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Abstract
The elastic net combines lasso and ridge regression to fuse the sparsity property of lasso with
the grouping property of ridge regression. The connections between ridge regression and
gradient descent and between lasso and forward stagewise regression have previously been
shown. Similar to how the elastic net generalizes lasso and ridge regression, we introduce
elastic gradient descent, a generalization of gradient descent and forward stagewise regression.
We theoretically analyze elastic gradient descent and compare it to the elastic net and
forward stagewise regression. Parts of the analysis are based on elastic gradient flow, a
piecewise analytical construction, obtained for elastic gradient descent with infinitesimal
step size. We also compare elastic gradient descent to the elastic net on real and simulated
data and show that it provides similar solution paths, but is several orders of magnitude
faster. Compared to forward stagewise regression, elastic gradient descent selects a model
that, although still sparse, provides considerably lower prediction and estimation errors.
Keywords: elastic net, gradient descent, gradient flow, forward stagewise regression

1. Introduction

Lasso (Tibshirani, 1996) is a popular method for combining regularization and model selection
in linear regression. The objective is to minimize

1

2n
‖y −Xβ‖22 + λ‖β‖1 (1)

with respect to the parameter vector β ∈ Rp, where X ∈ Rn×p is the design matrix,
y ∈ Rn is the response vector, and λ > 0 is the regularization strength. Provided that the
regularization is large enough, the lasso estimates of some parameters in β become exactly
zero, thus eliminating the corresponding variables from the model, which results in a simpler
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representation. Since the introduction of lasso, many extensions have been proposed, such as
the adaptive lasso (Zou, 2006), with individual regularization strengths to each βi; the group
lasso (Yuan and Lin, 2006), which regularizes predefined groups of parameters together; the
fused lasso (Tibshirani et al., 2005), which accounts for spatial and/or temporal dependencies;
the graphical lasso (Friedman et al., 2008), for sparse inverse covariance estimation; and
the elastic net (Zou and Hastie, 2005), which is a convex combination of lasso and ridge
regression, generalizing Equation 1 into

1

2n
‖y −Xβ‖22 + λ(α‖β‖1 + (1− α)‖β‖22), α ∈ [0, 1]. (2)

The motivation behind adding the squared `2 penalty of ridge regression to the elastic net
is two-fold. First, in the high-dimensional setting, when p > n, lasso can select at most n
variables. Second, if two or more variables are highly correlated, lasso tends to include only
one of these in the model, and to be quite indifferent as to which. Both of these shortcomings
are alleviated by the elastic net.

As can be seen in Equation 1, a larger value of λ enforces a smaller value of ‖β‖1. Thus,
provided n ≥ p, the lasso estimate, β̂, shrinks (in `1 norm) with increasing λ from the ordinary
least squares solution, β̂OLS := (X>X)−1X>y for λ = 0, to 0 for λ ≥ λmax := 1

n‖X>y‖∞.
Due to Lagrangian duality, the solution path of β̂ as a function of λ from 0 to λmax can
equivalently be expressed in terms of ‖β̂‖1, where λ = 0 corresponds to ‖β̂‖1 = ‖β̂OLS‖1
and λ = λmax corresponds to ‖β̂‖1 = 0.

Several authors have addressed the striking similarities between the lasso solution path
and the solution path of forward stagewise linear regression (see e.g. work by Rosset et al.
2004, Efron et al. 2004 and Hastie et al. 2007). Forward stagewise regression is an iterative
method for solving linear regression. Starting at β̂ = 0, the solution moves toward β̂OLS,
successively adding more variables to the model, resulting in a solution path very similar to
that of lasso. Selecting a solution before convergence, something that is often referred to
as early stopping, can thus be thought of as applying lasso with a regularization strength
λ ∈ (0, λmax). Tibshirani (2015) proposed a generalization of forward stagewise regression
to be used with any convex function as opposed to just the `1 norm, and used it to obtain
solution paths for group lasso, nuclear norm regularized matrix completion (e.g. Candès and
Recht (2009)) and ridge logistic regression. Vaughan et al. (2017) used the general stagewise
procedure to obtain solution paths for sparse group lasso (Simon et al., 2013), while Zhang
(2019) used it for clustering.

Just as forward stagewise regression and lasso provide similar solution paths, so do
gradient descent and ridge regression. Ali et al. (2019) investigated these similarities for
infinitesimal optimization step size. They argued that, just as for forward stagewise regression,
optimization time can be thought of as an inverted penalty, and that early stopping at time
t roughly corresponds to ridge regression with penalty 1/t.

In this paper, we combine forward stagewise regression and gradient descent into elastic
gradient descent, an iterative optimization method that produces a solution path similar
to that of the elastic net. Analogously to how the elastic net is a combination of lasso and
ridge regression, elastic gradient descent is a combination of forward stagewise regression
and gradient descent.

In Section 2, we introduce the elastic gradient descent algorithm. In Section 3, we
theoretically analyze the algorithm, and compare it to the elastic net and to forward
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stagewise regression. In Section 4, we compare elastic gradient descent to the elastic net and
forward stagewise regression on synthetic and real data sets.

Our main contributions are:

• We define elastic gradient descent, an iterative optimization algorithm, that generalizes
forward stagewise regression (also known as coordinate descent) and gradient descent,
with solution paths very similar to those of the elastic net.

• We theoretically analyze the convergence properties of elastic gradient descent, the sim-
ilarities and differences between elastic gradient descent with and without momentum,
and the similarities and differences between elastic gradient descent and the elastic net
and forward stagewise regression.

• We show on real and synthetic data that

– compared to the elastic net, elastic gradient descent selects similar models, but is
orders of magnitude faster.

– compared to forward stagewise regression, elastic gradient descent is able to select
a sparse model with considerably lower prediction and estimation errors.

All proofs are deferred to Appendix D.

2. Elastic Gradient Descent

Gradient descent is an iterative optimization method, where, in each time step, the solution
is updated in the direction of the negative gradient. For the related method coordinate
descent, each optimization step is constrained to update only one coordinate, namely the
one with the largest absolute gradient value. For linear regression, coordinate descent and
forward stagewise regression coincide, and thus we will henceforth use the name coordinate
descent. For both coordinate and gradient descent, one optimization step can be expressed as

β̂(t+ ∆t) = β̂(t)−∆t ·∆β̂(t), (3)

where ∆β̂ differs between the two algorithms.
We let g denote the gradient of the loss function, i.e. g(t) := ∇β(t)L (X,y,β(t)). (For

least squares, with L (X,y,β(t)) = 1
2n‖y −Xβ(t)‖22, g(t) = − 1

nX
>(y −Xβ(t)).) For

coordinate descent, ∆β̂cd is defined according to

m(t) := argmax
d
|gd(t)|,

∆β̂cd(t) = sign(gm(t)) · em(t) = Icd(t) · sign(g(t)),

where em is the m-th standard basis vector, Icd is a matrix of only zeros, except (Icd)mm
which is 1, and the sign of vector g is taken element-wise. Multiplying the matrix Icd with
the vector sign(g) we obtain a vector where all elements are zero, except element m which is
exactly sign(gm). For gradient descent,

∆β̂gd(t) = g(t) = Igd · g(t),
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where Igd = I is the identity matrix, which is included to emphasize the similarities to
coordinate descent.

Naively combining coordinate and gradient descent with inspiration from the elastic net,
Equation 2, suggests that

∆β̂egd(α, t) = α·∆β̂cd(t)+(1−α)·∆β̂gd(t) = α·Icd(t)·sign(g(t))+(1−α)·Igd·g(t), α ∈ [0, 1],

where coordinate and gradient descent are recovered as special cases for α = 1 and α = 0.
However, this proposal does not share the desirable model selection property of the elastic
net since ∆β̂gd updates all parameters at all time steps, thus making all parameters non-zero
already in the first time step. Therefore, we need a combination with the ability to keep
some parameters fixed. Hence, we define

∆β̂egd(α, t) := Iegd(α, t) · (α · sign(g(t)) + (1− α) · g(t)) , (4)

where Iegd is a diagonal matrix with zeros and ones on the diagonal, such that Iegd(0, t) =
Igd = I and Iegd(1, t) = Icd(t). Iegd could be defined in multiple ways. We, however, choose
the following simple definition:

Definition 1 (Iegd).

For m(t) = argmax
d
|gd(t)|,

Iegd(α, t)d1d2 :=

{
1 if d1 = d2 = d and |gd(t)| ≥ α · |gm(t)|
0 else.

That is, for large gradient components, where “large” means “larger than α times the
maximum component”, the corresponding value in Iegd is 1, while for small components
it is 0. Note that if α = 0, all components are considered large, while for α = 1 only the
maximum component is. Our definition of large gradient components coincides with that by
Friedman and Popescu (2004), but the update directions differ since we include the signed
gradient in ∆β̂egd. The reason for including the sign gradient is for elastic gradient descent
to generalize coordinate descent, and thus to obtain a distinct connection to the elastic net.

Elastic gradient descent is summarized in Algorithm 1.

Algorithm 1 Elastic Gradient Descent
1: Initialize β̂ = 0.
2: repeat
3: g = ∇β̂L

(
X,y, β̂

)
, where L(·) denotes the loss function.

4: Iegd = diag
(
I
[

|g|
maxd |gd| ≥ α

])
, where I[·] denotes the indicator function, which is

taken element-wise, and where diag(·) creates a diagonal matrix from a vector.
5: β̂ = β̂ −∆t · Iegd · (α · sign(g) + (1− α) · g).
6: until convergence or other stopping criterion.

In Figure 1, we demonstrate the similarities between the solution paths of explicit
regularization and iterative optimization. We compare the solution paths of ridge regression
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Figure 1: Solution paths of explicitly regularized and early stopping methods. In all three
cases, the two methods follow similar, although not identical, solution paths.

and gradient descent (GD), lasso and coordinate descent (CD), and the elastic net and elastic
gradient descent (EGD) for a simple linear model with two correlated parameters, β1 and β2.
The solution paths of the corresponding algorithms are similar, although not identical.

Even though our definition of elastic gradient descent includes an element of arbitrariness,
it proves to work well, as is shown in Section 4. In Appendix A, we investigate two slightly
different definitions, based on the frameworks of steepest descent (Boyd and Vandenberghe,
2004) and the general stagewise procedure (Tibshirani, 2015). The three definitions provide
virtually identical solutions.

2.1 Elastic Gradient Flow

Gradient descent with infinitesimal step size, ∆t, is often referred to as gradient flow, which,
since ∆t → 0, can be interpreted as a differential equation in training time, t. For some
problems, including linear regression, this differential equation has a closed-form solution,
which opens up for a better theoretical understanding of the algorithm. For elastic gradient
descent, the corresponding differential equation becomes quite complicated. However, in
Appendix C, we use it to construct something we refer to as elastic gradient flow, in analogy
with gradient flow. Elastic gradient flow helps us to establish a theoretical connection between
elastic gradient descent and the elastic net. To improve readability, in this section, we just
state the equations of elastic gradient flow, and its special cases gradient flow and coordinate
flow; for details, see Appendix C.
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The elastic gradient flow estimate at time t is given by Equation 5,

β̂egf(t) =β̂egf(ti) +
(

(1− α)Σ̂
)−1 (

I − exp
(
Ωi(ti, t)

))
·
(
α · sign

(
Σ̂(β̂OLS − β̂egf(ti))

)
+ (1− α) · Σ̂

(
β̂OLS − β̂egf(ti)

))
,

t ∈ [ti, ti+1),

(5)

where Σ̂ := 1
nX

>X is the empirical covariance matrix, Ωi(ti, t) is the Magnus expansion
(Magnus, 1954) of −1−α

1−γ Σ̂Iiegf(α, t), {Iiegf}imax
i=0 are the continuous-time versions of Iegd(α, t)

for t ∈ [ti, ti+1), and {ti}imax
i=0 are the times when parameters enter or leave the model.

The parameter γ ∈ [0, 1) is the strength of the momentum (Polyak, 1964), which is a
generalization of gradient descent discussed in Section 3.6. For standard gradient descent
without momentum, γ = 0.

For α = 0, Equation 5 simplifies to gradient flow,

β̂gf(t) =

(
I − exp

(
− t

1− γ Σ̂

))
β̂OLS, (6)

and for α = 1, it simplifies to what we refer to as coordinate flow,

β̂cf(t) = β̂cf(ti) +
t− ti
1− γ I

i
cf · sign

(
Σ̂(β̂OLS − β̂cf(ti))

)
, t ∈ [ti, ti+1), (7)

where {Iicf}imax
i=0 are continuous-time versions of Icd(t) for t ∈ [ti, ti+1).

3. Properties of Elastic Gradient Descent

In this section, we theoretically investigate elastic gradient descent and flow and make
comparisons to the elastic net and coordinate descent, assessing the similarities and differences.

3.1 Convergence of Elastic Gradient Descent

For a small enough step size, ∆t, elastic gradient descent always moves downhill in the
optimization landscape. In Proposition 2, we present bounds for the step size that guarantee
an improvement when applying elastic gradient descent to a strongly convex problem.

Proposition 2.
Assume that the loss function, L(β) = L(X,y,β), is strongly convex with Hessian bounded
according to ∇2L(β) �MI (i.e. MI −∇2L(β) is a positive semi-definite matrix), for some
M > 0. Denote

g := ∇L(β), gmax = gm := max
d
|gd| and gmin := min

d: |gd|≥α,
gd 6=0

|gd|.

Then,

∆t <
2

M
· gmax ·

α+ (1− α)gmax

(1α>0 + (1− α)gmax)2
(8a)

=⇒ ∆t <
2

M
· g

2
min

gmax
· α+ (1− α)gmax

(α+ (1− α)gmin)2
(8b)

=⇒ L(β̂ −∆t ·∆β̂egd)− L(β̂) ≤ 0,
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where

1α>0 =

{
1 if α > 0

0 if α = 0.

Remark 1: The bound in 8b allows for a greater value of ∆t than that in Equation 8a, but
requires knowledge of the minimum gradient value in addition to the maximum gradient
value.
Remark 2: For α = 0 and α = 1, the bounds for ∆t become 2

M and 2gmax

M respectively.
Note than for α = 1, gmin = gmax.
Remark 3: If a fixed value is used for ∆t, once gmax gets small enough, the loss function is
not guaranteed to decrease, unless α = 0. In this case, training should be interrupted when
the solution starts to worsen.
Remark 4: For linear regression, M is the maximum eigenvalue of the empirical covariance
matrix, Σ̂ = 1

nX
>X.

