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Ground-state cooling of mechanical resonators is a prerequisite for the observation of various quantum effects
in optomechanical systems and thus has always been a crucial task in quantum optomechanics. In this paper, we
study how to realize ground-state cooling of the mechanical mode in a Fano-mirror optomechanical setup, which
allows for enhanced effective optomechanical interaction but typically works in the (deeply) unresolved-sideband
regime. We reveal that for such a two-sided cavity geometry with very different decay rates at the two cavity
mirrors, it is possible to cool the mechanical mode down to its ground state within a broad range of parameters
by using an appropriate single-sided coherent feedback. This is possible even if the total optical loss is more than
seven orders of magnitude larger than the mechanical frequency and the feedback efficiency is relatively low.
Importantly, we show that a more standard double-sided feedback scheme is not appropriate to cooperate with a
Fano-mirror system.
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I. INTRODUCTION

Cavity optomechanics [1] provides an excellent platform
for observing and harnessing quantum effects on a meso-
scopic scale. Optomechanical interactions, which typically
arise from the momentum exchange between the electromag-
netic field and a mechanical resonator, enable quantum control
over photonic and phononic modes, leading to a series of
important applications ranging from precise measurements
[2–4], quantum-state transfer [5], and frequency conversion
[6–9], to fundamental tests of quantum mechanics [10–12].
In particular, cavity optomechanical systems can cool the me-
chanical degrees of freedom close to their quantum ground
states, which is a key preliminary step towards witnessing
genuine quantum phenomena [13].

While the standard sideband cooling scheme [1] provides
a powerful tool to access the mechanical ground state in op-
tomechanical systems with high sideband resolution [14–16],
in practice setups often are in the unresolved-sideband regime,
meaning that simple sideband cooling no longer works. Quan-
tum feedback has emerged as a candidate for ground-state
cooling and control of optomechanical systems that are in the
unresolved-sideband regime [17]. Compared to active feed-
back [18–25], that has to face excess noise in the out-of-loop
optical field and decoherence due to quantum measurement
[22], coherent feedback is promising since the quantum sig-
nals mediating the feedback can preserve their coherence
[17,26]. Coherent feedback has been suggested both to fa-
cilitate ground-state cooling in the resolved-sideband regime
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FIG. 1. (a) Schematics of the Fano-mirror optomechanical sys-
tem. (b) Sketch of the interactions among the modes. The Fano
mirror is a movable photonic crystal membrane that supports a
mechanical vibration mode (with out-of-plane displacement x) as
well as a guided optical mode (i.e., Fano mode) f . The mechanical
and cavity modes are coupled through the radiation pressure, while
the Fano and cavity modes are coupled through both the overlap of
their electric fields and their couplings to the common (left) photonic
reservoir. For some practical setups, the out-of-plane displacement of
the membrane can also result in an in-plane mechanical strain, which
induces a dispersive coupling between the Fano and mechanical
modes.
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[27–30] and to allow ground-state cooling in the unresolved-
sideband regime [31], where we want to highlight a recent ex-
perimental realization [32]. Ground-state cooling achieved by
coherent feedback is, however, sensitive to limitations in the
feedback efficiency, in particular for cavities with high losses.

A very different possibility to cool and control op-
tomechanical systems that are originally in the unresolved-
sideband regime is by introducing auxiliary quantum modes
and engineering their interactions with the optomechanical
system. It is thereby possible to create a narrow Fano reso-
nance [33], with which the optomechanical system enters the
resolved-sideband regime effectively, and thus ground-state
cooling is again allowed. This strategy can be implemented,
e.g., exploiting atomic ensembles [34–36] or double-cavity
configurations [37–40]. Most recently this mechanism has
been demonstrated with even simpler geometric architec-
tures, where two optical modes are coupled to each other
and to a single mechanical mode [41–45], see also Fig. 1.
In particular, recent experiments [45,46] demonstrated a
linewidth reduction of the optomechanical cavity by using
a frequency-dependent photonic-crystal membrane mirror,
where the guided optical mode plays the role of the Fano
mode. In these two cases, the underlying system was a mi-
crocavity. The motivation for realizing such systems is that
the single-photon optomechanical coupling is increased with
respect to typical optomechanical cavities, with the prospect
of even accessing the ultrastrong coupling regime for certain
system parameters. However, these systems have so far the
drawback that they are, despite their linewidth reduction, still
far from the resolved-sideband regime. Though, in theory, the
effective optical losses could be further reduced and made
smaller than the mechanical frequency [47], it still remains
a challenge to obtain ideal parameters for mode coupling
and Fano resonance, where the quantum regime [48–50] can
actually be reached.

In this paper, we study how to facilitate ground-state
cooling of the mechanical mode in such a Fano-mirror op-
tomechanical system by combining it with a realistic coherent
feedback scheme. While for such a two-sided standing-wave
quantum system, a double-sided coherent feedback scheme
might seem a good choice [27,29,30], we here show that it be-
comes inappropriate when the cavity has very different decay
rates at the two end mirrors, as it is the case for microcavities
with a movable Fano mirror, like in Fig. 1. Instead, we reveal
that a suitable single-sided coherent feedback behaves as the
ideal candidate, despite the fact that its efficiency is inher-
ently low in concrete realizations. Indeed, we demonstrate
that this combination of single-sided coherent feedback and
Fano mode enables ground-state cooling in a deeply unre-
solved sideband regime where the total cavity decay rate is
about seven orders of magnitude larger than the mechanical
frequency. Such an achievement would be impossible, within
a wide range of realistic parameters, based on only the Fano
mode or only the coherent feedback. Moreover, considering
that some relevant parameters, such as the coherent coupling
strength between the cavity and Fano modes, are challenging
to control precisely in experiments, the coherent feedback
provides a controllable knob with which ground-state cooling
is still allowed even if the actual parameters deviate from the
desired values.

The remainder of this paper is organized as follows. We
first describe the model for an optomechanical cavity with a
Fano mirror in Sec. II. Then, in Sec. III, we address the gen-
eral effect of two-sided coherent feedback and demonstrate
that it is inappropriate for the Fano-mirror setup of Sec. II.
Finally, Sec. IV shows how ground-state cooling can instead
be achieved for realistic parameters if the Fano-mirror setup
is combined with a single-sided coherent feedback scheme.
Technical details are presented in the Appendix. Throughout
the paper, we take h̄ = 1.

II. CAVITY OPTOMECHANICS WITH A FANO MIRROR

We consider a standing-wave optomechanical system, with
a Fabry-Pérot-type geometry, but where one of the cavity mir-
rors exhibits a strongly frequency-dependent response. Such
Fano mirrors enable normal (hybrid) modes with a normal-
mode linewidth which is drastically decreased with respect to
the bare linewidth of the optical modes [42,45–47].

Concretely, as shown in Fig. 1(a), we have a standard
cavity mode a, with frequency ωa. The left cavity mirror
supports both a mechanical vibrational mode, with out-of-
plane dimensionless displacement x and frequency �m, and
a guided optical mode f with frequency ω f . We refer to the
latter as Fano mode. It can be experimentally realized by a
suspended dielectric membrane with designed subwavelength
photonic crystal structures [45]. As depicted in Fig. 1(b), the
cavity mode is coupled to the mechanical mode via radiation
pressure, resulting in the single-photon coupling strength ga,0.
Meanwhile, the Fano mode also couples to the mechanical
mode: in many practical setups, the out-of-plane displacement
of the membrane will also result in an in-plane mechanical
strain, which alters the optical properties of the membrane
and thus induces a dispersive (i.e., radiation-pressure like)
coupling between the Fano and mechanical modes [45]. We
denote the associated single-photon coupling strength g f ,0. In
addition, the cavity mode coherently interacts with the Fano
mode due to the overlap of their electric fields, with coupling
strength λ [42,43]. As a result, the Hamiltonian of such a
Fano-mirror optomechanical system can then be written as

H = ωaa†a + ω f f † f + �m

2
(x2 + p2)

+ (ga,0a†a + g f ,0 f † f )x + λ(a† f + f †a).
(1)

The (dimensionless) momentum operator of the mechanical
mode p satisfies the commutation relation [x, p] = i.

