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A B S T R A C T

The phase-field hydraulic fracture model entails a non-convex energy functional. This renders a
poor convergence behaviour for monolithic solution techniques, such as the Newton–Raphson
method. Consequently, researchers have adopted alternative solution techniques such as the
staggered solution technique and the Newton–Raphson method with convexification via extrap-
olation of the phase-field. Both methods are robust. However, the former is computationally
expensive and in the latter, the extrapolation itself is questionable w.r.t regularity in time. In this
work, a novel dissipation-based arc-length method is proposed as a robust and computationally
efficient monolithic solution technique for the phase-field hydraulic fracture model. Similar
to brittle fracture in force driven mechanical problems, constant flux driven hydraulic fracture
processes are also unstable. Furthermore, due to the constant flux loading in hydraulic fracturing
problems, scaling of the external force is not possible. Instead, the time step-size is considered
as the additional unknown, augmenting the arc-length constraint equation. The robustness and
computational efficiency of the proposed arc-length method is demonstrated using numerical
experiments, where comparisons are made with the staggered solver as well as the quasi-Newton
BFGS method.

1. Introduction

The computational modelling of fluid-driven fracture is imperative for reliable hydraulic fracturing operations. The applications
of such operations are diverse, ranging from extraction of petroleum and natural gas, via geothermal energy production, to
the geological storage of carbon dioxide. This motivates the need for accurate computational models describing the fluid-driven
fracturing phenomenon.

The computational modelling of the fracturing process using the conventional Finite Element Method [1–3] is not possible on a
fixed mesh. Therefore, Secchi, Simoni, and Schrefler introduced re-meshing techniques for modelling hydraulic fracture (fracking)
in [4,5]. Later, the development of the eXtended Finite Element Method (XFEM) [6,7] enabled the augmentation of the displacement
spaces with special enrichment functions capable of reproducing discontinuous and singular elastic fields associated with fractures.
These enrichment functions are dynamically incorporated into the computational model as the fracture propagates. The early
adaptation of the XFEM towards hydraulic fracturing was carried out by Gordeliy and Peirce in [8–10]. Later studies extended the
model to a three-dimensional framework [11], anisotropic modelling of the shale reservoir [12], interaction of new fractures with
existing natural fractures [13], and investigations into the fracture/pore mass exchange [14] to cite a few. Adopting an alternative
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approach, the Cohesive Zone Model (CZM) [15–17] was used to model hydraulic fracturing in [18–20]. The XFEM and CZM hydraulic
racturing models inherit the computational challenges associated with discrete fracture models, viz., the need for a fracture
racking algorithm, re-meshing, and dynamic insertion of enriched shape functions/cohesive elements. For topologically complex
racturing phenomenon (such as, branching, kinking and merging of fractures), the aforementioned computational challenges may
e prohibitively tedious.

The tedious aspects of the discrete fracture modelling techniques (XFEM, CZM) are circumvented by the phase-field fracture
model [21]. The phase-field fracture model [22–24] belongs to the smeared (diffused) representation of fracture, and is based on the
comparatively simple notion of energy minimization. Complex fracture topologies are simulated based on this minimization without
the need for any ad hoc criterion or fracture tracking algorithm. As such, the phase-field fracture model has been adopted in a variety
f engineering problems, including hydraulic fracturing. The pioneering works in phase-field hydraulic fracturing model was carried
ut by Mikelić, Wheeler, Wick, and Wollner [25–28], and Bourdin, Chukwudozie, and Yoshioka [29–31]. In the same period and

later, several variants [32–39] have been proposed, largely differing in the construction of the poroelastic energy functional and in
he delineation of the bulk reservoir and fracture domains.

In the context of the poroelastic phase-field energy functional construct, there is a lack of consensus w.r.t. the degradation of the
fluid pressure contribution. Zhou et al. [36], and Heider and Sun [37] proposed that the phase-field based degradation be applied
only on the solid skeleton and not on the fluid pressure contribution. The authors instead advocated for the degradation of the fluid
pressure contribution for soil desiccation problems, a choice later supported by analytical studies in Luo et al. [40]. However, in
several other hydraulic fracturing works [27,38,41], the fluid pressure term was also degraded upon fracture. You and Yoshioka [41]
argued that degrading the fluid pressure term maintains the stress continuity across the fracture for all values of the Biot coefficient.
However, when the fluid pressure term is not degraded, the stress continuity holds only when the Biot coefficient is unity. In this

ork, the Biot coefficient is set to one for all problems.
In addition to a suitable poroelastic phase-field energy functional construct, a proper representation of the fluid flow in the bulk

eservoir domain and within the fractures is required [32]. The fluid pressure plays a key role in driving solid skeleton deformation
and the initiation and propagation of the fracture(s) in a porous medium. In the bulk reservoir domain of rock specimens, the fluid
permeates through interconnected pores and is modelled using the Darcy’s law. However, upon fracturing, the fluid flow is idealized
s flow between parallel plates, transitioning from Darcy to a Poiseuille type flow. Therefore, it is important to delineate the bulk
eservoir and the fracture domains. For discrete fracture models like XFEM and CZM, the delineation is present in the computational
odel by construct. However, in phase-field fracture models, the fracture is represented by a smeared (diffused) localized zone of

inite width. This makes the delineation process heuristic, and dependent on a user-defined threshold phase-field value [36,37].
Despite the aforementioned developments in the phase-field hydraulic fracture models, a robust and computationally efficient

monolithic solution technique is still elusive, to the best of the authors’ knowledge. This is due to the non-convex nature of the
underlying energy functional [42]. Mikelić, Wheeler, Wick, and Wollner in [26–28] adopted a convexification strategy whereby the
phase-field in the balance of momentum equation was extrapolated from the two previously converged steps [43]. Consequently,
the Newton–Raphson method was demonstrated as convergent. However, as stated by the authors themselves, in the absence
f regularity of the phase-field in time, the extrapolation technique itself is questionable. Finally, a black-box monolithic solver

PANDAS1 has also been adopted for hydraulic fracturing problems [33,44]. These works do not report any implementation details
(line search, iteration terminating tolerances, etc.) and performance measures (iterations to converge, wall time). Departing from
he monolithic approach, the staggered solution technique [23,24] was adopted in most other phase-field hydraulic fracturing

studies [25,29–31,35–38,41]. Although robust, the staggered solution technique is computationally expensive. The state-of-the-art
pertaining to solution techniques for phase-field hydraulic fracturing lacks a robust and computationally efficient monolithic solution
technique.

In this work, a novel monolithic solution technique is proposed for phase-field hydraulic fracturing in form of the arc-length
ethod. A dissipation-based arc-length constraint equation is adopted [45]. For linear elastic fracture problems, the robustness and

computational efficiency of the arc-length method has been demonstrated in [45–48]. In these problems, the external load is scaled
ith a scalar load parameter the magnitude of which becomes an additional unknown in the system of equations. However, for
hase-field hydraulic fracturing problems, such an approach is not possible as the problems are often driven by a constant flux (an

assumption commonly adopted in the literature [25,29–31,35–38,41]). This eliminates the option to use the load scale factor as
dditional unknown. In this work, instead of scalar load parameter, the time step-size is considered as an additional scalar unknown
ugmenting the displacement, fluid pressure, and phase-field solution space. The set of discrete equations for solving a hydraulic
racturing problem is presented along with the implementation caveats. The latter include a user criterion for switching from the
onventional Newton–Raphson method to the arc-length method based on a threshold energy, and an adaptive modification of
he arc-length based on convergence achieved in the previous computation step. The performance of this novel arc-length method
onstruct is assessed on benchmark problems, presented earlier in [27]. Comparisons are made with the quasi-Newton BFGS method

and the staggered solver [23,24] w.r.t. average iterations and wall time. Note that the BFGS method has only been used in the context
of soil consolidation [49] and not for phase-field hydraulic fracture, to the best of the authors’ knowledge.

The article is organized as follows: Section 2 presents the phase-field hydraulic fracturing model (the energy functional and fluid
transport equation and their corresponding weak form equations). Subsequently, in Section 3, the discrete problem and the arc-length

ethod are introduced. Section 4 presents the numerical experiments on benchmark hydraulic fracturing problems. Therein, the
performance of the arc-length method is carried out w.r.t. the staggered solution technique and the quasi-Newton BFGS method.
Finally, Section 5 concludes the article with remarks on the novel arc-length method and an outlook to future works.

