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Abstract: Considerable effort has been put over the last few decades into clarifying the
correct design and analysis of split-plot factorial experiments. However, the information
found in the literature is scattered and sometimes still not easy to grasp for non-experts.
Because of the importance of split-plots for the industry and the fact that any experimenter
may need to use them at some point, a detailed and step-by-step guide collecting all the
available information on the fundamental methodology in one place was deemed necessary.
More specifically, this paper discusses the simple case of an unreplicated split-plot factorial
experiment with more than one whole-plot (WP) factors and all factors set at two levels each.
Explanations on how to properly design the experiment, analyze the data, and assess the
proposed model are provided. Special attention is given to clarifications on the calculations
of contrasts, effects, sum of squares (SS), parameters, WP and sub-plot (SP) residuals, as
well as the proper division of the proposed model into its sub-designs and sub-models
for calculating measures of adequacy correctly. The application of the discussed theory is
showcased by a case study on the recycling of molybdenum (Mo) from CIGS solar cells.
Factors expected to affect Mo recovery were investigated and the analysis showed that all
of them are significant, while the way they affect the response variable was also revealed.
After reading this guide, the reader is expected to acquire a good understanding of how to
work with split-plots smoothly and handle with confidence more complex split-plot types.

Keywords: split-plot experiment; analysis of split-plot; unreplicated split-plot; residuals;
split-plot calculations

1. Introduction
Factorial experiments are an experimentation strategy which offers high efficiency

in experimentation, because they use all the experimental data in the most efficient way.
For many decades, they have been used extensively in science and engineering, while
more recently they have also found application in other fields, for instance, marketing,
service operations, etc. (Montgomery 2020) [1]. Factorials have proved to be a powerful
tool, provided that their design and analysis are performed correctly.

The simplest, ideal case of a factorial experiment (and the one which is normally
taught in basic coursebooks) is the one in which all experimental runs are performed in a
completely randomized way. That means that, e.g., if an experiment consists of eight runs
in total and these runs should be treated in an oven at two different temperatures, the oven
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should be turned on, reach the desired temperature, operate at it, and then be turned off
and allowed to cool down eight times. The order in which the temperatures are run should
be completely random (i.e., one must not start with all the low temperatures first and then
continue with all the high ones or vice versa). As can be seen from the previous example,
complete randomization can be time-consuming. Although this might be acceptable at the
lab scale, at the industrial scale, it is usually not. Due to this reason, the most commonly
used factorial design in the industry is the split-plot design. Split-plots are a generalization
of factorial designs, used when there are restrictions in complete randomization [1–3].

Because of the presence of restrictions in randomization, their design and analysis
differ compared to that of completely randomized experiments [3,4]. Notably, the literature
on how to work with split-plots is very limited compared to the one for completely ran-
domized factorials. This can be a good explanation why for many decades there was a big
confusion among practitioners on how to properly recognize, design, and/or analyze split-
plots, leading to many experiments conducted as split-plots, but analyzed as completely
randomized factorials [3–6]. The conclusions drawn from such an incorrect analysis can
differ greatly from reality [5].

The issue drew the attention of many statisticians, who started publishing instruc-
tions on how to recognize and properly design split-plot experiments [1–3,5,6]. These
instructions were given in a simple and practical way, aspiring to be understandable by
any experimenter. Many of these authors continued with discussions on the correct and
incorrect analysis of split-plots [1–6]. The discussion usually focused on the presence of
two different types of errors in split-plots in comparison to only one type of error in the
case of completely randomized designs (CRDs) and the consequences that this has on the
way the design should be analyzed. In many cases [1,3–6], the description of a split-plot
experiment followed and then an (on purpose) incorrect analysis of its data was presented,
assuming that the practitioner had mistakenly treated the collected data as if they had
come from a CRD. Then, the results of the analysis of the same experiment, but this time
based on the proper way to analyze split-plots, were given. The reasons for the observed
differences in the conclusions of the two different analyses were discussed, often in detail.
In short, the error arising from an incorrect analysis as a CRD is usually lower than the
error of WP, but larger than that for SP. As a result, the significance of WP main effects and
interactions is overestimated in that case, while the one of SP is underestimated. Because
of this relationship between WP and SP error, some authors pointed out that the factors
which are of significant interest should be placed in SP, if possible [4]. Based on the same
observation, Box and Jones [7] discussed the use of split-plots in the design of robust
products and processes, with the environmental factors placed in WP (since in this case
there is no interest in checking their significance).

In all of the aforementioned literature, the analysis of the data consisted of the direct
presentation of the ANOVA table and/or the normal probability plots of the effects, from
which the significant main effects and interactions of the factors were determined. In other
words, in most cases, no clarifications on how to calculate contrasts, effects, sum of squares
(SS), and parameters for the case of split-plot designs had preceded the presentation of
the ANOVA table results. It is worth noticing that this was also the case for introductory
textbooks in design and analysis of experiments [1,2], with the only small exception being
a comment in the book by Box, W. Hunter, and S. Hunter [2] that the calculation of SS
for (balanced) split-plots is the same for any other balanced design. Another (partial)
exception was Ledolter [8], who presented in his paper the formulas for the calculation of
SS in replicated split-plots. An apparently unexpected observation related to the studied
literature was that there were no examples or discussions on the analysis of unreplicated full
factorial designs. The only existing comment on the matter was a comment focused on the
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fact that in this case either high-order interactions should be assumed to be insignificant and
be used as the error for the ANOVA table, or probability plots should be used instead [6].
However, since this type of design looks like the fastest, cheapest, and simplest case of all
split-plots, it is very likely to be picked by a non-expert practitioner. One would therefore
expect to find instructions on how to work with such a design at the very beginning of
textbooks and papers dealing with the proper analysis of split-plots. Instead, the presented
examples in the literature usually start with the case of replicated split-plots [1–4,6,8]
and may continue with fractional split-plots or other cases [1,6,8]. It was only Kowalski
and Potcner [3] who pointed out that in unreplicated split-plot designs with only one
hard-to-change factor, it is impossible to draw any conclusions on the significance of this
particular factor. It is worth mentioning here that Bisgaard, Fuller, and Barrios [5] had
already published in 1996 a paper on how to analyze unreplicated split-plots with more
than one WP factor; however, only the final calculated values were presented. The most
reasonable explanation about the existence of all these apparent “gaps” in the literature
seems to be that, since all the authors were experts in the field, many things seemed
self-explanatory to them.

A common trait of all the studied literature was that any analysis stopped after finding
the significant main effects and interactions, and did not continue with suggesting a model
and plotting the residuals. However, if an experimenter wishes to continue with suggesting
a model, checking the residuals is a procedure prescribed by renowned books in the field
as an integral part of the analysis of factorial experiments [1]. In 2009, Almimi, Kulahci,
and Montgomery [9] closed this gap when they published their work on measures for
checking the adequacy of the proposed model for split-plot experiments, namely R2, R2

Adj,
PRediction Error Sums of Squares (PRESS), and R2

Pred. More specifically, in their work,
they proposed two different types of residuals (due to the two types of errors present in
split-plots) and briefly explained how to calculate them. They continued with the main
focus of their paper, suggesting again two types for each of the measures of adequacy of fit,
and then continued by providing solved calculation examples.