Furthermore, the cavity is a two-sided system, which is
coupled to an electromagnetic environment on each side,
with typically very different decay rates κ1 and κ2 at the left
and right mirrors, respectively [45]. The right normal mirror,
which is frequency-independent and, e.g., realized by a dis-
tributed Bragg reflector, has, in contrast to the left (movable,
Fano) mirror, very low transmissivity [42]. The Fano mode
is also coupled to the left electromagnetic environment [see
Fig. 1(b)], with loss rate κ f . Both optical modes are coupled
to the same environment, which gives rise to a dissipative
coupling of strength κ1 f = √

κ1κ f [42]. The overall coupling
between the cavity mode and Fano mode is thus G = λ − iκ1 f .
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Strictly speaking, for microcavities there are also dis-
sipative optomechanical couplings which arise from the
dependence of the optical decay rates on the mechanical dis-
placement. Moreover, the mechanical displacement can also
modulate the coherent coupling λ between the cavity and Fano
modes, which, in the linearized Hamiltonian, is equivalent to
introducing finite shifts to the couplings among the optical
and mechanical modes [43]. However, in the case considered
in this paper—where the cavity length is sufficiently large so
that the Fano mirror does not “feel” the optical field of the
other mirror—both the dissipative optomechanical couplings
and the position dependence of λ can be safely neglected. In
particular, recent studies have shown that, with the parameters
considered below, the contributions of the dissipative optome-
chanical couplings (for both the cavity and Fano modes)
can be negligible [47]. Given these features, we consider
in this paper relatively weak single-photon optomechanical
coupling ga,0.

We now assume that the system is driven by a coher-
ent pumping field with amplitude εp and frequency ωp. The
pumping amplitude εp = √

2κ1(2)P/(h̄ωp) (assumed to be
real without loss of generality) is related to the power P of
the pumping field, with κ1 or κ2 chosen depending on which
mirror the pumping field is applied on. In this section, we
do not need to specify which mirror the pumping field is
applied on, since this only affects the steady-state values of
the two optical modes. If the pumping is strong, then the
dynamics of the system can be linearized [1]. We therefore
write each operator o as the sum of its steady-state mean value
ō [51] and a quantum fluctuation δo, i.e., o = ō + δo. The lin-
earized quantum Langevin equations of the whole system are
then [47]

δẋ = �mδp, (2a)

δ ṗ = −�mδx − γmδp − g∗
aδa − gaδa†

−g∗
f δ f − g f δ f † +

√
2γmξm, (2b)

δȧ = −(i
a + κtot )δa − igaδx

−iGδ f +
∑
j=1,2

√
2κ ja

in
j , (2c)

δ ḟ = −(i
 f + κ f )δ f − ig f δx

−iGδa + √
2κ f ain

1 . (2d)

Here ga = ga,0ā describes the enhanced optomechanical
interaction between the mechanical and cavity modes and
g f = g f ,0 f̄ the one between the mechanical and Fano modes.
The frequency detunings between the pumping field and
the two optical modes are given by 
a = ωa − ωp + ga,0x̄
(for the cavity mode) and by 
 f = ω f − ωp + g f ,0x̄ (for
the Fano mode), including the influence of the steady-state
mechanical displacement. Furthermore, the decay rate of the
cavity mode to the right photonic reservoir (through the nor-
mal mirror), κ2, enters these equations—also through the
total decay rate κtot = κ1 + κ2. The damping rate of the
mechanical mode is γm. Furthermore, ain

1 and ain
2 are the

vacuum input noises from the left and right environments,
respectively, which have the only nonvanishing correla-
tion function 〈ain

i (t )(ain
i )†(t ′)〉 = δ(t − t ′), with i = 1, 2. ξm

is the Brownian thermal noise of the mechanical res-
onator, which satisfies 〈ξm(t )ξm(t ′) + ξm(t ′)ξm(t )〉 ≈ (nm +
1/2)δ(t − t ′) with nm the thermal phonon number [52]. We
here assume complex optomechanical coupling coefficients,
since in general ā and f̄ are not real simultaneously, as will be
shown in Sec. IV B.

As mentioned, the most intriguing feature of the optome-
chanical system with a Fano mirror is the presence of a
normal-mode optical resonance which has a very narrow
linewidth, compared with the original linewidth of both the
pure cavity and the Fano mode. This important property is
the basis for achieving mechanical ground-state cooling, for a
system which would otherwise be in the unresolved-sideband
regime, namely with a cavity linewidth that is larger than
the mechanical frequency [44,47]. The narrow Fano reso-
nance can be understood from the normal modes of the cavity
and Fano modes where, in order to clarify this concept, we
drop for the moment the optomechanical interactions. For
the model in Fig. 1, the complex energies of the two normal
modes can then be written as [45,47]

ω̃± = 
a + 
 f

2
− i

κtot + κ f

2

±
√(


a − 
 f

2
− i

κtot − κ f

2

)2

+ G2,

(3)

which corresponds to normal-mode resonance frequencies
ω± = Re(ω̃±) and normal-mode linewidths κ± = −Im(ω̃±).
With appropriate parameters, one of the normal modes
can have a linewidth that is several orders of magnitude
smaller than κtot and κ f (and even smaller than commonly
realized mechanical frequencies), thus rendering the origi-
nally unresolved-sideband optomechanical system sideband
resolved [42,47].

While the above Fano resonance provides an opportunity
for ground-state cooling for optomechanical setups that are
originally in the highly unresolved sideband regime, in ex-
periments, it is challenging to meet the required parametric
conditions, see Ref. [47] for more details about relevant pa-
rameter regimes. In particular, some relevant parameters, such
as the coherent coupling strength between the cavity and
Fano modes, are difficult to precisely engineer and control.
In this paper, we aim to design a feasible coherent feedback
scheme, with which the cooling effect of the Fano-mirror
optomechanical system can be enabled and enhanced across a
broad range of parameters. As will be shown below, thanks to
the interplay between the Fano resonance and an appropriate
coherent feedback, ground-state cooling can be realized even
if the system is originally in the deeply unresolved sideband
regime (with the total decay rate of the cavity mode more
than seven orders of magnitude larger than the mechanical
frequency) and if the Fano-mirror parameters alone are not
ideal. This is possible even if the efficiency of the coherent
feedback loop is low.

III. DOUBLE-SIDED COHERENT FEEDBACK

When dealing with a two-port quantum system, such as
the optomechanical cavity introduced above, one can con-
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FIG. 2. Schematics of a possible implementation of the consid-
ered double-sided feedback loop, which includes highly reflected
mirrors (HRMs) and circulators. The faint green arrow indicates the
traveling-wave character of the feedback, going along with a phase
accumulation φ. To include the practically unavoidable loss and
imperfection of the feedback loop, we also introduce an additional
beam splitter, where an extra input noise is injected. The system
can be an arbitrary two-port quantum system, such as the two-sided
optomechanical cavity considered throughout this paper.

struct a double-sided coherent feedback where the output field
from one port is fed back to the other via a (unidirectional)
traveling-wave field [17]. This double-sided feedback scheme
has the advantage that the feedback efficiency can be in
principle very large—even close to unity. This will become
more apparent when comparing it to the single-sided feedback
scheme considered in Sec. IV.

However, we show in this section that such a feedback
scheme works well only for κ1 � κ2 by analyzing, for simplic-
ity, the case of a standard Fabry-Pérot cavity and conclude that
it is therefore not suitable for the system described in Sec. II
since the Fano mirror makes the cavity highly asymmetric,
with κ1 	 κ2.

A. Equations of motion with feedback

We consider a two-sided Fabry-Perot-type optomechani-
cal system, where the two cavity mirrors serve as the two
ports—indicated by a green box in Fig. 2. The feedback loop
is implemented with circulators and highly reflecting mirrors
(HRMs) as shown in Fig. 2 (see Appendix A for more details
about possible experimental implementations). Then, the lin-
earized quantum Langevin equation of the cavity mode a (in
the rotating frame with respect to the driving frequency) is
given by

δȧ = −(i
a + κtot )δa − igaδx

+
√

2κ1ain
1 +

√
2κ2ain

2 .
(4)

Here all the symbols have the same meaning as in the last
section. We consider an optomechanical system with standard
mirrors, namely no Fano mode is present. We furthermore as-
sume that the mechanical mode is placed inside the cavity (for
example via a standard membrane-in-the-middle setup) such
that the coupling to the coherent feedback is not impacted by
the mechanical motion.