1 PANDAS available to purchase at https://sciengine.de/index.php is closed-source and lacks documentation.
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2. Phase-field hydraulic fracturing model

The phase-field hydraulic fracturing model comprises of an energy functional accounting for deformation of the solid skeleton
and fracture (at fixed fluid pressure) and a transport equation for the fluid pressure. The latter is derived using the conservation of
olid and fluid masses [50,51]. Finally, the model is presented within the small strain framework, a choice adopted in most hydraulic
racturing studies in the literature [25–28,31,36–38,41].

2.1. The energy functional

The poro-elastic phase-field fracture energy functional for hydraulic fracturing is an extension of its purely solid phase linear
elastic counterpart,

𝐸solid(𝐮, 𝜑) = ∫𝛺
𝑔(𝜑)𝛹+(𝝐[𝐮]) d𝛺 + ∫𝛺

𝛹−(𝝐[𝐮]) d𝛺

− ∫𝛤 𝑢N
𝐭𝑢𝑝 ⋅ 𝐮 d𝛤 − ∫𝛺

𝐛 ⋅ 𝐮 d𝛺

+ ∫𝛺
𝐺c
𝑐w

(

𝑤(𝜑)
𝑙

+ 𝑙|𝛁𝜑|2
)

d𝛺 ,

(1)

with pertinent fluid pressure contributions. Prior to that, it is imperative to explain the different terms and coefficients used in the
bove expression. The strain energy density 𝛹 (𝝐[𝐮]) is additively decomposed into a fracture driving part and a residual energy,
enoted as 𝛹+(𝝐[𝐮]) and 𝛹−(𝝐[𝐮]), respectively. The phase-field based degradation function 𝑔(𝜑) acts on the fracture driving strain

energy density. In this work, the spectral decomposition-based split proposed by Miehe et al. [52] is adopted. Furthermore, 𝐭𝑢𝑝 and
are external traction and body forces. Finally, the last integral of the energy functional represents the fracture energy where, 𝐺c is

he Griffith fracture toughness, 𝑐w is a normalization constant associated with the locally dissipated fracture energy function 𝑤(𝜑),
and 𝑙 is the fracture length-scale.

The extension of the phase-field fracture energy functional from the purely solid phase linear elastic media to hydraulic fracturing
s carried out adapting the seminal work of Biot [53]. The extended energy functional is postulated as a function of the strain 𝝐[𝐮],

the phase-field 𝜑, and the increment of the fluid content 𝜁 . The lattermost is defined as,

𝜁 =
𝑝
𝑀

+ 𝛼𝛁 ⋅ 𝐮, (2)

where, 𝛼 and 𝑀 represent the Biot coefficient and Biot modulus, respectively. The energy functional in conjunction with the
phase-field fracture is then expressed as,

𝐸(𝐮, 𝑝, 𝜑) = ∫𝛺
𝑔(𝜑)𝛹+(𝝐[𝐮]) d𝛺 + ∫𝛺

𝛹−(𝝐[𝐮]) d𝛺

− ∫𝛺
𝛼 𝑝𝛁 ⋅ 𝐮 d𝛺 − ∫𝛺

𝑝2

2𝑀
d𝛺 − ∫𝛤 𝑢N

𝐭𝑢𝑝 ⋅ 𝐮 d𝛤

− ∫𝛺
𝐛 ⋅ 𝐮 d𝛺 + ∫𝛺

𝐺c
𝑐w

(

𝑤(𝜑)
𝑙

+ 𝑙|𝛁𝜑|2
)

d𝛺 .

(3)

In the above expression, a Legendre transformation is carried out to replace the argument 𝜁 with the fluid pressure 𝑝. Similar energy
functionals may be observed in works of Zhou, Zhuang, and Rabczuk [36,37] and Heider and Sun [37]. In the energy functional
(3), the energetic terms associated with the fluid pressure are assumed unaffected by the degradation function 𝑔(𝜑). Consequently,
the stress continuity across the fracture is ensured only when the Biot coefficient is set to 1 [41].

Remark 1. It is important to note that the fluid pressure 𝑝 is not computed from the minimization of the energy functional (3).
Instead, it is obtained from a transport equation, derived from the conservation of solid skeleton and fluid masses.

2.2. Fluid transport

The transport equation for the fluid in the porous medium is obtained using the conservation of mass for the solid as well as the
fluid [50,51]. It is stated as,

[

𝛼 − 𝑛
𝐾s

+ 𝑛
𝐾f

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
1
𝑀

𝜕 𝑝
𝜕 𝑡 + 𝛼

𝜕 𝜖vol
𝜕 𝑡 − 𝛁 ⋅

[

𝜅i𝐈
𝜇f

⏟⏟⏟
𝐊ef f

𝛁𝑝
]

= 0,
(4)

where, 𝑛 refers to the porosity of the specimen, 𝐾s and 𝐾f represent the bulk modulus of the solid grains and the fluid, respectively.
The volumetric strain measure 𝜖vol ∶= 𝛁 ⋅ 𝐮, and isotropic permeability second-order tensor (matrix) 𝐊ef f is obtained using the
ntrinsic permeability 𝜅i and the fluid dynamic viscosity 𝜇f , respectively. In the absence of fracture dependent coefficients, the fluid

transport (4) remains applicable only for poro-elasticity studies. In such a case, the fluid flow in a fractured domain is not correctly
represented [32]. In this work, the permeability and the porosity of the porous rock medium are enhanced upon fracture.
3 
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The permeability, say 𝐊f in a fracture is assumed to be function of the fracture aperture, based on Witherspoon et al.’s cubic
law [54]. With this assumption, the fluid flow in the fracture is postulated to be of Poiseullie type. The fracture permeability 𝐊f is
then expressed as,

𝐊f =
𝑤2

f
12

𝐈, (5)

where, 𝑤f is the fracture aperture. For phase-field fracture models, however, the fracture aperture is not obtained explicitly as a part
of the solution. Instead, it is computed in an approximate fashion [55]. Among the several methods (see Section 3 in [55]), Miehe
et al.’s relation [56],

𝑤f ∶= ⟨ℎel(1 + 𝐧𝜑 ⋅ 𝝐[𝐮] ⋅ 𝐧𝜑)⟩+, with 𝐧𝜑 ≈
𝛁𝜑
|𝛁𝜑|

, (6)

is adopted in this work, where ℎel is the characteristic element size. This relation allows a pointwise computation of the fracture
aperture, based on the integration point strain and phase-field gradient. Having established the notion of the fracture permeability 𝐊f
and permeability of the bulk specimen 𝐊b, the effective permeability 𝐊ef f corresponding to a fracturing material state is postulated
as,

𝐊ef f (𝜑, 𝜖vol[𝐮]) = 𝐊b + ℎ(𝜑, 𝜖vol[𝐮])
(

𝐊f −𝐊b

)

. (7)

In the above expression, ℎ(𝜑, 𝜖vol[𝐮]) is an interpolation function defined as,

ℎ(𝜑, 𝜖vol[𝐮]) = (𝜖vol)

(

⟨𝜑 − 𝜑t h⟩+
⟨1.0 − 𝜑t h⟩

)2

, (8)

with  denoting the Heaviside function. The interpolation function assumes a value zero for closed cracks (𝜖vol[𝐮] ≤ 0) and for the
phase-field 𝜑 less than a user-defined threshold value 𝜑t h = 0.8. In these scenarios, the effective permeability is assumed as the bulk
permeability (𝐊ef f = 𝐊𝑏). For open-cracks (𝜖vol[𝐮] > 0) and 𝜑 > 𝜑t h, the effective permeability is interpolated between the bulk and
racture values.

Similar to the effective permeability, the porosity of the specimen is also interpolated between bulk and fractured material states.
The bulk porosity 𝑛b ∈ [0.2, 0.4] for rock specimen is defined by the user, while the fracture porosity is assumed as unity [41].
Subsequently, the material state dependent expression for porosity is given by,

𝑛(𝜑, 𝜖vol[𝐮]) = 𝑛b + ℎ(𝜑, 𝜖vol[𝐮])
(

𝑛f − 𝑛b
)

, (9)

Upon incorporating the fracture dependent permeability (7) and porosity (9) in the fluid transport equation (4), one obtains,
[

𝛼 − 𝑛(𝜑, 𝜖vol)
𝐾s

+
𝑛(𝜑, 𝜖vol)
𝐾f

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1
𝑀 (𝜑,𝜖vol)

𝜕 𝑝
𝜕 𝑡 + 𝛼

𝜕 𝜖vol
𝜕 𝑡 − 𝛁 ⋅

[

𝐊ef f (𝜑, 𝜖vol)𝛁𝑝
]

= 0.
(10)

2.3. Weak form equations

The set of weak form equations for the phase-field hydraulic fracture model is obtained through a two-fold process. First, the
momentum balance and the phase-field evolution equations are obtained through minimization of the energy functional (3), w.r.t.,
the vector-valued displacement 𝐮 and the scalar-valued phase-field 𝜑. Thereafter, the fluid transport weak form equation is obtained
upon performing a Backward Euler substitution of the time derivatives and subsequently integrating the strong form (10) with a
est function 𝛿 𝑝 over the domain 𝛺. For the sake of brevity, the function arguments (𝜑, 𝜖vol) in 𝐊ef f and 𝑛 are dropped henceforth.
urthermore, the Cauchy effective stress 𝝈[𝐮] ∶= 𝑔(𝜑) 𝜕 𝛹+[𝐮]

𝜕𝝐 + 𝜕 𝛹−[𝐮]
𝜕𝝐 .