Identification of the significant factors and interactions affecting a process is usually
the first step required before optimization takes place. That highlights the importance
of having a good understanding of the basic split-plot design and analysis. For process
optimization, Response Surface Methodology (RSM) is commonly used. Although opti-
mization methodology is out of the scope of this particular paper, it is still important to
be mentioned briefly, due to its popularity and as a natural continuation in many cases
after the step of identification of the significant factors and interactions. More specifically,
one of the first comprehensive papers published on RSM of bi-randomization structures
was the one by Letsinger et al. [10]. In that paper, the authors explain why RSM should be
adjusted for bi-randomization structures, like the ones of split-plots, and cannot remain
the same as for the case of CRD. They also discuss the theory and differences between
different types of bi-randomization designs and provide recommendations when working
with them. A few years later, Vining, Kowalski, and Montgomery [11] published their work
on how to apply RSM specifically for the popular Central Composite Designs, elaborating
on the methodology behind it and giving a practical solved example to demonstrate its
application. Recently, Cortes, Simpson, and Parker [12] published a literature review on
RSM for split-plot designs. The research on RSM for split-plot structures is still in progress
and is also expanding to the exploration of methodologies for including qualitative (or
otherwise called categorical) factors in the design [13].
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Applications of Split-Plot Factorials

Split-plot factorials were first invented by Fisher [14] for applications in agriculture,
when he was studying the impact of different fertilizing methods on the crop yield of plots
of land and smaller patches within these plots. Hence, the terms split-plot, whole plot,
and sub-plot. Just a few years later, Yates [15] highlighted the usefulness and applicability
of split-plot experiments essentially for almost any sector of science and technology. As
previously mentioned though, the popular use of split-plots in the industry was also
accompanied very often by false analysis of the data. Regardless, however, of whether
the design and analysis had been performed in the correct way or not, the popularity of
these factorials highlights the need for the existence of simple and explicit instruction for
practitioners working with them.

The classic examples of applications of split-plots usually come from the chemical,
processing, and manufacturing industries. Many of these examples describe the study
of the significance of factors and factor interactions affecting responses like the water
resistance of wood surfaces [3,4], the image quality in printing processes [3], the strength
of a plastic material prepared following different recipes [3], the corrosion resistance of
steel bars subjected to different treatment conditions [2], the strength of steel subjected to
normalization treatment [1], and the wettability of paper subjected to plasma treatment
for increasing the paper’s susceptibility to ink [5]. In the field of analytical chemistry, the
determination of chromium VI [16] and lead [17] for specific analytical methods was opti-
mized using split-plot experiments. More recently, many other scientific and technological
fields have been exploring the application of split-plots. For instance, split-plots have
been applied in the field of biology for investigating the in vivo effect of a drug on gene
expression in different tissues [18], in pharmaceutical science for studying the influence
of polymeric composition of films and the process conditions related to their preparation
on the homogeneity of drugs dispersed in the polymeric matrix [19], in food science for
studying the extraction of carotenoids from mango pulp using the bio-refinery concept [20],
and in maritime science for studying the effects of climate change on macroalgae [21]. The
diversity of the fields which can benefit from split-plot factorials becomes apparent.

As mentioned earlier, factorial experiments are ideal to use as an efficient way of
experimentation when there is a lack of available information and, thus, many factors
which may potentially affect a response should be screened. Recycling of solar cells
is a good example of a relatively recent research area with limited literature available.
Factorial experiments can, therefore, play a significant role in assisting its development.
More specifically, today, 4.5% of global electricity production comes from photovoltaic
(PV) systems [22]. In order to stay in alignment with the International Energy Agency’s
“Net Zero Emissions Scenario by 2050”, the global electricity production from PV has
to reach 8300 TWh in 2030 [22]. One of the promising PV technologies due to its high
energy conversion efficiency and low use of materials is the thin-film technology based
on a Copper Indium Gallium diSelenide (CIGS) semiconductor [23]. Investments for the
industrial production of CIGS PV have already been supported in Europe by the EU [24].
As all production processes generate waste though, a considerable amount of waste CIGS
solar cells (e.g., defective ones) is expected to be produced in this case as well. Proper
recycling of the waste can be beneficial both for environmental (lower need for mining
virgin raw materials) and financial (lower need for purchase of raw materials) reasons.
Nowadays, there is unfortunately no known industrial recycling process to treat CIGS
containing waste. There is, however, some limited lab scale research on recycling of CIGS
rich materials [25–28], due to the interest around the critical In and Ga [29] the CIGS
compound contains. Very recently, research on recovery of the precious Ag coming from
the conductive grid of CIGS solar cell has also been initiated [30,31]. Another element
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present in the CIGS solar cell which can be of interest to recover is Mo, due to its economic
importance for our modern society [32]. In CIGS PV manufacturing, Mo is used as a back
contact layer [33]. So far, there is no literature available on its recovery from PV though,
meaning that investigation of the effect of multiple parameters may be necessary, before
decisions on further development of treatment processes are taken. Therefore, factorial
experiments can be a useful tool when researching and developing PV recycling processes.

To sum up, there has already been a lot of progress made in the analysis of split-plots,
and a great effort has been made by the statisticians to make them accessible to a broader
public of experimenters. However, the information on how to properly analyze them
is scattered in the literature and detailed explanations for non-experts are often missing.
Moreover, the fact that there is no attention given to the design and analysis of unreplicated
split-plots, which are very likely to be picked by a non-expert experimenter, increases the
risk of incorrect planning and, later, analysis. For a non-expert practitioner, this situation
can look difficult. Therefore, taking into account the great importance of split-plots for
the industry, the authors of the current paper aspire to collect all the available relevant
information in one place and clarify concepts and methodology on the fundamentals of
split-plots. More specifically, this paper starts by presenting the theory of design and
analysis (detection of significant factors, suggestion of model, and checking of the residuals
and model adequacy) of an unreplicated split-plot experiment with all factors at two levels
each. Then, an example for this case is given and solved step-by-step in a simple and
detailed way. After reading this guide, the reader with a basic knowledge of factorial
experiments is expected to easily grasp how to handle other cases of split-plots as well, e.g.,
replicated designs, fractional designs, split-split plot designs, etc., which are available in
the literature.