In order to introduce the effect of the coherent feedback,
we now plug in the input-output relations,

aout
2 =

√
2κ2a − ain

2 , (5a)

ain
2 = aout

1
√

ηexp(iφ) +
√

1 − ηain
2′ , (5b)

aout
1 =

√
2κ1a − ain

1 , (5c)

into Eq. (4). Here 0 � η < 1 is the efficiency of the feedback
loop, which can be smaller than one due to unavoidable losses
and imperfections. The extra input noise, which arises from
the practically unavoidable loss and imperfection of the feed-
back loop, is described by ain

2′ (in Fig. 2 it comes from the
beam splitter). Furthermore, φ is the phase accumulation of
the field traveling from one mirror to the other. With this, we
have

δȧ = −(i
eff + κtot,eff )δa − igaδx

+ (√
2κ1 −

√
2κ2ηeiφ

)
ain

1 +
√

2κ2(1 − η)ain
2′ ,

(6)

where the effective parameters result from the coherent feed-
back. Specifically, we have introduced the effective total
decay rate of the cavity mode, κtot,eff = κtot − 2κ12

√
η cos φ

with κ12 = √
κ1κ2, which can be reduced with respect to the

original decay rates, depending on the efficiency η, as well
as the phase accumulation φ. Moreover, the input noise of
the cavity is suppressed in a similar, but importantly not
identical manner. The coupling between cavity mode and
environment, e.g.,

√
2κ1 − √

2κ2ηeiφ , can be even complex,
containing both coherent and dissipative components. Such a
double-sided coherent feedback can thus potentially provide
the possibility to realize mechanical ground-state cooling in
the originally sideband unresolved regime. In addition, the
coherent feedback also modifies the resonance frequency of
the cavity mode such that the effective detuning is given by

eff = 
a − 2κ12

√
η sin φ.

If the pumping field is also applied through the traveling-
wave path, then the steady-state mean value of the cavity
mode can be obtained as ā = εp,eff/(i
eff + κtot,eff ) with
εp,eff = (

√
2κ1 − √

2κ2ηeiφ )
√
P/(h̄ωp)exp(iθ ). Here θ is the

phase of the pumping field, which can be readily controlled in
experiments. In view of this, εp,eff can be tuned to be real by
appropriately choosing θ .

B. Feedback-assisted ground-state cooling

From the linearized equations of motion of the optome-
chanical system, we can compute the steady-state phonon
number of the mechanical mode,

nfin = 1
2 (〈δx2〉 + 〈δp2〉 − 1), (7)

by solving the Lyapunov equation describing the evolution
of the second-order moments of the system, see details in
Appendix B.

In Fig. 3, we provide a proof-of-principle demonstration
for mechanical ground-state cooling with the help of double-
sided coherent feedback. Here—and also in the following
figures of this paper—we always test the stability of the sys-
tem, show results for the stable regime and leave the unstable
regime white. We adopt a set of experimentally available
parameters as in Ref. [53], which implies that the system is
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FIG. 3. Plots of the final phonon number nfin (on logarithmic
scale) for the double-sided feedback scheme. (a) Final phonon
number versus detuning 
a and phase accumulation φ with η =
0.95 and κ2 = κ1. (b) Final phonon number versus feedback ef-
ficiency η with 
a/�m = 1, κ2 = κ1, and two selected values of
φ [with the orange solid and green dotted lines corresponding to
the orange square and green circle in (a), respectively]. The or-
ange curve approaches the minimum (i.e., nfin ≈ 0.59) for η ≈ 0.92.
(c) Final phonon number versus decay ratio κ2/κ1 and feedback
efficiency η with 
a/�m = 1 and φ = 0. (d) Final phonon num-
ber versus decay ratio κ2/κ1 with 
a/�m = 1, φ = 0, and two
selected values of η [with the black dashed and red dotted lines
corresponding to the same types of line in (c), respectively.] The
white dashed line in (a) indicates 
eff = �m while the cyan areas
in (b) and (d) represent the regimes of nfin < 1. Other parameters
are κ1/2π = 0.25 MHz, �m/2π = 0.13 MHz, γm/2π = 0.12 Hz,
g0/2π = 50 Hz, |εp,eff |/2π = 80 MHz, and n̄m = 9.6 × 104 [53].

originally in the unresolved-sideband regime. It is clear from
Figs. 3(a) and 3(b) that ground-state cooling (i.e., nfin < 1)
can be achieved in the presence of the feedback. Note that an
extremely small φ (especially φ = 0) may not be a physically
feasible choice for the implementation in Fig. 2. However,
both 
eff and κtot,eff exhibit a phase dependence with a period-
icity of 2π . In view of this, the phase accumulation φ can be
interpreted as mod(φ, 2π ). The minimum of the final phonon
number is always located at the effective mechanical red side-
band, namely at the phase-dependent detuning 
eff = �m, as
shown by the white dashed line in Fig. 3(a). Note that genuine
ground-state cooling also demands the equipartition of energy,
namely 〈δx2〉 � 〈δp2〉. This criterion is also checked as shown
in Fig. 9 in Appendix C.

Figure 3(b) shows that increasing the feedback efficiency
further enhances the cooling effect, but only up to a point. For
higher values of η, the cooling effect is weakened again and
the system then enters the unstable regime. This is consistent
with the fact that, in sideband cooling schemes, the decay
of the cavity field should be sufficiently strong to allow the
energy to flow from the mechanical mode to the cavity mode
and then to the environment.

FIG. 4. Schematics of a possible implementation of the consid-
ered single-sided feedback loop, including HRMs, circulators, and
(controllable) beam splitters (BS and CBS). The faint green arrow
indicates the traveling-wave character of the feedback. The system
can be an arbitrary two-port quantum system, such as a two-sided
optomechanical cavity considered throughout this paper. The feed-
back scheme continues being effective even for highly asymmetric
cavities.

We point out that the effect of the double-sided coherent
feedback is strongly dependent on the geometric symmetry
of the cavity, i.e., the ratio κ2/κ1 between the decay rates
at the two mirrors. As shown in Fig. 3(c), the minimum of
nfin always appears when κ2/κ1 ≈ 1. This can be understood
again from the effective decay rate κtot,eff of the cavity, which
is significantly reduced when κ1 ≈ κ2, mod(φ, 2π ) = 0, and
η → 1. Moreover, we focus in Fig. 3(d) on two selected cases
(η = 0.8 and 0.9) where the system is always stable when
κ2/κ1 varies. One can find that nfin increases rapidly as the
system deviates from the condition κ2/κ1 ∼ 1, showing how
this asymmetry hinders ground-state cooling. Even with iden-
tical mirrors (i.e., κ1 = κ2), the coherent feedback is further
limited by its efficiency, especially for bad cavities. Specif-
ically, to reach an effective sideband-resolved regime, the
feedback efficiency must satisfy 1 − √

η < �m/κtot, which is
a stringent requirement for bad cavities (e.g., κtot/�m ∼ 107

as will be considered in Sec. IV). In view of this, the double-
sided coherent feedback scheme is not a suitable candidate
to facilitate ground-state cooling in either the aforementioned
Fano-mirror optomechanical setup, which by construction
shows a highly asymmetric two-sided geometry, or conven-
tional optomechanical setups with a poor sideband resolution
�m/κtot. This conclusion is further verified in Appendix D,
where we show that for κ2 � κ1 such a double-sided coherent
feedback can hardly affect the two optical normal modes.

IV. SINGLE-SIDED COHERENT FEEDBACK

In Sec. III, we have shown that the double-sided feedback
loop in Fig. 2 becomes inefficient if the cavity has very
different decay rates at the two mirrors, which is typically
true for the Fano-mirror optomechanical system considered
in this paper. In view of this, we now consider a single-sided
coherent feedback scheme as shown in Fig. 4. The output
field from the Fano mirror (which typically has a much larger
decay rate than the right normal mirror) will be fed back to
the Fano mirror again. Such a possible implementation also
involves circulators and HRMs but arranged differently com-
pared to the double-sided feedback scheme (see Appendix A
for more details). Furthermore, in order to couple the fields
of two different circulators to the same cavity mode through
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only one port (mirror), we also exploit a controllable beam
splitter (CBS) with transmission coefficient tCBS and reflection
coefficient rCBS. As in the double-sided feedback scheme, an
additional beam splitter with reflection coefficient rex = √

ηex

is introduced to account for the practically unavoidable loss
and imperfection in the feedback loop. At first glance, such
an implementation comes at the cost of a reduced feedback
efficiency, which, in the ideal limit of ηex = 1, is determined
by tCBS and rCBS as will be shown below. This is not true,
however, since one can still expect a perfect destructive inter-
ference (the external decay of the two optical modes through
the Fano mirror can be totally suppressed, as shown by their
effective decay rates derived below). Moreover, we reveal that
the cooling effect can be significantly enhanced even when
ηex < 1.