3.2 Calculating Solution Paths

In the original implementation of the elastic net, ridge regression in the penalized version,

min
β

1

2n
‖y −Xβ‖22 + λ2‖β‖22,

is combined with the LARS algorithm (Efron et al., 2004), which solves the constrained
version of the lasso problem,

min
β

1

2n
‖y −Xβ‖22, s.t. ‖β‖1 ≤ R1,

returning the entire solution path as a function of R1. This implies that the elastic net
problem is formulated as

min
β

1

2n
‖y −Xβ‖22 + λ2‖β‖22, s.t. ‖β‖1 ≤ R1

and that call to the algorithm returns the solution path for β̂ for different values of R1, with
a fixed value of λ2. Thus, each solution corresponds to a combination (R1, λ2), rather than
the more intuitive combination (α, λ). Later versions, including those by Friedman et al.
(2010), use iterative methods to obtain solutions expressed as combinations of (α, λ), where
the solution for a given λ is calculated independently of the others by running an iterative
algorithm to convergence.

Elastic gradient descent is also an iterative algorithm, but here the solution at each
iteration is of interest by itself and corresponds to a combination (α, t). Running the
algorithm to convergence once returns all values of t between 0 and tmax. In contrast, the
elastic net algorithm has to be run to convergence once for every value of λ.

Comparing elastic gradient descent to coordinate descent, while there is no restriction on
the number of parameters elastic gradient descent can update in each iteration, coordinate
descent always only updates one parameter per iteration. Thus, especially for problems
with many dimensions, elastic gradient descent has a computational advantage compared to
coordinate descent.

In Section 4, we verify the faster computational speed of elastic gradient descent compared
to those of the elastic net and coordinate descent.
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3.3 Differences in the Solution Paths

For α > 0, both the elastic net and elastic gradient descent tend to set some parameters to 0,
but this is done using two different techniques. The elastic net has no closed-form solution,
unless for isotropic features, i.e. Σ = I, for which the solution is given by

β̂en
d (λ) =

sign(β̂OLS
d ) ·max(0, |β̂OLS

d | − αλ)

1 + (1− α)λ
. (9)

Consider the numerator of Equation 9. Compared to the ordinary least squares solution,
each β̂en

d is translated toward zero, and once it changes sign it is set to exactly zero, i.e. the
elastic net shifts all paths toward 0. Elastic gradient descent, in contrast, by Definition 1
stops updating a parameter when the corresponding gradient value is small. If this occurs
when the parameter value is 0, the value will constantly remain so, but it might also stay
constant at some other level. This is illustrated in Figures 1, 2 and 3.

3.4 Susceptibility to Correlations

The ridge estimate is usually written as β̂(λ) := (X>X + nλI)−1X>y, but according to
Lemma 3 it can be reformulated in a way that resembles the gradient flow estimate.

Lemma 3.
With Σ̂ := 1

nX
>X and β̂OLS := (X>X)+X>y, where (·)+ denotes the Moore-Penrose

pseudoinverse, the ridge estimate can be written as

β̂(λ) =

(
I −

(
I +

1

λ
Σ̂

)−1
)
β̂OLS. (10)

Comparing Equation 10 to Equation 6,

β̂gf(t) =

(
I − exp

(
− t

1− γ Σ̂

))
β̂OLS =

(
I − exp

(
t

1− γ Σ̂

)−1
)
β̂OLS,

we see that if we define λ := (1− γ)/t, the ridge estimate can be thought of as a first-order
Taylor approximation of the gradient flow estimate. The fact that the ridge estimate depends
linearly on Σ̂, whereas the gradient flow estimate depends exponentially, suggests that elastic
gradient descent takes correlations into larger consideration than the elastic net does, with
an even stronger tendency to, for standardized data, assign similar parameter values to
correlated variables. This is further illustrated in Section 4.

3.5 The Connection between λ and t

As stated above, lasso and the elastic net have no closed-form solutions, unless for isotropic
features, where the elastic net solution is given by Equation 9, which for lasso (α = 1)
simplifies to

β̂lasso
d (λ) = sign(β̂OLS

d ) ·max(0, |β̂OLS
d | − λ). (11)

In Proposition 4 we investigate the connection between Equations 9 (elastic net with isotropic
features) and 5 (elastic gradient flow), and, as a special case, between Equations 11 (lasso with

8
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isotropic features) and 7 (coordinate flow) when Σ̂ = I by requiring β̂en
d (λ) = (β̂egf(t))d =:

β̂egf
d (t).

Proposition 4.
Solving β̂en

d (λ) = β̂egf
d (t) := (β̂egf(t))d for Σ̂ = I, with β̂egf(t) according to Equation 5 and

β̂en
d (λ) according to Equation 9, we obtain

λd = max

 |β̂OLS
d | − |β̂egf

d (ti)| − v
α+ (1− α)

(
|β̂egf
d (ti)|+ v

) , 0
 , (12)

where

v =
1

1− α

(
1− exp

(
−1− α

1− γ

∫ t

ti

(Iiegf)dd(α, τ)dτ

))(
α+ (1− α)

(
|β̂OLS
d | − |β̂egf

d (ti)|
))

,

which implies ∂λd(t)
∂t ≤ 0.

For α = 1, Equation 12 reduces to

λd = max

(
|β̂OLS
d | − |β̂cf

d (ti)| −
t− ti
1− γ (Iicf)dd, 0

)
.

We note that while for gradient flow, the relationship between λ and t/(1− γ) is approxi-
mately the multiplicative inverse, λ ≈ (1− γ)/t, for coordinate flow it is approximately the
additive inverse, λ ≈ −t/(1−γ). For the elastic net, it is something in between. Furthermore,
for the elastic net, the relationship between λ and t depends on

∫ t
ti

(Iiegf)dd(α, τ)dτ . When
this integral is close to zero for a parameter, the relationship between λd and t becomes
almost linear, while for a larger value, the relation becomes almost exponential. Since the
value of the integral may vary with d, for a given value of α the relation between λd and t
might be almost linear for some parameters and almost exponential for others. Furthermore,
since Iiegf is recalculated at times ti, for some time ti the relation might change between
almost linear and almost exponential for a parameter.

In summary, Proposition 4 reveals that, while always decreasing with optimization
time, the rate of the decrease of the regularization might vary substantially, both between
parameters and during optimization.

3.6 The Effect of Momentum

Momentum (Polyak, 1964) is a way to introduce memory into gradient-based optimization
methods. The idea is to increase the computational stability and speed by allowing not only
for current, but also for past, gradient values to influence the update direction, analogous to
how a ball rolls down a slope: with increased momentum (and speed), it does not respond
immediately to changes in the slope. Introducing momentum, Equation 3 generalizes into

β̂(t+ ∆t) = β̂(t) + γ
(
β̂(t)− β̂(t−∆t)

)
−∆t · g(t),

where γ ∈ [0, 1) is the strength of the momentum.

9
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For elastic gradient flow, and its special cases gradient and coordinate flow, γ > 0 has the
effect of rescaling the gradient selection matrix. Igf is replaced by 1

1−γIgf (where Igf = I),
Icf by 1

1−γIcf, and Iegf by 1
1−γIegf. Thus, for (very) small step sizes, momentum does not

affect the solution path, it just increases the speed.
For larger step sizes, the addition of momentum may, in addition to increasing the

computational speed, change the solution path. With momentum, the gradient values at
the beginning of the training contribute more to the solution, than without it. For elastic
gradient descent, in the early stages of training many parameters have small gradient values
and are not yet included in the model. This suggests that elastic gradient descent with
momentum would promote sparser models, compared to elastic gradient descent without
momentum, something that is supported by the experiments in Section 4 and Appendix B.

4. Experiments

In this section, we compare elastic gradient descent with and without momentum to the
elastic net and coordinate descent on twelve different data sets. In order to illustrate the
path differences between elastic gradient descent and the elastic net as discussed in Section
3.3, we use a very simple data set with only three variables, and the diabetes data set used
by Efron et al. (2004).1 We then compare model selection accuracy and performance on a
synthetic data set consisting of two blocks of parameters, where one block is included in
the true model, and the other is not, for different correlations. Finally, we compare the
performance of the algorithms on nine relatively large real data sets.

For elastic gradient and coordinate descent, a step size of 0.01 was used in all experiments
except for the first, simple experiment, where 0.001 was used. We stopped the training when
the training error no longer decreased, which, for α > 0, eventually happens according to
Proposition 2. For elastic gradient descent with momentum, we consistently used γ = 0.5.
For the elastic net the enet_path method in the Scikit-learn library (Pedregosa et al., 2011)
was used. All experiments, except those in Section 4.3 (and the corresponding additional
experiments in Appendix B), were run in Python on a Dell Latitude 7480 laptop, with an
Intel Core i7, 2.80 GHz processor with four kernels. The experiments in Section 4.3, and
the corresponding experiments in the appendix, were run on a cluster with Intel Xeon Gold
6130, 2.10 GHz processors.

4.1 Solution Paths for Simple Synthetic Data

To illustrate the different path properties of elastic gradient descent and the elastic net, 1000
observations were generated according to

X ∼ N

0,

 1 0.7 0.7
0.7 1 0.7
0.7 0.7 1

 , y = X

 1
0.1
0

 .
The solution paths for four different values of α are shown in Figure 2. For α = 0, due to

the correlations in the data, initially, all parameter estimates aim toward values somewhere
between 0 and 1. As t increases (λ decreases), the estimates start approaching their true

1. The data set is available at https://web.stanford.edu/~hastie/Papers/LARS/diabetes.data.
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Figure 2: Comparison between elastic gradient descent (without momentum) and the elastic
net on highly correlated data. In both cases, the drift toward 1 of the second
parameter reduces with increasing α, but while elastic gradient descent cuts the
peak from above, the elastic net moves the entire path downward. In contrast to
the elastic net, elastic gradient descent correctly includes β2 for the whole solution
paths when α = 0.5 and α = 0.7, but erroneously includes β3 for a larger fraction
of the solution path for α = 0.5.

values. Elastic gradient descent is more affected by the correlations, i.e. the parameter
estimates move together for a larger fraction of the solution path, than the elastic net is,
which is in line with the observations in Section 3.4, and also tends to affect the model
selection properties. While elastic gradient descent includes the true positive β2 for the
entire solution paths for α = 0.5 and α = 0.7, this is not the case for the elastic net. On the
other hand, for α = 0.5, elastic gradient descent erroneously includes true negative β3 for a
larger fraction of the solution path than the elastic net does. As α increases, in both cases,
the maximum values of the paths β2 and β3 are reduced, but while elastic gradient descent
"cuts the peak" from above, the elastic net translates the entire path downward. The "peak
cutting" behavior of elastic gradient descent comes from the fact that the gradient is the
smallest just before changing sign, at the top of the peak.

4.2 Solution Paths for the Diabetes Data

The diabetes data set contains 442 observations, each consisting of 1 target value, which
measures disease progression, and the 10 covariates age, sex, bmi (body mass index),
bp (average blood pressure), tc (t-cells), ld (low-density lipoproteins), hdl (high-density
lipoproteins), tch (thyroid stimulating hormone), ltg (lamotrigine) and glu (blood sugar
level).
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In Figure 3, we show the solution paths of elastic gradient descent, without momentum,
and the elastic net for two different values of α. Similar to in Figure 2, elastic gradient descent
cuts peaks from above, while the elastic net translates them toward zero. It can be seen how
this difference makes the algorithms behave differently for small values of ‖β‖1. While elastic
gradient descent tends to include a subset of the parameters in the model immediately, the
inclusion of the same set is more spread out for the elastic net. This contributes to elastic
gradient descent proposing fewer models along the solution path than the elastic net does.
Excluding the empty model, elastic gradient descent proposes 3 different models for α = 0.3
and 7 models for α = 0.7. The corresponding numbers for the elastic net are 10 and 11. If
it were to be taken into account that the elastic net proposes the same model at different,
non-adjacent sections along the path, its numbers would be even higher. This suggests that
in terms of model selection, elastic gradient descent is more robust with respect to the degree
of penalization than the elastic net is.

In Figure 4, we compare the solution paths and the normalized gradients for elastic
gradient descent with α = 0.5, coordinate descent, and the elastic net. Note that the bottom
right panel does not show the gradients of the elastic net, since there are none, but instead
the gradients of the elastic gradient flow solution. Compared to coordinate descent, elastic
gradient descent includes more parameters earlier, which is in line with the motivation behind
the elastic net to include correlated covariates together. Studying the gradients, it can be
seen how the parameters are split into three sets, which we refer to as the free, coupled, and
inactive sets, see Appendix C for details. The free parameters all have normalized gradient
values, |gd|/‖g‖∞, larger than α, and are updated freely. This group includes the maximum
gradient parameter with |gm|/‖g‖∞ = 1. For the inactive parameters, |gd|/‖g‖∞ < α and
these parameters are not updated as can be seen in the first column. For the coupled
parameters, |gd|/‖g‖∞ oscillates around (for the descent algorithms) or equals (for the flow
algorithm) α. The coupled parameters are still updated but at a slower pace than the
free ones. For coordinate descent, there are no free parameters, only coupled and inactive.
Toward the end of the training, when ‖g‖∞ is small, we see oscillations in the gradients for
coordinate descent and elastic gradient descent, which is in line with the conclusions from
Proposition 2.

4.3 Synthetic Data for Model Selection

To compare model selection and performance, the following synthetic data set was created:
The variables were split into two blocks of equal length, where the first block was included in
the true model, and the second was not. The parameter values of the true positive variables
were normally distributed with mean 2 and variance 1, the correlations within the two blocks
were set to ρ1, and between the two blocks to ρ2:

β∗ =
[
N (2, 1)>p/2 0>p/2

]>
Σ11 = Σ22 = ρ1 · (11>)p/2×p/2 + (1− ρ1) · Ip/2×p/2
Σ12 = Σ>12 = ρ2 · (11>)p/2×p/2

Σ =

[
Σ11 Σ12

Σ>12 Σ11

]
,
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Figure 3: Solution paths for elastic gradient descent (without momentum) and the elastic
net on the diabetes data. Rows three and four show the same things as rows one
and two but on different y-scales. While elastic gradient descent cuts peaks from
above, the elastic net translates them toward zero. Elastic gradient descent is
more robust in terms of model selection with respect to the degree of penalization,
proposing fewer different models along the solution path than the elastic net does.
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Figure 4: Solution paths and normalized gradients for coordinate descent, elastic gradient
descent (without momentum), and the elastic net on the diabetes data. Note that
the bottom right pane shows the gradients of elastic gradient flow. We see how
the parameters are split into the free, coupled, and inactive sets. Depending on
whether |gd| is greater than, equal to, or smaller than α · ‖g‖∞, the parameters
update either freely, in a coupled fashion, or not at all, respectively. For instance,
the tch parameter initially has an absolute normalized gradient value larger than
α = 0.5 and updates freely. At ‖β̂‖1 ≈ 40, the absolute normalized gradient
becomes less than α and the parameter is not updated at all until ‖β̂‖1 ≈ 120.
Then it starts updating in a coupled fashion.
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where Ip/2×p/2 denotes the (p/2)×(p/2) identity matrix, (11>)p/2×p/2 denotes a (p/2)×(p/2)
matrix of only ones, N (·, ·)p/2 denotes an i.i.d. vector of length p/2 and 0p/2 a vector of
length p/2 with all zeros. For n = 100/30/30, where the three values of n denote training,
validation and testing sets, n observations were sampled according to

X ∼ N (0,Σ), y = Xβ∗ +N (0, σ2I),

for σ = 10, ρ1 = 0.7, ρ2 = 0.3 and p ∈ [50, 60, . . . , 200]. For each value of p, the experiment
was repeated 5001 times for different data realizations. For elastic gradient descent and
the elastic net, nine different values of α were considered, α ∈ {0.1, 0.2, . . . 0.9}, and the
combination of (α, t/λ) with the lowest mean squared error, MSE, on validation data was
selected. For coordinate descent, where always α = 1, t was selected by validation MSE.

