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ABSTRACT: Amyloid fibrils are protein polymers noncovalently
assembled through β-strands arranged in a cross-β structure.
Biological amyloids were considered chemically inert until we and
others recently demonstrated their ability to catalyze chemical
reactions in vitro. To further explore the functional repertoire of
amyloids, we here probe if fibrils of α-synuclein (αS) display
chemical reactivity toward DNA. We demonstrate that αS amyloids
bind DNA at micromolar concentrations in vitro. Using the activity
of DNA repair enzymes as proxy for damage, we unravel that DNA-
amyloid interactions promote chemical modifications, such as
single-strand nicks, to the DNA. Double-strand breaks are also evident based on nanochannel analysis of individual long DNA
molecules. The amyloid fold is essential for the activity as no DNA chemical modification is detected with αS monomers. In a yeast
cell model, there is increased DNA damage when αS is overexpressed. Chemical perturbation of DNA adds another chemical
reaction to the set of activities emerging for biological amyloids. Since αS amyloids are also found in the nuclei of neuronal cells of
Parkinson’s disease (PD) patients, and increased DNA damage is a hallmark of PD, we propose that αS amyloids contribute to PD
by direct chemical perturbation of DNA.
KEYWORDS: amyloids, alpha-synuclein, DNA damage, catalytic activity, nanochannels, Parkinson’s disease

1. INTRODUCTION
Amyloids are long, ordered polymers of monomeric protein
units noncovalently assembled through β-strands arranged
perpendicularly to the fibril long axis forming a cross-β
structure.1 The cross-β arrangement is the basis of all amyloid
fibers, but the exact packing (fold, topology) of the β-strand
arrangement in each perpendicular plane varies widely among
amyloid systems; even the same polypeptide can adopt
different amyloid polymorphs depending on conditions and
other unknown factors.2 Many (maybe all) proteins can
assemble into amyloids at extreme solvent conditions in vitro1

and, therefore, amyloid formation is viewed as an intrinsic
property of polypeptide chains. Although several functional
amyloids are known (e.g., bacterial curli),3,4 amyloid formation
is mostly connected to human neurodegenerative diseases,
such as Parkinson’s disease (PD) and Alzheimer’s disease, and
type-2 diabetes.5−8 Here, proteins with normal functions as
monomers start (for some unknown reason) to assemble into
amyloids, resulting in both loss of monomer function as well as
gain of toxicity coupled to the assembly processes. Today, we
know of over 50 diseases linked to aberrant amyloid
formation.1

Here we focus on the amyloidogenic protein in PD but, due
to the general nature of amyloids, our observations may be
extended to other amyloid systems. In PD patients, amyloid
fibers of the synaptic, 140-residue protein α-synuclein (αS)
accumulate in cytosolic inclusions, called Lewy bodies, in

dopamine neurons along with death of such neurons in the
substantia nigra.9 The cytoplasmic Lewy pathology is
accompanied by genome instability in PD patients, animal
models and cell cultures.10−12 Notably, most diseases involving
amyloids include also genome instability as another hallmark.
Although accumulation of DNA damage is recognized as a
primary hallmark of general aging,13 PD patients and
corresponding model systems display increased single-strand
and double-strand DNA breaks.11,14−16 In fact, studies have
demonstrated that increased DNA damage may be one of the
earliest events detectable in neurodegenerative diseases such as
PD.15

In addition to the cytoplasm, there is a significant fraction of
αS in the cell nucleus, and functional roles in DNA repair,
nucleocytoplasmic transport, and regulation of gene tran-
scription have been proposed.17−19 However, most reports on
nuclear αS suggest activities related to dysfunction.12,20 The
amount of αS in the nucleus appears to be increased by αS
post-translational modifications, αS pathological mutations,
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and chemical insults to the cells.21−24 Increased levels of αS in
the nucleus were reported to perturb transcription of a master
transcription activator25 and chromatin-bound αS was
correlated with DNA breaks.26 Several studies have shown
αS monomers to interact with DNA in vitro.27,28 We recently
demonstrated that monomeric αS binding increases the
persistence length of DNA,29 whereas binding of a truncated
(pathological) variant of αS promotes DNA compaction.30 In
addition to nuclear αS monomers, nuclear Lewy pathology, i.e.,
αS amyloids in the nucleus, has repeatedly been noted in PD
patients as well as animal models.31 However, the con-
sequences of αS amyloids in the nucleus remain unclear.32−34