The set of weak form equations for the phase-field hydraulic fracture model in conjunction with appropriate trial and test
unctions are presented as Weak form Problem 1. One may note that the Weak form Problem 1 is of saddle point nature, where
he pressure field acts as a Lagrange multiplier constraining the displacement field. Consequently, a careful choice of trial and

test functions is required for the displacement and the water pressure to guarantee a unique solution continuously depending
on the input data. The sufficient condition ensuring this uniqueness is established in the computational mechanics literature as
the Ladyzhenskaya–Babuška–Brezzi (LBB) condition. In order to fulfil the LBB condition, quadratic trial and test functions are
hosen for the displacement field and the phase-field, while the pressure field remains linear. In the discrete sense, such a choice is

referred to as the Taylor and Hood element following their contribution [57]. Note that one may adopt lower order elements with
tabilization techniques, e.g., Finite Increment Calculus (FIC) [58], Fluid Pressure Laplacian (FPL) [59,60], Polynomial Pressure

Projection (PPP) [61], or assumed strain finite element formulation [62,63]. Most of these techniques, however, perform adequately
for poroelastic problems, and their extension towards problems involving damage or fracture is not straight-forward. Gavagnin et al.
adopted the PPP approach for poroelastic problems exhibiting deviatoric fracturing phenomenon [64].

Weak form Problem 1. Find (𝐮, 𝜑, 𝑝) ∈ U × P ×Q such that

𝐸′(𝐮, 𝑝, 𝜑; 𝛿𝐮) =
(

𝑔(𝜑)𝝈+[𝐮] + 𝝈−[𝐮]
)

∶ 𝝐[𝛿𝐮] d𝛺
∫𝛺

4 
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− ∫𝛺
𝛼 𝑝 𝐈∶ 𝝐[𝛿𝐮] d𝛺 = 0 ∀ 𝛿𝐮 ∈ U0, (11a)

𝐸′(𝐮, 𝑝, 𝜑; �̂�) = ∫𝛺

(

𝑔′(𝜑)𝛹+(𝝐[𝐮]) + 𝐺c
𝑐w 𝑙

𝑤′(𝜑)
)

(�̂� − 𝜑) d𝛺

+ ∫𝛺
𝐺c𝑙
𝑐w

𝛁𝜑 ⋅ 𝛁(�̂� − 𝜑) d𝛺 ≥ 0 ∀ �̂� ∈ P, (11b)

∫𝛺

( 1
𝑀

𝑝 − 𝑛𝑝
𝛥𝑡

+ 𝛼
𝜖vol − 𝑛𝜖vol

𝛥𝑡

)

𝛿 𝑝 d𝛺

+ ∫𝛺
𝛁𝛿 𝑝𝐊ef f 𝛁𝑝 d𝛺

= ∫𝛤 𝑝N
𝑞 𝛿 𝑝 d𝛤 ∀ 𝛿 𝑝 ∈ Q, (11c)

using pertinent time-dependent Dirichlet boundary conditions 𝐮𝑝 on 𝛤 𝑢D, 𝜑𝑝 on 𝛤𝜑D and 𝑝𝑝 on 𝛤 𝑝D, and Neumann boundary condition
on 𝛤 𝑝N. The trial and test spaces are defined as

U = {𝐮 ∈ [𝐻2(𝛺)]dim
|𝐮 = 𝐮𝑝 on 𝛤 𝑢D}, (12a)

P = {𝜑 ∈ [𝐻2(𝛺)]|𝜑 ≥ 𝑛𝜑|𝜑 = 𝜑𝑝 on 𝛤𝜑D}, (12b)

Q = {𝑝 ∈ 𝐻1(𝛺)|𝑝 = 𝑝𝑝 on 𝛤 𝑝D}, (12c)

U0 = {𝐮 ∈ [𝐻2(𝛺)]dim
|𝐮 = 𝟎 on 𝛤 𝑢D}, (12d)

Q0 = {𝑝 ∈ 𝐻1(𝛺)|𝑝 = 0 on 𝛤 𝑝D}. (12e)

In (12b), the left superscript 𝑛 refers to the previous time-step. ■

In Weak form Problem 1, the notion of irreversible fracture �̇� ≥ 0 manifests in the form of a variational inequality phase-field
evolution Eq. (11b) with a restricted trial/test space (12c). However, the Finite Element Method (FEM) does not support in the
implementation of such restrictive trial/test spaces. Therefore, the variational inequality is transformed into an ‘equivalent’ equality
formulation using the history variable approach, proposed by Miehe et al. [65]. The history variable approach stores the maximum
value of the fracture driving energy 𝛹+(𝝐[𝐮]) in an implicit ‘history variable’ H. Thereafter, 𝛹+(𝝐[𝐮]) in (11b) is replaced by H,
resulting in an equality formulation. Mathematically, H is defined as

H = max{𝑛H, 𝛹+(𝝐[𝐮])} (13)

where 𝑛 refers to the previous time-step. Incorporating H in (11b) transforms the Weak form Problem 1 into an alternative,
equality-based Weak form Problem 2.

Weak form Problem 2. Find (𝐮, 𝜑, 𝑝) ∈ U × P ×Q such that

𝐸′(𝐮, 𝑝, 𝜑; 𝛿𝐮) = ∫𝛺

(

𝑔(𝜑)𝝈+[𝐮] + 𝝈−[𝐮]
)

∶ 𝝐[𝛿𝐮] d𝛺

− ∫𝛺
𝛼 𝑝 𝐈∶ 𝝐[𝛿𝐮] d𝛺 = 0 ∀ 𝛿𝐮 ∈ U0, (14a)

𝐸′(𝐮, 𝑝, 𝜑; 𝛿 𝜑) = ∫𝛺

(

𝑔′(𝜑)H +
𝐺c
𝑐w 𝑙

𝑤′(𝜑)
)

𝛿 𝜑 d𝛺

+ ∫𝛺
𝐺c𝑙
𝑐w

𝛁𝜑 ⋅ 𝛁𝛿 𝜑 d𝛺 = 0 ∀ 𝛿 𝜑 ∈ P0, (14b)

∫𝛺

( 1
𝑀

𝑝 − 𝑛𝑝
𝛥𝑡

+ 𝛼
𝜖vol − 𝑛𝜖vol

𝛥𝑡

)

𝛿 𝑝 d𝛺

+ ∫𝛺
𝛁𝛿 𝑝𝐊ef f 𝛁𝑝 d𝛺

= ∫𝛤 𝑝N
𝑞 𝛿 𝑝 d𝛤 ∀ 𝛿 𝑝 ∈ Q, (14c)

using pertinent time-dependent Dirichlet boundary conditions 𝐮𝑝 on 𝛤 𝑢D and 𝜑𝑝 on 𝛤𝜑D, and Neumann boundary condition 𝐭𝑢𝑝 on 𝛤 𝑢N.
The superscript 𝑛 in the above equation indicates the previous (pseudo) time-step. The trial and test spaces are defined as

U = {𝐮 ∈ [𝐻2(𝛺)]dim
|𝐮 = 𝐮𝑝 on 𝛤 𝑢D}, (15a)

P = {𝜑 ∈ [𝐻2(𝛺)]|𝜑 = 𝜑𝑝 on 𝛤𝜑D}, (15b)

Q = {𝑝 ∈ 𝐻1(𝛺)|𝑝 = 𝑝𝑝 on 𝛤 𝑝D}, (15c)

U0 = {𝐮 ∈ [𝐻2(𝛺)]dim
|𝐮 = 𝟎 on 𝛤 𝑢D}, (15d)

P0 = {𝜑 ∈ [𝐻2(𝛺)]|𝜑 = 0 on 𝛤𝜑}, (15e)
D
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Q0 = {𝑝 ∈ 𝐻1(𝛺)|𝑝 = 0 on 𝛤 𝑝D}. (15f)

In (14b), the left superscript 𝑛 refers to the previous time-step. The history variable H in (14b) is defined in (13). ■

The history-variable based phase-field hydraulic fracture Weak form Problem 2 is adopted despite its variational inconsistency,
due to its ease of implementation. For variationally consistent formulations, one may pursue the penalty method [66], primal–
ual active set method [43,67] or the micromorphic approach [68,69]. In this work, the focus lies on solving the problem with a

monolithic solution technique, rather than establishing a variationally consistent phase-field formulation.