2. Theory
2.1. Design of Split-Plots

In split-plot designs, there is at least one factor which is hard to change, meaning
that this factor imposes a restriction on complete randomization of the experimental
runs. The hard-to-change factors are called WP factors [1]. For instance, one of the most
hard-to-change factors at industrial scale is the temperature of big furnaces. Complete
randomization requires the furnace to be turned on, reach the desired temperature, operate
at this temperature for the desired amount of time, and then be turned off and allowed
to cool down. The process should be repeated as many times as the experimental runs
are, with only one sample at a time being treated, and the order of the temperatures tested
should be completely random. However, it is obvious that this procedure is extremely
time-consuming. What would make more sense at industrial scale would be to treat
simultaneously all the samples that are to be treated at the same temperature. This way
of performing the experiment would impose a restriction on complete randomization of
the factor temperature. In other words, temperature is a hard-to-change factor (thus, a WP
factor) and, because of that, its levels cannot be changed completely randomly.

It must be clarified though, that the order in which the different levels of the factor (i.e.,
different temperatures) will be tested in the latter case must still be random. To illustrate
this, assume that eight runs should be performed; half of them should be treated at 500 ◦C
and the rest at 800 ◦C. In a split-plot experiment, all four runs that are to be performed at
one of the temperatures will be performed first. After the treatment of these four runs is
completed, the furnace should be turned off and allowed to cool down. Then, the process
will be repeated for the rest four runs in the same way. In other words, the furnace will
be switched on and off only twice in the split-plot design (compared to the eight times
that would be required for a CRD). Whether the temperature of 500 ◦C or 800 ◦C will be
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tested first is something that will be decided randomly. The two different levels of the
factor temperature constitute two different WPs.

Now let us assume that the four runs which were treated under the same temperature
had to stay in the furnace for different treatment times, e.g., 1 h, 2 h, 3 h, and 4 h. The
treatment time is an easy-to-change factor, since the only requirement is to remove the
samples from the furnace at the indicated times. Complete randomization of the easy-to-
change factors is possible and these factors are called SP factors. Since there are four runs
performed under the same temperature conditions simultaneously, we say that we have
four SP within each WP. In our example, it should be randomly decided which position
in the furnace each of the four samples treated under the same temperature (i.e., the four
SP) will occupy. To illustrate this, let us assume that it was randomly decided that the runs
treated at 800 ◦C would be performed first. Then, the position of each of the four samples
in the furnace would be decided randomly. After these runs are finished, the runs at 500 ◦C
would follow; however, a new randomization should then be applied to these sub-plots
(i.e., the previous randomization order is not used again).

2.2. Analysis of Unreplicated Split-Plots with All the Factors at Two Levels Each

For the unreplicated split-plots with all the factors at two levels each, the formulas
used for calculating contrasts, (SS), effects, and parameters are exactly the same with the
ones for the case of CRD (more details about these sizes in CRD can be found elsewhere,
see [1]). Thus, for m number of design factors,

ContrastABC...M = (a ± 1)(b ± 1)(c ± 1) . . . (m ± 1) (1)

(the sign of 1 is negative for the factors included in the contrast and positive for the ones
not included)

SSABC...M =
1
2k (ContrastABC...M)2 (2)

EffectABC...M =
2
2k ContrastABC...M (3)

ParameterABC...M =
1
2

EffectABC...M (4)

Then, normal (or half-normal) probability plots are constructed for the WP and SP
effects separately and, through them, the significant main effects and interactions are
detected (i.e., the ones which fall away from the straight line). The different levels in
randomization of split-plots (one randomization between WP and another randomization
for the SP within each WP) is the reason why two separate plots are needed for WP and
SP [5]. It should be stressed here that all the main effects and interactions between the WP
factors belong to the WP, so they should be plotted in the (half) normal probability plot of
the WP. All the main effects and any interaction which includes SP factors belong to the SP;
even the interactions between SP and WP factors. Therefore, these effects are plotted in the
SP (half) normal probability plot [5]. For example, if factors A and B are WP factors and
factors C and D are SP factors, the interaction AB belongs to the WP, while the interactions,
e.g., AC, CD, and ABCD, are part of the SP.

After the significant factors are detected, a model is proposed. Model adequacy
checking through examination of the residuals should always follow [1]. In split-plot
designs, there are two types of residuals: the WP and the SP residuals. Each of the WP
residuals is the average of the ordinary residuals e (ordinary residual = response—fitted
value from the proposed model) of the runs belonging to the particular WP [9]. Therefore,
all the runs within a WP have the same WP residual. The SP residuals are calculated by
subtracting the WP residual from the respective ordinary residual for each run [9].



Appl. Sci. 2025, 15, 415 7 of 24

Investigation of the residuals usually includes checking (i) their normal probability
plots for violations of the normality assumption and (ii) the plots of residuals vs. the run
order and/or vs. the fitted values and/or vs. any other factor that may have affected
the variance. In case of point (ii), the plots should look structureless and with a relatively
constant variance per plot [1]. It is important to highlight here that for the case of plots
of residuals vs. fitted values in split-plots, it is the SP residuals which should be plotted
against the fitted values. The WP residuals should be plotted against the average fitted
value per WP. Finally, in split-plot designs, it is also recommended to plot the WP residuals
against the SP residuals, to test for their general level of randomness [9].

2.3. Measures for Checking the Adequacy of Fit of Model

The computing of measures of adequacy of fit for split-plot models also has some
differences compared to the CRD case. Almimi, Kulahci, and Montgomery [9] proposed
the computation of two R2, R2-Adjusted, Prediction Error Sums of Squares (PRESS), and
R2-Prediction statistics; one of each for the WP and one of each for the SP sub-model. These
measures of adequacy reveal whether the correct WP and SP effects have been included in
the proposed model and describe the predictive performance of each group of effects.

It becomes clear from the previous description that, in order to calculate the measures
of adequacy in split-plots, the proposed design and model have to “break” into two sub-
designs and two sub-models: the WP sub-design and sub-model and the SP sub-design and
sub-model. One can easily understand that in the WP sub-design, only the WP main effects
and interactions will be included, while in the SP sub-design, only the SP main effects and
interactions will be included. Similar is the case for the sub-models. However, what is not
always clear is that the grand average (or intercept) is also a part of the WP sub-model and
must be taken into account for some of the calculations, as explained later.

After creating the WP and SP sub-models, Almimi, Kulahci, and Montgomery [9]
suggest to calculate the measures of adequacy of fit of the model as follows:

R2
WP =

SSModel(WP)

SSTotal(WP)
(5)

R2
SP =

SSModel(SP)

SSTotal(SP)
(6)

R2
WP_Adj = 1 −

SSResiduals(WP)/dfSSResiduals(WP)

SSTotal(WP)/dfSSTotal(WP)

(7)

R2
SP_Adj = 1 −

SSResiduals(SP)/dfSSResiduals(SP)

SSTotal(SP)/dfSSTotal(SP)

(8)

where df is the degrees of freedom of the respective source. According to Montgomery [1],
the R2 statistics is loosely interpreted as the proportion of the variability in the data
“explained” by the respective suggested model, while the R2

Adj statistics is a variation in
the R2, in which the number of factors in the model is reflected. The latter statistics becomes
particularly useful as the number of design factors increases and the practitioner wishes to
evaluate the impact of increasing or decreasing the number of terms included in the model.
High values of R2 and R2