A. Equations of motion with feedback

In order to write down the modified Langevin equations,
we first note that, in this case, the whole input field ain

1 on
the left Fano mirror—before being modified by the coherent
feedback—results from a superposition of three parts, which
are described by ain

top, ain
bot,1, and ain

bot,2 [54], as shown in Fig. 4.
These three parts eventually combine at the controllable beam
splitter and thus one has

ain
1 = rCBSain

top + tCBS
(√

ηexain
bot,1 +

√
1 − ηexain

bot,2

)
= rCBSain

top + tCBSain
bot. (8)

In the above definition, we have (i) absorbed the trivial phases
into the input noise operators ain

top = (X in
top + iPin

top)/
√

2 and

ain
bot,j = (X in

bot,j + iPin
bot,j )/

√
2 ( j = 1, 2) and (ii) defined a new

input noise operator ain
bot = √

ηexain
bot,1 + √

1 − ηexain
bot,2. Note

that all the input noise operators, including their combina-
tions ain

bot and ain
1 , satisfy the canonical commutation relation

[ain
j (t ), ain

j′ (t
′)†] = δ j, j′δ(t − t ′) and the correlation function is

〈ain
j (t )ain

j′ (t
′)†〉 = δ j, j′δ(t − t ′). Moreover, the coherent feed-

back is mediated by the traveling field experiencing a
reflection and a transmission at the beam splitter. The actual
input field at the Fano mirror, including feedback, is hence
given by

afb
1 = √

ηeiφaout
1 + ain

1

= √
ηeiφ

(√
2κ1a + √

2κ f f − ain
1

) + ain
1

= √
ηeiφ

(√
2κ1a + √

2κ f f
)

+ (
1 − √

ηeiφ
)(

rCBSain
top + tCBSain

bot

)
, (9)

where φ again includes all possible phase shifts, such as
the phase difference between the reflection and transmission
fields of the beam splitters. The overall efficiency of the feed-
back loop is then defined as η = t2

CBSr2
CBSηex, including the

contribution of the additional loss. The input-output relation

aout
2 =

√
2κ2a − ain

2 (10)

at the right normal mirror is identical to that of a conven-
tional setup. Substituting Eq. (9) into Eqs. (2c) and (2d),

we have

δȧ = −[i
a,eff + κa,eff ]δa − igaδx − iGeffδ f

+
√

2κ1
(
1 − √

ηeiφ
)
ain

1 +
√

2κ2ain
2 , (11a)

δ ḟ = −[i
 f ,eff + κ f ,eff ]δ f − ig f δx − iGeffδa

+√
2κ f

(
1 − √

ηeiφ
)
ain

1 . (11b)

Clearly, such a single-sided coherent feedback modifies not
only the decay rates and the corresponding input noises of the
two optical modes but also their dissipative coupling through
the left photonic reservoir. While the maximum efficiency is
η = 0.25 by definition, the cooling effect can still be greatly
enhanced with the combination of the coherent feedback and
Fano resonance, as will be shown below. Concretely, 
a,eff =

a − 2κ1

√
η sin φ and 
 f ,eff = 
 f − 2κ f

√
η sin φ are the ef-

fective detunings of the cavity and Fano modes; κa,eff =
κ1(1 − 2

√
η cos φ) + κ2 and κ f ,eff = κ f (1 − 2

√
η cos φ) are

the effective decay rates of the cavity and Fano modes; Geff =
λ − iκ1 f [1 − 2

√
ηexp(iφ)] is the effective coupling coeffi-

cient between the cavity and Fano modes. Moreover, the
coherent feedback also modifies the noise terms in Eqs. (11a)
and (11b) but in a different way from the decay terms. They are
therefore not expressed as functions of the above-introduced
effective decay rates. Instead, the effective input noises on the
Fano mirror are given by input noise superpositions depend-
ing on the feedback efficiency and the phase accumulation.
Interestingly, the coupling to the input signals is in general
complex due to the coherent feedback.

In the presence of the single-sided feedback, the complex
eigenvalues of the two optical normal modes are also strongly
impacted. They become

ω̃± = 
a,eff + 
 f ,eff

2
− i

κa,eff + κ f ,eff

2

±
√(


a,eff − 
 f ,eff

2
− i

κa,eff − κ f ,eff

2

)2

+ G2
eff.

(12)

In this case, both the resonance frequencies [i.e., ω± =
Re(ω̃±)] and the linewidths [i.e., κ± = −Im(ω̃±)] of the two
normal modes are modified by the coherent feedback. Note
that in Eq. (12) the optomechanical interactions between
the mechanical and the two optical modes are not taken
into account. However, the interference between the two op-
tomechanical interaction paths may further enhance the Fano
resonance [43].

In view of this, Eq. (12) only provides an intuitive picture
to understand the cooperation of the Fano resonance and the
coherent feedback, rather than accurately predicting the op-
timal cooling region. Nevertheless, we find that the optimal
cooling region always appears when the real part of one of the
normal-mode eigenenergies is comparable to the mechanical
frequency, implying that the corresponding normal mode is
driven close to the mechanical red sideband, and the linewidth
of this normal mode is smaller than the mechanical frequency.

Importantly, ground-state cooling of the mechanical mode
would also be allowed by exploiting single-sided coherent
feedback without the Fano mode. However, the effective
linewidth of the cavity mode that would be achieved by this
is limited by the smallest of the two cavity decay rates (at the

013506-6



COHERENT FEEDBACK CONTROL FOR CAVITY … PHYSICAL REVIEW A 111, 013506 (2025)

FIG. 5. Plots of the final phonon number nfin (on logarithmic
scale) for the single-sided feedback scheme. (a) Final phonon num-
ber versus reflection coefficient rCBS (respectively the corresponding
efficiency η) and detuning δ
 with εp/2π = 80 GHz. (b) Final
phonon number and mechanical variances (〈δx2〉 and 〈δp2〉) versus
reflection coefficient rCBS with εp/2π = 80 GHz and δ
/�m = −50
[corresponding to the black dotted line in panel (a)]. The cyan area
represents the regime of nfin < 1. (c) Final phonon number versus
reflection coefficient rCBS and pumping amplitude εp with δ
/�m =
−50. The yellow dashed line corresponds to the driving ampli-
tude used in (a) and (b). Other parameters are �m/2π = 1.3 MHz,
κ1/2π = 20 THz, κ2/2π = 0.6 GHz, κ f /2π = 1.08 GHz, γm/2π =
5 × 10−3 Hz, λ/2π = 7 GHz, 
a/�m = 30, ga,0/�m = 6.5 × 10−5,
gf ,0/�m = −1.6 × 10−4, φ = π , ηex = 0.9, and n̄m = 105.

two end mirrors), thereby requiring that at least one of the
mirrors has a decay rate that is smaller than the mechanical
frequency. This is in contrast to the combined outcome of
coherent feedback and Fano mirror, where sideband cooling
becomes possible even if all original decay rates of the cavity
are far larger than the mechanical frequency, see Fig. 5.

Before proceeding, we briefly comment on another kind of
coherent feedback that is mediated by only a few (or even a
single) discrete modes. At a first glance, the single-sided feed-
back loop can be simply realized by placing a vertical HRM
on the same side of the Fano mirror, as shown in Fig. 11(a)
in Appendix E. However, we point out that this structure
corresponds to a standing-wave version of the feedback loop,
which could be viewed as a membrane-in-the-middle optome-
chanical system if the HRM is very close to the Fano mirror,
while it leads to non-Markovian coherent feedback if the sepa-
ration distance between the HRM and the Fano mirror is large

enough. In contrast, a well-designed traveling-wave feedback
loop as suggested here is preferable to implement instanta-
neous coherent feedback (for more details see Appendix E).

B. Feedback-assisted ground-state cooling

As in the previous section, one can determine the final
phonon number from the quantum Langevin equations (11)
by solving the corresponding Lyapunov equation; see
Appendix B.

