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A B S T R A C T

The conventional method for sensing relies on the development of highly selective materials capable of detecting 
specific target molecules or ions without interference from other species commonly found in real solutions. 
However, creating practical sensors that can effectively discriminate between analytes sharing similar chemistry 
presents significant challenges. To address this issue, we describe a novel approach utilizing an ensemble of four 
diverse amperometric sensors obtained for deposition of 2-dimensional graphene oxide nanosheets (GO) and 3- 
dimensional metal-organic frameworks (MOFs) based on redox active metal hexacyanoferrates. The multivariate 
signals obtained by the sensor array is used to train an artificial neural network (ANN) capable of analysing such 
complex inputs to accurately determine the concentrations of Na+ and K+ ions in solutions with varying ionic 
strengths. The sensing strategy is based on the differential intercalation and diffusion behaviour of Na+ and K+

ions within both GO and MOFs, resulting in distinct voltammetric signals. The neural network is trained using 
massive datasets comprising 327 variables as columns and over 4 million samples as rows. Following training, 
the sensor array demonstrates remarkable proficiency in accurately measuring the concentration of both ions 
present in solution, while a single sensor cannot discern between the signals generated by each ion. This ongoing 
work underscores the potential of integrating artificial intelligence with tunable materials to develop a new class 
of chemical sensors with enhanced discrimination capabilities, paving the way for more robust and versatile 
sensor technologies.

1. Introduction

Biofluids like sweat, tears, and saliva are a challenging matrix to 
analyze, since they contain a variable combination of inorganic ions, 
small molecules, large biomolecules and polymers [1–11]. For this 
reason, the continuous monitoring of health indicators in biofluids is 
often a demanding task. The approach normally followed is to use one 
highly selective sensor for each analyte to be detected (Fig. 1a). As 
example, multisensory platforms have been proposed for the continuous 
monitoring of important electrolytes such as Na+ and K+ [12].

In last years, the development of powerful techniques based on 
artificial intelligence (AI) and Deep Learning (DL) enabled to analyze 
large amounts of data to extract useful information from them even in 
absence of linear and perfectly classified inputs. In particular, artificial 
neural networks (ANN) mimic the learning process of a simple brain by 

processing raw data through a network of nodes connected with each 
other (Fig. 1b). The connections between each node are adjusted 
through a “training” or “learning” process, where the network is fed with 
the raw data, while providing the correct final answers. At each itera
tion, the network evolves “learning” to improve its answers and to match 
each set of data with the correct answer. Eventually, if the learning 
process is effective, the algorithm will be able to analyze unknown data, 
providing the correct answer.

In this work we describe the use of ANN to analyze a large amount of 
data coming from a sensor array and to quantify the concentration of the 
two different ions. At difference from selective sensors, the goal here is 
to demonstrate that a meaningful and robust analysis can be obtained 
with sensors which are not highly selective. To demonstrate such 
concept, we chose a significant couple of test analytes, namely Na+ and 
K+ ions.
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The quantification of Na+ and K+ is quite important to define the 
physiological state of individuals, especially concerning the hydration 
state. These electrolytes are present in relevant quantities in biological 
fluids and for this reason their presence significantly affects the ionic 
strength of the matrix.

The quantification of these ions is generally performed by ion- 
selective electrodes [13]. The main drawback of these systems is that 
their response (i.e. the potential) is linearly dependent on the logarithm 
of the concentration of the analyte and that, for thermodynamic reasons, 
this dependence is characterized by a Nernstian slope, i.e. 0.059 V per 
logarithmic unit of either Na+ or K+ concentration. This implies that the 
sensitivity is rather poor and cannot be improved [14,15]. Conversely, 
amperometric sensing would be advantageous since the signal, i.e. the 
current intensity, is linearly proportional to the concentration of the 
analyte in solution [16] and the sensitivity can be modulated by suitable 
modification of the electrode surface. However, the detection of elec
trolytes such as Na+ and K+ by this unconventional approach is not 

trivial, since these species are not electroactive.
To this aim, we used, as sensors, electrodes obtained for deposition of 

a combination of 3-dimensional metal-organic frameworks (MOF) and 
2D materials (Fig. 2a-d).

