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Observation ofmultiple steady stateswith
engineered dissipation
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Li Li 1,2,8, Tong Liu 1,3,8 , Xue-Yi Guo1, He Zhang1,2, Silu Zhao1,2, Zheng-An Wang4,
ZhongchengXiang 1,2,4,5,6,7, Xiaohui Song1,4,5, Yu-XiangZhang 1,2,5, Kai Xu 1,2,4,5,6,7, Heng Fan 1,2,4,5,6,7 &
Dongning Zheng 1,2,5,6,7

Simulating the dynamics of open quantum systems is essential in achieving practical quantum
computation and understanding novel nonequilibrium behaviors. However, quantum simulation of a
many-body system coupled to an engineered reservoir has yet to be fully explored in present-day
experiment platforms. In this work, we introduce engineered noise into a one-dimensional ten-qubit
superconducting quantum processor to emulate a generic many-body open quantum system. Our
approach originates from the stochastic unravellings of the master equation. By measuring the end-
to-end correlation, we identify multiple steady states stemmed from a strong symmetry, which is
established on the modified Hamiltonian via Floquet engineering. Furthermore, we investigate the
structure of the steady-state manifold by preparing initial states as a superposition of states within
different sectors on a five-qubit chain. Our work provides a manageable and hardware-efficient
strategy for the open-system quantum simulation.

The interplay between coherent and dissipative dynamics within a physical
system leads to the emergenceof exoticnonequilibriumphenomena, suchas
dissipation phase transition1–5 and dissipative time crystals6–9. While an
open system typically exhibits a single steady state, prior studies have
demonstrated thatmultiple steady states are possible if there are symmetries
preserved by the dissipation10–14. Such remained symmetries also enable
control over nonequilirbrium quantum transport15–17. Furthermore, the
multiple steady states can span a stabilized manifold, which has significant
applications in passive quantum error correction, crucial for quantum
information processing18–23. However, attaining multiple steady states
generally requires sophisticated dissipative channels in most existing
models, necessitating special experimental configurations. Recently, theo-
retical investigations have unveiled that systems with only one-photon
pump and loss can also manifest multiple steady states24,25. This finding
motivates us to experimentally observe this phenomenon using near-term
quantum simulation platforms.

Superconducting circuits, owing to their high flexibility and scalability,
have achieved notable success in the simulation of quantum many-body
systems, including many-body localization26, quantum many-body scar
states27, discrete-time crystals28, information scrambling29, and entangle-
ment phase transition30. Most of the existing works are restricted to closed

systems. To simulate an open system, previous research has employed two
distinct approaches. Thefirstmethod embeds the system into a larger closed
system where the complement acts as the environment, resulting in a
substantial increase in the overhead of qubits and gates31–33. The second
approach integrates lossy components into customized circuits to introduce
dissipation intentionally34–39.However, the dissipation strength andposition
of the lossy components often lack tunability, and this approach deviates
from the long-term goal of developing highly coherent devices capable of
universal quantumcomputation. Therefore, an efficientmethod to simulate
dissipative dynamics using a universal quantum processor is highly
desirable.

Here, we report our experiment in probing multiple steady states
induced by a strong symmetry on a one-dimensional superconducting
quantum processor with nine qubits, as shown in Fig. 1. Each qubit used in
the experiment is labeled byQiwith i∈ {1, 2,…, 9}, and can be addressed by
individual control lines. Based on the interpretation of open quantum
dynamics in terms of stochastic wave functions, we engineer a stochastic
Hamiltonian to mimic the evolution featuring controllable dissipation by
averaging over a set of unitary evolutions. The dissipation is applied to the
central qubit to generate multiple steady states24,25. Our protocol can be
efficiently extended to multiple dissipations on the current noisy
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intermediate-scale quantumdevices without the need for ancillary qubits or
lossy elements.We also incorporate the Floquet engineering to mitigate the
undesired next-nearest-neighbor (NNN) couplings and modify nearest-
neighbor (NN) coupling strengths to preserve the symmetry40–42. By initi-
alizing the system in distinct symmetry sectors with high-fidelity gates, we
show that the system evolves to different steady states specified by the end-
to-end correlation. Our results demonstrate that superconducting circuits
are a promising platform to explore exotic properties of open many-body
systems benefiting from their high flexibility and manipulability.