2.4. Finite element discretized equations

The Euler–Lagrange (weak form) equations in the Weak form Problem 2 are discretized using the finite element method [1,3].
Upon introducing interpolation functions, 𝑁𝒖

𝑖 , 𝑁𝜑
𝑖 and 𝑁𝑝

𝑖 for the displacement, phase-field and the fluid pressure, the corresponding
ontinuous fields (𝐮, 𝜑, 𝑝) are approximated as,

𝐮 =
𝑚
∑

𝑖=1
𝑁𝒖
𝑖 �̂�, 𝜑 =

𝑚
∑

𝑖=1
𝑁𝜑
𝑖 �̂�, and 𝑝 =

𝑛
∑

𝑖=1
𝑁𝑝
𝑖 �̂�, (16)

𝑖 representing the 𝑖th node in a finite element mesh comprising of 𝑚 nodes. Note the difference in the interpolation functions for
the various fields. For the Taylor–Hood elements adopted in this work, 𝑚 is the total number of nodes (interpolating quadratic
approximations for 𝐮 and 𝜑), while 𝑛 represents the number of vertex nodes (interpolating linear approximations for 𝑝). Thereafter,
the spatial derivatives of the interpolation functions 𝑁𝒖

𝑖 , 𝑁𝜑
𝑖 and 𝑁𝑝

𝑖 in a two-dimensional case are expressed as,

𝐁𝒖
𝑖 =

⎡

⎢

⎢

⎣

𝑁𝒖
𝑖,𝑥
0
𝑁𝒖
𝑖,𝑦

0
𝑁𝒖
𝑖,𝑦

𝑁𝒖
𝑖,𝑥

⎤

⎥

⎥

⎦

, 𝐁𝑑𝑖 =

[

𝑁𝜑
𝑖,𝑥

𝑁𝜑
𝑖,𝑦

]

, and 𝐁𝑝𝑖 =
[

𝑁𝑝
𝑖,𝑥

𝑁𝑝
𝑖,𝑦

]

. (17)

Here, the subscripts , 𝑥 and , 𝑦 indicate spatial derivatives in 𝑥 and 𝑦 directions respectively. Using (17), the strain (𝝐), and the
gradients of the phase-field (𝛁𝜑) and fluid pressure (𝛁𝑝) are defined as,

𝝐 =
𝑚
∑

𝑖=1
𝐁𝒖
𝑖 �̃�𝑖, 𝛁𝜑 =

𝑚
∑

𝑖=1
𝐁𝜑𝑖 �̃�, and 𝛁𝑝 =

𝑛
∑

𝑖=1
𝐁𝑝𝑖 �̃�. (18)

Finally, the phase-field hydraulic fracture Discrete Problem 1 is obtained upon inserting (16)–(18) in the Weak form Problem 2.
Note that the test functions are also defined similar to (16), following the Bubnov–Galerkin method. The detailed derivation is
skipped here for brevity. Interested readers may refer to De Borst et al. [70] for finer details on finite element discretization of
Euler–Lagrange equations.

Discrete Problem 1. Compute the solution update vector 𝐬𝑘+1 = {𝛥�̃� ;𝛥 ̃𝑝 ; 𝛥 ̃𝜑} for the current iteration 𝑘 + 1 using

⎡

⎢

⎢

⎣

𝐊𝒖𝒖 𝐊𝒖𝑝 𝐊𝒖𝜑

𝐊𝑝𝒖 𝐊𝑝𝑝 𝐊𝑝𝜑

𝐊𝜑𝒖 𝐊𝜑𝑝 𝐊𝜑𝜑

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Stiffness matrix,𝐊𝑘

⎧

⎪

⎨

⎪

⎩

𝛥�̃�
𝛥 ̃𝑝
𝛥 ̃𝜑

⎫

⎪

⎬

⎪

⎭

⏟⏟⏟
𝐬𝑘+1

=

⎧

⎪

⎨

⎪

⎩

𝟎
𝐟 ext,𝑝
𝟎

⎫

⎪

⎬

⎪

⎭

−

⎧

⎪

⎨

⎪

⎩

𝐟 int,𝒖
𝐟 int,𝑝
𝐟 int,𝜑

⎫

⎪

⎬

⎪

⎭

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Residual, 𝐫𝑘

, (19a)

and update the solution,
⎧

⎪

⎨

⎪

⎩

�̃�
�̃�
�̃�

⎫

⎪

⎬

⎪

⎭𝑘+1

=

⎧

⎪

⎨

⎪

⎩

�̃�
�̃�
�̃�

⎫

⎪

⎬

⎪

⎭𝑘

+

⎧

⎪

⎨

⎪

⎩

𝛥�̃�
𝛥 ̃𝑝
𝛥 ̃𝜑

⎫

⎪

⎬

⎪

⎭𝑘+1

, (19b)

until the norm of the residual is sufficiently small. The stiffness matrix components are given by,

𝐊𝒖𝒖 = ∫𝛺𝑒𝑙

[

𝐁𝒖]𝑇
(

𝑔(𝜑) 𝜕𝝈
+

𝜕𝝐
+ 𝜕𝝈−

𝜕𝝐
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐃

)

[

𝐁𝒖] 𝑑 𝛺 ,

𝐊𝒖𝜑 = ∫𝛺𝑒𝑙

[

𝐁𝒖]𝑇 (

𝑔′(𝜑)𝝈+) [𝐍𝜑] 𝑑 𝛺 ,

𝐊𝒖𝑝 = ∫𝛺𝑒𝑙

[

𝐁𝒖]𝑇 (

−𝛼𝐈𝑣
) [

𝐍𝑝
]

𝑑 𝛺 ,

𝐊𝑝𝒖 = − 1
𝛥𝑡

[𝐊𝒖𝑝]𝑇 ,

𝐊𝑝𝑝 = ∫𝛺𝑒𝑙

[

𝐁𝑝
]𝑇 𝐊ef f

[

𝐁𝑝
]

+
[

𝐍𝑝
]𝑇 1 [

𝐍𝑝
]

𝑑 𝛺 , (19c)

𝑀
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𝐊𝑝𝜑 = ∫𝛺𝑒𝑙

[

𝐁𝑝
]𝑇 𝜕𝐊ef f

𝜕 𝜑
[

𝐍𝜑
]

+
[

𝐍𝑝
]𝑇 𝜕(1∕𝑀)

𝜕 𝜑
( 𝑝 − 𝑛𝑝

𝛥𝑡

)

[

𝐍𝜑
]

𝑑 𝛺 ,

𝐊𝜑𝒖 = ∫𝛺𝑒𝑙

[

𝐍𝒖]𝑇
(

𝑔′(𝜑) 𝜕H
𝜕𝝐

)

[

𝐁𝜑
]

𝑑 𝛺 ,

𝐊𝜑𝑝 = 𝟎,

𝐊𝜑𝜑 = ∫𝛺𝑒𝑙

[

𝐁𝜑
]𝑇

(

𝐺c𝑙
𝑐w

)

[

𝐁𝜑
]

+
[

𝐍𝜑
]𝑇

(

𝐺c
𝑐w𝑙

𝑤′′(𝜑) + 𝑔′′(𝜑) 𝜕H
𝜕𝝐

)

[

𝐍𝜑
]

𝑑 𝛺 ,

and the internal force vector components are computed as

𝐟 ext,𝑝 = ∫𝛤𝑁 ,𝑒𝑙
[

𝐍𝑝
]𝑇 𝑞 𝑑 𝛤 ,

𝐟 int,𝒖 = ∫𝛺𝑒𝑙

[

𝐁𝒖]𝑇 (

𝑔(𝜑)𝝈+ + 𝝈− − 𝛼 𝑝𝐈𝑣
)

𝑑 𝛺 ,

𝐟 int,𝜑 = ∫𝛺𝑒𝑙

[

𝐁𝜑
]𝑇 𝐺𝑐 𝑙

𝑐w
𝛁𝜑

+
[

𝐍𝜑
]𝑇

(

𝑔′(𝜑)H +
𝐺𝑐
𝑐w 𝑙

𝑤′(𝜑)
)

𝑑 𝛺 , (19d)