Since the coherent feedback is introduced to the left Fano
mirror in this case, we assume that the pumping field is ap-
plied to the right normal mirror. This allows the pumping field
and the coherent feedback to be tuned independently, thus
offering more flexibility for our cooling scheme. Specifically,
this means that, in contrast to the previously shown two-
sided feedback scheme, here the pumping amplitude εp is not
modified by the feedback loop. The semiclassical steady-state
values of the cavity and Fano modes are then

ā = χ−1
f ,eff

χ−1
a,effχ

−1
f ,eff + G2

eff

εp, (13a)

f̄ = −iGeff

χ−1
a,effχ

−1
f ,eff + G2

eff

εp, (13b)

where

χ−1
a,eff = i
a,eff + κa,eff , (14a)

χ−1
f ,eff = i
 f ,eff + κ f ,eff . (14b)

From Eqs. (13a) and (13b), the enhanced optomechanical
coupling coefficients can be obtained as ga = ga,0ā and g f =
g f ,0 f̄ . They are hence, due to the form of ā and f̄ , generally
not simultaneously real.

In Figs. 5(a) and 5(b), we show the dependence of the
final phonon number nfin on the detuning δ
 = 
a − 
 f =
ωa − ω f between the cavity and Fano modes and the feedback
efficiency η of the single-sided feedback loop, choosing a set
of experimentally available parameters of such systems [47]
and a realistic initial phonon occupation 105 (corresponding
to a phonon bath of about 6 K), as indicated in the figure cap-
tion. Note that in the ideal case of ηex = 1, the efficiency
η increases with rCBS and reaches its maximum η = 0.25
at rCBS = √

0.5 ≈ 0.71. However, here we consider a more
realistic situation with ηex = 0.9, which accounts for a small
but unavoidable loss in the feedback loop. With an appropriate
feedback, ground-state cooling is allowed even in this deeply
unresolved sideband regime (the linewidth of the cavity reso-
nance is more than seven orders of magnitude larger than the
mechanical frequency). In contrast to the double-sided feed-
back scheme, here we assume φ = π (modulo 2π ) to facilitate
ground-state cooling, the reason of which will be elucidated
below. The region of nfin < 1, namely where ground-state
cooling can be achieved, is reached when the real part of the
normal-mode eigenenergy with the smallest imaginary part,
here ω̃−, is comparable, but not exactly equal, to the mechan-
ical frequency. Indeed, the minimum of nfin is approached
when ω−/�m ≈ 1.1, which is very close to the resonance
condition. The slight deviation from the effective sideband
cooling condition, ω− = �m, arises from the complicated
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interference effects of the optomechanical interactions with
the coherent feedback. In Fig. 5(b), we also check that the
equipartition of energy is approximately fulfilled within the
region of nfin < 1.

As in a standard sideband cooling scheme, the cooling
effect can be further improved by appropriately increasing the
power of the pumping field, as shown in Fig. 5(c), yet one
should be very careful since the system will enter the unstable
region with strong-enough pumping and large feedback effi-
ciency. Moreover, we show in Fig. 9(c) that the equipartition
of energy can be significantly broken with a strong pumping,
even if the system is still in the stable regime. In view of this,
the coherent feedback provides a way to enhance the cooling
effect without increasing the pumping amplitude (i.e., without
breaking the equipartition of energy).

In Fig. 5, we have focused on the specific Fano-mirror
setup where the photonic crystal membrane supports both the
Fano and mechanical modes such that they are also coupled
in a dispersive manner. We point out that the cooling en-
hancement, which is based on the combination of the Fano
resonance and the coherent feedback, can be extended to
setups where the Fano and mechanical modes are decoupled
[34–43]. A proof-of-principle demonstration of ground-state
cooling in such setups can be found in Appendix F. We fur-
thermore discuss in Appendix G the role of the dissipative
coupling iκ1 f between the two optical modes, which is not
present, e.g., in coupled-cavity cooling schemes [37–40].

In practice, there are many factors, e.g., imperfections of
the fabrication of the cavity and photonic crystal that may
affect the parameters that determine whether ground-state
cooling becomes possible or not. In particular, the coherent
coupling between the cavity and Fano modes, λ, depends
on many factors, such as the specific material and structure
of the Fano mirror as well as the cavity length. This may
pose challenges in precisely controlling the Fano resonance
and thereby whether the mechanical mode can be cooled
down as desired. In other words, the actual coherent coupling
strength may deviate from the expected value such that the
Fano resonance may become difficult to access. Nevertheless,
we demonstrate in Fig. 6(a) that the ground-state cooling
is robust against a moderate coupling deviation with other-
wise fixed parameters—the white dashed line corresponds
to λ = 2π × 7 GHz (i.e., λ/�m = 5384.6) which is chosen
in Fig. 5. We also examine in Fig. 6(b) the equipartition of
energy, which is always guaranteed within the working region
of nfin < 1.

As mentioned above, the cooling effect in the Fano-
mirror setup can be enhanced by the single-sided feedback
scheme when φ = π . This is quite different from the double-
sided feedback scheme, where the standard optomechanical
system (without the Fano mode) enters the effective sideband-
resolved regime when φ = 0. This difference arises from the
interplay between the Fano resonance and the coherent feed-
back. The former becomes highly effective with strong optical
dissipative coupling κ1 f , which leads to a significant linewidth
splitting between the two normal modes (as also discussed
in Appendix G). Importantly, the optical dissipative coupling
would be significantly suppressed when φ = 0, due to the de-
structive interference arising from the coherent feedback, even
if the feedback loop is not perfect (ηex < 1). This would cause

FIG. 6. (a) Final phonon number nfin (on logarithmic scale) for
the single-sided feedback scheme versus cavity-Fano coherent cou-
pling strength λ and reflection coefficient rCBS. The white dashed
line correspond to the value of λ used in Fig. 5. (b) Final phonon
number nfin (on logarithmic scale) and mechanical variances (〈δx2〉
and 〈δp2〉) versus λ with rCBS = 0.7. We assume δ
/�m = −50 and
other parameters are identical to those in Fig. 5(a).

the smaller normal-mode linewidth to increase, as shown in
Fig. 7(a). In contrast, by employing coherent feedback with
constructive interference (e.g., φ = π ), the smaller normal-
mode linewidth can be further reduced due to the effectively
enhanced optical dissipative coupling.

FIG. 7. (a) Linewidth κ− of the “–” normal mode as a function
of reflection coefficient rCBS with φ/π = 0 and φ/π = 1. [(b) and
(c)] Final phonon number nfin (on logarithmic scale) versus reflection
coefficient rCBS and (b) phase accumulation φ and (c) extra efficiency
factor ηex. We assume ηex = 0.9 in (a) and (b) and φ = π in (c). Other
parameters are identical to those in Fig. 5(a).
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Finally, we point out that the enhanced cooling effect
can still be achieved when the phase accumulation φ de-
viates moderately from odd multiples of π , as shown in
Fig. 7(b). This demonstrates the robustness of our scheme
against the practically unavoidable inaccuracy of the feedback
loop length. Moreover, Fig. 7(c) shows that the single-sided
feedback scheme remains effective even with a much stronger
optical loss in the feedback loop. While we have always
assumed ηex = 0.9 in the previous figures, it is evident that
the coherent feedback can still facilitate ground-state cooling
even when ηex = 0.2.

These results show that the combination of a Fano mirror
with single-sided coherent feedback is a promising scheme to
achieve ground-state cooling circumventing too strict require-
ments on the parameters of the Fano-mirror optomechanical
setup. However, further optimization of parameters can lead
to even lower phonon numbers, e.g., when increasing the
pumping amplitude εp, reducing the optical coherent coupling
λ, or increasing the cavity decay κ1 through the Fano mirror.

V. DISCUSSION AND CONCLUSIONS

We have explored ground-state cooling of the mechani-
cal mode of a Fano-mirror optomechanical system, which
is allowed based on the cooperation of an external coher-
ent feedback with the Fano resonance (arising from the
interaction between the cavity mode and the guided optical
mode in the photonic crystal membrane). While the inter-
action between the cavity and Fano modes can lead to an
optical normal mode with a linewidth that is smaller than the
mechanical frequency, it is in many experimentally relevant
situations only thanks to the coherent feedback that ground-
state cooling is enabled. Indeed, we have shown that within
a broad parameter regime, coherent feedback further modifies
the optical properties and input noises of the setup in order to
reach the goal.