Results
Engineered dissipation
We start with the simulation of the following Lindblad master equation
(LME) of a single qubit10,11,

_ρ ¼
X
j¼1;2

LjρL
y
j �

1
2
fLyj Lj; ρg; ð1Þ

where ρ is the density matrix of the qubit, L1 ¼ ffiffiffiffiffiffi
γþ

p
σþ ¼ ffiffiffiffiffiffi

γþ
p ∣ei g

�
∣ and

L2 ¼
ffiffiffiffiffiffi
γ�

p
σ� ¼ ffiffiffiffiffiffi

γ�
p ∣g

�
eh ∣ are pumpand loss operators, respectively,with

γ+ (γ−) being the pump (loss) rate, and ∣g
�
(∣ei) is the ground (excited) state

of qubit.Here,we setγ+= γ− = γ. Amore general case (γ−> γ+) is discussed
in Supplementary Note 4. Now Eq. (1) can be rewritten as
_ρ ¼ γ

2 σxρσx þ σyρσy � 2ρ
� �

, which reminds us of that ρ is the ensemble

average of stochastic wave function ∣ψ
�
, i.e., ρ ¼ ∣ψ

�
ψ
�

∣, with the overline
denoting the average over stochastic realizations43–45. The stochastic wave
function ∣ψ

�
is governed by the following stochastic Schrödinger equation

(SSE) with ℏ = 1

i
d
dt
∣ψ
� ¼ HSðtÞ∣ψ

� ¼ ffiffiffi
γ

2

r
ξ1ðtÞσx þ ξ2ðtÞσy
� �

∣ψ
�
; ð2Þ

where ξ1(t) and ξ2(t) are two independent real Gaussian processes satisfying
ξαðtÞξβðt0Þ ¼ δαβδðt � t0Þ and ξα ¼ 0 for α, β = 1, 2.

AlthoughHS(t) is a Hermitian Hamiltonian, the faithful generation of
ideal Gaussian processes in Eq. (2) is infeasible in experiments due to the
finite bandwidth of arbitrary wave generators. Inspired by the numerical
techniques of differential equations, we adopt Euler’s method to simulate

Eq. (2) by slicing each trajectory intoN sections dividedby time intervals of a
small duration Δt. The evolution of the wave function in the ith section
∣ψiðtÞ

�
is given by

i
d
dt
∣ψiðtÞ

� ¼ ffiffiffiffiffiffiffi
γ

2Δt

r
ηi1σ

x þ ηi2σ
y

� �
∣ψiðtÞ

�
; ð3Þ

with the initial condition ∣ψið0Þ
� ¼ ∣ψi�1ðΔtÞ

�
, where ηi1 and ηi2 are two

random variables following a discrete distribution P(η1(2) = 1) = P(η1(2) =
−1) = 1/2. We mention that while Eq. (3) is not strictly equivalent to
Eq. (2), it can approximate Eq. (2) within each segment by neglecting
high-order infinitesimal terms (see Methods). By sampling 2N variables
fη11; . . . ; ηN1 ; η12; . . . ; ηN2 g, we can determine a trajectory and apply
corresponding driving pulses to the target qubit, as described in Eq. (3).
Note that the amplitude of pulses are kept fixed while the phase in each
section is uniformly chosen from {π/4, 3π/4, 5π/4, 7π/4}. The mapping
between the amplitude of the driving pulse and γ can be calibrated via the
Rabi oscillation, where we apply a rectangular driving pulse to the qubit
initialized as ∣g

�
, and measure the excitation probability Pe versus the

drivingpulse lengthT, as shown inFig. 2a.After samplingM trajectories, the
dynamics of an observable O can be estimated by

PM
j¼1hψðjÞjOjψðjÞi=M

where ∣ψðjÞ� is the jth trajectory.