Iron hexacyanoferrate, also known as Prussian blue (PB), is a well 
known MOF. It is a face-centered cubic (FCC) inorganic salt containing 
Fe3+ positive sites and Fe(CN)6

4- negative ones (Fig. 2e); it is generally 
described with the chemical formula FeIII

4 [FeII(CN)6]3⋅xH2O, although 
some Fe3+ centers are normally replaced by alkaline ions, typically K+. 
The cubic unit cell possesses a dimension of 10.2 Å and channels with a 
diameter of about 3.2 Å, which allow the selective diffusion of species 
possessing a low molecular weight, such as water molecules, which 
normally fill the resultant unit cell of PB. This material behaves as a 
receptor of alkali cations within its crystalline structure during the redox 
processes involving the Fe3+/Fe2+ centers occurring in the region close 
to 0 V vs. Ag/AgCl reference electrode [17–20], which is described by 
reaction [21]: 

Az− yFeIII
y [FeII(CN)6]2 + yA+ + ye− ⇄AzFeII

y
[
FeII(CN)6

]

2 (1) 

Due to the dimension of the channels, the access of A+ ions can be 
more or less hindered depending on the dimension of the hydrated ions, 
so that the shape of the voltammetric response results, in turn, influ
enced. Since K+ ions (hydrated radius r = 3 Å) can easily penetrate the 
crystalline structure of PB, the Fe3+/Fe2+ reduction process is evidenced 
by a very sharp reversible peak. On the contrary, due to the larger 
dimension of Na+ ions (hydrated radius r = 4 Å), the peak results 
broader and shifted to more negative potential values.

If Fe3+ ions of PB are replaced with different heavy metals, we shall 
obtain a MOF with similar lattice of PB but with different electro
chemical properties. In particular, when FeIII is replaced by NiII we 
obtain Nickel Hexacyanoferrate (termed NH) which can undergo the 
exchange of A+ in the crystalline structure in the process involving the 
reversible oxidation of [Fe(CN)6]4- centers, described by reaction (2): 
[
A1+yNi2+FeII(CN)6

]
⇄
[
ANi2+FeIII(CN)6

]
+ yA+ + ye− (2) 

Also in this case the dimension of the hydrated ion may affect the 
shape of the redox process, so that the oxidation of NH in solutions 
containing K+ ions results in a double peak, at difference with a similar 
process recorded in solutions only containing Na+ [22].

Due to this peculiar behavior, hexacyanoferrates have already been 
proposed for the quantification of K+ on the basis of the peak potential at 
which the voltammetric processes occur [21,23–25]. However, this 
conventional univariate approach shows poor accuracy for the quanti
fication of Na+ and K+ mixtures in more complex matrices.

Fig. 1. Schematic representation of ANN architecture applied to electro
chemical sensors.

Fig. 2. (a-d) Schematic representations of the electrode coatings used in the sensor platform for the selective quantification of Na+ and K+ by ANN. (e) Cartoon 
showing the diffusion and intercalation of Na ions in PB-RGO electrodes.
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An alternative method, already exploited in similar cases [26,27], 
tries to extract quantitative information from the whole voltammetric 
trace using a multivariate approach and combining information deriving 
from different sensors. We thus used here an array of four electro
chemical sensors, two containing PB and two NH as the sensing element 
for the amperometric simultaneous detection of Na+ and K+ in aqueous 
solutions. The amperometric detection also takes advantage of the 
deposition of Graphene Oxide (GO), then electrochemically reduced to 
electrically conductive reduced graphene oxide (RGO, Fig. 2) to further 
improve selectivity.