𝐟 int,𝑝 = ∫𝛺𝑒𝑙

[

𝐁𝑝
]𝑇 (

𝐊ef f𝛁𝑝
)

+
[

𝐍𝑝
]𝑇

(

1
𝑀

𝑝 − 𝑛𝑝
𝛥𝑡

+ 𝛼
𝜖vol − 𝑛𝜖vol

𝛥𝑡

)

𝑑 𝛺 ,

Note that  is an assembly operator that maps element contributions to their global counterparts. Furthermore, 𝐈𝑣 is the Voigt
epresentation of the identity matrix, the left superscript 𝑛 refers to the previous time step, and ℋ is the Heaviside function. The
aterial stiffness matrix 𝐃 depends on the chosen strain energy density split. The history variable H is defined in (13). ■

The phase-field hydraulic fracture Discrete Problem 1 is non-convex, resulting in poor convergence behaviour of the conventional
Newton–Raphson method. In particular, the block 𝐊𝒖𝜑 contributes to the divergence of the iterative process at the onset of
racture [43,71]. Recently, the arc-length method augmented with a dissipation-based constraint has been demonstrated as a
onvergent monolithic solution technique for phase-field fracture models [45,47,48], albeit for linear elastic fracture mechanics

problems. In the next section, the limitations in straight-forward extension of the arc-length method to hydraulic fracturing problems
is discussed. This is followed by a novel arc-length method construct, suited for hydraulic fracturing problems.

3. A novel arc-length method

The conventional arc-length method [72,73], designed for structural instability problems, introduces a parametrization of the
external force (load) 𝐟 ext as,

𝐟 ext = 𝜆 𝐟 ext . (20)

Here, 𝜆 is scalar load parameter and 𝐟 ext is a unit external force. The load parameter 𝜆 augments the solution space as an additional
nknown. Thereafter, an arc-length constraint equation is incorporated into the system of equations to retain its determinacy. In a
iscrete ‘matrix–vector’ sense (similar to (19a) in Discrete Problem 1), the system of equations assume the form,

[

𝐊𝑼 𝑼 𝐊𝑼𝜆

𝐊𝜆𝑼 𝐊𝜆𝜆

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Stiffness matrix,𝐊𝑘

{

𝛥�̃�
𝛥�̃�

}

⏟⏟⏟
𝐬𝑘+1

=
{

𝜆𝐟 ext
0

}

−
{

𝐟 int,𝑼
𝑔ar c

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Residual, 𝐫𝑘

. (21)

In the context of the phase-field hydraulic fracturing problem, one may assume the solution space 𝐔 ∶= {𝐮, 𝑝, 𝜑}. The scalar arc-length
onstraint equation is designated as 𝑔ar c. The system of Eqs. (21) has been adopted for phase-field modelling of fractures in linear
lastic media [45,47,48]. Therein, the solution space 𝐔 ∶= {𝐮, 𝜑}. Also, these problems are driven by mechanical external forces

that vary over the loading process. In contrast, hydraulic fracturing problems in this work are driven by a constant external flux.
As such, the notion of the load factor 𝜆 is rendered surplus. This motivates the need for an alternative arc-length method construct.
7 
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3.1. Time step-size as the scaling parameter

In this work, an arc-length method is proposed, wherein the current time step-size 𝛥𝑡 is considered as the scalar unknown
corresponding to the arc-length constraint equation 𝑔ar c. Consequently, the discrete system of equations assume the form,

[

𝐊𝑼 𝑼 𝐊𝑼𝛥𝑡

𝐊𝛥𝑡𝑼 𝐊𝛥𝑡𝛥𝑡

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Stiffness matrix,𝐊𝑘

{

𝛥�̃�
𝛥𝑡

}

⏟⏟⏟
𝐬𝑘+1

=
{

𝐟 ext
0

}

−
{

𝐟 int,𝑼
𝑔ar c

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Residual, 𝐫𝑘

. (22)

Unlike the conventional arc-length method (21), the time step-size computing variant (22) does not parametrize the external load
vector 𝐟ext . This allows an arbitrary temporal evolution of 𝐟ext , which, in the case of hydraulic fracturing problems remain constant
in time.

3.2. Arc-length constraint

Having established an arc-length method construct for hydraulic fracturing problems, the focus is shifted to an appropriate
choice of the arc-length constraint equation. When the arc-length method was conceived as a solution technique meant to capture
the snap-back and snap-through instabilities associated with geometrically nonlinear problems [72,73], several arc-length constraint
quations were proposed. Some of these equations may be cast into a generic expression as,

𝑔ar c(𝛥𝐮, 𝛥𝜆, 𝛥𝑠) ∶= 𝛥𝐮𝑇 𝛥𝐮 + 𝜓 𝛥𝜆 𝐟𝑇ext 𝐟ext − 𝛥𝑠 = 0, (23)

where, 𝛥𝐮 represents the displacement increment, 𝛥𝑠 is the arc-length, and 𝜓 is user-defined scalar. Based on the choice of 𝜓 ,
the different arc-length constraint variants are obtained. For instance, choosing 𝜓 = 0 yields the cylindrical arc-length constraint
equation, while 𝜓 = 1 and 𝜓 > 1 result in the spherical and elliptic variants, respectively. For a comprehensive review of these
ariants, the reader is referred to [74,75].

In the context of dissipative materials, Verhoosel et al. [76] reported that the arc-length constraint equation (23) does not perform
well. The authors attributed this observation to the localization of the deformation into narrow bands, which renders controlling
the solution through a global constraint inadequate. As a solution, the energy release rate-based arc-length constraint was proposed
s,

𝑔ar c(𝛥𝐮, 𝛥𝜆, 𝛥𝑠) ∶= 1
2
[𝐟ext ]𝑇

(

𝜆𝑛 𝛥𝐮 − 𝛥𝜆𝐮𝑛
)

− 𝛥𝑠 = 0, (24)

where variables with a subscript 𝑛 corresponds to the previous converged step. The energy release rate-based constraint equation
as been adopted for phase-field fracture models in [46,77], albeit for a limited set of linear elastic fracture problems. Due to its

reliance on the scaling of the external force vector, a straight-forward adaption in the phase-field hydraulic fracturing model is not
possible.

Recently, Bharali et al. [45] proposed an alternative arc-length constraint equation, based on the incremental phase-field fracture
nergy 𝛥𝛹f r ac. The constraint equation is given by,

𝑔ar c(𝜑, 𝛥𝜑, 𝛥𝑠) ∶= ∫𝛺
𝐺c
𝑐w𝑙

(

𝑤′(𝜑)𝛥𝜑 + 2𝑙2𝛁𝜑 ⋅ 𝛁𝛥𝜑
)

d𝛺
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛥𝛹f r ac

−𝛥𝑠 = 0. (25)

Unlike the energy release rate-based arc-length constraint (24), the incremental phase-field fracture energy based constraint (25)
does not depend on the unit external force or its scaling load parameter 𝜆. As such, it is suited to hydraulic fracturing problems.

owever, the constraint (25) results in a sparse 𝐊𝛥𝑡𝑼 block (see (22)). This could lead to a poorly conditioned system of equations
or a nearly singular Stiffness matrix [78]. Setting 𝐊𝛥𝑡𝛥𝑡 = 𝜅, where 𝜅 > 0 circumvents these issues, however, at the cost of an inferior
convergence rate.