We verify our scheme on qubit Q5 by measuring the evolution of
σz � ∣ei eh ∣� ∣g

�
g
�
∣ from two initial states ∣g

�
and ∣ei with Δt = 7.5 ns,

γ = 0.4MHz, andM = 100, as illustrated in Fig. 2b. The results are presented
in Fig. 2c and compared with numerical results calculated by LME and SSE.
Wefind that the experiment results are in goodagreementswith simulations
in a duration of 2.5 μs, and converge to a steady state ρss in which 〈σz〉 = 0
irrespective of the initial states chosen.

Strong symmetry and Floquet engineering
We have demonstrated the experimental realization of dissipative
dynamics with equal pump and loss rates on a single qubit, where the
steady state is a thermal state ð∣0i 0h ∣þ ∣1i 1h ∣Þ=2.However, when the same
dissipation is applied to the center spin of an XX chain with reflection
symmetry, the combination of the Hamiltonian and dissipation gives rise
tomultiple long-range steady stateswithin the chain24,25. TheHamiltonian
part reads

H ¼
XL�1

i¼1

Ji;iþ1ðσþi σ�iþ1 þ σ�i σ
þ
iþ1Þ; ð4Þ

where L is the length of the chain, σþi ðσ�i Þ is pump (loss) operator at site i,
and Ji,i+1 is the nearest-neighbor (NN) interaction strength with Ji,i+1 =
JL−i,L+1−i. Considering thedissipationat the center spin, thedynamics of the
entire chain’s densitymatrix ρ is governed by the following Lindbladmaster
equation

_ρ ¼ LðρÞ ¼ �i½H; ρ� þ γ σþmρσ
�
m � 1

2 fσ�mσþm; ρg
�

þ σ�mρσ
þ
m � 1

2 fσþmσ�m; ρg
� ð5Þ

where m = (L + 1)/2 is the index of the center spin and L is the super-
operator corresponding to the dissipative process.

The emergenceofmultiple steady states is rooted in ahidden symmetry
associatedwith the operatorC2, which confines the dynamicswithindistinct
symmetry sectors. The operatorC ¼ �1=2þPL

k¼1 f
y
k f Lþ1�k where f k ¼

e
iπ
P

j<k
σþj σ

�
j σ�k represents the fermionic operator at site k derived

via the Jordan–Wigner transformation46. Since [H, C] = 0 and
σþð�Þ
m C ¼ Cσþð�Þ

m ¼ �C, both the Hamiltonian and the jump operators
commute with C2, generating a strong symmetry. In closed quantum sys-
tems, symmetries decouple the dynamics into independent subspaces, and
similarly, in open quantum systems, this strong symmetry ensures that the

Fig. 1 | Spin chain with a local dissipation and device. a An array of nine qubits
with nearest-neighbor couplings. The dissipation on the center qubit impels the
system to steady states with long-range coherence. bOptical picture of the ten-qubit
superconducting quantum processor with highlighting circuit elements. Qubits
(pink) are labeled from Q1 to Q9 and can be controlled by individual microwave
signals through the red and blue lines. Scale bar in the lower left corner, 0.2 mm.
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eigenspaces of C2 evolve independently, guaranteeing at least one steady
state within each sector12.

TheHamiltonian of our one-dimensional processor shown in Fig. 1b is
given by

Hexp ¼
P9
i¼1

� ωi
2 σ

z
i þ

P8
i¼1

ðJi;iþ1σ
þ
i σ

�
iþ1 þ h:c:Þ

þP7
i¼1

ðJi;iþ2σ
þ
i σ

�
iþ2 þ h:c:Þ;