Amyloid toxicity is often attributed to the ability to seed new
amyloids, to translocate between cells, and to sterically block
cellular functions. Amyloids have always been considered
chemically inert until this was challenged when we showed that
αS amyloids catalyze hydrolysis of ester and phosphoester
bonds in vitro.35,36 In addition, we detected distinct chemical
alterations of important metabolites in neuronal cell lysates
(devoid of proteins; only small molecules present) upon
incubation with αS amyloids.37 This enzyme-like behavior of
αS amyloids, which has been paralleled by similar results on
amyloid-β (linked to Alzheimer’s disease) and glucagon
(hormone, unknown link to disease) amyloids,38,39 implies
that many amyloid systems may have yet-unknown chemical
reactivities.35

Here we test the hypothesis that αS amyloid interactions
with DNA are directly responsible (at least in part) for the
widespread DNA damage observed in PD patients. By

combining in vitro bulk and single-molecule biophysical and
biochemical experiments, we reveal that αS amyloids bind to
double-stranded DNA with micromolar affinity. Such DNA-
amyloid interactions result in both single- and double-strand
DNA breaks. In support of biological relevance, DNA damage
was found to be increased in yeast cells expressing human αS
that had formed amyloids. We propose that DNA damage
represents a toxic gain-of-function chemical activity of αS
amyloids that contributes to disease progression.

2. RESULTS
2.1. Amyloids of αS Bind DNA. To assess if αS amyloids

can interact with double-stranded DNA (dsDNA), we
employed surface plasmon resonance (SPR) analysis. αS in
monomeric or amyloid form was injected in increasing
concentrations over immobilized 50 base-pair, dsDNA
molecules. The SPR response data show that αS amyloids
(but not monomers) are capable of binding to the dsDNA at
this condition (Figures 1A and S1). The apparent KD
estimated for the αS amyloid-DNA interaction is 4.0 μM ±
2.1 μM (using αS concentration in monomer units). This
observation suggests that amyloid-DNA interactions may also
occur in vivo as intracellular αS concentrations are estimated
to be in the 5−50 μM range.40

To visualize the amyloid−DNA interactions, we used AFM
to analyze incubated mixtures of dsDNA (here, λ-DNA, 48.5
kbp) and αS amyloids that had been deposited on mica
surfaces. DNA alone showed (as expected,41) elongated curly

Figure 1. (A) Binding of monomeric (squares) and amyloid (circles) αS to immobilized DNA as measured by SPR, solid line shows hyperbolic fit.
(B) AFM image of λ-DNA on mica surface. (C) AFM image of mixture of DNA and αS amyloids; blue arrows highlight where DNA appears to
emerge after following along the amyloid long axis. Z-range for AFM images is 5 nm. (D) Box plot of height distribution of αS amyloids in the
presence (average: 7.3 ± 1.0 nm) and absence (average: 6.1 ± 0.7 nm) of λ-DNA (P ≪ 0.0001). Inset shows an example cross section of λ-DNA
(blue), αS amyloid alone (black) and αS amyloid with DNA (red).
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structures with heights of 0.6−0.8 nm (Figure 1B). For
mixtures of DNA and αS amyloids, DNA molecules were
always found in proximity to the αS amyloids. The DNA
molecules appeared to run along the amyloid fibril long axis for
extended distances and then protrude and reach over to other
amyloid fibrils, creating a network of DNA-bridged amyloids
(blue arrows in Figure 1C, additional images in Figure S2).
The αS amyloids appeared similar by AFM as to without DNA
(Figure S2) but their heights increased by approximately 1 nm