Adj are desirable.
Regarding PRESS, an easy and fast way to calculate it for factorial designs in general is

PRESS =
n

∑
i=1

(
ei

1 − hii

)2
(9)
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where the term ei
1−hii

is equal to the ith PRESS residual e(i), as explained by Montgomery [1].
Moreover, hii are the diagonal elements of the hat matrix H of the model and they can be
calculated through the formula

hii = xi
(
X′X

)−1x′i (10)

As previously mentioned, two PRESS statistics should also be computed for split-plots,
one for WP and one for SP, using the respective sub-models [9]. Therefore,

PRESSWP =
n

∑
i=1

(
ei(WP)

1 − hii(WP)

)2

(11)

PRESSSP =
n

∑
i=1

(
ei(SP)

1 − hii(SP)

)2

(12)

where ei(WP) and ei(SP) are the WP residuals and SP residuals, respectively. Moreover,
hii(WP) are the diagonal elements of the H matrix of the WP sub-model, while hii(SP) are the
diagonal elements of the H matrix of the SP sub-model. It must be stressed here that, in
order to calculate the hii(WP) correctly, the intercept must also be taken into account in the
WP sub-model. According to Montgomery [1], the PRESS statistics is a measure of how well
the respective suggested model is likely to predict the response in a new experiment. Since
PRESS stands for “PRediction Error Sum of Squares”, small values of PRESS are desirable.

Finally, the two R2-Prediction statistics are calculated as

R2
WP_Pred = 1 − PRESSWP

SSTotal(WP)
(13)

R2
SP_Pred = 1 − PRESSSP

SSTotal(SP)
(14)

As the R2
Pred statistics are based on the PRESS statistics, they give some indication of the

predictive capability of the respective suggested model [1]. High R2
Pred values are desirable.

3. Solved Example
The theory and calculation formulas given in the Theory section are applied here in an

unreplicated split-plot experiment dealing with the recovery of Mo from CIGS solar cells
through leaching, with three WP and two SP factors. Temperature, pH, and presence of a
salt were selected as WP factors, while the ratio of the surface of the sample to the volume
of the solution (A/L) and leaching time were selected as SP factors. All design factors were
kept at two levels each. The design, analysis, and assessment of the results of the problem
are presented in a detailed step-by-step manner, to ensure clarity and understanding.

3.1. Design

As experimenters, we were interested in investigating the factors affecting the leaching
of Mo from waste CIGS solar cells. According to the leaching theory, many factors can
affect the leaching efficiency, with the most common of them being (i) the leaching time,
(ii) the type and concentration of leaching agent, (iii) the leaching temperature, (iv) the
solid to liquid ratio (i.e., sample mass to leaching solution volume), (v) the particle size,
and (vi) the type and speed of agitation [34]. Since there is currently no available literature
on the leaching of Mo from solar cells, we considered it necessary to perform a factorial
experiment, in order to investigate the significance of as many factors as possible, before
continuing with other experiments.
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Therefore, five factors were chosen as our design factors: the leaching temperature (A),
the presence of a tartrate salt in the leaching solution (B), the pH of the leaching solution (C),
A/L (D), and the leaching time (E). Except for temperature (A) and time (E), the selection of
which as design factors is expectable, the reasons behind the selection of factors B, C, and
D as design factors were the following: The pH of the solution (C) is actually a measure
of the concentration of the leaching agent (NaOH in this case). The surface to liquid ratio
(D) was used instead of the solid to liquid ratio for our experiment, since the elements
of interest were present in the solar cell in the form of very thin films (from nm to 3 µm)
deposited on a stainless-steel substrate and, thus, any mass measurement would mainly
reflect the mass of the substrate of the cell and not of the leached films. Finally, regarding
factor (B), it is known that tartrate ions can react with Mo (VI) [35–37], thus, their presence
in the solution could potentially assist the Mo leaching. It is worth mentioning that the
factor agitation was decided not to be taken into account, since it is usually of importance
for free particles, which was not the case for our experiments (i.e., thin films deposited on a
stainless-steel substrate).

The levels of the factors were decided to be the ones indicated in Table 1. These levels
were chosen by taking sustainability, chemistry, and technical aspects of potential future
scale-up of the process into account. More specifically, factor A was kept between 30 and
50 ◦C, because, on one hand, higher temperatures usually accelerate the reaction rates [34],
but, on the other hand, they are more energy-consuming, which was not desirable. Factor B
was a qualitative factor and its minimum level L1 indicated the absence of the tartrate salt,
while its maximum level L2 indicated the presence of the tartrate salt. The concentration of
the salt was the same for all runs in which the salt was present, at about 0.25 M, sufficient for
reactions with Mo (present at ppm levels in the leachate). The pH of the solution, i.e., factor
C, ranged between 10 and 12, in order to create an alkaline environment, recommended
for the leaching of Mo [38], without, at the same time, consuming very high amounts of
chemicals. The A/L, i.e., factor D, was kept between 1/6 and 1/3 cm2/mL, since this range
could guarantee that in case of future scale-up of the process, the solution volume would
be high enough to allow the use of a conventional stirrer, while ensuring that the solution
volume is not too high to render proper agitation difficult. Finally, preliminary leaching
experiments performed in the past in our group using the specific type of solar cells at
temperatures close to ambient had shown that the reactions needed a few hours to reach
equilibrium (thus, the lower limit of 8 h was chosen); however, leaching times longer than
24 h would not make sense for industrial applications.

Table 1. Factors investigated and their levels.

Factor Level

Name (Units) Symbol
Min Max

Physical
Value

Coded
Value

Physical
Value

Coded
Value

Temperature (◦C) A 30 −1 50 1
Presence of salt B L1 −1 L2 1

pH C 10 −1 12 1
A/L (cm2/mL) D 1/6 −1 1/3 1

Time (h) E 8 −1 24 1

The experiment was to be conducted in the following way: For each of the runs, the
desired amount of leaching solution would be poured into a plastic container and the con-
tainer would then be placed into a shaking water bath for the indicated leaching time. Due
to the small number of samples we had, we decided to proceed with an unreplicated design.
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Then we had to decide on the design, and more specifically, assess if a CRD would
make sense for our case. Since we had decided to investigate five factors, at two levels
each, without replication, we would need 25 = 32 runs in total. At the same time, work
was only allowed during office hours. That meant that if we wanted to run the experiment
as a CRD, we would need at least 2 months to complete the experimental part, running
only one sample per day, due to the relatively long leaching durations (8–24 h) and the
fact that there was only one water bath available. That was already an indication that this
experimental structure would be very time-consuming and not efficient at all.

The water bath was large enough to accommodate all 16 samples which had to be
treated under the same temperature. Therefore, temperature was decided to be a hard-to-
change factor, or in other words, a WP factor. At this point, if factor A was the only factor
kept as a WP, we would end up facing two problems:

1. Not being able to evaluate the significance of factor A, since we would have set the
temperature at its two different levels only once per level.