One may construct an alternative, yet equivalent arc-length constraint equation, which results in a comparatively dense 𝐊𝛥𝑡𝑼

lock. To that end, the phase-field fracture evolution Eq. (14b) is utilized and the test function 𝛿 𝜑 ∶= 𝛥𝜑 is assumed. Thereafter, on
ubstituting 𝛥𝛹f r ac from (25), the alternative arc-length constraint equation is obtained as,

𝑔ar c(𝐮, 𝜑, 𝛥𝜑, 𝛥𝑠) ∶= ∫𝛺

(

𝑔(𝑛𝜑) − 𝑔(𝜑))H 𝑑 𝛺 − 𝛥𝑠 = 0. (26)

3.3. Finite element discretized equations

The finite element discretized equations in Discrete Problem 1 is extended with the time step-size computing arc-length method
(22) and constraint (26). This results in the Discrete Problem 2.
8 
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Discrete Problem 2. Compute the solution update vector 𝐬𝑘+1 = {𝛥�̃� ;𝛥 ̃𝑝 ; 𝛥 ̃𝜑 ; 𝛥𝑡} for the current iteration 𝑘 + 1 using

⎡

⎢

⎢

⎢

⎢

⎣

𝐊𝒖𝒖 𝐊𝒖𝑝 𝐊𝒖𝜑 𝐊𝒖𝛥𝑡

𝐊𝑝𝒖 𝐊𝑝𝑝 𝐊𝑝𝜑 𝐊𝑝𝛥𝑡

𝐊𝜑𝒖 𝐊𝜑𝑝 𝐊𝜑𝜑 𝐊𝜑𝛥𝑡

𝐊𝛥𝑡𝒖 𝐊𝛥𝑡𝑝 𝐊𝛥𝑡𝜑 𝐊𝛥𝑡𝛥𝑡

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Stiffness matrix,𝐊𝑘

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥�̃�
𝛥 ̃𝑝
𝛥 ̃𝜑
𝛥𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⏟⏟⏟
𝐬𝑘+1

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝟎
𝐟 ext,𝑝
𝟎
0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

−

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐟 int,𝒖
𝐟 int,𝑝
𝐟 int,𝜑
𝑔ar c

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Residual, 𝐫𝑘

, (27a)

and update the solution,
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until the norm of the residual is sufficiently small. The stiffness matrix components are given by,
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𝐊𝑝𝜑 = ∫𝛺𝑒𝑙

[

𝐁𝑝
]𝑇 𝜕𝐊ef f

𝜕 𝜑
[

𝐍𝜑
]

+
[

𝐍𝑝
]𝑇 𝜕(1∕𝑀)

𝜕 𝜑
( 𝑝 − 𝑛𝑝

𝛥𝑡

)

[

𝐍𝜑
]

𝑑 𝛺 ,

𝐊𝑝𝛥𝑡 = −∫𝛺𝑒𝑙

[

𝐍𝑝
]𝑇 1
𝑀

( 𝑝 − 𝑛𝑝
𝛥𝑡2

)

−
[

𝐍𝑝
]𝑇 𝛼

( 𝜖vol − 𝑛𝜖vol
𝛥𝑡2

)

𝑑 𝛺 ,

𝐊𝜑𝒖 = ∫𝛺𝑒𝑙

[

𝐍𝒖]𝑇
(

𝑔′(𝜑) 𝜕H
𝜕𝝐

)

[

𝐁𝜑
]

𝑑 𝛺 ,

𝐊𝜑𝑝 = 𝟎,

𝐊𝜑𝜑 = ∫𝛺𝑒𝑙

[

𝐁𝜑
]𝑇

(

𝐺c𝑙
𝑐w

)

[

𝐁𝜑
]

+
[

𝐍𝜑
]𝑇

(

𝐺c
𝑐w𝑙

𝑤′′(𝜑) + 𝑔′′(𝜑) 𝜕H
𝜕𝝐

)

[

𝐍𝜑
]

𝑑 𝛺 ,

𝐊𝜑𝛥𝑡 = 𝟎,

𝐊𝛥𝑡𝒖 = ∫𝛺𝑒𝑙
𝛥𝑔(𝜑)𝝈+ [

𝐁𝒖] 𝑑 𝛺 ,

𝐊𝛥𝑡𝜑 = ∫𝛺𝑒𝑙

[

𝐍𝜑
]

𝑔′(𝜑)𝛹+ 𝑑 𝛺 ,

𝐊𝛥𝑡𝑝 = 𝐊𝛥𝑡𝛥𝑡 = 0,

and the internal force vector components are computed as
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[
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𝐟 int,𝒖 = ∫𝛺𝑒𝑙
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3.4. Implementation caveats

The arc-length method does entail some implementation caveats. They are discussed in this section.

Singular Hessian
The stiffness matrix 𝐊 in Discrete Problem 2 would be singular if adequate constraints are not enforced, and also at the start of

he analysis when the solution is zero. In this work, adequate constraints are always enforced on all problems. The second source
of singular stiffness matrix is circumvented by commencing the simulation with the conventional Newton–Raphson method (see
Discrete Problem 1). Thereafter, the switch to the arc-length method may be carried out when the Newton–Raphson method fails
o converge or based on some user-defined criterion.

User criterion for switching to the arc-length method
A user-defined criterion for switching from the Newton–Raphson method to the arc-length method may be formulated based on

the energy dissipated in a step 𝛥𝛹f r ac. Once it exceeds a certain threshold value, say threshold 𝛹f r ac,t h, the switch is carried out. The
threshold energy may be either prescribed based on user-intuition or computed using a threshold phase-field 𝜑t h as,

𝛹f r ac,t h =
𝐺c
𝑐w𝑙

𝑤(𝜑t h)𝑉elem, (28)

with 𝑉elem being the volume of the smallest element in the finite element mesh.
In this work, the switch from the Newton–Raphson method to the arc-length method is made when 𝛥𝛹f r ac > 𝛹f r ac,t h = 10−7 and

also when the Newton–Raphson method requires more than 6 iterations to converge in a step.

Adaptive modification of the arc-length
Another key aspect pertaining to the arc-length method is the initial value of the arc-length 𝛥𝑠 and its adaptive modifications over

the course of the simulation. In this work, the initial value of the arc-length 𝛥𝑠 is set to fracture energy dissipated in the previous
step, computed using Newton–Raphson method. Although, this value may be conservatively small, it allows a smooth transition
from the Newton–Raphson method to the arc-length method.

Furthermore, during the course of simulation, the arc-length 𝛥𝑠 is modified adaptively, based on iterations required to achieve
onvergence iiter. Following Verhoosel et al. [76], the arc-length 𝛥𝑠 for the current step is computed as,

𝛥𝑠 =

{

1.15𝛥𝑠n if 𝚒𝚒𝚝𝚎𝚛 < 𝚘𝚙𝚝𝙸𝚝𝚎𝚛

𝛥𝑠n 0.50.25(𝚒𝚒𝚝𝚎𝚛−𝚘𝚙𝚝𝙸𝚝𝚎𝚛) otherwise,
(29)

where, the subscript n indicates the previous converged step, optIter is a user-defined optimum number of iterations.

4. Numerical study

In this section, numerical experiments are carried out on three hydraulic fracturing problems, using the proposed time step-size
computing arc-length method. The corresponding geometries have been adopted from Mikelić, Wheeler, and Wick [26,27], and are
resented in Fig. 1 . For all problems, the computational domain is a square (4 × 4 [m2]), embedded with varying initial fracture(s)

to demonstrate the complexity of fracture topologies. The Single Natural Fracture (SNF) specimen contains an initial fracture, 0.4
[m] in length and is located midway along the height. Upon injecting fluid into the fracture, a horizontal fracture propagation is
expected. The Double Natural Fracture (DNF) specimen adds a vertical initial fracture of length 0.4 [m], at an x-offset 0.6 [m]
from the centre of the specimen. A fracture merging event is expected upon injection of fluid into the existing fractures. Finally,
the Triple Natural Fracture (TNF) adds an inclined fracture to the DNF specimen. The newly introduced fracture is a line segment
rom coordinates (−0.8,−0.3) to (−0.3,−0.8) assuming the axes origin placed at the centre of the specimen. The injection of fluid

into the existing fractures would result in two fracture merging events. For all problems, the model parameters are presented in
10 
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Fig. 1. Specimens with varying initial fractures.

Table 1
Model parameters.

Parameters Value [Units]

Fracture model AT2
Energy split Spectral
𝐸0 1 [GPa]
𝜈 0.2 [–]
𝐺c 1 [N/m]
𝑙 5e−2 [m]
Element size 𝑙/4 [m]
𝛼 1.0 [–]
𝑛 0.4 [–]
𝑘𝑖,𝑏 1e−12 [m2]
𝜇𝑓 1e−3 [Pa s]
𝐾𝑠 10 [GPa]
𝐾𝑓 2 [GPa]
𝑞𝑝 1e−2 [m/s]
optIter 10 [–]

Table 1. Due to the difference in the formulation of the fluid transport equation in this work compared to Mikelić, Wheeler, and
Wick [26,27], additional parameters (𝐾𝑏, 𝐾𝑓 , 𝑛) have been utilized.

The specimens in Fig. 1 are discretized with 8-noded Taylor and Hood quadrilateral elements [57], in accordance with the test
and trial spaces established in the Weak form Problem 2. Furthermore, a residual-based convergence criterion is adopted for both,
the Newton–Raphson method as well as the arc-length method. Convergence is assumed to be achieved when the ratio of the norm
of the current residual to norm to residual at the first iteration is less than a certain tolerance, 10−4. Finally, the linear problem
within each iteration is solved using the shared-memory Pardiso direct solver from Intel’s oneAPI Math Kernel Library [79].