Thanks to the 2-dimensional structure, also GO is an ideal material 
for selective ion sieving: ions and molecules will diffuse in stacked GO 
multilayers in tortuous paths [28]. In a recent work [29], we demon
strated that monovalent ions like Na+ and K+ can be transported 
through GO by applying a low electric voltage, while divalent ions are 
blocked, with K+ diffusing faster than Na+. The diffusion was influenced 
not only by steric factors (e.g. the hydrated radius r) but also by chemical 
ones, with ions interacting significantly with the charged groups present 
on GO. Indeed, GO and RGO are often applied in electrochemical 
sensing, thanks to their known unique properties, such as the high me
chanical stability, the large surface area, and the easy surface func
tionalization [30–34].

Thus, we prepared screen printed electrodes (SPEs) modified with 
either PB or NH at two different thickness each, then coated by elec
trochemically reduced GO to form PB-RGO and NH-RGO, respectively. 
All combined, they form the 4-electrode platform used to test solutions 
at various Na+ and K+ concentration. The accuracy of the detection was 
ensured with the combination of voltammetric signals deriving from the 
four sensors types, then fed to an algorithm trained using a DL approach 
[35].

In detail, we used a feed-forward ANN [36] which was trained 
experimentally by collecting sensors signals in solutions with 
well-defined, known composition. This allowed the prediction of one or 
more required outputs, namely the concentration of target species as 
alkali ions [37], in an unknown solution, hopefully achieving a high 
level of accuracy (Fig. 1b) [38]. The process passes through the hidden 
layers that elaborate the data using internal parameters as “weights” 
[35,38]. The activation function considered, which transforms each 
output node of a former layer into the input of the following one, is the 
Rectified Linear Unit (ReLU) [39,40]. At each iteration of the algorithm 
[41] the system calculates an error between predicted and true output 
values (termed “loss function”) to provide feedback to the algorithm 
(backward propagation); in this way, internal weights are adjusted and 
then applied to each node of the network, according to the matrix of 
interconnections [35]. The process is repeated for many training cycles, 
also termed “epochs”. This forward and backward loop continues until 
the error is minimized and the final weights are thus calculated [42].

The voltammetric data produced by multiple copies of the four ele
ments of the electrochemical platform and collected in solutions of Na+

and K+ at variable molar ratio were divided between training set and test 
set. The training set was used to define the prediction model by DL data 
elaboration, then the test set was used to verify the ability of the trained 

models to predict the concentration of the two electrolytes in solution.

2. Materials and methods

2.1. Materials and instruments

Potassium chloride, sodium chloride, hydrochloric acid, nickel(II) 
chloride hexahydrate, acetic acid, sodium acetate and potassium acetate 
were purchased from Sigma Aldrich. Potassium hexacyanoferrate(III), 
and iron(III) chloride hexahydrate were purchased from Carl Roth. 
Ammonium chloride was purchased from Carlo Erba Reagents srl. GO 
powder (<35 mesh, >90 % of the sheets with lateral size 300–3000 nm) 
was purchased from LayerOne and suspended in ultrapure water (18 
MΩ⋅cm resistivity) to achieve a final 1 mg/mL dispersion.

Electrochemical deposition and measurements of the coatings were 
done with a µStat400 bi-potentiostat/galvanostat and a µStat8000 multi- 
potentiostat/galvanostat, both purchased from Dropsens-Metrohm. All 
the measurements were carried out starting with carbon-based SPEs. 
Preliminary tests were carried out by DS110 electrode platforms pos
sessing a 4 mm diameter working electrode, whereas the measurements 
aimed at defining the prediction algorithm were obtained by an array of 
96 different SPE, containing 3 mm diameter working electrodes, driven 
by a commercial connector 96 × module (Dropsens-Metrohm) working 
in combination with the multichannel potentiostat.