2. From a practical point of view, running 16 samples simultaneously would mean that
all the different solutions would have to be prepared on the same morning and then
the experiments would have to be performed on the same day (so that the solutions
do not change with time). Preparation of the solutions was a time-consuming process
though. For this reason, it was decided that factors B and C would also be hard-to-
change factors.

On the contrary, A/L and leaching time were easy-to-change factors; therefore, these
factors were set as SP factors. To sum up, we ended up with three WP factors (A, B, and C)
and two SP factors (D and E). Therefore, in our design, we had eight WP in total, as well as
four SP within each of the WP, as illustrated in Figure 1.
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Figure 1. Graphical representation of the unreplicated split-plot design with 3 WP factors and 2 SP
factors, all at 2 levels each.

The order in which the WP was performed was determined randomly. All the SP of a
particular WP were run simultaneously in the water bath and the position of each container
was randomly selected.

The design matrix is given in Table 2, along with the responses for each run. The
response variable is the leaching yield (mg/cell) of Mo under the particular experimental
conditions. The log transformation of the response was found to give better results; there-
fore, it was decided to continue the analysis with the log values instead of the original ones.
More information on transformations can be found elsewhere (see Montgomery [1]).
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Table 2. Design matrix of the split-plot experiment and response variables (mg/cell).

WP (or Run Order) Run Name A B C D E yMo logyMo

2 (1) − − − − − 0.67 −0.174
1 a + − − − − 2.40 0.380
5 b − + − − − 2.31 0.364
8 ab + + − − − 4.17 0.620
7 c − − + − − 11.00 1.041
3 ac + − + − − 22.73 1.357
6 bc − + + − − 6.66 0.823
4 abc + + + − − 19.48 1.290
2 d − − − + − 0.38 −0.420
1 ad + − − + − 0.74 −0.131
5 bd − + − + − 2.38 0.377
8 abd + + − + − 3.75 0.574
7 cd − − + + − 7.84 0.894
3 acd + − + + − 7.90 0.898
6 bcd − + + + − 7.06 0.849
4 abcd + + + + − 17.32 1.239
2 e − − − − + 7.97 0.901
1 ae + − − − + 1.41 0.149
5 be − + − − + 5.00 0.699
8 abe + + − − + 54.35 1.735
7 ce − − + − + 10.59 1.025
3 ace + − + − + 43.63 1.640
6 bce − + + − + 27.30 1.436
4 abce + + + − + 53.66 1.730
2 de − − − + + 1.55 0.190
1 ade + − − + + 10.38 1.016
5 bde − + − + + 4.06 0.609
8 abde + + − + + 3.36 0.526
7 cde − − + + + 4.73 0.675
3 acde + − + + + 6.91 0.839
6 bcde − + + + + 32.95 1.518
4 abcde + + + + + 63.09 1.800

Average 13.99 0.827

3.2. Analysis

After collecting the data for all runs, their analysis followed. It must be noted here
that in order to simplify the example, we consider that there are not significant sample-to-
sample differences.

First, the contrasts, SS, effects, and parameters for Mo leaching were calculated, using
Equations (1)–(4). The calculated values are summarized in Table 3. Then, all main effects
and interactions had to be assigned to WP or SP, according to the rules discussed in the
Theory section. The assignment is shown in Table 3 as well.

The construction of the two normal probability plots of the effects (one for WP and
one for SP), in order to detect the significant main effects and interactions, could now
follow. These plots are presented in Figure 2a,b. The straight line of the SP effects was
automatically created by MATLAB, version 9.7. 0.1190202 (R2019b) [39]; this software was
used for the construction of all normal probability plots of this paper. The straight line of
the WP effects was drawn manually, since the suggested one did not seem to fit well. The
significant effects seemed to be the main effects A, B, C, D, and E, since they fell away from
the respective straight lines. The four-factor interaction ABDE could be significant as well;
however, interactions higher than second order are usually non-significant [1]. Although
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this interaction was decided in the end to be included in the model, its addition should be
treated with caution, i.e., based on the later analysis (e.g., plots of residuals), it should be
decided if it makes sense.

Table 3. Contrasts, SS, effects, parameters, and significant factors for Mo leaching.

Contrast SS Effect |Effect| Parameter Plot Significance

A 4.855 0.737 0.303 0.303 0.152 WP Yes
B 5.909 1.091 0.369 0.369 0.185 WP Yes
C 11.639 4.233 0.727 0.727 0.364 WP Yes
D −3.563 0.397 −0.223 0.223 −0.111 SP Yes
E 6.507 1.323 0.407 0.407 0.203 SP Yes

AB 0.823 0.021 0.051 0.051 0.026 WP
AC 0.209 0.001 0.013 0.013 0.007 WP
BC −1.277 0.051 −0.080 0.080 −0.040 WP
AD −0.717 0.016 −0.045 0.045 −0.022 SP
BD 1.153 0.042 0.072 0.072 0.036 SP
CD 0.303 0.003 0.019 0.019 0.009 SP
AE −0.091 0.000 −0.006 0.006 −0.003 SP
BE 1.327 0.055 0.083 0.083 0.041 SP
CE −1.963 0.120 −0.123 0.123 −0.061 SP
DE −0.721 0.016 −0.045 0.045 −0.023 SP

ABC −0.155 0.001 −0.010 0.010 −0.005 WP
ABD −1.817 0.103 −0.114 0.114 −0.057 SP
ACD −0.987 0.030 −0.062 0.062 −0.031 SP
BCD 2.615 0.214 0.163 0.163 0.082 SP
ABE 0.529 0.009 0.033 0.033 0.017 SP
ACE 0.447 0.006 0.028 0.028 0.014 SP
BCE 3.261 0.332 0.204 0.204 0.102 SP
ADE 0.709 0.016 0.044 0.044 0.022 SP
BDE −1.457 0.066 −0.091 0.091 −0.046 SP
CDE −0.015 0.000 −0.001 0.001 0.000 SP

ABCD 3.165 0.313 0.198 0.198 0.099 SP
ABCE −2.009 0.126 −0.126 0.126 −0.063 SP
ABDE −2.699 0.228 −0.169 0.169 −0.084 SP Yes
ACDE −0.857 0.023 −0.054 0.054 −0.027 SP
BCDE 2.901 0.263 0.181 0.181 0.091 SP

ABCDE 3.107 0.302 0.194 0.194 0.097 SP

After selecting the significant main effects and interactions, the proposed model
was constructed:

̂Log
(
yMo

)
= 0.827 + 0.152·x1 + 0.185·x2 + 0.364·x3 − 0.111·x4 + 0.203·x5 − 0.084·x1·x2·x4·x5 (15)

The next important step in the analysis must always be to check the residuals. For that
purpose, the fitted values should first be calculated. This calculation was done in the usual
way, i.e., each fitted value was found by substituting the respective coded values into the
proposed model of Equation (15). The ordinary residuals were also calculated as usual, by
subtracting each fitted value from the respective response.