in the presence of DNA (Figure 1D) in accordance with most
amyloids being covered by one or two dsDNA molecules.
2.2. Amyloids of αS Damage DNA. To investigate if the

interaction between αS amyloids and dsDNA results in
chemical perturbation of the DNA, we first used a single
molecule imaging technique to assesses single-strand dam-
age.42−44 After overnight incubation of αS amyloid and λ-
DNA, the protein was removed and the formation of single-
strand DNA lesions was probed with an enzyme cocktail of
glycosylases and endonucleases (see Materials and Methods).

Figure 2. (A) Scheme of DNA damage detection. λ-DNA incubation with αS amyloids or αS monomers was followed by enzymatic repair and
thereafter incorporation of fluorescent nucleotides at the damage sites. (B) Fluorescence microscopy image of labeled λ-DNA after incubation with
αS monomers or amyloids and stretched on a functionalized glass coverslip. The DNA backbone was stained with YOYO-1 (green) and red dots
are fluorescent nucleotides incorporated at damage sites. Scale bar = 10 μm. (C) DNA damage detection using a repair enzyme cocktail. Error bars
indicate standard deviation calculated from biological replicates. (D) Detection of DNA damage using single repair enzymes. Error bars indicate
standard deviation calculated from technical duplicates. P-values; ns, not significant; ***P ≤ 0.0002; ****P < 0.0001.
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These enzymes recognize different lesions (including oxidized
bases, alkylated bases, nicks, abasic sites, and uracils) and then
prepare the site for gap filling.44,45 By subsequent addition of
DNA polymerase 1, and a combination of unlabeled dNTPs
and fluorescently labeled aminoallyl-dUTP-ATTO-647N,
damaged sites are repaired (Figure 2A). Each repaired lesion
becomes fluorescently labeled because the polymerase is
progressive and inserts many bases around the damage site
of which likely at least one will be a labeled UTP. To quantify
the number of DNA damage sites, the DNA backbone was
labeled by YOYO-1, a bis-intercalating fluorescent dye
commonly used to stain DNA,46 followed by stretching on
silanized coverslips. The damage sites are observed as
fluorescent “dots” along the stretched DNA molecules (Figure
2B). Upon quantifying detected damage sites on the DNA, we
find a significant increase after incubation with αS amyloids as
compared to dsDNA alone or upon incubation with αS
monomers (Figure 2C). Similar results were obtained when
amyloids of a C-terminally truncated αS form, αS(1−119),
with 21 residues in the C-terminus removed, were incubated
with DNA (Figure S3).
To assess what type of dsDNA damage the αS amyloids

promote, the repair enzyme cocktail constituents were assessed
one by one. From the results of such experiments (Figure 2D),
we found Endo IV and APE1 enzymes to be most active,
suggesting that the types of lesions they repair are what the αS
amyloids are mostly causing. Endo IV and APE1 have
endonucleolytic and phosphoglycolate activities; they often
repair nicked, abasic and oxidatively damaged sites.47−51

Notably, the enzymes in the cocktail do not probe dsDNA
breaks. However, the analysis also reveals the length of the
DNA molecules on the coverslips, which can hint to putative
double-stranded breaks (observed as shorter DNA molecules).
Such analysis indicated shorter dsDNA molecules after αS
amyloid incubation (Figure S4), but for more accurate analysis

of DNA length changes, we turned to nanochannel studies in
solution.
2.3. Amyloids of αS Cleave DNA. To investigate if αS