The following test statistics were computed and compared between the three models:

• Sensitivity (true positive rate).

• Specificity (true negative rate).

• Estimation error, 1
n∗ ‖X∗β̂ −X∗β∗‖2, where X∗ ∈ Rn∗×p is previously unseen data.

• Prediction error, 1
p‖β̂ − β∗‖2.

• Execution time in seconds.

Figure 5 shows the median values together with the first and third quartiles across the
5001 realizations, for the different test statistics.

Elastic gradient descent and the elastic net perform similarly in all aspects except compu-
tational time, where elastic gradient descent performs significantly faster. The computational
performance of elastic gradient descent improves with momentum. For high-dimensional
data (p > n = 100), where no unique solution exists, momentum also greatly improves the
model specificity. These two results are in line with the discussion in Section 3.6, according
to which momentum increases the computational speed and promotes a sparser solution. The
elastic net is more stable than elastic gradient descent in terms of specificity, at least in the
absence of momentum, where elastic gradient descent, although performing well in general,
sometimes includes all true negatives. In Appendix B, we further examine the specificity
properties by varying the experiment so that the number of non-zero parameters is constant
when p increases.

Compared to coordinate descent, elastic gradient descent performs better in all aspects
except for specificity. The higher specificity of coordinate descent, however, comes at the
cost of much worse sensitivity, and prediction and estimation errors. The execution times
of elastic gradient descent and the elastic net include testing for nine different values of α,
while for coordinate descent only one value of α is considered. Still, coordinated descent
requires more computational time than elastic gradient descent. This can be attributed to
the fact that coordinate descent updates only one parameter per iteration, something that
becomes more apparent when p is large.

The computational time of elastic gradient descent is less affected by the dimensionality
than those of the elastic net and coordinate descent. Since the elastic net and coordinate
descent algorithms only update one parameter per iteration, the dimensionality has quite a
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Data set Size, n× p
Quality of aspen tree fibres2 25165× 5

House values in California (Pace and Barry, 1997)3 20640× 8

Daily concentration of black smoke particles in the U.K.
in the year 2000 (Wood et al., 2017)4 45568× 10

Results of the 2019 Portuguese Parliamentary Elections5 21643× 18

Appliances energy use in a low energy building in
Stambruges, Belgium (Candanedo et al., 2017)6 19735× 27

Protein structure as root-mean-square deviation of
atomic positions, taken from CASP7 45730× 9

Critical temperature of superconductors8 21263× 81

Readability of texts used in English education9 2834× 768

Topic popularity on Twitter (Kawala et al., 2016)10 291624× 77

Table 1: Real data sets used for comparing elastic gradient descent to the elastic net and
coordinate descent.

large impact on the execution time of these algorithms. On the other hand, elastic gradient
descent may update multiple parameters per iteration, and the execution time is thus less
affected by the dimensionality.

In Appendix B, we extend the simulation, presenting results for all combinations of
ρ1 ∈ [0.5, 0.6, 0.7, 0.8, 0.9, ], ρ2 ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] and p ∈ [50, 100, 200]. The
conclusions are consistent with the ones presented here.

4.4 Computational Efficiently on Real Data sets

In this section, we compare elastic gradient descent with and without momentum to the
elastic net and coordinate descent on the nine real data sets described in Table 1. The data
sets were selected to compare the algorithms on a diverse set of applications, although they
all have in common that they are relatively large in terms of number of observations and/or
dimensions. The data was split 80%/10%/10% into training, validation, and testing data for
5001 random splits. For elastic gradient descent and the elastic net, nine different values of
α were considered, α ∈ {0.1, 0.2, . . . 0.9}, and the combination of (α, t/λ) with the lowest
mean squared error, MSE, on validation data was selected. For coordinate descent, where
always α = 1, t was selected by validation MSE.

2. The data set is available at https://openmv.net/info/wood-fibres.
3. The data set is available at https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html.
4. The data set is available at https://www.maths.ed.ac.uk/~swood34.
5. The data set is available at https://archive.ics.uci.edu/dataset/513/real+time+election+

results+portugal+2019.
6. The data set is available at https://github.com/LuisM78/Appliances-energy-prediction-data.
7. https://predictioncenter.org/, The data set is available at https://archive.ics.uci.edu/ml/

datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure.
8. The data set is available at https://archive.ics.uci.edu/dataset/464/superconductivty+data.
9. The data set is available at https://www.kaggle.com/code/uocoeeds/building-a-regression-model-

with-elastic-net/input.
10. The data set is available at http://archive.ics.uci.edu/dataset/248/buzz+in+social+media.
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Figure 5: Median and first and third quartiles for the sensitivity, specificity, prediction and
estimation errors, and execution time in seconds. Compared to the elastic net,
elastic gradient descent performs similarly, except for execution time, where it is
much faster. Compared to coordinate descent, elastic gradient descent performs
better in all aspects except specificity. Elastic gradient descent performs faster,
and has better specificity (especially when p > n), with momentum than without.
The signal-to-noise ratio increases with the dimensionality and is, for some different
values of p, p = 50: 18.5, p = 100: 72.5, p = 150: 162, p = 200: 287.
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The results are presented in Table 2, where we compare execution time in seconds, R2

(proportion of explained variation) on test data, and model size (number of non-zeros in β̂),
and are in line with those of Section 4.3.

Elastic gradient descent and the elastic net perform similarly, apart from elastic gradient
descent being up to three orders of magnitude faster. In contrast to coordinate descent,
which is executed once, elastic gradient descent is executed nine times, for nine different
values of α. Still, for all data sets except the California housing and protein structure data
sets it performs faster than nine times the speed coordinate descent (with momentum, it is
faster for all data sets). When p is large, elastic gradient descent tends to be faster than
coordinate descent even in absolute numbers, with the exception of the English readability
data.

Coordinate descent tends to select a sparser model, at the expense of a lower R2. This is
in line with the higher specificity of coordinate descent observed in Section 4.3. In addition
to increasing the computational performance of elastic gradient descent, there is also a
tendency for momentum to promote a sparser model, especially when p is large (again with
the exception of the English readability data).

5. Conclusions

We proposed elastic gradient descent, a simple-to-implement, iterative optimization method,
which generalizes gradient descent and coordinate descent (forward stagewise regression).
We also investigated the case of infinitesimal optimization step size, presenting a piecewise
analytical solution for solving linear regression with elastic gradient flow.

We compared elastic gradient descent with and without momentum to the elastic net
and coordinate descent, both theoretically and on simulated and real data. Elastic gradient
descent and the elastic net provided similar solutions, but with elastic gradient descent being
up to three orders of magnitude faster on the investigated data. Compared to coordinate
descent, elastic gradient descent selected a model with better performance, although still
sparse. In addition to faster performance, adding momentum to elastic gradient descent
promotes a sparser model for high dimensional data.

We used elastic gradient descent for standard linear regression. However, it would also be
interesting to apply it for classification by extending it to logistic and multinomial regression.
Furthermore, the optimization algorithm can be used instead of e.g. gradient descent on any
optimization problem. For instance, it would be interesting to train a neural network with
elastic gradient descent, obtaining a model that grows in complexity with optimization time.

Code is available at https://github.com/allerbo/elastic_gradient_descent.
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Data set
(n× p) Algorithm Execution Time

in Seconds R2 Model Size

Aspen
Fibres

(25165× 5)

EGD, γ = 0 0.16, (0.13, 0.18) 0.49, (0.47, 0.51) 5, (5, 5)
EGD, γ = 0.5 0.11, (0.082, 0.13) 0.49, (0.47, 0.51) 5, (5, 5)
Elastic Net 6.2, (5.7, 6.4) 0.49, (0.47, 0.51) 5, (5, 5)
CD 0.023, (0.013, 0.031) 0.48, (0.46, 0.50) 3, (3, 3)

California
Housing

(20640× 8)

EGD, γ = 0 1.1, (1.1, 1.2) 0.60, (0.59, 0.61) 8, (8, 8)
EGD, γ = 0.5 0.62, (0.57, 0.69) 0.60, (0.59, 0.62) 8, (7, 8)
Elastic Net 11, (9.7, 11) 0.60, (0.59, 0.62) 8, (7, 8)
CD 0.083, (0.053, 0.11) 0.57, (0.55, 0.59) 5, (4, 6)

U.K. Black
Smoke

(45568× 10)

EGD, γ = 0 0.26, (0.22, 0.30) 0.14, (0.13, 0.14) 10, (10, 10)
EGD, γ = 0.5 0.20, (0.17, 0.23) 0.14, (0.13, 0.14) 10, (10, 10)
Elastic Net 27, (27, 28) 0.14, (0.13, 0.15) 10, (10, 10)
CD 0.039, (0.022, 0.056) 0.13, (0.13, 0.14) 7, (7, 7)

Portugese
Elections

(21643× 18)

EGD, γ = 0 0.61, (0.55, 0.67) 0.11, (0.087, 0.12) 14, (12, 15)
EGD, γ = 0.5 0.35, (0.30, 0.40) 0.11, (0.087, 0.12) 12, (12, 15)
Elastic Net 74, (66, 83) 0.10, (0.087, 0.12) 12, (9, 14)
CD 0.11, (0.083, 0.15) 0.10, (0.086, 0.12) 7, (5, 7)

Appliances
Energy Use
(19735× 27)

EGD, γ = 0 4.2, (3.9, 4.6) 0.16, (0.15, 0.17) 27, (27, 27)
EGD, γ = 0.5 2.9, (2.6, 3.1) 0.16, (0.15, 0.17) 27, (27, 27)
Elastic Net 83, (80, 85) 0.16, (0.15, 0.18) 27, (27, 27)
CD 1.2, (1.1, 1.4) 0.078, (0.073, 0.083) 5, (4, 5)

Protein
Structure

(45730× 9)

EGD, γ = 0 1.3, (1.2, 1.4) 0.24, (0.24, 0.25) 7, (7, 8)
EGD, γ = 0.5 0.86, (0.73, 0.97) 0.26, (0.26, 0.27) 9, (9, 9)
Elastic Net 120, (120, 120) 0.28, (0.27, 0.29) 9, (9, 9)
CD 0.11, (0.077, 0.14) 0.15, (0.15, 0.16) 2, (2, 2)

Super-
conductors

(21263× 81)

EGD, γ = 0 2.6, (2.2, 2.8) 0.70, (0.70, 0.71) 81, (81, 81)
EGD, γ = 0.5 1.1, (0.93, 1.2) 0.66, (0.66, 0.67) 77, (76, 77)
Elastic Net 340, (330, 360) 0.72, (0.71, 0.73) 64, (64, 65)
CD 1.5, (1.2, 1.7) 0.62, (0.62, 0.63) 15, (14, 15)

English
Readability
(2834× 768)

EGD, γ = 0 1.7, (1.5, 1.7) 0.69, (0.67, 0.71) 105, (89, 123)
EGD, γ = 0.5 1.2, (1.0, 1.3) 0.70, (0.68, 0.72) 115, (97, 144)
Elastic Net 1400, (1300, 1500) 0.73, (0.71, 0.74) 304, (265, 374)
CD 0.26, (0.22, 0.32) 0.58, (0.56, 0.60) 22, (21, 24)

Twitter
Popularity

(291624× 77)

EGD, γ = 0 48, (41, 55) 0.94, (0.89, 0.95) 60, (57, 61)
EGD, γ = 0.5 6.0, (5.3, 7.0) 0.93, (0.89, 0.94) 27, (24, 29)
Elastic Net 5100, (4800, 5300) 0.94, (0.90, 0.94) 49, (48, 50)
CD 360, (350, 370) 0.93, (0.92, 0.94) 8, (7, 8)

Table 2: Median and first and third quartiles (within parenthesis) of execution time (in
seconds), R2, and model size when applying the three algorithms on the nine real
data sets. Elastic gradient descent performs significantly faster than the elastic net.
Adding momentum further increases the computational speed. Coordinate descent
tends to select a sparser model. While coordinate descent is evaluated only once
(for α = 1), elastic gradient descent and the elastic net are evaluated nine times
(for α ∈ {0.1, . . . 0.9}).
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Appendix A. Connection to Steepest Descent and the General Stagewise
Procedure

In this section, we redefine elastic gradient descent within the frameworks of steepest descent
(Boyd and Vandenberghe, 2004) and the general stagewise procedure (Tibshirani, 2015),
obtaining two related, but slightly different, flavors of Equation 4.

A.1 Steepest Descent

Steepest descent (Boyd and Vandenberghe, 2004), generalizes coordinate and gradient descent.
For a given norm ‖ · ‖, ∆β̂ is given by

∆β̂sd(t) = argmax
v: ‖v‖=1

g(t)>v

β̂(t+ ∆t) = β̂(t)−∆t ·∆β̂sd(t).

(13)

For the `2 norm, steepest descent becomes normalized gradient descent,

∆β̂gd,sd(t) =
g(t)

‖g(t)‖2
=

Igd · g(t)

‖Igd · g(t)‖2
,

while the `1 norm corresponds to coordinate descent,

∆β̂cd,sd(t) = ∆β̂cd(t) = Icd(t) · sign(g(t)) =
Icd(t) · g(t)

‖Icd(t) · g(t)‖1
.

When formulating elastic gradient descent, inspired by Equation 2, we would like to use
α‖v‖1 + (1− α)‖v‖22 = 1 in Equation 13, however then there is no analytical solution to the
equation. Instead, we use the following strategy to obtain an approximate solution:

1. Define ∆β̂egd,sd as a generalization of both ∆β̂cd,sd and ∆β̂gd,sd, such that

(a) the model selection property of the elastic net is obtained,
(b) α‖v‖1 + (1− α)‖v‖22 = 1.

2. Within the freedom remaining after step 1, tune ∆β̂egd,sd to, approximately, maximize
g>∆β̂egd,sd.

Combining ∆β̂gd,sd and ∆β̂cd,sd in the same way as was done in Equation 4, we define

∆β̂egd,sd(t) := Iegd,sd(α, t) · g(t)

(
α

‖Iegd,sd(α, t) · g(t)‖1
+

1− α
‖Iegd,sd(α, t) · g(t)‖2

)
, (14)

where Iegd,sd is a diagonal matrix with zeros and ones on the diagonal, such that Iegd,sd(0, t) =
Igd = I and Iegd,sd(1, t) = Icd(t). However, Iegd,sd is not necessarily identical to Iegd.