ð6Þ

where ωi represents the transition frequency between the ∣g
�
and ∣ei states

of qubit Qi, and coupling terms describe the interactions between NN or

NNN qubits. The aforementioned symmetry is broken by the inclusion of
the NNN interaction term, despite the NNN interactions strength Ji,i+2/2π
≃1MHz in our device being an order of magnitude smaller than the NN
interaction strength Ji,i+1/2π ≃10MHz. The NNN interactions can be
suppressed via Floquet engineering as illustrated in Fig. 3a40–42. The transi-
tion frequencies of the qubits are adjustable by applying external magnetic
fluxes. For the nine qubits, the transition frequencies ωi/2π are set to three
distinct values: 4.33, 4.54, and 4.66 GHz. This frequency alignment effec-
tively turns off the NNN interactions (indicated by the red dashed lines in
Fig. 3a) between qubit pairsQ1-Q3,Q3-Q5,Q5-Q7, andQ7-Q9 through large
frequency detuning. Then we apply sinusoidal ac magnetic fluxes to mod-
ulate the frequencies of Q2,Q4,Q6, and Q8 as ~ωiðtÞ � ωi þ εi sinðνit þ ϕiÞ
for i = 2, 4, 6 and 8, with εi, νi, and ϕi being the modulation amplitude,
frequency, and phase, respectively (see Supplementary Note 5). We also
apply amendedDCpulses to themodulated qubits to compensate the shifts
of the frequency, arising from the nonlinearity of the relationship between
flux and frequency.When themodulation frequency νi is far larger than the
NN interaction strength Ji,i+1, the rapid oscillation induces a set of sidebands
ωi+mνi, wherem is an integer. To initiate the interactionsbetweenadjacent
qubits with distinct frequencies, the modulation frequencies νi are equal to
the frequency detuningΔ/2π = ∣ωi−ωi+1∣/2π = 210MHz or ∣ωi−ωi−1∣/2π
= 330MHz. The modulation amplitudes εi are tuned to rectify the minor
coupling disorder in the processor, ensuring that the NN interaction
strengths remain primarily symmetric. The first sidebands of Q2 (Q6) and
Q4 (Q8) coincide, but the resultingNNN interaction isweak enough to allow
for the observation of different multiple steady states (see Methods and
Supplementary Note 6). The remaining NNN interaction between Q4 and
Q6 retains the symmetry as both qubits are equidistant from Q5

24.

Preparation of initial states in different symmetry sectors
To observe the different steady states, the initial state must be prepared
within the diverse eigenspaces of C2. The eigenstate of C is expressed as
∣fvk;± ; n0g

� ¼ ðf y0Þ
n0 Ql

k¼1

Q
s¼± ðayk;sÞ

νk;s ∣0i with eigenvalue λ = ∑k=1

(νk,+ − νk,−) + n0 − 1/2, where ∣0i is the vacuum state, ak; ± ¼
ðf k ± f Lþ1�kÞ=

ffiffiffi
2

p
, l = (L− 1)/2, and νk,±∈ {0, 1} for k = 1,…, l24. n0 denotes

the number of excitations at the central site, taking values of either 0
or 1, and νk,s quantifies the number of Bell pairs resembling ð∣01i þ
s∣10iÞ= ffiffiffi

2
p

generated by ayk;s at sites k and L+ 1− k. Consequently, λ can
adopt 2(l+ 1) distinct values { ± (η+ 1/2)} with η = 0, 1,…, l.C2 shares the
same eigenstates with C but possesses (l + 1) distinguishable eigenvalues
(η+ 1/2)2. Considering the degeneracy of eigenvalues, it is available to
traverse all eigenspaces of C2 by increasing vk,− from 0 to l with n0 = 0
and vk,+ = 0 for k = 1, …, l. Hence, by defining Bell state creating
operators between qubits Ql−k+1 and QL−l+k, denoted as byk; ± ¼
ðσþl�kþ1 ± σ