Fracture topologies and pressure distributions

The phase-field fracture distribution in the SNF specimen is presented in Fig. 2 for different times (𝑡 = 0.001, 0.0365 and 0.15
[s]) during the analysis. The initial fracture propagates in mode I, a consequence of choosing the spectral decomposition [65] of
the strain energy density. The observed fracture pattern is similar to that reported by Mikelić et al. [26], however, with a different
timeline. This difference is attributed to the chosen model parameters which differ from Mikelić et al. [26]. Furthermore, adopting
the analytical expression for the fracture length as a function of injection time from Detournay[80], the fracture propagation timeline
is verified in Appendix.

The development of fluid pressure within the SNF specimen is presented in Fig. 3, for the aforementioned times (𝑡 = 0.001, 0.0365
and 0.15 [s]) during the analysis. The fluid pressure localizes with higher values observed in the fracture zone (𝜑 > 0), compared to
the bulk (intact) material zone. This localization of the pressure is consequence of enhanced permeability (7) and porosity (9) in the
fractures. Fig. 3(b) also presents the development of negative fluid pressures at the fracture tips. Secchi and Schrefler [5] describes
11 
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Fig. 2. Figures (a–c) present the distribution of the phase-field variable at the different times during the analysis of the Single Natural Fracture (SNF) specimen.

Fig. 3. Figures (a–c) present the distribution of the water pressure at the different times during the analysis of the Single Natural Fracture (SNF) specimen.

Fig. 4. Figures (a–c) present the distribution of the phase-field variable at the different times during the analysis of the Double Natural Fracture (DNF) specimen.

this phenomenon as ‘fluid lag’, which arises due to a high fracture propagation velocity for a given permeability. In such a scenario,
the fluid is not able to flow quickly enough to occupy the fracture space. The reader is referred to Detournay and Garagash [81]
for more details.

Fig. 4 presents the phase-field fracture topology observed at different times (𝑡 = 0.001, 0.01 and 0.04 [s]) during the hydraulic
fracturing analysis of the DNF specimen. The final fracture pattern is similar to that reported by Mikelić, Wheeler, and Wick [26] and
not the propagation phase. This difference is due to the fluid injection of both fractures in this work, unlike that in [26]. Similar
12 
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Fig. 5. Figures (a–c) present the distribution of the water pressure at the different times during the analysis of the Double Natural Fracture (DNF) specimen.

Fig. 6. Figures (a–c) present the distribution of the phase-field variable at the different times during the analysis of the Triple Natural Fracture (TNF) specimen.

Fig. 7. Figures (a–c) present the distribution of the water pressure at the different times during the analysis of the Triple Natural Fracture (TNF) specimen.

to the SNF specimen, the fracture propagation occurs primarily in mode I due to the spectral decomposition [65] of the strain
energy density. However, DNF specimen exhibits a comparatively complex fracture merging behaviour. The arc-length method is
able to capture this unstable fracture growth. Furthermore, the water pressure distribution is presented in Fig. 5. Similar to the SNF
specimen, the fluid lag phenomenon at the fracture tips as well as the localization of water pressure are observed.

Fig. 6 presents the phase-field fracture distribution at different times (𝑡 = 0.005, 0.0197 and 0.02 [s]) during the fluid driven
fracturing of the TNF specimen. Here, two fracture merging events are observed. From an energy minimization perspective, these
events could be seen as competing mechanisms. The first fracture merging event occurs when the initial horizontal fracture
propagates and merges with the vertical fracture at 𝑡 ≈ 0.011 [s]. Thereafter, at 𝑡 ≈ 0.0197 [s] (see Fig. 6(b)), the second
13 
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Table 2
Table presents the total numbers of steps and iterations, average iterations and wall time (in seconds) for the SNF, DNF, TNF
specimens simulated using the arc-length method with varying iteration terminating tolerances. DOFs is an abbreviation for
Degrees of Freedom. Failed indicates the number of steps that did not converge.
Specimen (DOFs) tol Steps (Failed) Total Iters. Avg. Iters. Wall time [s]

SNF (274 940)
10−4 320 (25) 2340 7.31 1.750e+04
10−6 313 (10) 3463 11.06 2.672e+04
10−8 381 (37) 4584 12.03 6.158e+04

DNF (1 233 924)
10−4 224 (6) 1745 7.79 5.410e+04
10−6 218 (6) 2216 10.16 7.211e+04
10−8 192 (14) 2739 14.26 1.059e+05

TNF (1 235 724)
10−4 147 (3) 1144 7.78 3.494e+04
10−6 191 (9) 1827 9.56 5.952e+04
10−8 188 (18) 2307 12.27 9.514e+04

fracture merging event occurs. Furthermore, the fluid pressure distribution is presented in Fig. 7, again demonstrating the fluid
lag phenomenon.

Performance assessment

This section presents a study on the computational efficiency and robustness of the proposed time step-size computing arc-length
ethod. To that end, the hydraulic fracture simulations are carried out on the SNF, DNF, and TNF specimens with varying iteration

terminating tolerances 10−4, 10−6 and 10−8. All model parameters remain unchanged from Table 1, albeit the optimal iteration
count (optIter). Adopting the rationale that a stricter tolerance would entail more iterations to achieve convergence, optIter
s varied as 10, 14 and 18 corresponding to the tolerances 10−4, 10−6 and 10−8, respectively. Thereafter, the total as well as the

average number of iterations required for convergence through the simulation are considered as computational efficiency measures,
along with the wall time. The simulations are performed on the Chalmers’ Centre for Computational Science and Engineering Vera
cluster on Intel Xeon Gold 6130.

In the context of problem size, the SNF specimen is discretized with 8-noded quadrilateral Taylor–Hood elements. Adopting
the pre-refinement strategy along the expected horizontal fracture propagation zone yields 23 210 elements and 274 940 Degrees
of Freedom (DOFs). For the DNF and TNF, the mesh is uniformly refined. The discretized DNF specimen consists of 103 752
elements and 1 233 924 DOFs, while the TNF specimen results in 103 999 elements and 1 235 724 DOFs. Due to the lower number of
elements and DOFs, five cores utilized for simulating the SNF specimen, while ten cores are adopted for the DNF and TNF specimen.
Furthermore, shared-memory parallelism is adopted for the assembly of the pertinent matrices and vectors. The linear problem in
very iteration is solved using the shared memory Pardiso solver from Intel’s oneAPI Math Kernel Library [79]. Therein, re-ordering

of the matrix is carried out using nested dissection method, and scaling and weighted matching operations are enabled.
Table 2 presents the efficiency measures for the SNF, DNF and TNF specimen. Convergence is achieved for all combinations of

specimens and iteration terminating tolerances, thereby demonstrating the robustness of the arc-length method. Due to the implicitly
embedded adaptive nature of the arc-length method, the total number of steps required to achieve the final simulation time varies
with the chosen tolerance, and varies from specimen to specimen. However, there is no specific trend w.r.t the tolerance. This is
due to the implicit adaptivity in the arc-length method, where the current value of the arc-length depends on its previous value
and the iterations required to achieve converge in the previous step. One may influence the arc-length update using the parameter
optIter in (29). The chosen arc-length update may in certain steps, result in a non-convergent iterative process. In that case,
the corresponding step is then repeated with an arc-length parameter reduced by 55%. For each problem and chosen tolerance the
Failed steps are also presented. Furthermore, as with most well-behaved nonlinear problems, on adopting a stricter tolerance,
more iterations are required to achieve converge. Consequently, the simulation wall time also increases.

Next, the computational efficiency of the proposed arc-length method is assessed. To that end, the hydraulic fracturing
simulations on the SNF, DNF and TNF specimens are carried out using the BFGS method and the staggered (alternate minimization)
solution technique. The iteration terminating tolerance is set to 10−4. Fixed time-step sizes 5 ⋅ 10−4 [s], 2 ⋅ 10−4 [s], and 1 ⋅ 10−4 [s]
are adopted for the SNF, DNF, and TNF specimens, respectively. This variation in the time-step sizes results in similar number of
steps for BFGS method and the staggered solution technique, as that of the arc-length method for the entire simulation.