We define p1(t) ∈ [1, p] to be the number of ones in Iegd,sd, i.e. the number of parameters
that are updated at time t:

Definition 5 (p1).

p1(α, t) :=

p∑
d=1

(Iegd,sd(α, t))dd .
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As optimization proceeds toward convergence, all gradient components approach zero,
and thus each other. This means that p1 increases (i.e. more parameters are updated),
but not necessarily monotonically, toward p. However, for α > 0, some absolute gradient
components may oscillate around α · |gm|, being updated in one time step, but not in the
next. In that case, we may have p1 < p during the entire training. Also, note that p1 is not
explicitly defined; its value is a consequence of Definition 5.

Now, to obtain α
∥∥∥∆β̂egd,sd

∥∥∥
1

+ (1 − α)
∥∥∥∆β̂egd,sd

∥∥∥2

2
= 1, ∆β̂egd,sd needs to be scaled,

as specified in Proposition 6.

Proposition 6.

Let q1(t) :=

(‖Iegd,sd(α, t) · g(t)‖1
‖Iegd,sd(α, t) · g(t)‖2

)2

and let

cα(t) :=

√
q1(t) · (α2q1(t) + 4(1− α))− α · q1(t)

2(1− α)
(√

q1(t) · (1− α) + α
) .

Then α ·
∥∥∥cα(t)∆β̂egd,sd(t)

∥∥∥
1

+ (1− α) ·
∥∥∥cα(t)∆β̂egd,sd(t)

∥∥∥2

2
= 1.

cα depends both on α and the quotient between the `1 and `2 norms in a quite complicated
form. However, according to Proposition 7, in the absence of cα the distance from 1 is still
bounded:

Proposition 7.
For α ∈ [0, 1], 1 ≤ p1 ≤ p

0.61 < 1− α(1− α)(2− α) ·
(

1− 1

p1(t)

)
≤ α

∥∥∥∆β̂egd,sd(t)
∥∥∥

1
+ (1− α)

∥∥∥∆β̂egd,sd(t)
∥∥∥2

2

≤ 1 + α(1− α) ·
(√

p1(t)− 1
)
≤ 1 +

√
p1(t)− 1

4
.

What remains to do, is to select Iegd,sd to maximize cαg>∆β̂egd,sd. Since g>Iegd,sdg =
g>Iegd,sdIegd,sdg = ‖Iegd,sdg‖22, and since cα ≥ 0 for q1 ≥ 0 and α ∈ [0, 1], maximizing
cαg

>∆β̂egd,sd amounts to maximizing

g(t)>∆β̂egd,sd(t) = α
‖Iegd,sd(α, t) · g(t)‖22
‖Iegd,sd(α, t) · g(t)‖1

+ (1− α) ‖Iegd,sd(α, t) · g(t)‖2 .

The second term trivially increases with p1 while, according to Lemma 8, the first term
decreases with p1.

Lemma 8.

‖Iegd,sd · g‖22
‖Iegd,sd · g‖1

is a decreasing function in p1.
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The exact trade-off between the two terms depends on the gradient at the specific time
step and has no general solution. However, when α is large we want ‖Iegd,sd‖22 / ‖Iegd,sd‖1
to be large, i.e. we want p1 to be small. When α is small, we want ‖Iegd,sd‖2 to be large,
i.e. we want p1 to be large. This desire is consistent with how we defined Iegd in Definition
1, and we thus define Iegd,sd := Iegd. This means that we use the same gradient selection
matrix as in the original formulation of elastic gradient descent.

A.2 The General Stagewise Procedure

The general stagewise procedure (Tibshirani, 2015) is formulated similarly to steepest descent,
but while the purpose of steepest descent just is to find the optimal solution, in the general
stagewise procedure, the entire solution path is of interest. Here, the norm in the constraint
is replaced by any convex function, h, and the optimization step size, ∆t, is incorporated
into ∆β̂:

∆β̂gs(t) = argmax
h(v)≤∆t

g(t)>v

β̂(t+ ∆t) = β̂(t)−∆β̂gs(t).

In this framework we obtain

∆β̂cd,gs(t) = ∆t · Icd(t) · g(t)

‖Icd(t) · g(t)‖1
= ∆t ·∆β̂cd(t)

∆β̂gd,gs(t) =
√

∆t · g(t)

‖g(t)‖2
=
√

∆t · Igd · g(t)

‖Igd · g(t)‖2
=
√

∆t ·∆β̂gd,sd(t),

which suggests

∆β̂egd,gs(t) := Iegd(α, t) · g(t)

(
α∆t

‖Iegd(α, t) · g(t)‖1
+

(1− α)
√

∆t

‖Iegd(α, t) · g(t)‖2

)
. (15)

The analogs of Propositions 6 and 7 in this framework are presented in Propositions 9 and
10.

Proposition 9.

Let ∆β̂egd,gs,c(t) := Iegd(α, t) · g(t)

(
α · cα,∆t(t) ·∆t
‖Iegd(α, t) · g(t)‖1

+
(1− α)

√
cα,∆t(t) ·∆t

‖Iegd(α) · g(t)‖2

)
for cα,∆t(t) :=
√

2α
√
q1 · (α2q1 + 4∆t(1− α)) + q1 · ((1− α)3 − 2α2)− (1− α)

√
q1 · (1− α)

α
√

4∆t(1− α)

2

,

where q1 = q1(t) :=

(‖Iegd(α, t) · g(t)‖1
‖Iegd(α, t) · g(t)‖2

)2

.

Then α ·
∥∥∥∆β̂egd,gs,c(t)

∥∥∥
1

+ (1− α) ·
∥∥∥∆β̂egd,gs,c(t)

∥∥∥2

2
= ∆t.
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Proposition 10.
For α ∈ [0, 1], 1 ≤ p1 ≤ p

0.61 ·∆t < ∆t

(
1− α(1− α)(2− α) ·

(
1− ∆t

p1(t)

))
≤ α

∥∥∥∆β̂egd,gs(t)
∥∥∥

1
+ (1− α)

∥∥∥∆β̂egd,gs(t)
∥∥∥2

2

≤ ∆t

(
1 + α(1− α) ·

(√
p1(t)

∆t
− 1

))
≤ ∆t

(
1 +

√
p1(t)/∆t− 1

4

)
.

A.3 Comparing the Formulations

Compared to the original formulation of elastic gradient descent in Equation 4, both the
steepest descent and general stagewise formulations differ in the normalization of the second
term. Apart from that, the general stagewise formulation uses different step sizes for the
coordinate and gradient descent contributions, where the difference grows with smaller ∆t
(assuming ∆t < 1).

We also note that compared to Proposition 7, in Proposition 10, p1 is replaced by p1/∆t.

This means that if ∆t is small,
∥∥∥∆β̂egd,gs

∥∥∥
1

+ (1− α)
∥∥∥∆β̂egd,gs

∥∥∥2

2
might deviate quite much

from ∆t.
According to our empirical experience, however, all flavors of elastic gradient descent, i.e.

Equation 4, and Equations 14 and 15 with and without scaling, provide virtually identical
solution paths. In Figure 6, we compare the solution paths for the diabetes data for the
different flavors of elastic gradient descent with α = 0.5. The paths, displayed in the first
column, are hardly, if at all, distinguishable. The second column shows the normalized
gradients. Just as for the solution paths, the gradients evolve very similarly between the five
versions, even though some differences are visible.

The third column shows how α
∥∥∥∆β̂∥∥∥

1
+ (1− α)

∥∥∥∆β̂∥∥∥2

2
=: hα(∆β̂) deviates from 1 (or

∆t), together with the two bounds provided by Propositions 7 and 10 and with p1, which
is displayed on a different y-scale. It can be seen how hα is exactly 1 (∆t) in the scaled
case and how it stays within the bounds in the unscaled case. As expected, hα deviates
more from ∆t in the general stagewise framework than it does from 1 in the steepest descent
framework. For standard gradient descent, hα deviates a lot from 1. It can also be noted
how the effective value of p1 is always strictly lower than p = 10, which can be attributed
to the oscillations around ±α · |gm|, i.e. the coupled parameters are included at some time
steps and excluded at other.

Appendix B. Additional Experiments

In this section, we provide additional experiments.

B.1 Illustration of Momentum Induced Sparsity

In Figure 7, we compare the solution paths of elastic gradient descent with and without
momentum, for a step size of 0.01. The inertia introduced by the momentum causes β2 to be
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Figure 6: Solution paths for elastic gradient flow and the different flavors of elastic gradient
descent with step size 0.01, without momentum, at α = 0.5 on the diabetes data.
The second column shows the normed gradients, with black lines at ±α. The third
column shows how hα(∆β̂) deviates from 1 (or ∆t), together with bounds from
Propositions 7 and 10. On the right y-axis, p1 is plotted. To increase readability a
moving average with width 9 was applied to the graphs in the third column.

24



Elastic Gradient Descent

0 1 2
1

0

1

2

2

= 0 = 0.8

Figure 7: Solution paths of elastic gradient descent with and without momentum. With
momentum, β2 is included into the model later, i.e. for a smaller reconstruction
error, than without momentum.

zero for a longer time, (it is included into the model at a smaller reconstruction error) than
when no momentum is used.

B.2 Synthetic Data for Model Selection

In this section, we extend the simulation of Section 4.3.
To further investigate the specificity of the algorithms, we changed the experiment setup,

so that we always used 40 non-zero parameters, with the remaining p− 40 parameters being
zero, keeping all other aspects the same. The results are presented in Figure 8. This time,
momentum no longer provides the same advantage in specificity as before. This can probably
be attributed to the fact that in the first case, when the number of non-zero parameters grows,
so does the value of the maximum initial gradient, which makes it harder for a zero parameter
to be erroneously included, especially with momentum when early stages of training matter
more, and thus leads to a better specificity. On the other hand, in this second case, when the
number of non-zero parameters, and thus the maximum initial gradient, is constant while the
number of parameters to possibly erroneously include increases, this advantage of momentum
is less prominent.

We also extended the experiments of Section 4.3 by using the same setup as in the original
experiments, except using ρ1 ∈ [0.5, 0.6, 0.7, 0.8, 0.9, ], ρ2 ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
and p ∈ [50, 100, 200].

The results are presented in Figures 9, 10 and 11. The signal-to-noise ratios of the
problems, which were essentially constant with respect to ρ2, are stated for the different
values of ρ1.
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Figure 8: Median and first and third quartiles for the sensitivity, specificity, prediction
and estimation errors, and execution time in seconds. Compared to in Figure 5,
momentum no longer provides the same advantage in specificity as before. The
signal-to-noise ratio is always between 46.4 and 46.9.
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The conclusions are consistent with those from Section 4.3: Elastic gradient descent and
the elastic net perform similarly in all aspects except computational time, where elastic
gradient descent performs significantly faster. The computational performance of elastic
gradient descent improves with momentum. For high-dimensional data (p > n = 100), where
no unique solution exists, momentum also greatly improves the model specificity. Compared
to coordinate descent, elastic gradient descent performs better in all aspects except for
specificity. The higher specificity of coordinate descent, however, comes at the cost of much
worse sensitivity, and prediction and estimation errors.

Appendix C. Elastic Gradient Flow

In this section, we investigate the limits as the step size, ∆t, goes to zero when solving
linear least squares with gradient, coordinate, and elastic gradient descent with momentum.
Gradient descent with infinitesimal step size is known as gradient flow, and analogously we
use the terms coordinate flow and elastic gradient flow. We start by reviewing gradient flow
and then consider coordinate flow and elastic gradient flow, where the latter generalizes both
gradient and coordinate flow. Since it is not obvious that the limits of Icd(t) and Iegd(t) exist
as ∆t→ 0, coordinate and elastic gradient flow are presented as well-motivated definitions
rather than as theorems, with motivations in Section C.4.

In the following, subscript with respect to a set denotes the sub-matrix (or sub-vector)
specified by the indices in the set, (·)(k) denotes the time derivative of order k, and � denotes
element-wise multiplication.

For linear least squares, the gradient at time t is

g(t) := ∇β̂(t)

(
1

2n
‖y −Xβ̂(t)‖22

)
=

1

n
X>(Xβ̂(t)− y) = −Σ̂(β̂OLS − β̂(t)), (16)

where Σ̂ := 1
nX

>X is the empirical covariance matrix and β̂OLS := (X>X)+X>y (where
(·)+ denotes the Moore-Penrose pseudoinverse) is the minimum norm ordinary least squares so-
lution for t =∞. The last equality in Equation 16 follows from X> = (X>X)(X>X)+X>.

C.1 Gradient Flow

When linear regression is solved using gradient descent with momentum, β̂ is updated
iteratively according to

β̂(t+ ∆t) =β̂(t) + γ
(
β̂(t)− β̂(t−∆t)

)
−∆t · g(t)

=β̂(t) + γ
(
β̂(t)− β̂(t−∆t)

)
+ ∆t · Σ̂(β̂OLS − β̂(t)).

(17)

Moving all but the last term to the left-hand side, dividing by ∆t and then letting ∆t→ 0
results in the differential equation

(1− γ) · ∂β̂(t)

∂t
= Σ̂(β̂OLS − β̂(t)),

which has the solution

β̂(t) = β̂OLS − exp

(
− t

1− γ Σ̂

)
(β̂OLS − β̂0),
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Figure 9: Median and first and third quartiles for the sensitivity, specificity, prediction and
estimation errors, and execution time in seconds, in the low-dimensional case. The
value of ρ1 is constant within each of the five panels in each row, while ρ2 varies.
The signal-to-noise ratio of the problem, which is essentially constant with respect
to ρ2, is stated for the different values of ρ1. Compared to the elastic net, elastic
gradient descent performs similarly, except for execution time, where it is much
faster. Compared to coordinate descent, elastic gradient descent performs better
in all aspects except specificity. Elastic gradient descent performs faster with
momentum than without.
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Figure 10: Median and first and third quartiles for the sensitivity, specificity, prediction
and estimation errors, and execution time in seconds, when n = p. The value of
ρ1 is constant within each of the five panels in each row, while ρ2 varies. The
signal-to-noise ratio of the problem, which is essentially constant with respect to
ρ2, is stated for the different values of ρ1. Compared to the elastic net, elastic
gradient descent performs similarly, except for execution time, where it is much
faster. Compared to coordinate descent, elastic gradient descent performs better
in all aspects except specificity. Elastic gradient descent performs faster, and has
better specificity, with momentum than without.
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Figure 11: Median and first and third quartiles for the sensitivity, specificity, prediction and
estimation errors, and execution time in seconds, in the high-dimensional case.
The value of ρ1 is constant within each of the five panels in each row, while ρ2

varies. The signal-to-noise ratio of the problem, which is essentially constant with
respect to ρ2, is stated for the different values of ρ1. Compared to the elastic
net, elastic gradient descent performs similarly, or better, except for execution
time, where it is much faster. Compared to coordinate descent, elastic gradient
descent performs better in all aspects except specificity. Elastic gradient descent
performs faster, and has better specificity, with momentum than without.