þ
L�lþkÞ=

ffiffiffi
2

p
for k = 1,…, l, we can generate (l+ 1) states f∣ϕη

E
g

belonging to distinct symmetry sectors

∣ϕ0
� �OL

j¼1

∣gj
E
; ∣ϕη

E
�
Yη
k¼1

by
k;ð�Þk ∣ϕ0

�
; η ¼ 1; . . . ; l; ð7Þ

where ∣gji is the ground state of Qj. Exploiting the circuit shown in Fig. 3b,
we implement ∣ϕ1i with state fidelity more than 99.9% characterized by the
quantumstate tomography inour processor47. TheRz(θ) gate in the circuit is
defined as RzðθÞ � expð�iσzθ=2Þ to tune the phase of Bell state ∣ΨðφÞ� �
1ffiffi
2

p ð∣el; glþ2

�þ eiφ∣gl; elþ2

�ÞNL
j≠l;lþ2∣gji as φ = 0 or φ = π, corresponding

to symmetry sectorsη =0orη=1, respectively.Wealso implement ∣ϕ2
�
and

∣ϕ3
�
by repeating generating Bell states with staggered phases through the

same circuit and iSWAP gates (see Supplementary Note 3).
Figure 3c shows the single excitation density distribution hnii �

ð1þ hσzj iÞ=2 launched from ∣ϕ1
�
under the periodic driving, where two

excitations propagate towards two opposite directions with the same velo-
city due to the reflection symmetry, and swing between the boundary qubit
and the center qubit Q5. The occupation number of the center qubit is
always nearly zero because of the destructive interference of two excitations,

Fig. 2 | Simulation of the Lindblad master equation Eq. (1). a The Rabi oscillation
for calibrating the driving pulse amplitude. The qubit is initialized in the ∣g

�
state,

and we measure the probability of the ∣ei state oscillating over the driving time at
different driving amplitudes. b A schematic of the driving pulse sequences for M
trajectories. The driving amplitude during each Δt is randomly sampled from two
discrete values for each trajectory. c The evolutions of 〈σz〉 in the experiment after
100 repetitions, governed by the Lindblad master equation, and simulated by the
stochastic Schrödinger equation. The upper (lower) branch of evolution corre-
sponds to the initial state ∣ei (∣g�). The shaded light blue region represents the
standard error of the mean over trajectories in the experiment.
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which can also be understood by the fact that the state with n0 = 1 belonging
to the symmetry sector η = 0 is excluded from the eigenspace of symmetry
sector η = 1. On the contrary, when the phase of the initial Bell state is zero,
two excitations are almost confined between Q4 and Q6 in Fig. 3d, which
arises from the non-uniform effective interaction strengths between NN
qubits. This phenomenon additionally facilitates the calibration of both the
Bell state phase and the modulation phase ϕi in the experiment (see Sup-
plementary Note 9).

Characterization of multiple steady states
Now, we examine the dynamics of the system in the presence of dissipation
whereγ= 3MHz, specifically applied toQ5 in the followingcontext. Following
the preparation of initial states using the circuit shown inFig. 3b, we rearrange
all qubits, activate acmagneticfluxes, and introduce engineerednoises toqubit
Q5. Then, we track the evolution of the end-to-end correlation hσz1σzLi from
three initial statesbyperforming joint readoutsof thequbits locatedat the ends
of the nine-qubit chain, as shown in Fig. 4a, where we sample ten trajectories
for each evolution. For the initial states ∣ϕ0

�
and ∣Ψð0Þ�, which hold different

numbers of excitation but belong to the same sector η= 0, hσz1σzLi tends to the
steady value hσz1σzLi0st ¼ 1=L, or 1/9 for L= 924, indicated by the upper gray
dashed line in the Fig. 4a. For the other initial state ∣ΨðπÞ� in the sector η = 1,
hσz1σzNi tends to the steady value hσz1σzLi1st ¼ ðl � 4Þ=Ll, or 0 for L= 924

indicated by the lower gray dashed line. The experimental results are con-
sistent with the numerical simulations involving the energy relaxation timeT1
= 30 μs and Ramsey dephasing time Tϕ = 20 μs for each qubit. In Fig. 4b, we
show the numerical results simulated with the Hamiltonian built from the
original device parameterswithout Floquet engineering. All three lines rapidly
converge to zero owing to the vanishing of the symmetry.