More specifically, we have shown that single-sided
feedback—in contrast to the more standard two-sided
feedback—is a good candidate for optomechanical setups fea-
turing a two-sided cavity with large and very different decay
rates at the two cavity mirrors. As a result, the mechanical
mode can be cooled down towards its ground state, even
if the optomechanical system works in a deeply sideband
unresolved regime—with the total optical linewidth more
than seven orders of magnitude larger than the mechanical
frequency—and even if the feedback efficiency is low. An
advantage for future experimental realizations, where precise
parameter values might be hard to control, is also that, with
the help of coherent feedback, ground-state cooling is fairly
robust against some modifications in the experimental param-
eters with respect to their ideal value.

Realizations of ground-state cooling in conventional op-
tomechanical setups, namely without a Fano resonance, are
limited, both when using double- and single-sided coher-
ent feedback schemes. Concretely, the double-sided coherent
feedback becomes inapplicable if the cavity has very different
decay rates at the two mirrors, while the single-sided coherent
feedback is not sufficient to realize ground-state cooling on
its own if the smallest original decay rate is larger than the
mechanical frequency.

Here we have shown that realizing ground-state cooling
of the mechanical mode seems within experimental reach, in
Fano-mirror optomechanical setups when only combining it
with a low-efficiency single-sided coherent feedback. This is
especially promising for microcavities with a photonic crystal
mirror exhibiting very large single-photon optomechanical
couplings [45] since it could help access the nonlinear regime
and pave the way for quantum technological applications such
as quantum sensing.
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APPENDIX A: IMPLEMENTATIONS OF THE
DOUBLE-SIDED AND SINGLE-SIDED FEEDBACK LOOPS

In this Appendix, we briefly discuss the possible experi-
mental implementations of the double-sided and single-sided
coherent feedback schemes considered in the main text. As
shown in Figs. 2 and 4, both schemes require optical circu-
lators to couple the Fabry-Perot-type optomechanical system
to a traveling-wave field twice. One possible implementation
of such circulators is the combination of a polarization beam
splitter, a Faraday rotator, and a well aligned half-wave plate,
as shown in Figs. 8(a) and 8(b).

Note that the polarization change of light passing through a
half-wave plate, typically consisting of a birefringent crystal,
depends on the angle of its polarization plane with respect
to the extraordinary axis, while the polarization change of
a Faraday rotator is only determined by the magnetic field
direction and the sign of the Verdet constant [55], describing
the strength of the Faraday effect for a particular material. In
view of this, with a well-designed combination of a Faraday
rotator and a half-wave plate, the polarization of the light can
remain unaffected in one direction but will change by 90◦ in
the opposite direction.

While the single-sided feedback scheme in Fig. 8(b) is
lossy and thus the feedback efficiency is at most 0.25, the
double-sided feedback scheme in Fig. 8(a) shows a nearly
100% efficiency, except for the unavoidable weak losses via
the scattering and absorption processes.

APPENDIX B: METHODS FOR CALCULATING
THE FINAL PHONON NUMBER

1. Double-sided feedback

For an optomechanical system with linearized dynamics,
the steady-state values of the correlations can be calculated
by formulating a Lyapunov equation for the covariance ma-
trix Vi j (t ) = 〈Ri(t )Rj (t ) + Rj (t )Ri(t )〉/2. This involves the
quadrature vector R = (δXa, δPa, δx, δp)T with Xa = (a† +
a)/

√
2 and Pa = i(a† − a)/

√
2 being two orthogonal quadra-

tures of the cavity mode.
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FIG. 8. Experimental implementations of (a) the double-sided and (b) the single-sided coherent feedback schemes.

More specifically, for the double-sided feedback scheme
considered in Fig. 2, the linearized quantum Langevin
equations (2a)–(2b) and (6) can be recast into the compact

matrix form
d

dt
R = MR + U, (B1)

with the 4 × 4 coefficient matrix, also called drift matrix,

M = −

⎛
⎜⎜⎝

κeff −
eff 0 0

eff κeff

√
2ga 0

0 0 0 −�m√
2ga 0 �m γm

⎞
⎟⎟⎠,

and the vector of noise quadratures

U =

⎛
⎜⎜⎜⎝

(
√

2κ1 − √
2κ2η cos φ)X in

1 + √
2κ2η sin φPin

1 + √
2κ2(1 − η)X in

2′

(
√

2κ1 − √
2κ2η cos φ)Pin

1 − √
2κ2η sin φX in

1 + √
2κ2(1 − η)Pin

2′

0√
2γmξm

⎞
⎟⎟⎟⎠.

Note that here we have assumed a real ā without loss of generality, which can always be achieved by tuning the phase of the
pumping field. Then, the covariance matrix V obeys the evolution equation dV/dt = MV + V MT + N , where

N =

⎛
⎜⎜⎝

κtot,eff 0 0 0
0 κtot,eff 0 0
0 0 0 0
0 0 0 γm(2nm + 1)

⎞
⎟⎟⎠ (B2)

is the diffusion matrix satisfying Ni jδ(t − t ′) = 〈Ui(t )Uj (t ′) + Uj (t ′)Ui(t )〉/2. In our linearized optomechanical system, the final
phonon number,

nfin = 1
2 (V33 + V44 − 1), (B3)

can be numerically determined by solving the steady-state Lyapunov equation,

MV + V MT = −N. (B4)

2. Single-sided feedback

For the single-sided feedback scheme considered in Fig. 4, the quantum Langevin equations, Eqs. (2a)–(2b) and Eqs. (11a)–
(11b), can be recast into a similar form as that in Eq. (B1) for the quadrature vector R′ = (δXa, δPa, δXf , δPf , δx, δp)T , with a
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6 × 6 drift matrix,

M ′ = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κa,eff −
a,eff −Im(Geff ) −Re(Geff ) −√
2Im(ga) 0


a,eff κa,eff Re(Geff ) −Im(Geff )
√

2Re(ga) 0

−Im(Geff ) −Re(Geff ) κ f ,eff −
 f ,eff −√
2Im(g f ) 0

Re(Geff ) −Im(Geff ) 
 f ,eff κ f ,eff

√
2Re(g f ) 0

0 0 0 0 0 −�m√
2Re(ga)

√
2Im(ga)

√
2Re(g f )

√
2Im(g f ) �m γm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B5)

and a corresponding noise vector,

U ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2κ1W1X in

top + √
2κ1W2Pin

top + √
2κ1W3X in

bot − √
2κ1W4Pin

bot + √
2κ2X in

2√
2κ1W1Pin

top − √
2κ1W2X in

top + √
2κ1W3Pin

bot + √
2κ1W4X in

bot + √
2κ2Pin

2√
2κ f W1X in

top + √
2κ f W2Pin

top + √
2κ f W3X̃ in

bot − √
2κ f W4Pin

bot√
2κ f W1Pin

top − √
2κ f W2X in

top + √
2κ f W3Pin

bot + √
2κ f W4X in

bot

0√
2γmξm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

In Eq. (B6), we have defined the shorthand notations W1 = rCBS[1 − √
η cos (φ)], W2 = rCBS

√
η sin (φ), W3 = tCBS[1 −√

η cos (φ)], and W4 = tCBS
√

η sin (φ). In this case, the Lyapunov equation is given by

M ′V ′ + V ′M ′T + N ′ = 0, (B7)

where

N ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

F ′
1 0 F ′

2 0 0 0
0 F ′

1 0 F ′
2 0 0

F ′
2 0 F ′

3 0 0 0
0 F ′

2 0 F ′
3 0 0

0 0 0 0 0 0
0 0 0 0 0 γm(2nm + 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

(B8)

with

F ′
1 = (

W 2
1 + W 2

2 + W 2
3 + W 2

4

)
κ1 + κ2,

F ′
2 = (

W 2
1 + W 2

2 + W 2
3 + W 2

4

)
κ1 f ,

F ′
3 = (

W 2
1 + W 2

2 + W 2
3 + W 2

4

)
κ f .

Then the final phonon number of the mechanical mode can be determined as

nfin = 1
2 (〈δx2〉 + 〈δp2〉 − 1)

= 1
2 (V ′

55 + V ′
66 − 1). (B9)

APPENDIX C: EQUIPARTITION OF ENERGY IN THE
GROUND-STATE COOLING REGIMES

As mentioned in the main text, another important criterion
of the mechanical ground-state cooling, besides nfin < 1, is
the equipartition of energy, i.e., 〈δx2〉 � 〈δp2〉. Otherwise the
steady state of the system is not a strict thermal equilibrium
state and thus there is not a well-defined effective temperature
of the mechanical mode in this case [56]. Therefore, it is also
necessary to examine the two variances 〈δx2〉 and 〈δp2〉 of the
mechanical mode in the regimes of nfin < 1 and and see if a
genuine ground-state cooling can be expected.