30



Elastic Gradient Descent

where exp denotes the matrix exponential.
For β̂0 = 0 the gradient flow estimate becomes

β̂gf(t) =

(
I − exp

(
− t

1− γ Σ̂

))
β̂OLS. (18)

C.2 Coordinate Flow

When linear regression is solved using coordinate descent with momentum, β̂ is updated
iteratively according to

β̂(t+ ∆t) =β̂(t) + γ
(
β̂(t)− β̂(t−∆t)

)
−∆t · Icd(t) · sign(g(t))

=β̂(t) + γ
(
β̂(t)− β̂(t−∆t)

)
+ ∆t · Icd(t) · sign(Σ̂(β̂OLS − β̂(t)).

(19)

When the magnitudes of two or more gradient components are all close to the maximum
gradient value, the parameter to update changes in almost every time step, that is the 1 in
Icd changes position in almost every time step. As ∆t → 0, we would like to replace Icd
with a coordinate flow version, Icf. In contrast to Icd, where only one diagonal element is 1
and the rest are 0, for Icf we allow multiple diagonal elements to be non-zero, as long as the
sum of the diagonal elements is 1. The only 1 in Icd is now distributed along the diagonal of
Icf, with (Icf)dd > 0 if and only if d belongs to the active set, i.e. the set of indices between
which the 1 in Icd alters. This leads us to define coordinate flow according to Definition 11,
where details behind the definition are presented in Section C.4.1.

The coordinate flow estimate, β̂cf(t), changes linearly in time with a slope controlled by
the piece-wise constant matrix Icf. At certain times, ti, Icf is updated to a new constant
matrix. These times correspond to changes in the active set, SA, which specifies which
parameters are updated, namely the ones with non-zero slopes. Since β̂ being linear in t
implies that also ‖β̂‖1 is linear in t, coordinate flow can be thought of as a dual formulation
of the forward stagewise version LARS algorithm, providing β̂ as a function of t rather than
of ‖β̂‖1.

Definition 11 (Coordinate Flow).

• β̂cf(0) = 0, t0 = 0, timax is the time of convergence, i.e. β̂cf(timax) = β̂OLS.

• For 0 < i < imax,

β̂cf(t) = β̂cf(ti) +
t− ti
1− γ I

i
cf · sign

(
Σ̂(β̂OLS − β̂cf(ti))

)
, t ∈ [ti, ti+1), (20)

where {Iicf}imax
i=0 are constant diagonal matrices, with non-zero diagonal components

given by (
Iicf
)
Si
A,S

i
A

= diag
(

(B:,1)−1 � sign
(
Σ̂(β̂OLS − β̂cf(ti))

)
Si
A

)
,

where B is a square matrix, stated in the construction (Section C.4.1), that depends on
sign

(
Σ̂(β̂OLS − β̂cf(ti))

)
Si
A

and Σ̂Si
A,S

i
A
.
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• SiA :=
{
d :
(
Iicf
)
dd
> 0
}
.

• The times {ti}imax
i=0 , when Iicf is updated are given by

t0 = 0

∆ti,d,1 =

(
Σ̂d,: − Σ̂m1,:

)
(β̂OLS − β̂cf(ti))(

Σ̂d,: − Σ̂m1,:

)
Iicf · sign

(
Σ̂(β̂OLS − β̂cf(ti))

)
∆ti,d,2 =

(
Σ̂d,: + Σ̂m1,:

)
(β̂OLS − β̂cf(ti))(

Σ̂d,: + Σ̂m1,:

)
Iicf · sign

(
Σ̂(β̂OLS − β̂cf(ti))

)
ti+1 = ti + min

d/∈Si
A, k=1,2

∆ti,d,k>0

∆ti,d,k.

C.3 Elastic Gradient Flow

When linear regression is solved using elastic gradient descent, β̂ is updated iteratively
according to

β̂(t+ ∆t) =β̂(t) + γ
(
β̂(t)− β̂(t−∆t)

)
−∆t · Iegd(α, t) (α · sign(g(t)) + (1− α) · g(t))

=β̂(t) + γ
(
β̂(t)− β̂(t−∆t)

)
+ ∆t · Iegd(α, t)

(
α · sign

(
Σ̂(β̂OLS − β̂(t))

)
+ (1− α) · Σ̂(β̂OLS − β̂(t))

)
.

(21)
Compared to coordinate descent, where only the parameter with maximum gradient is
updated, this time the parameters with large enough, but not necessarily the largest,
gradients are updated. Just as for coordinate descent and flow, we replace Iegd(α, t) with
Iegf(α, t). Again, Iegf(α, t) is a diagonal matrix with (Iegf(α, t))dd ∈ [0, 1], but in contrast to
Icf(t) it is not piece-wise constant.

We define elastic gradient flow according to Definition 12, where details behind the
definition are presented in Section C.4.2. The active and inactive sets of coordinate flow
are now generalized to the free, coupled, and inactive sets for elastic gradient flow. Similar
to coordinate flow, Iegf is recalculated at certain times, ti. However, between the times of
recalculation only the entries corresponding to the free and inactive sets, (Iegf)SF∪S0,SF∪S0 ,
remain constant, while the entries corresponding to the coupled set, (Iegf)SC ,SC

, change with
time on the interval (0, 1).

Definition 12 (Elastic Gradient Flow).

• β̂egf(0) = 0, t0 = 0, timax is the time of convergence, i.e. β̂egf(timax) = β̂OLS.

• For 0 < i < imax,

β̂egf(t) =β̂egf(ti) +
(

(1− α)Σ̂
)−1 (

I − exp
(
Ωi(ti, t)

))
·
(
α · sign

(
Σ̂(β̂OLS − β̂egf(ti))

)
+ (1− α) · Σ̂

(
β̂OLS − β̂egf(ti)

))
,

t ∈ [ti, ti+1),

(22)
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where

– Ωi(ti, t) is the Magnus expansion (Magnus, 1954) of −1−α
1−γ Σ̂Iiegf(α, t),

–
{
Iiegf(α, t)

}imax

i=0
are diagonal matrices with elements in [0, 1], such that

∗
(
Iiegf

)
Si
F ,S

i
F

(α, t) = I.

∗
(
Iiegf

)
Si
0,S

i
0

(α, t) = 0.

∗
(
Iiegf

)
Si
C ,S

i
C

(α, t) is defined through its Taylor expansion:

(
Iiegf
)
Si
C ,S

i
C

(α, t) :=
∞∑
k=0

((
Iiegf
)
Si
C ,S

i
C

)(k)
(ti)

(t− ti)k
k!

,

where((
Iiegf
)
Si
C ,S

i
C

)(k)
(ti) = diag

(
A−1b(k)� 1

α · sign(g(ti)) + (1− α) · g(ti)

)
,

k = 0, 1, . . . ,
(23)

where matrix A and vectors b(k), both stated in the construction (Section

C.4.2), depend on g(ti), Σ̂ and
(
Iiegf

)(l)
(α, ti), l < k.

• SiF (t) := {d : (Iegf)dd (t) = 1}. The free set.

• Si0(t) := {d : (Iegf)dd (t) = 0}. The inactive set.

• SiC(t) := {d : (Iegf)dd (t) ∈ (0, 1)}. The coupled set.

Remark 1: Note that Equation 22 is defined even when Σ̂ is not invertible. By Taylor
expanding Σ̂−1

(
I − exp

(
Ωi(ti, t)

))
, it can be seen that Σ̂−1 is canceled by (at least) one Σ̂

from
(
I − exp

(
Ωi(ti, t)

))
.

Remark 2: Since implementing elastic gradient flow is quite computationally heavy, the
formulation should be seen as a tool for providing a deeper understanding of elastic gradient
descent, rather than as a substitute.
Remark 3: For coordinate flow, {Icf(α, t)}imax

i=0 and {ti}imax
i=1 could be calculated analytically.

Due to the exponential function in Equation 22, this is not the case for elastic gradient flow.
However, Iegf(α, t) can be expressed by its Taylor expansion of arbitrary order, using the
derivatives from Equation 23. The second order expansion of Ωi(ti, t) is presented in Section
C.5.

To calculate {ti}imax
i=1 , the following criteria have to be evaluated numerically, selecting ti

as the one that occurs first.

1. |gd(t)| = α · |gm(t)| for d ∈ S0. A parameter leaves the inactive set.

2. |gd(t)| = α · |gm(t)| for d ∈ SF . A parameter leaves the free set.
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3. (Iegf)dd (α, t) ∈ {0, 1} for d ∈ SC . A parameter leaves the coupled set.

4. |gd(t)| = |gm(t)| for d ∈ SF , d 6= m. The maximum gradient component changes.

Remark 4: Similar to how lasso and ridge regression are special cases of the elastic net,
coordinate and gradient descent (flow) are special cases of elastic gradient descent (flow).
Remembering that Iegd(0, t) = I, it is trivial that Equations 17 and 19 are special cases
of Equation 21. The flow versions require slightly more work: When α = 0, all variables
belong to the free set at all times, which means that Iegf(0, t) = I and there are no update
times ti. Furthermore, since Σ̂Iegf(0, t) = Σ̂ is independent of t, exp(−Ω(0, t)) reduces to
exp

(
− 1

1−γ
∫ t

0 Σ̂dt
)

= exp
(
− t

1−γ Σ̂
)
(see Section C.5 for details), which commutes with

Σ̂−1, and for β̂0 = 0 Equation 22 simplifies to Equation 18. When α = 1, all parameters
are either in the inactive or in the coupled set; except when only one parameter is non-zero,
then the free set consists of that single parameter and the coupled set is empty. That is,
with SA := SF ∪ SC the definition of the ti’s for coordinate flow and elastic gradient flow
coincide. Letting (1−α)→ 0 and using limx→0

I−exp(−x(A+xB))
x = A, Equation 22 simplifies

to Equation 20.
In gradient flow (and descent), all parameters may update freely according to their

gradient values, while both Definitions 11 and 12 split the parameters into groups, with
different update rules. For coordinate flow (and descent), some parameters are not allowed to
update at all, while others update, but in a coupled fashion, making sure that the gradients
are always equal. Elastic gradient flow (and descent) combines all of these three update
properties. The free set contains the indices of the parameters for which |gd| > α · |gm|,
which are updated according to their gradient value. The inactive set contains the indices of
the parameters for which |gd| < α · |gm|, which are not updated. The coupled set contains
the indices of the parameters for which |gd| = α · |gm|. In the discrete case this corresponds
to (Iegd)dd fluctuating between 0 and 1, and |gd| oscillating around α · |gm|, while in the
continuous case (Iegf) ∈ (0, 1) and |gd| = α · |gm|. Since (Iegf)dd, and hence the update speed
of these parameters, depends on the value of |gm|, we refer to them as coupled. These three
sets are illustrated in Section 4.2.

C.4 Construction of Coordinate and Elastic Gradient Flow

In this section, we present the details behind the definitions of coordinate and elastic gradient
flow. The following notation is used: Uppercase boldface letters are used for matrices and
lowercase boldface letters for vectors. Slices of matrices and vectors are marked by subscripts,
which might be either a single index, a set of indices, or a colon that denotes an entire
row/column. Complements are denoted with a minus sign. We will give two examples for
A ∈ Rm×n and SA = {3, 5}: ASA,−1, denotes a 2 × (n − 1) matrix consisting of rows 3
and 5, and all but the first column of matrix A. A:,−SA

denotes an m × (n − 2) matrix
consisting of all rows and all columns except 3 and 5. Time derivatives of order k are denoted
interchangeably with ∂k

∂tk
(·) and (·)(k) and � denotes element-wise multiplication.

C.4.1 Construction of Coordinate Flow

If at some time interval, [t1, t2], the magnitudes of two or more gradient components are all
close to the maximum gradient value, the index m (where m = argmaxd |gd| and (Icd)mm = 1,
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as defined above) might alternate very frequently between these elements (or equivalently,
the one in Icd frequently changes position along the diagonal) during the interval; we denote
the corresponding set of indices SA(t1, t2). If we could look at an even finer time scale than
∆t, we would observe the same behavior on the sub-interval [t, t+ ∆t]. To consider a finer
time scale than ∆t, we split the time step ∆t into K sub-steps rewriting Equation 19 as

β̂(t+ ∆t) =β̂(t) + γ
(
β̂(t)− β̂(t−∆t)

)
+
K−1∑
k=0

∆t

K
· Icf

(
t+ k

∆t

K

)
sign

(
Σ̂

(
β̂OLS − β̂

(
t+ k

∆t

K

)))
.

(24)

If d ∈ SA(t, t+ ∆t), then |gd(τ)| > 0 for τ ∈ [t, t+ ∆t], i.e. gd does not change sign, which
means that sign(gd) remains constant on the interval. If, on the other hand, d /∈ SA(t, t+∆t),
then gd might change sign on the interval, but then (Icd)dd = 0, and the value of sign(gd) is
not considered. This means that Equation 24 can be written as

β̂(t+ ∆t) = β̂(t) + γ
(
β̂(t)− β̂(t−∆t)

)
+

∆t

K

K−1∑
k=0

Icf

(
t+ k

∆t

K

)
sign(Σ̂(β̂OLS − β̂(t))).

Rearranging and letting first K →∞, then ∆t→ 0, assuming that the limits exist, we obtain

(1− γ) · ∂β̂(t)

∂t
= I∞cf (t)sign(Σ̂(β̂OLS − β̂(t))),

where

I∞cf (t) := lim
∆t→0

lim
K→∞

1

K

K−1∑
k=0

Icd

(
t+ k

∆t

K

)
is the limit of averages of matrices where one diagonal element equals one and the remaining
elements equal zero. Since it is not obvious that this limit exists, we instead define Icf as an
average of matrices of type Icd, i.e.,

• (Icf)dd ∈ [0, 1]

• ∑d(Icf)dd = 1

• (Icf)dd(t) > 0 ⇐⇒ d ∈ SA(t)

and obtain

(1− γ) · ∂β̂(t)

∂t
= Icf(t)sign(Σ̂(β̂OLS − β̂(t))). (25)

Repeating the reasoning just after Equation 24, we can say that if d ∈ SiA := SA(ti, ti+1),
then gd does not change sign for t ∈ [ti, ti+1) and

−sign(gd(t)) = −sign(gd(ti)) = sign(Σ̂(β̂OLS − β̂(ti)))d =: (si)d.

If, on the other hand, d /∈ SiA, then
(
Iicf
)
dd

(t) = 0 and the value of (si)d is not considered.
This means that Equation 25 can be written as

(1− γ) · ∂β̂(t)

∂t
= Icf(t)s

i, t ∈ [ti, ti+1),
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to which the solution is given by

β̂(t) = β̂(ti) +
1

1− γ

∫ t

ti

Icf(τ)dτsi.

We now show that for t ∈ [ti, ti+1),
∫ t
ti
Icf(τ)dτ = (t− ti)Iicf, and calculate Iicf.