Finally, we explore the structure of degenerate steady states using 5
qubits {Q3,Q4,Q5,Q6,Q7} with the other qubits being far off-resonant. The
steady value hσz1σzListðφÞ corresponding to the initial state ∣ΨðφÞ

�
on a five-

qubit chain is expected as cosφ=5, derived from the combinationof hσz1σzLi0st
and hσz1σzLi1st (see Supplementary Note 11). The experimental results are
shown in Fig. 5a where we increase the initial phase φ from 0 to π in
increments π/8 by the Rz(θ) gate. The evolution from the state ∣ΨðφÞ� tends
to a steady value between two extreme steady values hσz1σzLi0st and hσz1σzLi1st.
In Fig. 5b, we collect the values of hσz1σzLi evaluated at te = 1.4, 1.7, and 2 μs
for different initial phases. The data collected at te = 1.7 μs is closest to the
ideal result. Due to the accumulated decoherence errors, the end-to-end
correlations at te= 2 μs are smaller than those at te= 1.7 μs, but the feature of

the cosine function remains. These observations demonstrate that the phase
information stored in the initial state can be preserved through the engi-
neered dissipation, and ∣Ψð0Þ� and ∣ΨðπÞ� constitute a pointer basis for a
classical bit13,48–50.

Discussion
We use a discretized SSE to simulate a class of LME by the associated
stochastic Hamiltonian, and examine the protocol on a transmon qubit. To
observe the multiple steady states in our processor, we harness Floquet
engineering to suppress undesired NNN interactions and observe the
quantumwalk of aBell state in a superconductingqubit chain. By tuning the
phase of the Bell state and activating the dissipation, the end-to-end cor-
relation of a nine-qubit chain converges to the steady value in the symmetry
sector η = 0 or η = 1.We also show that the phase information in the initial

Fig. 3 | Floquet engineering and the evolution of a pair of Bell state in a 1D array
with nine qubits. aTransition frequencies and fluxmodulations of nine qubits. Blue
circles represent the transition frequencies of nine qubits, while orange or purple
circles of qubitsQ2,Q4,Q6, andQ8 denote the first sideband frequencies induced by
the ac fluxes. The red dashed lines with crosses represent the suppressed next-
nearest-neighbor interactions under this specific frequency arrangement since the
frequency detuning is far larger than the interaction strength (see Methods and

SupplementaryNote 6). bThe digital circuit prepares a Bell state betweenQ4 andQ6.
First, anXπ gate flipsQ5 to the ∣ei state. A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate then entanglesQ4 andQ5 to

create a Bell pair. The subsequent iSWAP gate transfers the Bell state fromQ5 toQ6.
Finally, an Rz(θ) gate is applied to fine-tune the phase of the Bell state. c, d The time
evolution of the density distribution 〈ni〉with Floquet engineering. The initial state is
a Bell state between Q4 and Q6 with Bell phase φ = π or φ = 0.

Fig. 4 | The evolution of end-to-end correlation hσz1σzLi on a nine-qubit chain.The
shaded regions surrounding the experiment data represent the standard error of the
mean over trajectories in the experiment. a Three solid lines with circle markers
correspond to the initial state ∣ϕ0

�
, ∣Ψð0Þ�, and ∣ΨðπÞ�, respectively. Dashed lines are

numerical simulations with T1 = 30 μs and Tϕ = 20 μs. b Numerical simulations
using the original device parameters without Floquet engineering.
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state can be extracted from the steady state in a five-qubit array. While our
experiment involves at most nine qubits, numerical analysis of errors and
the number of sampling trajectories suggests that our approach can be
extended to include more qubits in the same setting (see Supplementary
Note 12). Furthermore, our approach can also explore symmetry sectors
withη > 1by generatingmultiple pairs of Bell states usingdigital circuits and
further increasing the ratio U/Ji,i+1 (see Supplementary Note 10)42. In
addition, our approach could have potential applications in probing the
spreading of correlation in open quantum systems51 and diagnosing non-
Markovian dynamics52.