We first present an example for the double-sided feedback
scheme in Fig. 9(a), which corresponds to the orange solid
line in Fig. 3(b). We find that the two mechanical variances
are in good agreement, with their difference being negligible

compared to their average values. For the single-sided feed-
back scheme, we show in Fig. 9(c) that the difference between
the two mechanical variances increases gradually with εp.
This indicates that increasing the pumping amplitude is not
always helpful for enhancing the cooling effect, even if it re-
sults in a lower final phonon number, as is shown in Fig. 5(c).
In view of this, we choose an appropriate value for εp in all
other panels of Figs. 5–7, as indicated by the black dotted line
in Fig. 9(b), to ensure the equipartition of energy.

APPENDIX D: OPTICAL NORMAL MODES WITH
DOUBLE-SIDED COHERENT FEEDBACK

In this Appendix, we aim to show that the double-sided
coherent feedback has a negligible impact on the Fano-mirror
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FIG. 9. (a) Final phonon number nfin (on logarithmic scale) and
mechanical variances (〈δx2〉 and 〈δp2〉) versus feedback efficiency η

for the double-sided feedback scheme with φ = 0. (b) Final phonon
number and mechanical variances versus pumping amplitude εp for
the single-sided feedback scheme with rCBS = 0.7. The two panels
share the same legend. The cyan area represents the regime of nfin <

1 and the black dotted line in (b) indicates the pumping amplitude
used in Fig. 5(a). Other parameters in (a) and (b) are identical with
those in Figs. 3(b) and 5(c), respectively.

optomechanical setup when the cavity is highly asymmetric
(i.e., κ2 � κ1). This conclusion can be drawn from examining
the two optical normal modes, in this case formed by the
cavity and Fano modes.

When including the Fano mode in the double-sided-
feedback scheme, the quantum Langevin equations of the two
optical modes are given by

δȧ = −(i
a,eff + κtot,eff )δa − iG′δ f − igaδx

+
(√

2κ1 −
√

2κ2ηeiφ
)

ain
1 +

√
2κ2(1 − η)ain

2′ ,

δ ḟ = −(i
 f + κ f )δ f − iGδa − ig f δx + √
2κ f ain

1 ,

where G′ = G + 2iκ2 f
√

ηeiφ and all other symbols are de-
fined as in the main text. Note that the overall interaction
between the cavity and Fano modes becomes asymmetric
since the unidirectional traveling-wave feedback loop leads to
a “cascaded” interaction. In this case, the eigenfrequencies of
the two normal modes are obtained as

ω̃± = 
a,eff + 
 f

2
− i

κtot,eff + κ f

2

±
√(


a,eff − 
 f

2
− i

κtot,eff − κ f

2

)2

+ GG′.

(D1)

As an example, Figs. 10(a) and 10(b) [Figs. 10(c) and
10(d)] show that the effective resonance frequency ω− and
linewidth κ− of the “–” normal mode are barely affected (sig-
nificantly affected) by the coherent feedback when κ2 � κ1

(when κ2 = κ1). One can thus conclude that in the highly
asymmetric case of κ2 � κ1, the double-sided coherent feed-
back is inefficient for the Fano-mirror optomechanical setup.

FIG. 10. Effective resonance frequency ω− and linewidth κ−
of the “–” optical normal mode versus the feedback efficiency η

and phase accumulation φ for κ2/2π = 0.6 GHz [(a) and (b)] and
κ2/2π = 20 THz. All the panels share the same legend. Other pa-
rameters, except for those indicated in the panels, are κ1/2π =
20 THz, κ f /2π = 1.08 GHz, 
a/�m = 30, δ
/�m = 18.2, λ/2π =
805 MHz.

APPENDIX E: STANDING-WAVE AND TRAVELING-WAVE
VERSIONS OF THE SINGLE-SIDED FEEDBACK LOOP

A single-sided feedback loop can, as mentioned in the
main text, be realized in very different ways, depending on
the specific configuration (standing-wave or traveling-wave
versions) as well as on the length of the feedback loop. In
this Appendix, we first provide general descriptions for the
interaction between the optomechanical system and the “feed-
back loop” (i.e., the modes in the loop that are coupled to
the cavity; hereafter we refer to them as “loop modes”), and
then identify the conditions under which various theoretical
descriptions are applicable. We here treat a simple system with
a single optical mode a; generalizations to multiple optical
modes, e.g., additional Fano modes, are straightforward.

1. Standing-wave version

We first consider a standing-wave version of the single-
sided coherent feedback, in contrast to the traveling-wave
version considered in the main text and in Appendix E 2. As
shown in Fig. 11(a), the feedback loop is formed by simply
placing a vertical HRM on one side of the cavity (here it is
placed on the same side of the Fano mirror) at a distance
d . Such a model is equivalent to a direct-coupled structure
[57] in waveguide quantum electrodynamics, where the field
is terminated at the boundary of the system. We assume that
the optomechanical system is coupled to jmax loop modes in
total. The Hamiltonian of the whole model (system plus loop)
can be written as Htot = Hsys + Hloop + Hint, where Hsys is the
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FIG. 11. (a) A standing-wave version of the single-sided co-
herent feedback, which is equivalent to a direct-coupled structure
in waveguide quantum electrodynamics. (b) The equivalent side-
coupled structure of the traveling-wave single-sided coherent feed-
back in Fig. 4.

Hamiltonian of the (Fano-mirror) optomechanical system,

Hloop =
jmax∑
j=1

ω jb
†
jb j (E1)

is the Hamiltonian of the loop modes, and

Hint =
⎡
⎣ jmax∑

j=1

ξ ja
† sin (k jd )b j + H.c.

⎤
⎦ +

jmax∑
j=1

Hom, j (E2)

describes the system-loop interaction. Here ω j (k j) is the
frequency (wave vector) of the jth loop mode bj ; ξ j is the
coupling amplitude of loop mode bj and the cavity mode of
the optomechanical system; the sinusoidal function sin (k jd )
in Eq. (E2) results from the wave functions of the standing
modes in the loop space (we assume that the HRM is placed
at x = 0 without loss of generality), which is reminiscent of
the case of an atom in front of a mirror [58,59]; Hom, j is the
term describing the optomechanical coupling between bj and
the mechanical mode, with the specific form depending on
many factors (the distance d , the reflectivity and position of
the mirror etc.) as will be discussed below.

a. Markovian reservoir limit

In the limit of d → +∞, the free spectral range ωFSR =
πc/d of the loop modes approaches zero such that the cavity
and Fano modes of the optomechanical system are coupled
to a continuum of modes. In this case, the feedback time
goes to infinity, τ = 2d/c → +∞, implying that the system is
coupled to a Markovian reservoir with no coherent feedback.
Moreover, in this case one can just assume Hom, j → 0 since
the mechanical oscillation of the Fano mirror has a negligible
influence on the reservior. Now the Hamiltonian (E2) becomes

Hint,Markov =
+∞∑
j=1

ξ ja
†b j + H.c., (E3)

where we have assumed constant system-reservoir coupling
amplitudes based on the Weisskopf-Wigner approximation.
Moreover, in Eq. (E3) we have removed the sinusoidal-
function dependence of the coupling amplitudes, since the
loop modes are clearly not standing-wave modes in this case.

b. Membrane-in-the-middle setup limit

When d is very small, namely d ∼ L with L the length of
the optomechanical cavity, the hierarchy ωFSR 	 ξ j ensures
that in the energy window given by the linewidth of the cavity
mode, there is only a single loop mode (i.e., jmax = 1). In
this case, the cavity mode is hence coupled only to one loop
mode and the whole setup is equivalent to a membrane-in-
the-middle optomechanical system [53]. Here we consider
the case where the resonance condition d = mπ/kb [i.e.,
sin (kbd ) ≡ 0], with kb the wave number of the loop mode and
m an arbitrary positive integer, is fulfilled. Then another cavity
is created on the left side of the mirror. Due to this choice the
photonic tunneling terms (i.e., interactions between b and a)
in Eq. (E5) disappear. As a consequence, Eqs. (E1) and (E2)
become

Hloop,MIM = ωbb†b, (E4)

Hint,MIM = Hom, (E5)

where ωb = ckb represents the resonance frequency of mode
b.