2.2. Sensor fabrication

PB-RGO electrodes were obtained starting from the galvanostatic 
deposition of a PB film [34,43] performed at − 40 µA cm− 2 for either 60 
or 120 s from a solution containing 2 mM K3[Fe(CN)6], 2 mM FeCl3, 
0.1 M KCl, and 10 mM HCl. In these conditions, ferricyanide is reduced 
to ferrocyanide, with subsequent precipitation of PB. The electrodes 
were then rinsed with a 10 mM HCl solution and hereafter called as PB60 
and PB120, respectively. Then, GO was drop cast from water solutions on 
the electrodes and electrochemically transformed in RGO by applying a 
constant voltage of − 1.25 V for 180 s in a 0.1 M phosphate buffer so
lution (pH 7) containing 0.1 M KCl, to obtain the final PB60-RGO and 
PB120-RGO electrodes, respectively.

NH-RGO surfaces were obtained in similar way, but starting from the 
electrochemical deposition of NH, performed by dropping a precursor 
solution containing 1.2 mM NiCl2•6 H2O, 0.5 mM K3[Fe(CN)6], and 
0.05 M KCl on the 3-electrode cell of the electrode. The working elec
trode was polarized between − 0.1 and 1 V, in either 20 or 50 voltam
metric cycles at 20 mVs− 1 scan rate, to obtain NH20 and NH50, 
respectively. The electrode was then rinsed with distilled water and 
20 µL cm− 2 of a 1 mg/mL GO dispersion was drop cast onto the surface 
before being electrochemically reduced as described before. These 
electrodes will be hereafter called NH20-RGO and NH50-RGO, 
respectively.

Table 1 
Composition of the solutions used to train the algorithm.

Solution n. 1 2 3 4 5 6 7 8 9 10 11 12 

Na+ (M) 0 0 10-4 10-4 10-4 10-3 10-3 10-3 10-2 10-2 10-1 10-1

K+ (M) 10-4 10-3 0 10-4 10-3 0 10-4 10-3 10-5 10-2 10-5 10-2

NH4
+ 01)M( -1
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2.3. Cyclic voltammetry in K+/Na+ solutions

First, we verified the capability of PB and NH coatings to discrimi
nate solutions containing different amounts of K+ and Na+ at a fixed 
ionic strength of 0.1 M. To this aim, we prepared five solutions of acetate 
buffer (0.1 M, pH 4.8) at varying the concentration of the two ions from 
0 to 0.1 M to obtain different K+/Na+ ratio (100:0; 75:25; 50:50; 25:75; 
0:100). CV responses were collected from +0.5 to − 0.3 V and from 
+00.8–0.0 V at electrodes containing PB or NH, respectively; the scan 
rate was 0.02 Vs− 1 in all tests.

Additional CV measurements were carried out adding an interfering 
ion (NH4Cl, 0.1 M) to the previous solutions, to test the electrodes in 
realistic solutions, more similar to the composition of the human sweat.

2.4. Data collection with the 4-electrode platform

Multiple copies of the 4-electrode types PB60-RGO, PB120-RGO, 
NH20-RGO, and NH50-RGO were obtained by functionalization of 
96 ×SPE plates. To record at least 1000 curves in each solution for each 
kind of electrode, we used five plates replicating 120 times the 4-elec
trode array. The composition of the various solutions tested in this 
case is reported in Table 1; they are chosen to possess a fixed concen
tration of NH4Cl and a concentration of K+ varying from 0 to 0.01 M, 
and and a concentration of Na+ varying from 0 M to 0.1 M, respectively 
mimicking the concentrations normally present in sweat. In all solu
tions, the concentration of interfering species NH4

+ was orders of 
magnitude larger or at best equal to the concentration of the target 
analytes.

Each solution was analyzed with multiple electrodes obtained in 
similar conditions, collecting 70 CV responses each time. For these an
alyses, we decided to restrict the potential window for the acquisition of 
the CV responses as compared to the initial tests described in Section 2.3, 
to shorten the time required for recording all the responses required to 
train the algorithm. To such a purpose, the potential was cycled between 
+0.6 and +0.2 V for NH-RGO electrodes and from +0.3 V to − 0.1 V for 
PB-RGO electrodes.