Assume SiA = {m1,m2, . . . ,mpm} at t = ti, which implies |gm1(ti)| = |gm2(ti)| = · · · =
|gmpm

(ti)|. If d /∈ SiA at time t, then
(
Iicf
)
dd

(t) = 0, so we focus on the sub-matrix
(Icf)Si

A,S
i
A

(t), which is a pm × pm matrix containing only the rows and columns for which
d ∈ SiA at time ti.

We want to construct (Icf)Si
A,S

i
A

(t) such that the elements of SiA do not change for
t ∈ [ti, ti+1), which implies |gm1(t)| = |gm2(t)| = · · · = |gmpm

(t)|. Let’s start with |gm1(t)| =
|gm2(t)|.

0 =|gm2(t)| − |gm1(t)| = |Σ̂(β̂OLS − β̂(t))|m2 − |Σ̂(β̂OLS − β̂(t))|m1

=sim2
· (Σ̂(β̂OLS − β̂(t)))m2 − sim1

· (Σ̂(β̂OLS − β̂(t)))m1

=
(((((((((((((
sim2
· (Σ̂(β̂OLS − β̂(ti)))m2︸ ︷︷ ︸

=|gm2 (ti)|

−sim2
·
(

Σ̂
1

1− γ

∫ t

ti

Icf(τ)dτsi
)
m2

−
(((((((((((((
sim1
· (Σ̂(β̂OLS − β̂(ti)))m1︸ ︷︷ ︸

=|gm1 (ti)|

+sim1
·
(

Σ̂
1

1− γ

∫ t

ti

Icf(τ)dτsi
)
m1

=
1

1− γ
(
sim1
· Σ̂m1,: − sim2

· Σ̂m2,:

)∫ t

ti

Icf(τ)dτsi

(a)
=

1

1− γ
(
sim1
· Σ̂m1,Si

A
− sim2

· Σ̂m2,Si
A

)∫ t

ti

(Icf)Si
A,S

i
A

(τ)dτsiSi
A

⇐⇒ 0 =
(
sim1
· Σ̂m1,Si

A
− sim2

· Σ̂m2,Si
A

)∫ t

ti

(Icf)Si
A,S

i
A

(τ)dτsiSi
A
,

where (a) follows from the fact that
(
Iicf
)
dd

(t) = 0 for d /∈ SiA. Repeating the same
calculations for all combinations of indices in SiA gives us pm − 1 independent equations.
Together with

1 =
∑
m∈Si

A

(Icf)mm (t) ⇐⇒ t− ti =
∑
m∈Si

A

∫ t

ti

(Icf)mm (τ)dτ = 1>
∫ t

ti

(Icf)Si
A,S

i
A

(τ)dτ1

= (siSi
A

)>
∫ t

ti

(Icf)Si
A,S

i
A

(τ)dτsiSi
A
,
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we obtain the following system of linear equations

(si
Si
A

)>(
sim1
· Σ̂m1,Si

A
− sim2

· Σ̂m2,Si
A

)(
sim2
· Σ̂m2,Si

A
− sim3

· Σ̂m3,Si
A

)
...(

simpm−1
· Σ̂mpm−1,Si

A
− simpm

· Σ̂mpm ,S
i
A

)


︸ ︷︷ ︸

=:B

∫ tti (Icf)Si
A,S

i
A

(τ)dτsi
Si
A

 =


t− ti

0
...
0


︸ ︷︷ ︸

=:b

.

Solving this system, we obtain∫ t

ti

(Icf)Si
A,S

i
A

(τ)dτsiSi
A

= B−1b = (t− ti) · (B:,1)−1

⇐⇒
∫ t

ti

(Icf)Si
A,S

i
A

(τ)dτ = (t− ti) · diag
(

(B:,1)−1 � siSi
A

)
=: (t− ti)

(
Iicf
)
Si
A,S

i
A
,

where � denotes element-wise multiplication.
For some combinations of Σ̂ and β̂OLS−β(t), we might obtain a solution where

(
Iicf
)
dd
< 0

for some d. Since this is obviously not feasible (since it would correspond to a negative
time step), in these cases, we remove the corresponding parameter from SiA, which implies(
Iicf
)
dd

= 0. Then
(
Iicf
)
Si
A,S

i
A
is recalculated for the new SiA. If

(
Iicf
)
dd
< 0 for more than one

parameter simultaneously, only the parameter with the largest (absolute valued) negative
value is removed. This procedure is repeated until all

(
Iicf
)
dd
∈ [0, 1].

What is left to do is to compute the times when some new d enters SiA, i.e. when
|gd(t)| = |gm(t)| for m ∈ SiA, d /∈ SiA. Since the absolute gradient value is identical for all
m ∈ SiA, we use m1. First assume sign(gd(t)) = sign(gm1(t)). Then

0 = gm1(t)− gd(t) = −Σ̂m1,:(β̂
OLS − β̂(t)) + Σ̂d,:(β̂

OLS − β̂(t))

= −Σ̂m1,:(β̂
OLS − β̂(ti)) + (t− ti)Σ̂m1,:I

i
cfs

i + Σ̂d,:(β̂
OLS − β̂(ti))− (t− ti)Σ̂d,:I

i
cfs

i

=
(
Σ̂d,: − Σ̂m1,:

)
(β̂OLS − β̂(ti))− (t− ti)

(
Σ̂d,: − Σ̂m1,:

)
Iicfs

i

⇐⇒ t = ti +

(
Σ̂d,: − Σ̂m1,:

)
(β̂OLS − β̂(ti))(

Σ̂d,: − Σ̂m1,:

)
Iicfs

i︸ ︷︷ ︸
=:∆ti,d,1

.

Repeating the same calculations when sign(gd(t)) = −sign(gm1(t)) results in

t = ti +

(
Σ̂d,: + Σ̂m1,:

)
(β̂OLS − β̂(ti))(

Σ̂d,: + Σ̂m1,:

)
Iicfs

i︸ ︷︷ ︸
=:∆ti,d,2

.

Putting this together, we obtain

ti+1 = ti + min
d/∈Si

A, k=1,2
∆ti,d,k>0

∆ti,d,k.
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C.4.2 Construction of Elastic Gradient Flow

This time the differential equation of interest becomes

(1− γ) · ∂β̂(t)

∂t
= Iegf(α, t)

(
α · sign

(
Σ̂(β̂OLS − β̂(t))

)
+ (1− α) · Σ̂(β̂OLS − β̂(t))

)
. (26)

Since the vector sign(Σ̂(β̂OLS − β̂(t))) is constant for d /∈ S0, Equation 26 simplifies to

(1− γ) · ∂β̂egf(t)

∂t
= Iiegf(α, t)

(
α · si + (1− α) · Σ̂(β̂OLS − β̂egf(t))

)
, t ∈ [ti, ti+1), (27)

where si := −sign(gd(t)) = −sign(gd(ti)) = sign(Σ̂(β̂OLS − β̂egf(ti))).
Let

η(t) := α · si + (1− α) · Σ̂(β̂OLS − β̂egf(t)).

Then

β̂egf(t) = −
(

(1− α)Σ̂
)−1 (

η(t)−
(
α · si + (1− α) · Σ̂(β̂OLS − β̂egf(ti))

))
+ β̂egf(ti) (28)

and
∂η(t)

∂t
= −(1− α)Σ̂

∂β̂egf(t)

∂t
⇐⇒ ∂β̂egf(t)

∂t
= −

(
(1− α)Σ̂

)−1 ∂η(t)

∂t
.

We can now rewrite Equation 27 in terms of η:

∂η(t)

∂t
= −1− α

1− γ Σ̂Iiegf(α, t)η(t), t ∈ [ti, ti+1),

which gives us
η(t) = exp

(
Ωi(ti, t)

)
η(ti), ∈ [ti, ti+1), (29)

where exp is the matrix exponential and Ωi(ti, t) is the Magnus expansion (Magnus, 1954)
of −1−α

1−γ Σ̂Iiegf(α, t). Plugging Equation 29 into Equation 28, we obtain

β̂egf(t) =β̂egf(ti)

+
(

(1− α)Σ̂
)−1 (

I − exp
(
Ωi(ti, t)

))
·
(
α · si + (1− α) · Σ̂

(
β̂OLS − β̂egf(ti)

))
,

t ∈ [ti, ti+1).

We now calculate the time derivatives of
(
Iiegf

)
Si
C ,S

i
C

(ti). Let m := argmaxd|gd(ti)|. If
c ∈ SiC , then (Iiegf)cc(t) /∈ {0, 1} and |gc(t)| = α|gm(t)|. This means that for t ∈ [ti, ti+1)∣∣∣∣ gc(t)gm(t)

∣∣∣∣ = α, (30)

which we want to solve for (Iiegf)cc(α, t) := (Iegf)cc(α, t), t ∈ [ti, ti+1).

Since
∣∣∣ gc(ti)
gm(ti)

∣∣∣ = α, Equation 30 holds if(∣∣∣∣ gc(ti)gm(ti)

∣∣∣∣)(k+1)

= 0, k = 0, 1, . . . , (31)
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because requiring that the derivative is 0 for ti implies that the function remains constant for
t > ti, at least if the derivative remains zero, which is why we require the second derivative
to be 0, and so on. Using Lemma 13, we obtain

(∣∣∣∣ gc(ti)gm(ti)

∣∣∣∣)(k+1)

= 0

⇐⇒

g(k+1)
c (ti) · gm(ti)− gc(ti) · g(k+1)

m (ti) = −g2
m(ti) · sign

(
gc(ti)

gm(ti)

)
· O
((

gc(ti)

gm(ti)

)(k)
)
.

(32)

If we solve Equation 31 for k’s in increasing order, when solving for k + 1,

(∣∣∣∣ gc(ti)gm(ti)

∣∣∣∣)(l)

= 0, l = 1, 2, . . . k

and Equation 32 simplifies to

(∣∣∣∣ gc(ti)gm(ti)

∣∣∣∣)(k+1)

= 0 ⇐⇒ g(k+1)
c (ti) · gm(ti)− gc(ti) · g(k+1)

m (ti) = 0. (33)

Using Lemma 14, abbreviating ζi := (α · sign(g(ti)) + (1− α) · g(ti)) and ck−1 :=
O((Iiegf)

(k−1)(ti), we obtain

g
(k+1)
d (ti) =

1

1− γ
(
−Σ̂d,:(I

i
egf)

(k)(ti)ζ
i + ck−1

d

)
, (34)

where ck−1 can be calculated by first setting (Iiegf)
(k)(ti) = 0, to remove the first term in

Equation 34, and then evaluating g(k+1)(ti) using Equations 16 and 22:

ck−1 = (1− γ)g(k+1)(ti) = (1− γ)Σ̂β(k+1)(ti)

= −(1− γ)Σ̂
dk+1 exp

(
Ωi(ti, t)

)
dtk

∣∣∣∣∣
t=ti

(
α

1− αΣ̂−1si + β̂OLS − β(ti)

)
,

where the derivative of the matrix exponential can be calculated using Lemma 15.
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Now, inserting Equation 34 into Equation 33, we obtain.

1

1− γ
(
−Σ̂c,:(I

i
egf)

(k)(ti)ζ
i + ck−1

c

)
· gm(ti)

− gc(ti) ·
1

1− γ
(
−Σ̂m,:(I

i
egf)

(k)(ti)ζ
i + ck−1

m

)
= 0

⇐⇒ (−Σ̂c,:(I
i
egf)

(k)(ti)ζ
i) + ck−1

c ) · gm(ti)− gc(ti) · (−Σ̂m,:(I
i
egf)

(k)(ti)ζ
i) + ck−1

m ) = 0

⇐⇒ ck−1
m · gc(ti)− ck−1

c · gm(ti) =
(
gc(ti)Σ̂m,: − gm(ti) · Σ̂c,:

)
(Iiegf)

(k)(ti)ζ
i

(a)
=
[
gc(ti)Σ̂m,c − gm(ti) · Σ̂c,c gc(ti)Σ̂m,−c − gm(ti) · Σ̂c,−c

] 
(

(Iiegf)
(k)(ti)ζ

i
)
c(

(Iiegf)
(k)(ti)ζ

i
)
−c


⇐⇒ = ck−1

m · gc(ti)− gm(ti) · ck−1
c −

(
gc(ti)Σ̂m,−c − gm(ti) · Σ̂c,−c

)(
(Iiegf)

(k)(ti)ζ
i
)
−c︸ ︷︷ ︸

=:b

=
(
gc(ti)Σ̂m,c − gm(ti) · Σ̂c,c

)
︸ ︷︷ ︸

=:a

(
(Iiegf)

(k)(ti)ζ
i
)
c︸ ︷︷ ︸

=(Iiegf)
(k)
cc (ti)ζic

⇐⇒ (Iiegf)
(k)
cc (ti) =

b

a · ζic
,

where in (a), the columns of Σ̂ and the rows of (Iiegf)
(k)(ti)ζ

i are split into the two sets c
and −c.

Writing this as a system of linear equations, we obtain

A :=
(
gSi

C
(ti)Σ̂m,Si

C
− gm(ti) · Σ̂Si

C ,S
i
C

)
b :=ck−1

m · gSi
C

(ti)− gm(ti) · ck−1
Si
C

−
(
gSi

C
(ti)Σ̂m,Si

F∪S
i
0
− gm(ti) · Σ̂Si

C ,S
i
F∪S

i
0

)(
(Iiegf)

(k)(ti)ζ
i
)
Si
F∪S

i
0(

Iiegf
)(k)

Si
C ,S

i
C

(ti) =diag(A−1b/ζiSi
C

),

where the division is element-wise.
For k = 0, we have ck−1 = (Iiegf)

(−1)(ti) = 0, (Iiegf)Si
0,S

i
0
(ti) = 0 and (Iiegf)Si

F ,S
i
F

(ti) = I,
which means that b simplifies to

bk=0 =
(
gm(ti) · Σ̂Si

C ,S
i
F
− gSi

C
(ti)Σ̂m,Si

F

)
ζiSi

F
.

For k ≥ 1, we have (Iiegf)
(k)

Si
F∪S

i
0,S

i
F∪S

i
0
(ti) = 0, which means that b simplifies to

bk≥1 = ck−1
m · gSi

C
(ti)− gm(ti) · ck−1

Si
C
.

Similar to for coordinate flow, (Iegf)cc(α, t) ∈ [0, 1] might not always hold and the
corresponding modification, in this case, amounts to: If at any time ti, (Iiegf)cc ≤ 0 for
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some parameter in SiC , then that parameter is moved from SiC to Si0; if (Iiegf)dd ≥ 1 for
some parameter in SiC , then that parameter is moved from SiC to SiF . If (Iiegf)dd /∈ [0, 1]
for more than one parameter simultaneously, only the parameter that deviates most from
[0, 1] is removed. This procedure is repeated until all (Iiegf)dd ∈ [0, 1], which means that
(Iiegf)cc ∈ (0, 1) for c ∈ SiC .