After that, the two types of residuals relating to split-plots had to be calculated. First,
the WP residuals were computed. As described in the Theory section, a WP residual is the
average of all the ordinary residuals e of the runs belonging to the particular WP. Thus, all
runs belonging to the same WP have the same WP residual. For example, Table 4 shows
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that the run named (1) belonged to the 2nd WP. Therefore, its WP residual was the average
of all ordinary residuals e of the runs belonging to the 2nd WP (i.e., runs (1), d, e, and de):

WP resid(1) = WP residd = WP reside = WP residde

=
e(1)+ed+ee+ede

4 = −0.124−0.316+0.377+0.056
4 = −0.002
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Figure 2. Normal probability plots for the (a) WP effects and (b) SP effects. The straight lines were
drawn manually for the WP effects and automatically by MATLAB for the SP effects.

The calculation of the SP residuals followed, in the way indicated in the Theory section:
each SP residual was equal to the ordinary residual of the run minus the WP residual of the
same run. For instance, for the run named (1), the SP residual was calculated as follows:

SP resid(1) = e(1) − WP resid(1) = −0.124 − (−0.002) = −0.122

Next, the construction of the normal probability plots for the WP and SP residuals
followed, as shown in Figures 3a and 3b, respectively. Since all the residuals fell approxi-
mately on the respective straight line, no serious violations of the normality assumption
were observed.

Checking the residual plots vs. fitted values, run order and any other factor which
could have affected the variance must follow. Therefore, the two residuals, WP and SP,
were plotted first against the run order, as shown in Figures 4a and 4b, respectively. Both
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residual plots looked structureless with the residuals distributed around zero and no big
differences were observed in the variances; therefore, the plots were considered satisfactory.

Table 4. Fitted values and all types of residuals for the proposed model for Mo leaching.

Run Order Run Name logyMo Fitted Aver. Fitted
Per WP e WP Resid SP Resid

2 (1) −0.174 −0.050 0.126 −0.124 −0.002 −0.122
1 a 0.380 0.422 0.430 −0.042 −0.077 0.035
5 b 0.364 0.488 0.496 −0.124 0.016 −0.140
8 ab 0.620 0.624 0.800 −0.004 0.064 −0.068
7 c 1.041 0.678 0.854 0.363 0.055 0.308
3 ac 1.357 1.150 1.158 0.207 0.026 0.182
6 bc 0.823 1.216 1.224 −0.393 −0.067 −0.326
4 abc 1.290 1.352 1.528 −0.062 −0.013 −0.049
2 d −0.420 −0.104 0.126 −0.316 −0.002 −0.314
1 ad −0.131 0.032 0.430 −0.163 −0.077 −0.087
5 bd 0.377 0.098 0.496 0.279 0.016 0.263
8 abd 0.574 0.570 0.800 0.004 0.064 −0.060
7 cd 0.894 0.624 0.854 0.270 0.055 0.215
3 acd 0.898 0.760 1.158 0.138 0.026 0.113
6 bcd 0.849 0.826 1.224 0.023 −0.067 0.091
4 abcd 1.239 1.298 1.528 −0.059 −0.013 −0.046
2 e 0.901 0.524 0.126 0.377 −0.002 0.379
1 ae 0.149 0.660 0.430 −0.511 −0.077 −0.435
5 be 0.699 0.726 0.496 −0.027 0.016 −0.043
8 abe 1.735 1.198 0.800 0.537 0.064 0.473
7 ce 1.025 1.252 0.854 −0.227 0.055 −0.282
3 ace 1.640 1.388 1.158 0.252 0.026 0.227
6 bce 1.436 1.454 1.224 −0.018 −0.067 0.050
4 abce 1.730 1.926 1.528 −0.196 −0.013 −0.183
2 de 0.190 0.134 0.126 0.056 −0.002 0.058
1 ade 1.016 0.606 0.430 0.410 −0.077 0.487
5 bde 0.609 0.672 0.496 −0.063 0.016 −0.079
8 abde 0.526 0.808 0.800 −0.282 0.064 −0.346
7 cde 0.675 0.862 0.854 −0.187 0.055 −0.242
3 acde 0.839 1.334 1.158 −0.495 0.026 −0.521
6 bcde 1.518 1.400 1.224 0.118 −0.067 0.186
4 abcde 1.800 1.536 1.528 0.264 −0.013 0.277

Aver 0.827
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Figure 4. (a) WP and (b) SP residuals vs. run order, (c) WP residuals vs. average fitted value per WP,
(d) SP residuals vs. fitted value, and (e) WP vs. SP residuals for Mo leaching.
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Afterwards, the plots of the residuals vs. their respective fitted values had to be
constructed. As stressed in the Theory section, for this type of plot in split-plot experiments,
the WP residuals should be plotted against the average of the fitted value per WP. For
instance, as shown previously when calculating the residuals, the WP residual of the 2nd
WP was equal to −0.002. The average fitted value which corresponded to this WP residual
was the average of all the fitted values of the runs belonging to the 2nd WP:

Average fitted value of the 2nd WP =
fitted(1) + fittedd + fittede + fittedde

4
=

−0.050 − 0.104 + 0.524 + 0.134
4

= 0.126

The average fitted values per WP are presented in Table 4 and the plot of WP residuals
vs. the average fitted value per WP in Figure 4c. The plot of the SP residuals vs. the
(ordinary) fitted values is also shown in Figure 4d. Both plots looked reasonably good.

Finally, according to the Theory section, it is also recommended to plot the WP
residuals against the SP residuals. As can be seen in Figure 4e, their plot looked satisfactory,
since it was structureless with a relatively constant variance.

3.3. Assessing the Adequacy of Fit of Model

As a last step, it was decided to proceed with the assessment of the adequacy of the
proposed model. In order to calculate the measures of adequacy of fit of the model, the
design had to “break” into its two sub-designs (i.e., the WP sub-design and the SP sub-
design). Their SS, as well as degrees of freedom of each source, had to be calculated. These
calculations for split-plots are exactly the same for CRD. The results for each sub-design
are presented in Table 5.

Table 5. Division of the design into two sub-designs for calculating the SS and degrees of freedom
(df) of each source.

