BM-SPS sample

decreased by 18%, and the CS-SPS sample decreased by

86.8% after annealing. For C2, the HV of the ArM sample

increased by 9.3%, the BM-SPS sample decreased by 17.7%,

and the CS-SPS sample decreased by 71.1% after annealing.

The highestHV for C1 was obtained in the ann-ArM samplewith

a value of 355.3 HV and for C2 in ann-BM-SPS with a value of

286.1 HV. The ann-ArM C2 sample exhibited a hardness of

285.3 HV which is very close to that of the ann-BM-SPS C2 sam-

ple. However, when compared to these samples, the hardness of

ann-CS-SPS samples for both C1 and C2were very low, i.e., 43.1

HV and 109.8 HV respectively. Such a drop was reported earlier

for Fe54Co17Ni29 which contained oxide phases after chemical

synthesis and SPS. The oxide phases were removed during an-

nealing, causing the formation of pores,47 as discussed in grain

size. Moreover, it can be observed that the hardness of the ArM

samples of both the compositions increased after annealingwhich

might be due to the elimination of defects present as a result of

alloy casting due to the higher diffusion of atoms.94

The r and HV values of all samples before and after annealing

along with the change in % after annealing for both C1 and C2

are tabulated in Table 5.

All of the above discussed results – phase distribution,

average grain size, magnetic properties, electrical resistivity,

and Vickers hardness – for all the samples synthesized by the

three different synthesis routes followed by annealing for both

C1 and C2 compositions are tabulated in Table S2 of the SI.

Comparative analysis of machine learning prediction
and chosen experimental values
The choice of three distinct synthesis methods—arcmelting, ball

milling with SPS, and chemical synthesis with SPS—was inten-

tional to examine the effects of synthesis-dependent microstruc-

tures on ML-predicted properties. Each method introduces

unique microstructural characteristics, such as dendritic solidifi-
Table 5. Electrical resistivity and Vickers hardness of the alloy com

annealed, and % change after annealing values

Composition Properties

ArM

As syn Ann % change

C1 (Fe61.9Co22.8Ni15.3) r (mU$cm) 18.15 17.33 �4.5

HV (HV) 317.7 353.3 11.2

C2 (Fe66.8Co28Ni5.2) r (mU$cm) 14.93 15.7 5.3

HV (HV) 261.1 285.3 9.3
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cation in arc melting and solid-state diffusion in powder metal-

lurgy, which affect phase distribution, grain size, and conse-

quently, material properties. These effects provide insight into

the ML framework’s ability to predict compositions and its prop-

erties under varying real-world synthesis variations.

Figure 4 shows the comparison bar plots of measured proper-

ties vs. ML predicted properties for both the as synthesized and

annealed C1 and C2 samples prepared through all the three syn-

thesis routes. It can be observed that the properties of the ArM

samples (both as synthesized and annealed) are comparatively

closer to the ML predicted values than the other samples. How-

ever, the Hc values of these samples are higher than the pre-

dicted values. This can be attributed to the fact that the database

curated from literature consisted of Hc values data of the sam-

ples mainly prepared as sheets that had undergone multiple

steps of processing optimized for obtaining lowHc. As expected,

processing conditions can influence the Hc value significantly.

Among the different synthesis routes, arc melting was

chosen to be the most suitable one because the samples

prepared by this method exhibited properties with a devia-

tion within 14% of the ML predicted property values for the

same compositions excluding Hc. The ML predicted values,

the experimentally obtained values, and the deviation of experi-

mental values from predicted values for the as synthesized

and annealed ArM samples of Fe61.9Co22.8Ni15.3 (C1) and

Fe66.8Co28Ni5.2 (C2) are presented in Table 6. The deviation per-

centage of experimental values from the predicted values is

calculated by the following formula:

Deviation % =
Predicted � Experimental

Predicted
3 100

The obtained Ms of these samples is close to commercially

used alloys such as Fe94.21Si5.79 (214 emu/g) and Fe49Co49V2

(230 emu/g) and lower than the highest Ms composition which is

Fe35Co65 (�240 emu/g).12,14,15,95,96 Further, the obtained Tc of

these samples is comparable to that of Fe94.21Si5.79 (1018 K)

and Fe49Co49V2 (1203 K).14,15,95,96 Moreover, the obtained HV of

these samples is higher compared to that of commercially used

alloys such as Fe94.21Si5.79 (170–195 HV), Fe49Co49V2 (180–220

HV), and Fe53Ni30Co17 (160–230 HV).14–16,95,96

The deviation of r andHV for BM-SPS samples from predicted

values were �452.78% and �13.48% for Fe61.9Co22.8Ni15.3
and �115.09% and �36.82% for Fe66.8Co28Ni5.2. Further, the

deviation of r and HV for annealed BM-SPS samples from pre-

dicted values were �394.65% and 6.97% for Fe61.9Co22.8Ni15.3
and �98.27% and �12.55% for Fe66.8Co28Ni5.2. This is consis-

tent with the fact that the database that was used to train the
positions for all the synthesis routes with as synthesized,

BM-SPS CS-SPS

As syn Ann % change As syn Ann % change

103.4 92.3 �10.8 6577.2 135.1 �98

393.9 322.9 �18 326.1 43.1 �86.8

37.2 34.3 �7.8 152.6 45.7 �70.1

347.8 286.1 �17.7 380.3 109.8 �71.1



Figure 4. Comparative analysis of ML pre-

dicted and experimental values

(A and B) Comparison of properties values of (A)

C1 and (B) C2 as synthesized and annealed

samples prepared via arc melting (ArM), ball mill-

ing followed by spark plasma sintering (BM-SPS),

and chemical synthesis followed by spark plasma

sintering (CS-SPS) with respect to predicted

properties values through machine learning (ML).
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MLmodel consisted of data mainly from cast alloys and samples

with large grain sizes. The predicted r are closer to the r values in

ArM samples which consists of a larger grain size compared to

the other two synthesis routes. The predicted HV is closer to

the HV values in samples with larger grain sizes.

Conclusion
This study presents an experimental validation of ML-de-

signed Fe-Co-Ni alloy compositions,43 Fe61.9Co22.8Ni15.3 and
iS
Fe66.8Co28Ni5.2, synthesized using three

distinct methods—arc melting, BM-

SPS, and CS-SPS. The results highlight

the influence of synthesis routes on the

resulting structural, magnetic, electri-

cal, and mechanical properties, and un-

derscore the potential of ML-guided

design for multi-property alloy optimiza-

tion. Key insights of this work include.

1. This study offers insights into the

processing-structure-property (PSP)

relationships by synthesizing the

two ML-designed compositions us-

ing different routes which is critical

to ML-guided materials design.

2. Comparative analysis highlighted how

structural variations, particularly in

phase distribution and grain size,

impacted properties such as Hc, r,

and HV emphasizing the importance

of PSP relationships.

3. Arc melting was found to yield the

most consistent results, with proper-

ties deviating less than 14% from

ML predictions while BM-SPS and

CS-SPS methods showed greater

variance, particularly in Hc and

r. The controlled high-temperature

environment in arc melting likely facil-

itates uniform phase distribution and

larger grain sizes, minimizing struc-

tural inconsistencies from oxide for-

mation or heterogeneous microstruc-

tures.

4. Experimentally measured properties,

especially for Ms Tc, and HV, showed

good agreement with ML predictions
across different synthesis methods, affirming the robust-

ness of the developed ML framework. Discrepancies in

Hc and r suggest potential for framework improvement

through integrated processing data.

5. Post-synthesis annealing generally improved property

consistency, with significant increases in Ms for CS-SPS

samples due to oxide phase removal, illustrating the

importance of post-processing in achieving optimal per-

formance.
cience 28, 111580, January 17, 2025 13



Table 6. Predicted values, experimental values, and deviation of experimental values from predicted values for as synthesized and

annealed arc melted samples

Properties

As synthesized

Fe61.9Co22.8Ni15.3 (C1) Fe66.8Co28Ni5.2 (C2)

Predicted Experimental Deviation (%) Predicted Experimental Deviation (%)