C.5 Magnus Expansion

According to Magnus (1954),

Ωi(ti, t) =

∫ t

ti

A(τ1)dτ1 +
1

2

∫ t

ti

∫ τ1

ti

[A(τ1),A(τ2)] dτ2dτ1

+
1

4

∫ t

ti

∫ τ1

ti

∫ τ2

ti

[A(τ1), [A(τ2),A(τ3)]] dτ3dτ2dτ1 + . . . ,

(35)

where the commutator is defined according to [A,B] := AB − BA. For A(t) = −(1 −
α)Iiegf(α, t)Σ̂, the first two terms in Equation 35, together with its time derivatives, are
calculated below.

C.5.1 First Term

Ωi
1(ti, t) =

∫ t

ti

−1− α
Σ̂

1− γIiegf(α, τ)dτ
(a)
= −1− α

1− γ Σ̂

∫ t

ti

∞∑
l=0

(τ − ti)l
l!

(Iiegf)
(l)(α, ti)dτ

= −1− α
1− γ Σ̂

∞∑
l=0

(t− ti)l+1

(l + 1)!
(Iiegf)

(l)(α, ti).

(Ωi
1)(k)(ti, t) = −1− α

1− γ Σ̂
∞∑
l=0

(t− ti)l+1−k

(l + 1− k)!
(Iiegf)

(l)(α, ti)

(Ωi
1)(k)(ti, ti) = −1− α

1− γ Σ̂(Iiegf)
(k−1)(α, ti),

where in (a), we use the Taylor expansion of Iiegf(α, t) around ti, and the last step uses that

(ti − ti)l+1−k =

{
1 if l = k − 1

0 else.

C.5.2 Second Term

Ωi
2(ti, t) =

1

2

∫ t

ti

∫ τ1

ti

[
−1− α

1− γ Σ̂Iiegf(α, τ1), −1− α
1− γ Σ̂Iiegf(α, τ2)

]
dτ2dτ1

=
1

2

(
1− α
1− γ

)2 ∫ t

ti

∫ τ1

ti

[
Σ̂Iiegf(α, τ1), Σ̂Iiegf(α, τ2)

]
dτ2dτ1.
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Focusing on the commutator, and writing Iiegf(α, t) as its Taylor expansion, we obtain[
Σ̂Iiegf(α, τ1), Σ̂Iiegf(α, τ2)

]
=

Σ̂

∞∑
l1=0

(τ1 − ti)l1
l1!

(Iiegf)
(l1)(α, ti), Σ̂

∞∑
l2=0

(τ2 − ti)l2
l2!

(Iiegf)
(l2)(α, ti)


=

∞∑
l1=0

∞∑
l2=0

(τ1 − ti)l1
l1!

(τ2 − ti)l2
l2!

[
Σ̂(Iiegf)

(l1)(α, ti), Σ̂(Iiegf)
(l2)(α, ti)

]
(a)
=
∞∑
l1=1

l1−1∑
l2=0

1

l1!l2!

(
(τ1 − ti)l1(τ2 − ti)l2 − (τ2 − ti)l2(τ1 − ti)l1

)
·
[
Σ̂(Iiegf)

(l1)(α, ti), Σ̂(Iiegf)
(l2)(α, ti)

]
,

where in (a), we use

[Σ̂(Iiegf)
(l)(α, ti), Σ̂(Iiegf)

(l)(α, ti)] = 0

[Σ̂(Iiegf)
(l2)(α, ti), Σ̂(Iiegf)

(l1)(α, ti)] = −[Σ̂(Iiegf)
(l1)(α, ti), Σ̂(Iiegf)

(l2)(α, ti)].

We now solve the integral with respect to τ1 and τ2,∫ t

ti

∫ τ1

ti

(
(τ1 − ti)l1(τ2 − ti)l2 − (τ2 − ti)l2(τ1 − ti)l1

)
dτ2dτ1

=
l1 − l2

(l1 + 1)!(l2 + 1)!(l1 + l2 + 2)
(t− ti)l1+l2+2,

and putting it together, we obtain

Ωi
2(ti, t)

=
1

2

(
1− α
1− γ

)2 ∞∑
l1=1

l1−1∑
l2=0

(l1 − l2)(t− ti)l1+l2+2

(l1 + 1)!(l2 + 1)!(l1 + l2 + 2)

[
Σ̂(Iiegf)

(l1)(α, ti), Σ̂(Iiegf)
(l2)(α, ti)

]

=
1

2

(
1− α
1− γ

)2 ∞∑
l1=2

l1−1∑
l2=1

(l1 − l2)(t− ti)l1+l2

l1!l2!(l1 + l2)

[
Σ̂(Iiegf)

(l1−1)(α, ti), Σ̂(Iiegf)
(l2−1)(α, ti)

]
.

Differentiating k times with respect to t yields

(Ωi
2)(k)(ti, t) =

1

2

(
1− α
1− γ

)2 ∞∑
l1=2

l1−1∑
l2=1

(l1 − l2)(l1 + l2)! · (t− ti)l1+l2−k

l1!l2!(l1 + l2)(l1 + l2 − k)!

·
[
Σ̂(Iiegf)

(l1−1)(α, ti), Σ̂(Iiegf)
(l2−1)(α, ti)

]
(Ωi

2)(k)(ti, ti) =
1

2

(
1− α
1− γ

)2 b
k−1
2
c∑

l2=1

(k − 2l2)(k − 1)!

l2!(k − l2)!

·
[
Σ̂(Iiegf)

(k−l2−1)(α, ti), Σ̂(Iiegf)
(l2−1)(α, ti)

]
,
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where the last step uses that the only surviving term in the first sum is when l1 + l2 − k =
0 ⇐⇒ l1 = k − l2.

Appendix D. Proofs

Proof of Proposition 2
Since L is assumed to be strongly convex, with Hessian bounded by M ,

L(β̂ −∆t ·∆β̂egd) = L(β̂)−∆t · ∇L(β̂)>∆β̂egd +
∆t2

2
∆β̂>egd∇2L(β̂)∆β̂egd

≤L(β̂)−∆t · ∇L(β̂)>∆β̂egd +
M∆t2

2
∆β̂>egd∆β̂egd

=L(β̂)−∆t · g>Iegd · (α · sign(g) + (1− α)g)

+
M∆t2

2
(α · sign(g) + (1− α)g)> I>egdIegd︸ ︷︷ ︸

=Iegd

·(α · sign(g) + (1− α)g).

=L(β̂)−∆t ·

α · g>Iegdsign(g)︸ ︷︷ ︸
=‖Iegdg‖1

+(1− α) · g>Iegdg︸ ︷︷ ︸
=‖Iegdg‖22



+
M∆t2

2

α2 · sign(g)Iegdsign(g)︸ ︷︷ ︸
=‖Iegdg‖0

+2α(1− α) · g>Iegdsign(g)︸ ︷︷ ︸
=‖Iegdg‖1

+(1− α)2 · g>Iegdg︸ ︷︷ ︸
‖Iegdg‖22

 .

Using the inequalities

‖Iegdg‖1 ≥
1

gmax
· ‖Iegdg‖22

‖Iegdg‖0 ≤
1

g2
min

· ‖Iegdg‖22

‖Iegdg‖1 ≤
1

gmin
· ‖Iegdg‖22,

we obtain

L(β̂ −∆t ·∆β̂egd)− L(β̂) ≤ −∆t ·
(
α · 1

gmax
· ‖Iegdg‖22 + (1− α) · ‖Iegdg‖22

)
+
M∆t2

2

(
α2 · 1

g2
min

· ‖Iegdg‖22 + 2α(1− α) · 1

gmin
· ‖Iegdg‖22 + (1− α)2 · ‖Iegdg‖22

)
.

=−∆t · ‖Iegdg‖22 ·
(

α

gmax
+ (1− α)− M∆t

2

(
α2

g2
min

+
2α(1− α)

gmin
+ (1− α)2

))
.

=−∆t · ‖Iegdg‖22 ·
(

α

gmax
+ (1− α)− M∆t

2

(
α

gmin
+ (1− α)

)2
)
.

Thus, L(β̂ −∆t ·∆β̂egd)− L(β̂) ≤ 0 if
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α

gmax
+ (1− α)− M∆t

2

(
α

gmin
+ (1− α)

)2

≥ 0

⇐⇒ ∆t ≤ 2

M
· αg−1

max + (1− α)

(αg−1
min + (1− α))2

=
2

M
· g

2
min

gmax
· α+ (1− α)gmax

(α+ (1− α)gmin)2
.

(36)

Using gmin ≥ α · gmax and gmin > 0, we can remove gmin from Equation 36, lower the
expression. From the two bounds on gmin we obtain

α

gmin
≥ 1α>0

gmax
,

where gmin ≥ α is used for α > 0, and gmin > 0 is used for α = 0. Thus, we obtain

∆t ≤ 2

M
· αg−1

max + (1− α)(
1α>0 · g−1

max + (1− α)
)2 =

2

M
· gmax ·

α+ (1− α)gmax

(1α>0 + (1− α)gmax)2 .

Proof of Lemma 3
The ridge estimate is defined as

β̂(λ) := (X>X + nλI)−1X>y,

which can be rewritten as

(X>X + nλI)−1X>y
(a)
= (X>X︸ ︷︷ ︸

nΣ̂

+nλI)−1 (X>X)︸ ︷︷ ︸
nΣ̂

(X>X)+X>y︸ ︷︷ ︸
β̂OLS

=
1

n
(Σ̂ + λI)−1nΣ̂β̂OLS = (Σ̂ + λI)−1(Σ̂ + λI − λI)β̂OLS

= ((Σ̂ + λI)−1(Σ̂ + λI)︸ ︷︷ ︸
I

−λ(Σ̂ + λI)−1)β̂OLS

=

(
I −

(
I +

1

λ
Σ̂

)−1
)
β̂OLS,

where (a) follows from X> = (X>X)(X>X)+X>.

Proof of Proposition 4
We first note that when Σ̂ = I, Iiegf(α, t1)I and Iiegf(α, t2)I are diagonal and thus commute,
which means that Ωi(ti, t) reduces to −1−α

1−γ
∫ t
ti
Iiegf(α, τ)dτ .

Since the data is uncorrelated and β̂(t0) = 0, |β̂egf
d (t)| ≤ |β̂OLS

d | and for β̂egf
d (t) 6= 0,

sign(β̂egf
d (t)) = sign(β̂OLS

d ) = sign(β̂OLS
d − β̂egf

d (t)). This means that Equation 22 can be
written as

β̂egf
d (t) =sign(β̂OLS

d ) ·min

(
|β̂egf
d (ti)|+

1

1− α

(
1− exp

(
−1− α

1− γ

∫ t

ti

(Iiegf)dd(α, τ)dτ

))
·
(
α+ (1− α)

(
|β̂OLS
d | − |β̂egf

d (ti)|
))

, |β̂OLS
d |

)
,
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where the minimum, which is included to assure that |β̂egf
d (t)| ≤ |β̂OLS

d |, becomes active once
the OLS solution is reached.

We now compare this the closed form solution of the elastic net,

β̂en
d (λ) = sign(β̂OLS

d )
max(|β̂OLS

d | − αλ, 0)

1 + (1− α)λ
= sign(β̂OLS

d )

(
|β̂OLS
d | −min(αλ, |β̂OLS

d |)
)

1 + (1− α)λ
.

Requiring β̂en
d (λ) = β̂egf

d (t), we obtain

β̂en
d (λ) = β̂egf

d (t) ⇐⇒ λd = max

 |β̂OLS
d | − |β̂egf

d (ti)| − v
α+ (1− α)

(
|β̂egf
d (ti)|+ v

) , 0
 ,

where

v =
1

1− α

(
1− exp

(
−1− α

1− γ

∫ t

ti

(Iiegf)dd(α, τ)dτ

))(
α+ (1− α)

(
|β̂OLS
d | − |β̂egf

d (ti)|
))

,

and where the equivalence is tedious but straightforward to show.
Letting (1− α)→ 0, using limx→0

1−e−ax

x = a, we obtain

λd = max

(
|β̂OLS
d | − |β̂cf

d (ti)| −
t− ti
1− γ (Iicf)dd, 0

)
.

To calculate sign
(
∂λd(t)
∂t

)
, we note first that

∂v(t)

∂t
=

1

1− γ (Iiegf)dd(α, t) exp

(
−1− α

1− γ

∫ t

ti

(Iiegf)dd(α, τ)dτ

)

·

α+ (1− α)
(
|β̂OLS
d | − |β̂egf

d (ti)|
)

︸ ︷︷ ︸
≥0

 ≥ 0,

which implies
∂λd(t)

∂t
=
∂(max(0, λd(t)))

∂λd︸ ︷︷ ︸
=:f1(t)≥0

· 1(
α+ (1− α)

(
|β̂egf
d (ti)|+ v(t)

))2

︸ ︷︷ ︸
=:f2(t)≥0

·
(
∂

∂t

(
|β̂OLS
d | − |β̂egf

d (ti)| − v(t)
)
·
(
α+ (1− α)

(
|β̂egf
d (ti)|+ v(t)

))
−
(
|β̂OLS
d | − |β̂egf

d (ti)| − v(t)
)
· ∂
∂t

(
α+ (1− α)

(
|β̂egf
d (ti)|+ v(t)

)))
=f1(t) · f2(t) ·

(
−∂v(t)

∂t
·
(
α+

(((((((((((((
(1− α)

(
|β̂egf
d (ti)|+ v(t)

))
−
(
|β̂OLS
d | −((((((((|β̂egf

d (ti)| − v(t)
)
· (1− α)

∂v(t)

∂t

)
=− f1(t)︸︷︷︸

≥0

· f2(t)︸︷︷︸
≥0

· ∂v(t)

∂t︸ ︷︷ ︸
≥0

·
(
α+ (1− α) · |β̂OLS

d |
)

︸ ︷︷ ︸
≥0

≤ 0.
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Proof of Proposition 6
For cα ≥ 0,∥∥∥cα∆β̂egd,sd

∥∥∥
1

=cα

∥∥∥∆β̂egd,sd

∥∥∥
1

= cα‖Iegd,sdg‖1
(

α

‖Iegd,sdg‖1
+

1− α
‖Iegd,sdg‖2

)
=cα

(
α+ (1− α)

‖Iegd,sdg‖1
‖Iegd,sdg‖2

)
= cα (α+ (1− α)

√
q1) .

∥∥∥cα∆β̂egd,sd

∥∥∥2

2
=c2

α‖Iegd,sdg‖22
(

α

‖Iegd,sdg‖1
+

1− α
‖Iegd,sdg‖2

)2

=c2
α

(
α
‖Iegd,sdg‖2
‖Iegd,sdg‖1

+ (1− α)

)2

= c2
α

(
α√
q1

+ 1− α
)2

.

Solving

1 =α
∥∥∥cα∆β̂egd,sd

∥∥∥
1

+ (1− α)
∥∥∥cα∆β̂egd,sd

∥∥∥2

2

=cαα (α+ (1− α) · √q1) + c2
α(1− α)

(
α · 1√

q1
+ 1− α

)2

for cα, the non-negative root is

cα =

√
q1(α2q1 + 4(1− α))− αq1

2(1− α)(
√
q1(1− α) + α)

.