For such a system, the interaction between the cavity and
mechanical modes can be very different, depending on the
reflectivity of the mirror as well as its position relative to
the wave nodes of the cavity mode. For a mirror (i.e., the
membrane in the middle) with very low reflectivity, one can
just consider a single cavity mode for the space between the
HRM and the right cavity mirror, i.e., jmax = 1 and b = a. In
this case, if the middle mirror (assuming that its thickness is
much smaller than the cavity field wavelength) is placed in
the vicinity of a wave node (or antinode), then the optome-
chanical coupling between the cavity and mechanical modes
is dominated by its quadratic term, i.e., Hom ∝ b†bx2 (similar
for the interaction between x and a) rather than its first-order
term [53]. Otherwise, for a highly reflective mirror, mode b
serves as an independent cavity mode on the left side of the
mirror, and the optomechanical couplings (between x and both
a and b) typically have a linear dependence on the mechanical
displacement.

c. Non-Markovian reservoir regime

Between the above two limits, the whole setup must show
a continuous and smooth variation (rather than an abrupt
transition) when changing the length d of the loop [60]. For
large-enough (but not infinite) d such that ωFSR is much
smaller than the coupling amplitude ξ j , the cavity mode is
coupled to a large number of loop modes and Hom can be
neglected (this is justified also because the loop modes are
not driven by pumping fields such that the corresponding
optomechanical couplings cannot be enhanced effectively). In
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this case, the interaction part of the Hamiltonian becomes

Hint,non-Markov �
jmax∑
j=1

ξ ja
† sin (k jd )b j + H.c. (E6)

However, due to the large d , the optomechanical system is
equivalent to be coupled to a non-Markovian reservior
with time-delayed coherent feedback [60]. For instance,
for d ∼ 1 m (i.e., ωFSR ∼ 108 Hz) and ξ j ∼ 1010 Hz (i.e.,
κ1 ∼ 1012 Hz), the cavity mode a can interact with more than
104 modes in the loop, but meanwhile the propagation time
τ = 2d/c is much larger than the lifetime 1/(2κ1 + κ2) of the
cavity mode.

2. Traveling-wave version

In order to implement a single-sided coherent feedback
loop with negligible time delay, one can consider a traveling-
wave version as shown in Fig. 4. This model is in fact
equivalent to a side-coupled structure with two separate cou-
pling points, which can be viewed as an optomechanical
analog of “giant atoms” [61]. Since the traveling-wave field
contains a dense continuum of modes by nature, one does
not have to use a very long loop (now d is the optical path
between the two circulators) and thus the time delay can be
negligible compared to the lifetime of the cavity. In this case,
the interaction part of the Hamiltonian can be given by

Hint,travel �
+∞∑
j=1

ξ ja
†(1 + eik j d )b j + H.c., (E7)

where the function [1 + exp(ik jd )] accounts for the “two-
time” interaction between the system and the traveling-wave
field. This corresponds to the input-output formalism pre-
sented in Sec. IV A, where the traveling field interacts with
the system twice, while accumulating a phase difference.

The main difference between the direct-coupled and side-
coupled structures is whether the feedback loop is part of the
freely propagating traveling-wave field . This difference is
very important since it determines whether the free spectral
range of the loop modes is determined by the length (and thus
the time delay) of the loop.

APPENDIX F: GROUND-STATE COOLING WITHOUT
COUPLING BETWEEN FANO AND MECHANICAL MODES

As discussed in Sec. IV B, the enhanced cooling effect,
which is based on the combination of the Fano resonance and
the coherent feedback, is not exclusive to the specific setup
where the Fano and mechanical modes are coupled to each
other via the deformation of the membrane. In fact, there are
many different optomechanical setups where the Fano and
mechanical modes do not directly interact with each other
because, for example, they are supported by different objects
[34–40] or the mechanical displacement only very weakly
affects the properties of the Fano mode [41].

We provide in Fig. 12 a proof-of-principle demonstra-
tion of ground-state cooling in this kind of setup. It shows
that ground-state cooling is still allowed by resorting to the
coherent feedback, with slightly modified parameters. The
two mechanical variances 〈δx2〉 and 〈δp2〉 always show good

FIG. 12. (a) Final phonon number nfin (on logarithmic scale)
versus detuning δ
 and reflection coefficient rCBS for the setup with
a single-sided coherent feedback but no Fano-mechanical coupling.
(b) Final phonon number nfin (on logarithmic scale) and mechanical
variances (〈δx2〉 and 〈δp2〉) versus δ
 with rCBS = 0.7. Other param-
eters are identical to those in Fig. 5(a) except for κ1/2π = 30 THz,
gf ,0 = 0, and εp/2π = 238.7 THz.

agreement in the region of nfin < 1, ensuring the equipartition
of energy. We thus conclude that ground-state cooling can also
be achieved if there is no direct dispersive coupling between
the Fano and the mechanical modes, but the mechanical mode
is coupled to the cavity mode only.

APPENDIX G: COMPARISON BETWEEN FANO-MIRROR
AND COUPLED-CAVITY COOLING SCHEME

Fano resonances are one of the core ingredients in our
cooling scheme. They have been extensively studied in a
variety of optomechanical systems, including the coupled-
cavity optomechanical setup where a sideband-unresolved
optomechanical cavity is coupled to a high-quality bare
cavity [40].

Similarly to the coupled-cavity cooling schemes, where
ground-state cooling of the mechanical mode can be achieved
by only resorting to the Fano resonance mechanism, in our
Fano-mirror setup it is also possible to realize mechanical
ground-state cooling without using the coherent feedback,
but within a rather specific parametric regime, as discussed
in Refs. [44,47]. We provide a specific demonstration in
Fig. 13(a) to support this conclusion. While this strategy is
theoretically viable, it has not yet been realized in experi-
ments. In contrast, the single-sided feedback scheme proposed
in this paper allows for robust ground-state cooling over a
broad range of parameters, where it would otherwise be hin-
dered by only exploiting the Fano resonance. For example, in
the case of Fig. 13(a), ground-state cooling is realized with a
stronger pumping field and a much weaker optical coherent
coupling λ.

In this Appendix, we would like to elaborate on the ma-
jor differences between two important systems with Fano
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FIG. 13. (a) Final phonon number nfin (on logarithmic scale) and
mechanical variances (〈δx2〉 and 〈δp2〉) versus detuning δ
 for our
Fano-mirror setup, with parameters differing from those considered
elsewhere and in the absence of the single-sided coherent feedback
(i.e., η = 0). (b) Effective linewidths κ± (on logarithmic scale) of the
optical normal modes versus the dimensionless control parameter ζ

for η = 0. We take ζ = 1 in (a) and δ
 = 17.5 in (b). The two
panels share the same legend. Here we assume λ/2π = 0.9 GHz
and εp/2π = 0.8 THz. Other parameters are the same as those in
Fig. 5(a).

resonances, namely the coupled-cavity and the Fano-mirror
optomechanical setups: (i) In the coupled-cavity setup, the
Fano mode (i.e., the auxiliary cavity mode) is decoupled from
the mechanical mode. (ii) In the coupled-cavity setup, the two
optical modes are coupled solely through coherent interac-
tions (without the optical dissipative coupling). Since we have
studied in Appendix F the situation where the Fano mode does
not interact with the mechanical mode, here instead we focus
on the impact of the optical dissipative coupling on the Fano
resonance (i.e., the optical normal modes). As will be shown
below, in the presence of the optical dissipative coupling,
the Fano resonance can facilitate ground-state cooling even
if the linewidth of the Fano mode is much larger than the
mechanical frequency.

In Fig. 13(b), we show the effective decay rates κ± of the
two optical normal modes as a function of the dimensionless
parameter ζ , which controls the contribution of the optical
dissipative coupling, defined by G = λ − iζκ1 f . The optome-
chanical systems without such dissipative contributions, such
as the coupled-cavity setup, can be captured by the case of
ζ = 0. One can find that the optical dissipative coupling plays
a crucial role in significantly reducing one of the effective
decay rates (and thus making the system sideband-resolved as
ζ approaches 1). More specifically, the smaller decay rate can
be reduced to well below the mechanical frequency �m when
ζ approaches 1. This again explains why the single-sided
coherent feedback, studied in the main text, plays a positive
role when constructive interference occurs (e.g., φ = π ).
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