Ms (emu/g) 214 207.2 3.18 230.9 228.5 1.04

Hc (Oe) 6.91 42.4 �513.6 4.55 21.7 �376.92

Tc (K) 1047.5 1109.4 �5.91 1190.2 1194.3 �0.34

r (mU$cm) 18.7 18.15 2.94 17.3 14.93 13.7

HV (HV) 347.1 317.7 8.47 254.2 261.1 �2.71

– Annealed

– Fe61.9Co22.8Ni15.3 (C1) Fe66.8Co28Ni5.2 (C2)

Ms (emu/g) 214 197.7 7.62 230.9 217.4 5.85

Hc (Oe) 6.91 38.5 �457.16 4.55 25.8 �467.03

Tc (K) 1047.5 1088 �3.87 1190.2 1204.9 �1.24

r (mU$cm) 18.7 17.33 7.33 17.3 15.72 9.13

HV (HV) 347.1 353.3 �1.79 254.2 285.3 �12.23
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This work contributes to the field of ML-driven alloy design by

validating multi-property predictions and identifying processing

considerations that impact final properties. Future efforts should

focus on advancing the ML framework by incorporating detailed

processing data and adopting advanced ML techniques such as

transfer learning and generative adversarial networks (GANs) to

further enhance property predictions. This approach will pave

the way for more efficient and tailored development of high-per-

formance alloys, informed by integrated PSP insights, benefiting

applications across different sectors.

Limitations of the study
The variations observed in properties such as Hc and r across

synthesis methods highlight the critical role of processing condi-

tions in determining material characteristics. Incorporating spe-

cific parameters, such as milling duration, compaction pressure,

and annealing conditions, into future ML models could further

refine property predictions, providing a more nuanced under-

standing of synthesis-property relationships. Applying transfer

learning could also improve model adaptability, allowing data

from specific synthesis methods to inform predictions across

different processing routes, thereby enhancing accuracy for tar-

geted conditions. Furthermore, generating high-throughput data-

sets with complete processing information would enable the use

of advanced ML techniques, such as generative adversarial net-

works (GANs) and graph neural networks (GNNs), to explore com-

plex structure-processing-property relationships in depth, enrich-

ing the model’s predictive capabilities for materials design.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Fe foil, 99.5% pure, 1.5 mm thick Sigma Aldrich 7439-89-6

Ni foil, 99.5% pure, 0.787 mm thick Alfa Aesar 7440-02-0

Co pieces, 99.5% pure Sigma Aldrich 7440-48-4

Fe powder, 99.95% pure Sandvik Osprey Ltd N\A

Ni powder, 99.95% pure Sandvik Osprey Ltd N\A

Co powder, 99.95% pure Tosoh SMD Inc N\A

Iron (II) chloride tetrahydrate (FeCl2$4H2O), 98% Sigma Aldrich 13478-10-9

Nickel (II) chloride hexahydrate (NiCl2$6H2O), 98% Sigma Aldrich 7791-20-0

Cobalt (II) chloride hexahydrate (CoCl2$6H2O), 98% Sigma Aldrich 7791-13-1

Ethanol, 98% Fisher Scientific 64-17-5

Hydrazine monohydrate (N2H4$H2O), 80% solution

in water

Merck 7803-57-8

Sodium hydroxide (NaOH) pellets Schedelco 1310-73-2

Deionized water (DI H2O), Type II+ Elga N\A

Deposited Data

Database and Machine Learning code for predicted

compositions

iScience https://doi.org/10.1016/j.isci.2024.109723

Software and algorithms

AZtecCrystal Oxford Instruments https://nano.oxinst.com/azteccrystal

X’Pert HighScore 4.5 Malvern Panalytical https://www.malvernpanalytical.com/en/

products/category/software/x-ray-

diffraction-software/highscore

Match! Crystal Impact https://www.crystalimpact.com/match/

Origin OriginLab https://www.originlab.com/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This work did not need any unique experimental model.

METHOD DETAILS

The details are mentioned in the Methodology section of the main text.

QUANTIFICATION AND STATISTICAL ANALYSIS

The grain size distribution from EBSD maps were analyzed by AZtecCrystal software. The phase analysis of XRD plots were per-

formed by Match! And X’Pert HighScore 4.5 softwares. The data analysis and plotting in the article were implemented using Origin

software.
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