2.5. Dataset structure

CV data were stored in comma separated values (CSV) files, each one 
containing 161 points representing couples of potential and current 
values. In total, we collected more than 29000 CSV files of valid data. 
We split each CV curve into two different sections of the dataframe, 
acquired during the forward and backward ramp of the cycle, respec
tively. Thus, each curve, consisting of 161 data points, was split into two 
sets of 81 data points each termed A1, A2,. A81. The middle point (i.e. the 
one at the lowest extreme potential of the scanned potential range) was 
duplicated in both sets.

Data were aquired in parallel from various devices for every type of 
sensor. A main issue of electrochemical sensors is their stability, i.e. 
changes in response with time. That’s why we included also the cycle 
number (C1, C2, corresponding to the “age” of the sensor) as an input of 
the algorithm. Each sensor performed a sequence of 70 cycles in each 
solution; the values from the first voltammetric cycle (C0) was discarded 
to avoid any artefact due to possible pollution coming from previous 
experiments. This means that we considered the current values collected 

in the following cycles labelled C1…C69 for the construction of the al
gorithm. Each line of the dataset included as further variables the set 
concentration of Na+ and K+ of the relevant solutions. Table 2 shows the 
structure of a typical dataframe used.

During the data pre-processing we also operated a cartesian product 
of the acquisitions for each cycle and for each solution to significantly 
increase the dimension of the dataset. In other words, we assumed that 
each acquisition deriving from a single sensor was a possible acquisition 
by a sensor of that type. Thus, considering the different types of sensors, 
each combination among their responses was a possible real acquisition 
from a 4-electrode platform. This approach finally led to two dataframes 
with 327 variables as columns (4 ×81 current data + cycle number +
Na+ conc. + K+ conc., see Table 2) and > 4 million samples as rows.

3. Results and discussion

3.1. Characterization of electrode coatings

We first verified the capability of bare PB sensors to discriminate 
among solutions containing different amount of K+ and Na+, despite a 
fixed ionic strength. To this aim, we prepared five solutions at different 
K+/Na+ ratio and we collected CV responses from +0.5 to − 0.3 V. We 
obtained responses characterized by a shape strongly dependent on the 
composition of the solution (Fig. S1a in ESI). As expected, when only K+

was present in solution, the voltammogram was characterized by a sharp 
reduction peak centered at 0.06 V, whereas a broad reduction peak 
centered at − 0.06 V was recorded in solutions only containing Na+. In 
solutions containing a mixture of Na+ and K+ we observed intermediate 
situations with variations in both the peak potential and the shape of the 
response. The shift of the reduction peak to less negative potential with 
increasing concentration of K+ in solution can be explained by consid
ering that this ion can more easily penetrate the structure of PB since its 
hydrated radius is smaller than that of Na+ [19,23]. Unfortunately, the 
stability of the PB deposit depends on the presence of K+ in solution: in 
agreement to what reported in literature [19], this ion can be interca
lated inside the PB crystal structure enhancing the stability of the 
coating.

Thus, to improve the stability of the sensing element, a thin coating 
of GO was drop cast and reduced on the PB deposit. The use of GO and 
RGO to stabilize unstable active materials on electrodes has been 
extensively demonstrated in past works, in particular for electrodes for 
energy storage [44].

SEM images collected at different magnification (Figs. S2–4c in ESI) 
confirmed that GO formed a homogeneous film completely covering the 
nanosized structure of the MOF. The image collected in cross section 
(Fig. S5c) showed that the GO coating was very thin (<1 μm). The 
presence of the GO coating did not alter the voltammetric behavior of 
the metal complex in presence of the Na+/K+ mixture with respect to 
that observed for pristine PB (Fig. S1bin ESI), but improved the stability 
of the coating especially when the concentration of K+ was low, as often 
happens in sweat samples. CV curves obtained in this case still varied 
with Na+/K+ ratio, but the intensities of the current recorded were 
lower, likely due to the presence of an additional nanometric barrier of a 
poorly conductive material. Faradic currents registered at PB60-GO were 
anyhow higher than those expected for the presence of an insulating 
coating, since GO is permeable to alkaline ions [29].