Methods
Realization of controllable dissipation
We first derive the equation governing the dynamics of the average density
operator ρ for a quantum system exposed to the noise. The evolution of the
state ∣ψ

�
in each trajectory can be described by the following quantum

Langevin equation

i
d
dt
∣ψ
� ¼ HsðtÞ∣ψ

� ¼ H0 þ
XK
j¼1

ξjðtÞVj

" #
∣ψ
�
; ð8Þ

where H0 is the dissipationless Hamiltonian, ξj(t) is a stationary stochastic
process with correlation time τc and Vj is a Hermitian operator for j = 1, 2,
…,K. In the limit τc→ 0, Eq. (8) becomes a Stratonovich stochastic equation

d∣ψ
� ¼ �iH0dt∣ψ

�� i
XK
j¼1

Vj∣ψ
�
°dWjðtÞ; ð9Þ

where ∘ denotes the Stratonovich integral53 and {Wj(t)} are K independent
realWeinerprocesses. Equation (9) can also be converted into an equivalent
Itô equation

d∣ψ
� ¼ �iHeffdt∣ψ

�� i
XK
j¼1

Vj∣ψ
�
dWjðtÞ; ð10Þ

whereHeff � H0 � i
2

PK
j¼1 V

2
j . Following the rules of the Itô integral

54, we
have

dð∣ψ� ψ
�

∣Þ ¼PK
j¼1

Vj∣ψ
�
ψ
�

∣Vjdt þ ð�iHeff ∣ψ
�
ψ
�

∣dt

� i
PK
j¼1

Vj∣ψ
�
ψ
�

∣dWjðtÞ þ h:c:Þ;
ð11Þ

where h.c. denotes the Hermitian conjugate. Hence, the ensemble-averaged
state ρ ¼ ∣ψ

�
ψ
�

∣ satisfies the following Lindblad master equation

dρ
dt

¼ �i½H0; ρ� þ
XK
j¼1

VjρVj �
1
2

V2
j ; ρ

n o
; ð12Þ

where we have used the property of Itô integral that ∣ψ
�
ψ
�

∣ and dWj(t) are
uncorrelated.

However, generating Wiener processes is challenging, making it
impractical to use Eq. (8) to simulate the dynamics described by Eq. (12) in
experiments. To address it, we develop an alternative approach by dividing
the entire evolution process into N sections, each with a duration Δt. The
state ∣ψn

�
at time nΔt is given by the iterative equation

∣ψn

� ¼ exp �iH0Δt � i
X
j

Vjη
n
j

ffiffiffiffiffi
Δt

p
 !

∣ψn�1

�
; ð13Þ

where ∣ψ0

�
is the initial state, fηnj g areNK independent real randomvariable

satisfying ηnj ¼ 0 and ηnj η
m
l ¼ δjlδmn. Expanding Eq. (13) using Taylor’s

formula and neglecting the high-order infinitesimal terms yields

d∣ψn

� � �iH0Δt � i
X
j

Vjη
n
j

ffiffiffiffiffi
Δt

p
� 1

2

X
j;l

VjVlη
n
j η

n
l Δt

0
@

1
A∣ψn�1

�
:

ð14Þ
The corresponding density operator satisfies

dρn ¼ �i½H0; ρn�1�Δt � i
P

j½Vj; ρn�1�ηnj
ffiffiffiffiffi
Δt

p

þPj;l Vjρn�1Vl � 1
2 fVjVl; ρn�1g

	 

ηnj η

n
l Δt:

ð15Þ

Since fηnj g are uncorrelatedwith ρn−1, we obtain themaster equation for the
statistically averaged state �ρ

d�ρ
dt

¼ �i½H0; �ρ� þ
X
j

Vj�ρVj �
1
2

V2
j ;�ρ

n o
: ð16Þ

Therefore, we derive the same master equation from Eq. (13), which is
generated by the Hamiltonian