WP Sub-Design SP Sub-Design

Source df SS Source df SS

Model 3 6.061 Model 3 1.948

A 1 0.737 D 1 0.397

B 1 1.091 E 1 1.323

C 1 4.233 ABDE 1 0.228

Residual
(i.e., rest WP sources) 4 0.074 Residual

(i.e., rest SP sources) 21 2.284

Total 7 6.135 Total 24 4.231

The values of R2
WP, R2

SP, R2
WP_Adj, and R2

SP_Adj were calculated through (5)–(8),
respectively, by substituting the values for SS and df from Table 5 as follows:

R2
WP =

SSModel(WP)

SSTotal(WP)
=

6.061
6.135

= 0.9879

R2
SP =

SSModel(SP)

SSTotal(SP)
=

1.948
4.231

= 0.4603

R2
WP_Adj = 1 −

SSResiduals(WP)/dfSSResiduals(WP)

SSTotal(WP)/dfSSTotal(WP)

= 1 − 0.074/4
6.135/7

= 0.9788

R2
SP_Adj = 1 −

SSResiduals(SP)/dfSSResiduals(SP)

SSTotal(SP)/dfSSTotal(SP)

= 1 − 2.284/21
4.231/24

= 0.3832
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The large values of R2
WP and R2

WP_Adj indicate that a large proportion of the variability
in the data is explained by the selected WP effects A, B, and C. On the other hand, the small
values of R2

SP and R2
SP_Adj indicate that only a small proportion of the variability in the

data is explained by the selected SP factors D and E as well as the interaction ABDE.
The assessment of the model adequacy continued with the calculation of PRESSWP

and PRESSSP through Equations (11) and (12), respectively. For this purpose, the proposed
model must “break” into its two sub-models, i.e., the WP sub-model and the SP sub-model.
Then, the calculation of hii for each of the sub-models should follow, using Equation (10).
Attention must be paid here that for the case of the WP sub-model, the intercept must
also be taken into account. Since this calculation step needs some caution, the detailed
calculation examples are going to be presented in two separate parts, one for the WP
sub-model and one for the SP sub-model, in order to ensure clarity.

3.3.1. WP Sub-Model

As previously discussed, the WP sub-model should contain the intercept as well as all
significant WP main effects and interactions. Therefore, the design matrix X for the WP
sub-model was

X =



1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 1 1 −1
1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 1 1 1
1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 1 1 −1
1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 1 1 1
1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 1 1 −1
1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 1 1 1
1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 1 1 −1
1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 1 1 1
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As one can easily understand, the 1st column is associated with the intercept, the
2nd with A, the 3rd with B, and the 4th with C. The transpose matrix X′ can now be
calculated easily.

In order to calculate the first diagonal element of the hat matrix h11, the first row of
the X matrix should be used, since for this i = 1. Therefore, for i = 1,

x1 =
[
1 −1 −1 −1

]
The transpose matrix x′1 can then be calculated easily.
After that, the h11 was calculated from (10) as

h11 = x1
(
X′X

)−1x′1 = 0.125

The same procedure was followed with the rest of the rows, e.g., the 2nd row in order
to calculate h22, the 3rd row in order to calculate h33, etc. The results are presented in
Table 6.

Table 6. Calculated values of hii(WP), WP residuals, and PRESSWP residuals used for the calculation
of PRESSWP.

I A B C hii(WP) WP Resid PRESSWP Resid (PRESSWP Resid)2

1 −1 −1 −1 0.125 −0.002 −0.002 0.000
1 1 −1 −1 0.125 −0.077 −0.088 0.008
1 −1 1 −1 0.125 0.016 0.018 0.000
1 1 1 −1 0.125 0.064 0.073 0.005
1 −1 −1 1 0.125 0.055 0.063 0.004
1 1 −1 1 0.125 0.026 0.030 0.001
1 −1 1 1 0.125 −0.067 −0.077 0.006
1 1 1 1 0.125 −0.013 −0.015 0.000
1 −1 −1 −1 0.125 −0.002 −0.002 0.000
1 1 −1 −1 0.125 −0.077 −0.088 0.008
1 −1 1 −1 0.125 0.016 0.018 0.000
1 1 1 −1 0.125 0.064 0.073 0.005
1 −1 −1 1 0.125 0.055 0.063 0.004
1 1 −1 1 0.125 0.026 0.030 0.001
1 −1 1 1 0.125 −0.067 −0.077 0.006
1 1 1 1 0.125 −0.013 −0.015 0.000
1 −1 −1 −1 0.125 −0.002 −0.002 0.000
1 1 −1 −1 0.125 −0.077 −0.088 0.008
1 −1 1 −1 0.125 0.016 0.018 0.000
1 1 1 −1 0.125 0.064 0.073 0.005
1 −1 −1 1 0.125 0.055 0.063 0.004
1 1 −1 1 0.125 0.026 0.030 0.001
1 −1 1 1 0.125 −0.067 −0.077 0.006
1 1 1 1 0.125 −0.013 −0.015 0.000
1 −1 −1 −1 0.125 −0.002 −0.002 0.000
1 1 −1 −1 0.125 −0.077 −0.088 0.008
1 −1 1 −1 0.125 0.016 0.018 0.000
1 1 1 −1 0.125 0.064 0.073 0.005
1 −1 −1 1 0.125 0.055 0.063 0.004
1 1 −1 1 0.125 0.026 0.030 0.001
1 −1 1 1 0.125 −0.067 −0.077 0.006
1 1 1 1 0.125 −0.013 −0.015 0.000

PRESSWP 0.097

Before calculating PRESSWP, the PRESSWP residuals had to be calculated. To illustrate
their calculation, let us consider the 2nd PRESSWP residual. This is the one for which
i = 2, i.e., the one associated with the 2nd row of the WP sub-design matrix. Following the
presented Theory, this residual was calculated as

2nd PRESSWP residual =
e2(WP)

1 − h22(WP)
=

−0.077
1 − 0.125

= −0.088
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The values of all PRESSWP residuals are given in Table 6. Now PRESSWP could easily
be calculated by replacing the values of PRESSWP residuals in Equation (11), and was
found to be equal to 0.097. This low value indicated that the WP sub-model had a good
performance in predicting the responses in new and future experiments.

The last measure of adequacy left to calculate for the WP sub-model was R2
WP Prediction.

It could easily be calculated now through Equation (13):

R2
WP_Pred = 1 − PRESSWP

SSTotal(WP)
= 1 − 0.097

6.153
= 0.984

The high value of R2
WP_Pred confirms the good predictive performance of the WP

sub-model.

3.3.2. SP Sub-Model

The SP sub-model consisted of all significant SP main effects and interactions. There-
fore, the design matrix X of the SP sub-model was

X =



−1 −1 1
−1 −1 1
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 1
−1 −1 1

1 −1 −1
1 −1 −1
1 −1 1
1 −1 1
1 −1 1
1 −1 1
1 −1 −1
1 −1 −1

−1 1 −1
−1 1 −1
−1 1 1
−1 1 1
−1 1 1
−1 1 1
−1 1 −1
−1 1 −1

1 1 1
1 1 1
1 1 −1
1 1 −1
1 1 −1
1 1 −1
1 1 1
1 1 1
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The 1st column was associated with D, the 2nd with E, and the 3rd with ABDE. The
transpose matrix X′ can now be calculated easily.

In order to calculate the first diagonal element of the hat matrix h11, the first row of
the X matrix was used, since for this i = 1. Therefore, for i = 1:

x1 =
[
−1 −1 1

]
The transpose matrix x′1 can then be calculated easily.
The h11 had to be calculated next through Equation (10) as

h11 = x1
(
X′X

)−1x′1 = 0.094

The same procedure was followed for the rest of the rows. The results are presented in
Table 7.