The external GO coating could be easily reduced to RGO by thermal, 
chemical or electrochemical method increasing the electrical conduc
tivity of the material [45]. The electrochemical approach was the most 
spontaneous choice for this specific application [46]. SEM images 
collected for the resulting PB60-RGO confirmed that the coating main
tained its homogeneous continuous structure even after reduction 
(Figs. S2–4d in ESI) and that RGO forms a compact thin coating on PB 
deposit (Fig. S5din ESI). The voltammograms recorded in this case still 
reached a steady state response just after one voltammetric cycle and the 
shape of the voltammetric response was still characteristic of the 

Table 2 
Dataset structure built for the training of PB60-RGO, PB120-RGO, NH20-RGO, 
NH50-RGO, sensors.

SENSORS INPUT ADDITIONAL INPUT

PB60- 
RGO

PB120- 
RGO

NH20- 
RGO

NH50- 
RGO

Analyte 1 
concentration

Analyte 2 
concentration

Cycle 
Number

A1,. 
A81

A1,. 
A81

A1,. 
A81

A1,. 
A81

[Na+] [K+] C1,… 
C69
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Na+/K+ ratio, however with a significant broadening of the K+ peak 
(Fig. 3a and Fig. S1c). We attribute the broadening of K+ peak to a lower 
diffusion of ions through RGO, which slowed down significantly the 
reduction process in presence of K+.

Also NH electrodes were coated by a GO film, then reduced elec
trochemically to RGO. CV performed on such NH20-RGO electrodes 
(Fig. 3b) in solutions containing K+ showed a double peak correspond
ing to the electrochemical process of the Fe(CN)6

4-/3- redox couple. Such 
double peak is missing when only Na+ is present. Moreover, the peaks 
shift at higher potentials at increasing the concentration of K+, again due 
to the different intercalation of ions in NH, in agreement with previous 
results [22,47]. The responses obtained let us to conclude that also 
NH-RGO may be suitable for the quantification of Na+ and K+, as such or 
combined with PB-RGO electrodes.

3.2. Effect of interfering ions

We repeated the tests on K+/Na+ mixtures also in solutions including 
0.1 M NH4Cl, to mimic a more realistic system with the presence of an 
ion able to interfere significantly with the sensing mechanism since it 
can migrate into the crystalline structure of the inorganic complex 
during the electrochemical processes previously described.

Fig. 4 shows that the presence of NH4Cl led to a significant shift of the 
PB reduction to less negative potentials. In particular, the peak, origi
nally centered at − 0.06 mV and 0.06 V in solutions only containing Na+

and K+, respectively, resulted nearly superimposed at ca. 0.1 V in so
lutions also containing NH4

+. This is because NH4
+ ions compete with K+

and Na+ to enter the PB lattice, minimizing the difference in the 
migration process originally present [18].

In case of NH electrodes in presence of NH4
+ the differences associ

ated to the oxidation process still remain, but are greatly reduced 
(Fig. 4b), with the peak observed in presence of Na+ shifting from 
+ 0.29 to + 0.40 V, much closer to the K+ peak at + 0.43 V.

In presence of interfering NH4Cl, thus, it would be difficult for a 
human eye to discriminate between superimposing CV curves; however, 
the trained ANN could still be able to discriminate the respective con
tributions of Na+ and K+ to the total curve by combining the information 
deriving from different kinds of sensors.

3.3. ANN elaboration

We thus used inputs from four types of sensors to define the con
centration of K+ and Na+, i.e. PB and NH with two different thickness to 
further diversify the information given by the sensor platform, to exploit 
both the different intercalation mechanism in the two materials and the 
different diffusion in materials of different thickness. The resulting 
platform featuring multiple copies of the 4 electrodes was tested in all 
solutions reported in Table 1 following an experimental design for the 
collection of the dataset, then used to train the algorithm.