Table 3 presents the efficiency measures for the different solution techniques, all with an iteration terminating tolerance of
0−4. The arc-length method utilizes the least number of iterations to converge for all specimens. This also reflects in the simulation
all time. In contrast, the BFGS method requires higher number of iterations to converge. As such, it clocks approximately 9 to 15.5

imes the wall time observed with the arc-length method. Furthermore, the staggered solution technique requires the highest number
f iterations to achieve convergence. This feature is attributed to the splitting of a fully coupled problem into two sub-problems.
espite the higher number of iterations compared to the BFGS method, the staggered solution technique clocks lower wall times.
he reason for this observation lies in the cheaper nature of the linear solves for the individual sub-problems. However, compared
o the arc-length method, the staggered solution technique still increases the wall time by a factor of about 5 to 12. Thus, the savings

made through cheaper linear solvers is overly compensated by large number of iterations required to achieved convergence.
Additionally, on comparing the data from Tables 3 and 2, one may observe that the arc-length method with stricter iteration

erminating tolerances 10−6 and 10−8 records similar or lower wall time, compared to the BFGS and staggered solution techniques
ith tolerance 10−4. This further demonstrates the computational efficiency of the arc-length method.
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Table 3
Table presents the total numbers of steps and iterations, average iterations and wall time (in seconds) for the SNF, DNF, TNF specimens simulated using the
arc-length, BFGS and Staggered methods with iteration terminating tolerance 10−4. DOFs is an abbreviation for Degrees of Freedom. Failed indicates the
number of steps that did not achieve convergence. Wall time ratio is a ratio between the wall time recorded by a method to that of the arc-length method

Specimen (DOFs) Method Steps (Failed) Total Iters. Avg. Iters. Wall time [s] Wall time ratio [–]

SNF (274 940)
Arc-length 320 (25) 2340 7.31 1.750e+04 1
BFGS 299 (0) 5759 19.26 1.568e+05 8.96
Staggered 299 (0) 7136 23.87 9.099e+04 5.20

DNF (1 233 924)
Arc-length 214 (2) 1649 7.70 4.861e+04 1
BFGS 200 (0) 5310 26.55 5.648e+05 11.61
Staggered 200 (0) 6053 30.26 3.497e+05 7.19

TNF (1 235 724)
Arc-length 147 (3) 1144 7.78 3.494e+04 1
BFGS 200 (0) 4988 24.94 5.411e+05 15.48
Staggered 200 (0) 6534 32.67 4.151e+05 11.88

Evolution of time-step size

This section investigates the evolution of the time-step size 𝛥𝑡 obtained using the arc-length method (see Discrete Problem 2).
Unlike the conventional incremental iterative methods (e.g., Newton–Raphson, BFGS, Staggered), the arc-length method in this work
considers 𝛥𝑡 as a scalar unknown, dual to the arc-length constraint equation (26). For this reason, it is imperative to demonstrate
hysically admissible positive 𝛥𝑡 for each step of the simulation. A negative 𝛥𝑡 would indicate moving backwards in time, which is
ot admissible. Figs. 8(a)–8(c) present the evolution of 𝛥𝑡 (in solid black lines) for the SNF, DNF, and TNF specimens obtained using

the arc-length method. A positive 𝛥𝑡 is observed at each step, thereby indicating a physically admissible time-dependent hydraulic
fracturing processes. One may also observe the 𝛥𝑡 in the denominator of the water transport Eq. (14c), which has an asymptote at
𝛥𝑡 = 0. This prevents a negative 𝛥𝑡 as long as the starting guess remains positive.

Additionally, for all specimens, the evolution of the time-step size 𝛥𝑡 is oscillatory. The reason for this behaviour lies in the
adaptive nature of the arc-length 𝛥𝑠, computed based on the iterations required to converge in the previous step (see Eq. (29)).

uring the fracture merging events (indicated by red dashed lines) in the DNF and TNF specimens, distinct troughs are observed in
he 𝛥𝑡 curves. During these steps, the arc-length 𝛥𝑠 is reduced, which indicates a lower yet finite energy dissipation. Consequently,
 lower 𝛥𝑡 is obtained as a solution. For these rather complex fracturing steps, the arc-length method converges with less than 17
terations, while the BFGS and staggered solution techniques require more than 75 and 100, respectively. Beyond these fracture
erging events, the evolution of the 𝛥𝑡 follows a rising trend (see Fig. 8).

5. Conclusions and outlook

A novel arc-length method is proposed for simulating hydraulic fracturing in porous media using the phase-field fracture model.
The need for a novel solution technique stems from the non-convex nature of the phase-field fracture model, which renders a
poor convergence behaviour of conventional solution techniques. The Newton–Raphson method fails to converge during fracture
propagation, while the BFGS method and the staggered solution technique demonstrate slow convergence.

Unlike conventional arc-length methods, the arc-length method in this work considers the time-step size as the scalar unknown.
Consequently, the external load (in this context, the fluid flux) becomes independent and user-defined. Theoretically, one may
prescribe an arbitrary time-dependent fluid flux. However, in this work and in previous phase-field hydraulic fracturing simulations,
the fluid flux is kept constant. Correspondingly, a dissipation-based arc-length constraint is adopted to maintain the determinacy of
the system of equations.

The robustness of the arc-length method is demonstrated on hydraulic fracturing problems of increasing complexity in terms
of fracture topology. Three specimens with one, two and three initial fractures are considered, where the fluid is injected. While
the specimen with one fracture results in extension of the initial crack, the latter two specimens with multiple initial fractures
demonstrate fracture merging phenomenon. The arc-length method is able to perform these hydraulic fracturing simulations for a
range of lenient to strict iteration terminating tolerances (10−4, 10−6 and 10−8).

Furthermore, a performance comparison of the arc-length method versus the BFGS method and the staggered method is carried
out. These latter methods are popular in the phase-field fracture literature and widely adopted solution techniques. The arc-length
method outperforms both aforementioned methods in terms of number of iterations required to converge, and consequently the
simulation wall time. For the specimens adopted in this work, the arc-length method records computation times that are about 9
to 15.5 times lower wall time compared to the BFGS method, and approximately 5 to 12 times lower than the staggered solution
technique. Here, the lower bound corresponds to the simple case of the specimen with a single initial fracture while the relative
advantage of the proposed method increases for more complex cases that involve crack merging.

Finally, the robustness and computational efficiency of the arc-length method over the state-of-the-art BFGS method and stag-
ered solution techniques opens new possibilities. In this context, a straight-forward extension can be made towards similar transport

mechanism driven fracturing phenomenon. Such examples include corrosion, thermal flux, and hygroscopic damage/fracturing.
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Fig. 8. Figures present the non-linear evolution of the time-step size 𝛥𝑡 and the time 𝑡 (solid black and blue lines, respectively) obtained using the arc-length
method for the SNF, DNF and TNF specimen. The black dashed lines show the fixed 𝛥𝑡 for the BFGS and staggered solution techniques. The red dashed lines
indicate fracture merging events (see Figs. 4 and 6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

6. Software implementation and data availability

The phase-field hydraulic fracturing model and the solution techniques (arc-length, BFGS and staggered solvers) used in this work
are part of the open-source software falcon. The software is available on Github (https://github.com/ritukeshbharali/falcon), and
is distributed under the GNU LGPL 2.1 license.
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Fig. A.1. Comparison of fracture length obtaining with different methods w.r.t Detournay’s analytical solution [80] for the SNF specimen.
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Appendix. Comparison of Detournay’s analytical solution for fracture length with numerically obtained solutions

The propagation of hydraulic fracture in an impermeable elastic medium has been studied by Detournay [80] adopting a problem
imilar to the Single Natural Fracture (SNF) specimen in Fig. 1. Assuming symmetry and a toughness dominated regime (due to the

creation of new fracture surfaces), an analytical expression for the half-fracture length has been proposed as,

𝑙fracture = 2
𝜋2∕3

(𝐸′𝑞 𝑡
𝐾 ′

)

, (A.1)

where, 𝑞 is the injection rate assuming symmetry, 𝑡 is the injection time, and parameters 𝐸′ and 𝐾 ′ are computed as,

𝐸′ =
𝐸0

1 − 𝜈2 and 𝐾 ′ = 4
( 2
𝜋

)1∕2
√

𝐺𝑐 𝐸0

1 − 𝜈2 . (A.2)

Here, 𝐸0, 𝜈 and 𝐺𝑐 represent the Young’s modulus, Poisson’s ratio, and the Griffith fracture toughness.
Adapting (A.1) in the context for the SNF specimen with model parameters specified in Table 1, the analytical solution for

the half-fracture length versus the injection time is presented in Fig. A.1. Therein, the discrete points refer to the half-fracture
lengths obtained numerically using the different solution techniques (arc-length, BFGS and staggered solvers). Due to the smeared
nature of the phase-field fracture model, the fracture lengths are measured using a threshold phase-field value of 0.8. Depending
on the chosen length-scale and threshold value, the fracture lengths may differ, albeit minimally. Finally, the similarity of the
fracture lengths reported by different methods and their proximity to the analytical solution presents a reasonable verification of
the modelled fracture propagation process.

Data availability

Section 6 of this article addresses the code and data availability.
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