Hn ¼ H0 þ
X
j¼1

Vjη
n
j =

ffiffiffiffiffi
Δt

p
ð17Þ

within the nth time interval.
In our experiment, the dissipation channels consist of particle pump

and loss. When the rates of pump and loss are equal, the dissipation part in
the master equation could be rewritten using Hermitian Pauli operators by
replacing σ± with (σx ± iσy)/2, yielding

γ σ�ρσþ � 1
2 fσþσ�; ρg

� �
þγ σþρσ� � 1

2 fσ�σþ; ρg
� �

¼ γ
2 ðσxρσx � ρÞ þ γ

2 ðσyρσy � ρÞ:
ð18Þ

Fig. 5 | The evolution of end-to-end correlation hσz1σzLi for Bell states with dif-
ferent phases on a five-qubit chain. The shaded regions surrounding the experi-
ment data represent the standard error of the mean over trajectories in the
experiment. a The solid lines with circle markers correspond to the initial phases
from 0 to π in increments π/8, respectively. b The values of hσz1σz5i evaluated at te =
1.4, 1.7, and 2 μs.
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Hence, combining Eq. (17) and Eq. (18) recovers Eq. (3).

Suppression of NNN interactions by Floquet engineering
By parking the qubits at the frequencies shown in Fig. 3(a), the NNN
interactions between pairsQ1 andQ3,Q3 andQ5,Q5 andQ7, andQ7 andQ9

are effectively suppressed since the NNN coupling strength (Ji,i+2/2π
≃1MHz) is significantly smaller than the frequency detuning (210 or
330MHz) between these pairs. The ac flux modulation frequency is set to
either 210 or 330MHz to make the first sidebands of Q2, Q4, Q6, and Q8

resonate with Q3 or Q7. This configuration maintains NNN interactions
between Q2 (Q6) and Q4 (Q8) as their first sidebands align. However, the
coupling strength betweenQ2 andQ4 is reduced by a factor of J1(ε2/ν2)J1(ε4/
ν4) ~0.1 where J1(x) is the first-order Bessel function of the first kind. A
similar reduction occurs for the pairQ6 andQ8. Simulation results confirm
the presence of multiple steady states under these conditions.

We also introduce a general strategy to fully cancel the NNN interac-
tions in a one-dimensional chain. The fundamental idea is depicted in
Fig. S10 of Supplementary Note 6. Our approach involves sequentially
applying parametric longitudinal fields with two distinct modulation fre-
quencies, ν1 and ν2, to the qubits. Assuming ν1 < ν2, we activate the NN
interaction between Q1 and Q2 by aligning the first negative sideband of Q1

with the frequency of Q2, accounting for the modification of DC offset.
Subsequently, we enable the NN interaction between Q2 and Q3 by
employing aparametricfieldwithmodulation frequency ν2 onQ2. Following
this, a parametric field with modulation frequency ν1 is applied to Q3, and
similar adjustments aremade tootherqubits from left to right.Consequently,
theNNN interaction betweenQ1 andQ3 can be severed if ν2 is not an integer
multiple of ν1. This occurs because although both qubits have parametric
fields applied with the same modulation frequency ν1, the frequency
detuning between them becomes ν2+ ν1, which cannot be compensated by
the modulation frequency. Likewise, the NNN interaction between Q2 and
Q4 canbe eliminated, as theirmodulation frequency isν2,while the frequency
detuningbetween the twoqubits is ν2− ν1. This process can commence from
anyqubitQj in the array, extending fromQj toQ1 andQj toQN. Therefore, by
selecting a starting qubit and activating the interaction betweenQi andQi+1

through the first positive or negative sideband ofQi, we can cancel the NNN
interactions between all qubits. The modulation frequencies are chosen by
sweeping the T1 of the qubit near the corresponding sideband.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The codes for numerical simulation and data analysis are available from the
corresponding author upon reasonable request.
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