Before starting the training process by ANN, we randomized (or 
“shuffled”) input dataframes. This step ensures that training, validation 
and test sets represent a fair sample of the data population [48]. Then, 
we split the dataset into the training (70 %), validation (20 %) and test 
(10 %) sets [38]. After that, we scaled the values of the training dataset, 
since it is an essential step in DL data pre-processing. To this aim, each 
data point A was scaled by a factor <A> /σ, where <A> is the data 
mean and σ is the standard deviation [40].

Due to the size of the dataset, we used 8 Graphical Processing Units 

Fig. 3. CV responses obtained at (a) PB60-RGO and (b) NH20-RGO modified electrodes in acetate buffer solutions at different K+/Na+ ratio.

Fig. 4. CV responses recorded by (a) PB60-RGO and (b) NH20-RGO electrodes in 0.1 M of either K+ (grey lines) or Na+ (red lines), measured in presence of 0.1 M 
NH4Cl (lightest lines) or without it (darker lines).
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(GPUs) in parallel to speed up the training process. We used the software 
libraries TensorFlow and Keras to define complex neural networks and 
build our DL model by defining some hyper parameters, such as the 
number of nodes per layer, the number of hidden layers and the batch 
size. Usually, input data are fed to the ANN in batches, i.e. portions of 
the whole training set, and the “batch size” defines how big this portion 
is. This allows to speed up the training process, especially when the 
input dataset is very large [48]. Other choices in model building include 
the loss functions, i.e. the error between the predicted and the true 
values, for each sample of the input dataset. The Learning Rate (LR) is 
another fundamental hyper-parameter since it directly controls the 
amount by which each weight increment is multiplied at every step of 
the algorithm. LR can be set to a constant value during training, or it can 
vary dynamically. We chose an exponential decaying LR defined as: 

LR(s) = LR0 × d

(
s
S

)

(3) 

Where LR0 and d are the initial learning rate and decay rate (d < 1), s is 
the current step of the algorithm which depends on the current epoch 
and the current batch, and S is a scaling factor the number of steps. An 
exponential decaying LR follows a decreasing trend that allows to slow 

down the learning process as the number of epochs increases, in contrast 
with a constant LR. This allows to follow the slope (gradient) of the cost 
function (the curve that measures the error of the network across the 
entire dataset) more closely, having a faster learning when the curve is 
steeper (earlier epochs) and a slower learning when the curve is more 
gradual (later epochs) [39,48]. A constant LR, instead, may bring to 
learning steps that are too big in later epochs, thus not being able to 
follow the curve and resulting in an underfitting model (a sub-optimal 
solution to minimization of the cost function) [35,49].

The accuracy levels of the DL model defined was quite high: the 
predicted values are almost entirely in line with reference values for the 
concentration of both Na+ (Fig. 5a) and K+ (Fig. 5b).

We then checked if all different types of sensors are necessary to 
obtain a robust and accurate analysis. To this aim, we trained other 
models excluding on purpose one or more electrodes, to estimate the 
contribution of the different sensors to the final result. We compared the 
accuracy of models built for 4-sensors platform with simpler models 
based on only two or even just one sensor. Fig. 6 shows that the “mul
tisensing” approach brings better accuracy in predictions: the validation 
loss (loss calculated on the validation set at each epoch end) obtained for 
models trained with data from a single sensor or from 2 sensors are two 

Fig. 5. Prediction test related to (a) [Na+] and (b) [K+] performed by the trained algorithm, comparing 10 % of dataset and the model obtained by 4 sensors with 
300 epochs.