Table 7. Calculated values of hii(SP), SP residuals, and PRESSSP residuals used for the calculation of
PRESSSP.

D E ABDE hii(SP) SP Resid PRESSSP Resid (PRESSSP Resid)2

−1 −1 1 0.094 −0.122 −0.135 0.018
−1 −1 1 0.094 0.035 0.039 0.001
−1 −1 −1 0.094 −0.140 −0.155 0.024
−1 −1 −1 0.094 −0.068 −0.075 0.006
−1 −1 −1 0.094 0.308 0.340 0.116
−1 −1 −1 0.094 0.182 0.201 0.040
−1 −1 1 0.094 −0.326 −0.360 0.129
−1 −1 1 0.094 −0.049 −0.054 0.003
1 −1 −1 0.094 −0.314 −0.347 0.120
1 −1 −1 0.094 −0.087 −0.096 0.009
1 −1 1 0.094 0.263 0.290 0.084
1 −1 1 0.094 −0.060 −0.066 0.004
1 −1 1 0.094 0.215 0.237 0.056
1 −1 1 0.094 0.113 0.125 0.016
1 −1 −1 0.094 0.091 0.100 0.010
1 −1 −1 0.094 −0.046 −0.051 0.003
−1 1 −1 0.094 0.379 0.418 0.175
−1 1 −1 0.094 −0.435 −0.480 0.231
−1 1 1 0.094 −0.043 −0.047 0.002
−1 1 1 0.094 0.473 0.522 0.273
−1 1 1 0.094 −0.282 −0.311 0.097
−1 1 1 0.094 0.227 0.251 0.063
−1 1 −1 0.094 0.050 0.055 0.003
−1 1 −1 0.094 −0.183 −0.202 0.041
1 1 1 0.094 0.058 0.064 0.004
1 1 1 0.094 0.487 0.538 0.289
1 1 −1 0.094 −0.079 −0.087 0.008
1 1 −1 0.094 −0.346 −0.382 0.146
1 1 −1 0.094 −0.242 −0.267 0.071
1 1 −1 0.094 −0.521 −0.575 0.331
1 1 1 0.094 0.186 0.205 0.042
1 1 1 0.094 0.277 0.306 0.093

PRESSSP 2.508

Before calculating PRESSSP, the PRESSSP residuals had to be calculated. To illustrate
their calculation, let us consider the 2nd PRESSSP residual. This is the one for which i = 2,
i.e., the one associated with the 2nd row of the SP sub-design matrix. This residual was
calculated as

2nd PRESSSP residual =
e2(SP)

1 − h22(SP)
=

0.035
1 − 0.094

= 0.039

The values of all PRESSSP residuals are given in Table 7. Now PRESSSP could easily
be calculated by substituting the values of PRESSSP residuals into (12), and it was found
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to be equal to 2.508. This relatively high value of PRESSSP indicated that the performance
of the SP sub-model in predicting the responses in new and future experiments was
relatively poor.

The last measure of adequacy left to calculate for the SP sub-model was R2
SP Prediction.

It could easily be calculated now through Equation (14):

R2
SP_Pred = 1 − PRESSSP

SSTotal(SP)
= 1 − 2.508

4.231
= 0.407

The low value of R2
SP_Pred confirmed the poor predictive performance of the SP

sub-model.
In total, the values of the calculated measures of adequacy of the WP and SP sub-

models showed that the suggested WP sub-model explained a high proportion of the
variability of the data and had a good predictive capability, while the opposite was true
for the suggested SP sub-model. One of the reasons for the poor performance of the SP
sub-model could be the inclusion of non-significant terms in it. However, it is worth
mentioning that when the removal of these terms was tested, distortions in the residuals’
normal probability plots were caused; therefore, it was decided to keep the proposed
model unchanged. Another reason for the poor performance of the SP sub-model could be
that a linear model is not suitable if some significant curvature exists. In that case, extra
experiments should be performed and the design and analysis will have to change, in
order to enable the inclusion of, e.g., quadratic terms in the model. Significant cell-to-cell
differences can also be suspected. It is always likely as well that some mistakes happened
during the performance of the experiments. Further investigation of the variables which
could have caused the low predictability of the SP sub-model would be advisable, in case
the model is planned to be used for predicting the leaching efficiency of Mo in the future.

4. Conclusions
A set of detailed step-by-step instructions on the design and analysis of an unreplicated

split-plot factorial experiment with more than one WP and SP factor and all factors set
at two levels each was presented in this paper. The instructions were given in an easy
and clear way, aspiring to cover any gaps in clarifications in the existing literature and
help the numerous non-experts in the industry working with split-plots. The theory of the
design and analysis was presented and discussed. In order to enhance understanding and
clarity further, a real problem, dealing with recovery of Mo from CIGS solar cells, was also
presented and solved, following the presented theory. The solution of the problem started
from the stage of design, continued through its analysis (detection of significant factors
and interactions, suggestion of a model, checking the residual plots), and ended with the
assessment of the results by computing measures of adequacy of fit of model. Important
points of the instructions were as follows:

1. The presentation of the calculation formulas for contrasts, effects, SS, parameters, and
degrees of freedom, clarifying that they are exactly the same for the case of CRD.

2. The clarification that all the plots and sizes related to errors should be calculated
separately for WP and SP in split-plots, due to the existence of two types of error
(i.e., one error for WP and one for SP). That means that there should be two separate
(half) normal probability plots of effects, two types of residuals, two separate normal
probability plots of residuals, two types of residual plots vs. variables that can affect
the variance, one extra residuals plot with WP residuals plotted vs. SP residuals, and
two different types for each measure of the model’s adequacy.

3. Clarifications on how to calculate the two types of residuals.
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4. Clarifications on how to properly divide the proposed design and model into WP and
SP sub-designs and sub-models and which terms to consider in each of them when
calculating the various measures of model adequacy.

The significance of working properly with factorials was showcased through the
application of the discussed split-plot design and analysis on the study of recovery of
Mo from CIGS solar cells. The analysis indicated that all the investigated factors (namely
temperature, pH, salt presence in the leachate, A/L, and leaching time) are significant.
An increase in the factor levels was also associated with an increase in recovery efficiency,
except for A/L, for which the opposite was true. The suggested model for predicting
the efficiency of Mo recovery under different conditions seemed to be satisfactory, based
on the analysis of residuals (although the plot of SP vs. run order had some variances
of half the size compared to the rest). However, when checking the predictability of the
model by calculating common measures of adequacy, it was shown that the predictability
of the model is excellent at the WP level, but compromised at the SP level. Although more
investigation of the reasons behind this observation would be advisable, we still managed
to obtain valuable information regarding which path to follow when developing a leaching
process, saving considerable resources at the same time.

In total, it was shown that this paper can be a useful guide for all non-experts working
with split-plots in the industry and can shed some light on the difficulties they could face
in their work. Hopefully, the presented clarifications will be noticed by the experts in the
field and be taken into consideration in their future works.
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