Proof of Proposition 7∥∥∥∆β̂egd,sd

∥∥∥
1

=‖Iegd,sdg‖1
(

α

‖Iegd,sdg‖1
+

1− α
‖Iegd,sdg‖2

)
=

(
α+ (1− α)

‖Iegd,sdg‖1
‖Iegd,sdg‖2

)
.

∥∥∥∆β̂egd,sd

∥∥∥2

2
=‖Iegd,sdg‖22

(
α

‖Iegd,sdg‖1
+

1− α
‖Iegd,sdg‖2

)2

=

(
α
‖Iegd,sdg‖2
‖Iegd,sdg‖1

+ (1− α)

)2

.

α
∥∥∥∆β̂egd,sd

∥∥∥
1

+ (1− α)
∥∥∥∆β̂egd,sd

∥∥∥2

2

=α

(
α+ (1− α) · ‖Iegd,sdg‖1

‖Iegd,sdg‖2

)
+ (1− α)

(
α · ‖Iegd,sdg‖2
‖Iegd,sdg‖1

+ 1− α
)2

.
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Using the inequalities 1 ≤ ‖Iegd,sdg‖1
‖Iegd,sdg‖2 ≤

√
p1 and the equalities α+ (1− α)3 = 1− α(1−

α)(2− α) and α2 + 1− α = 1− α(1− α), we obtain the lower bound

1− α(1− α)

(
2− α− α

p1
− 2(1− α)√

p1

)
(a)

≥ 1− α(1− α)(2− α) ·
(

1− 1

p1

)
,

where (a) follows from √p1 ≤ p1 for p1 ≥ 1, and the upper bound

1 + α(1− α) · (√p1 − 1).

Noting that α(1−α)(2−α) < 0.39 for α ∈ [0, 1], and α(1−α) ≤ 1
4 completes the proof.

Proof of Proposition 9
For cα,∆t ≥ 0,

∥∥∥∆β̂egd,gs,c

∥∥∥
1

=‖Iegdg‖1
(
α · cα,∆t ·∆t
‖Iegdg‖1

+
(1− α)

√
cα,∆t ·∆t

‖Iegdg‖2

)

=

(
α · cα,∆t ·∆t+ (1− α)

√
cα,∆t ·∆t

‖Iegdg‖1
‖Iegdg‖2

)
=
(
α · cα,∆t ·∆t+ (1− α)

√
cα,∆t ·∆t · q1

)
.

∥∥∥∆β̂egd,gs,c

∥∥∥2

2
=‖Iegdg‖22

(
α · cα,∆t ·∆t
‖Iegdg‖1

+
(1− α)

√
cα,∆t ·∆t

‖Iegdg‖2

)2

=

(
α · cα,∆t ·∆t

‖Iegdg‖2
‖Iegdg‖1

+ (1− α)
√
cα,∆t ·∆t

)2

=

(
α · cα,∆t ·∆t ·

1√
q1

+ (1− α)
√
cα,∆t ·∆t

)2

.

Solving

∆t =α
∥∥∥∆β̂egd,gs,c

∥∥∥
1

+ (1− α)
∥∥∥∆β̂egd,gs,c

∥∥∥2

2

α ·
(
α · cα,∆t ·∆t+ (1− α)

√
cα,∆t ·∆t · q1

)
+ (1− α)

(
α · cα,∆t ·∆t ·

1√
q1

+ (1− α)
√
cα,∆t ·∆t

)2

for cα,∆t, we obtain

cα,∆t =


√

2α
√
q1(α2q1 + 4∆t(1− α)) + q1((1− α)3 − 2α2)− (1− α)

√
q1(1− α)

α
√

4∆t(1− α)

2

.
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Proof of Proposition 10∥∥∥∆β̂egd,gs

∥∥∥
1

=‖Iegdg‖1
(

α ·∆t
‖Iegdg‖1

+
(1− α)

√
∆t

‖Iegdg‖2

)

=

(
α ·∆t+ (1− α)

√
∆t
‖Iegd,sdg‖1
‖Iegd,sdg‖2

)
.

∥∥∥∆β̂egd,gs

∥∥∥2

2
=‖Iegdg‖22

(
α ·∆t
‖Iegdg‖1

+
(1− α)

√
∆t

‖Iegdg‖2

)2

=

(
α ·∆t‖Iegdg‖2

‖Iegdg‖1
+ (1− α)

√
∆t

)2

.

α
∥∥∥∆β̂egd,gs

∥∥∥
1

+ (1− α)
∥∥∥∆β̂egd,gs

∥∥∥2

2

=α

(
α ·∆t+ (1− α)

√
∆t · ‖Iegdg‖1

‖Iegdg‖2

)
+ (1− α)

(
α ·∆t · ‖Iegdg‖2

‖Iegd,sdg‖1
+ (1− α)

√
∆t

)2

.

Using the inequalities ‖Iegdg‖1‖Iegdg‖2 ≤
√
p1,

‖Iegdg‖2
‖Iegdg‖1 ≤ 1 we obtain upper bound

α ·
(
α∆t+ (1− α)

√
∆t · ‖Iegdg‖1

‖Iegdg‖2

)
+ (1− α) ·

(
α∆t · ‖Iegdg‖2

‖Iegdg‖1
+ (1− α)

√
∆t

)2

≤α ·
(
α∆t+ (1− α)

√
∆t · √p1

)
+ (1− α) ·

(
α∆t+ (1− α)

√
∆t
)2

(a)
=∆t+ α(1− α)

(
(α− 3)∆t+

√
∆t
√
p1 + α(∆t)2 + 2(1− α)∆t

√
∆t
)

(b)

≤∆t+ α(1− α)
(

(α− 3)∆t+
√

∆t
√
p1 + α∆t+ 2(1− α)∆t

)
=∆t

(
1 + α(1− α)

(√
p1

∆t
− 1

))
,

where in (a), we use α2 + (1− α)3 = 1 + α(1− α)(α− 3) and (b) uses (∆t)2 ≤ ∆t,
√

∆t ≤ 1
for ∆t ≤ 1.

The lower bound is obtain by using ‖Iegdg‖1‖Iegdg‖2 ≥ 1, ‖Iegdg‖2‖Iegdg‖1 ≥
1√
p1
:

α ·
(
α∆t+ (1− α)

√
∆t · ‖Iegdg‖1

‖Iegdg‖2

)
+ (1− α) ·

(
α∆t · ‖Iegdg‖2

‖Iegdg‖1
+ (1− α)

√
∆t

)2

≥α ·
(
α∆t+ (1− α)

√
∆t
)

+ (1− α) ·
(
α∆t√
p1

+ (1− α)
√

∆t

)2

(a)
=∆t+ α(1− α)

(
(α− 3)∆t+

√
∆t+ α

(∆t)2

p1
+ 2(1− α)

∆t
√

∆t√
p1

)
(b)

≥∆t+ α(1− α)

(
(α− 3)∆t+ ∆t+ α

(∆t)2

p1
+ 2(1− α)

(∆t)2

p1

)
=∆t

(
1− α(1− α)(2− α)

(
1− ∆t

p1

))
,
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where in (a), we use α2 + (1− α)3 = 1 + α(1− α)(α− 3) and (b) uses
√

∆t ≥ ∆t for ∆t ≤ 1,
and √p1 ≤ p1 for p1 ≥ 1.

Noting that α(1−α)(2−α) < 0.39 for α ∈ [0, 1], and α(1−α) ≤ 1
4 completes the proof.

Proof of Lemma 8
We assume without loss of generality that g is sorted, so that |g1| ≥ |g2| ≥ . . . .

‖Iegd,sdg‖22
‖Iegd,sdg‖1

=

g2
1 ·
(

1 +
∑p1

i=2

(
gi
g1

)2
)

|g1| ·
(

1 +
∑p1

i=2

∣∣∣ gig1 ∣∣∣) ,

Since (gi/g1)2 ≤ |gi/g1| and |gi| ≥ |gi+1|,
(

1 +
∑p1

i=2

(
gi
g1

)2
)
/
(

1 +
∑p1

i=2

∣∣∣ gig1 ∣∣∣) is a decreas-

ing function of p1.

Lemma 13. (∣∣∣∣fg
∣∣∣∣)(k)

= sign
(
f

g

)
·
(
f (k) · g − f · g(k)

g2

)
+O

((
f

g

)(k−1)
)
,

where O
((

f
g

)(k−1)
)

denotes derivatives of
(
f
g

)
of orders strictly lower than k.

Proof
We first show that (

f

g

)(k)

=
f (k)g − fg(k)

g2
−
k−1∑
i=1

(
k

i

)(
f

g

)(k−i) g(i)

g
: (37)

f (k)g − fg(k)

g2
−
k−1∑
i=1

(
k

i

)(
f

g

)(k−i) g(i)

g
=

1

g

(
f (k) −

(
f

g

)
g(k) −

k−1∑
i=1

(
k

i

)(
f

g

)(k−i)
g(i)

)

=
1

g

(
f (k) −

(
k∑
i=0

(
k

i

)(
f

g

)(k−i)
g(i) −

(
f

g

)(k)

g

))
(a)
=

1

g

(
f (k) −

((
f

g
g

)(k)

−
(
f

g

)(k)

g

))

=
1

g

(
f (k) − f (k) +

(
f

g

)(k)

g

)
=

(
f

g

)(k)

,

where (a) follows from the general Leibniz rule, (fg)(k) =
∑k

i=0

(
k
i

)
f (k−i)g(i). Now, according

to the chain rule for higher order derivatives, Faà di Bruno’s formula,

df(g(x))

dxk
= f ′(g(x)) · g(k)(x) +O(g(k−1)),
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where O(g(k−1)) denotes terms with derivatives of g of orders strictly lower than k. Applying
this, we obtain (∣∣∣∣fg

∣∣∣∣)(k)

= sign
(
f

g

)
·
(
f

g

)(k)

+O
((

f

g

)(k−1)
)
.

Applying Equation 37 completes the proof.

Lemma 14.
With g(t) = −Σ̂(β̂OLS − β(t)) for β(t) given by Equation 22,

g(k)(ti) =
1

1− γ
(
−Σ̂(Iiegf)

(k−1)(ti)(α · sign(g(ti)) + (1− α) · g(ti)) +O((Iiegf)
(k−2)(ti))

)
,

where O((Iiegf)
(k−2)(ti)) depends only on derivatives of order k − 2 and lower, and

O((Iiegf)
(k)(ti)) = 0 for k < 0.

Proof
We begin by showing that

Ω(k)(ti, ti) = −1− α
1− γ Σ̂ · (Iiegf)

(k−1)(ti) +
1

1− γO((Iiegf)
(k−2)(ti)), (38)

where O((Iiegf)
(k−2)(ti)) depends only on derivatives of order k − 2 and lower, and

O((Iiegf)
(k)(ti)) = 0 for k < 0.

According to Magnus (1954)

Ωi(ti, t) =

∫ t

ti

A(τ1)dτ1 +
1

2

∫ t

ti

∫ τ1

ti

[A(τ1),A(τ2)] dτ2dτ1

+
1

4

∫ t

ti

∫ τ1

ti

∫ τ2

ti

[A(τ1), [A(τ2),A(τ3)]] dτ3dτ2dτ1 + . . . ,

where the commutator is defined according to [A,B] := AB −BA.
Multiple applications of the fundamental theorem of calculus result in

(Ωi)(k)(ti, ti) = A(k−1)(ti) +
1

2
O(A(k−2)(ti)) +

1

4
O(A(k−3)(ti)) + . . .

where O(A(k)(ti)) depends only on derivatives of order k and lower, and O(A(k)(ti)) = 0 for
k < 0. Setting A(t) = −1−α

1−γ Σ̂Iiegf(t) results in Equation 38.
Next, we note that derivatives of order k only appear in terms where i = 0 or i = k in

Equation 41 and obtain

dk exp(X(t))

dtk
=

∞∑
n=1

1

n!

(
X(t)

dkX(t)n−1

dtk
+
dkX(t)

dtk
X(t)n−1 +O(X(k−1)(t))

)
, (39)

where O(X(k−1)(t)) depends only on derivatives of order k−1 and lower, and O(X(0)(t)) = 0.
Since Ω(ti, ti) = 0, for n ∈ N0,

Ωn(ti, ti) =

{
I, n = 0

0, n > 0,
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and inserting Ω(ti, ti) into Equation 39 we obtain

dk exp(Ω(ti, ti))

dtk

=

∞∑
n=1

1

n!

Ω(ti, ti)︸ ︷︷ ︸
=0

·(Ωn−1)(k)(ti, ti) + Ω(k)(ti, ti) · Ω(ti, ti)
n−1︸ ︷︷ ︸

I, n=1; 0, n>1

+O(Ω(k−1)(ti, ti))


= Ω(k)(ti, ti) +O(Ω(k−1)(ti, ti)) = −1− α

1− γ Σ̂ · (Iiegf)
(k−1)(ti) +

1

1− γO((Iiegf)
(k−2)(ti)).

(40)
Now

g(k)(ti) =(−Σ̂(β̂OLS − β̂egf(t)))
(k) = Σ̂β̂

(k)
egf (ti)

(a)
= − 1

1− α exp(Ωi(ti, ti))
(k)
(
α · si + (1− α) · Σ̂

(
β̂OLS − β̂egf(ti)

))
(b)
=

1

1− γ

Σ̂ · (Iiegf)
(k−1)(ti)

α · si︸︷︷︸
=−sign(g(ti))

+(1− α) · Σ̂
(
β̂OLS − β̂egf(ti)

)
︸ ︷︷ ︸

=−g(ti)


+O((Iiegf)

(k−2)(ti))
)

=
1

1− γ
(
−Σ̂(Iiegf)

(k−1)(ti) (α · sign(g(ti)) + (1− α) · g(ti)) +O((Iiegf)
(k−2)(ti))

)
,

where (a) follows from Equation 22 and (b) follows from Equation 40.

Lemma 15.
dk exp(X(t))

dtk
=

∞∑
n=1

1

n!

k∑
i=0

(
k

i

)
· d

iX(t)

dti
· d

k−iX(t)n−1

dtk−i
. (41)

Proof
For n ≥ 1, according to the general Leibniz rule, (fg)(k) =

∑k
i=0

(
k
i

)
f (i)g(k−i),

dkX(t)n

dtk
=
dk
(
X(t)X(t)n−1

)
dtk

=

k∑
i=0

(
k

i

)
· d

iX(t)

dti
· d

k−iX(t)n−1

dtk−i
.

Inserting this into the Taylor expansion of the matrix exponential, we obtain

dk exp(X(t))

dtk
=
∞∑
n=1

1

n!

dkX(t)n

dtk
=
∞∑
n=1

1

n!

k∑
i=0

(
k

i

)
· d

iX(t)

dti
· d

k−iX(t)n−1

dtk−i
.
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