Fig. 6. Comparison of Validation Loss values across training of different models using: (a) only one sensor, (b) 2 sensors, or c) all four sensors. The Y scale is the same 
for all graphs. In (a), the sensor showing the best performance is the one using sensor PB60 (gray line), see main text.
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orders of magnitude higher than the one for the model with 4 sensors. 
Averaging on several training runs, the validation loss between real and 
predicted values for the model with 4 sensors was 2.3•10− 2, while the 
best value for models with 1 or 2 sensors was 3.23 (see Table 3). 
Moreover, the validation loss for models with 4 sensors converged faster 
than the one for models with 1 or 2 sensors (Fig. 6).

We also checked the importance of taking into account the cycle 
number C for the measurement (see Table 2), performing the training 
using the same data, with and without C column in the data array. 
Ignoring the cycle number led to ≈ 10 % increase of loss value, con
firming that also the aging of the electrode has to be taken into account 
in such measurements.

4. Conclusions

The results obtained so far suggest that the detection voltammetric 
techniques can be combined with DL to have a good prediction of the 
concentration of Na+ and K+ ions in solution.

The advantage in the use of a voltammetric technique to predict the 
concentration of ions in solution is the linear dependence of the signal 
with respect to the concentration of analyte. The prediction of the 
concentration of Na+ and K+ by a voltammetric technique was only 
possible thanks to the use of DL approach, that allows to exploit all data 
acquired from the voltammetric results demonstrating that unoptimized 
sensors, working in parallel and in combination with a deep learning 
algorithm, could perform reliable measurements in realistic mixtures, on 
a broad range of concentrations. This could work even when the 
composition of the solutions was a challenging combination of analytes 
(as example, solution 1 in Table 1 contained 0.1 M NH4

+, 10− 4 M K+ and 
no Na+). The chemical affinity of the two ions targeted and the presence 
of an interfering ion rendered challenging even for somebody expert in 
the field to discriminate CV curves of the different solutions (see e.g. 
Fig. 3). However, the multivariate approach allowed to discriminate 
even tiny changes in the CV curves to measure the correct concentration. 
In our measurements, we did not try to optimize the selectivity or 
sensitivity of the materials used for the target analyte; for sure, the 
performance of such materials can be improved by tuning thickness, 
deposition methods, or even trying other combinations of 2D materials 
and 3D MOF, but this was outside the scope of this work. We do not 
claim that this could work with any solution containing Na+, K+ and 
NH4

+, nor that it will work in real sweat or in presence of other inter
fering species. Improving such sensor arrays and testing them in 
different conditions is the subject of a different work; here, we focused 
on designing a suitable approach to use DL for electrochemical sensing 
in solutions.

We should underline that the main challenge in this approach is to 
produce massive amounts of coherent data needed to train the network; 
the production of these data requires to use multiple sensor arrays, fast 
measurements and sensor materials which need to be stable on long 
timescales. To partially address the issue of unpredictable changes in the 
sensing signal, we used as input of the network under training also the 
“age” of the electrode, in the form of the cycle number, which provided a 
≈ 10 % significant benefit. The optimization of hyper-parameters (such 
as number of nodes, number of layers and finding an optimal learning 
rate) was also a fundamental part of the work.

A downside of using DL is that the final algorithm works as a “black 
box” providing the ion concentration, with no possibility to deduce 
chemical information on how the network combine the different sensor 
channels, and why.

To better understand the sensing performance, we trained different 
networks on the same data excluding different channels (Table 3). This 
tests provided some hint on which are the best performing materials for 
the sensing tasks. More refined methods shall also be used, as example 
principal component analysis (PCA) to reduce the dimensions of the 
dataset without losing relevant information; such technique has been 
already used for ML analysis of gas sensors, even if in that case only one 
single sensor type was used [50].

Overall, we believe that the approach demonstrated here could be 
applied also beyond the specific case of amperometric sensors, as 
example for tailored biological sensors or for light/radiation sensors, in 
every case where multiple sensors can be easily fabricated by tuning the 
material properties, sensor parameters or chemical functionalization.
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