amyloids can cause DNA double-strand breaks, we assessed the
length of individual λ-DNA molecules in the presence of αS
amyloids using nanofluidics (Figure 3A). The length measure-
ments were again facilitated using YOYO-1. Samples of 5 μM
λ-DNA (base-pair) mixed with varying αS amyloid concen-
trations (0, 2.5, 4, and 10 μM) were analyzed (Figure 3B). The
results from length measurements of ∼250 DNA molecules for
each amyloid concentration (Figure 3C) reveal that the
median length of individual DNA molecules reduced from 6.2
μm (control) to 5.1 μm (2.5 μM αS amyloid) to 4.5 μm (4 μM
αS amyloid). There is a considerable increase in the presence
of very small DNA molecules (length below 4 μm) when αS
amyloids are present (27% for 2.5 μM, 43% for 4 μM and 37%
for 10 μM αS amyloid) as compared to DNA alone (13%
shorter than 4 μm).
We exclude DNA compaction as the explanation for the

observed shorter DNA for several reasons. First, if it had been
DNA compaction, we would expect a gradual decrease in
length for the whole population of DNA molecules. Notably,
this is what was observed for the C-terminally truncated aS(1−
97) monomer interacting with DNA (gradually shorter length
for the DNA population, up to 25% length reduction, as a
function of αS concentration) in an earlier study where DNA
compaction was proposed.30 Instead, we here observe a wide
span of lengths with many very short DNA molecules (lengths
reduced by up to 75%) in the presence of αS amyloid fibrils,
while some molecules remain intact. Second, if the very short
DNA molecules we observe had been compacted DNA, they
should collapse fully to a blob, not stop at a short but still
elongated state.52 Many earlier studies have discussed how
genomic DNA molecules adopt a toroidal shape when
compacted in the presence of compaction agents.53 Such
blob-like conformations have been shown in earlier nano-

Figure 3. (A) Schematic of the nanofluidic device. (B) Fluorescence images of λ-DNA molecules after incubation (and removal) with 0 μM
(control, only DNA), 2.5, 4 and 10 μM αS amyloids in the nanochannels. (C) Distribution of lengths of λ-DNA molecules in the nanochannels.
Median length of DNA molecules (arrows) and percentage of molecules with lengths of 4 μm or less are indicated in each panel.
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channel studies involving for example heat-stable nucleoid-
structuring protein (H-NS) and dextran as compacting
agents.54 Moreover, before complete compaction of a DNA
molecule, the DNA is often partly compacted locally along the
DNA, leading to varying dye emission intensity along the DNA
due to variation in the local amount of DNA along the DNA
contour.55,56 We do not observe this uneven behavior for the
longer (but still shortened) DNA molecules. Based on these
observations, we exclude DNA compaction and conclude that
reduced lengths of the DNA molecules in the presence of αS
amyloids is due to DNA fragmentation. DNA fragmentation
may be a result of direct double-strand or single-strand breaks
on opposite DNA strands close enough to each other to allow
the molecule to break into two pieces with single-stranded
overhangs on each end.
When the αS amyloid concentration was 10 μM, we

observed DNA lengths varying between 1 and 8.5 μm, i.e., in
addition to many short molecules we also detected some that
appear longer than the median DNA length in the control
(DNA only) experiment. Since we previously found (using the
same method) that wildtype αS monomers increase the length
of DNA molecules, we speculate that there is a small fraction of
αS monomers in our samples that cause the extended DNA
molecules. When αS amyloid formation reaches saturation,
fibrils are in equilibrium with monomers. Reported values of
the equilibrium concentration of monomers range between 0.7
and 28 μM.57 In our hands, typically 5−10% of the initial αS
monomers remain as monomers after a completed aggregation
experiment. Although we remove residual monomers before
our experiments, the amyloids may shed some monomers
during the incubation with DNA. At 10 μM αS amyloid
concentration, the concentration of monomers in the sample
may be sufficient to result in a detectable (but small) amount
of extended DNA molecules.
2.4. Increased DNA Damage in αS Expressing Yeast.

To assess αS-induced DNA damage in living cells, we turned
to a yeast model system. In accord with the in vitro data, we
find more DNA damage (detected by the double-stranded
DNA break sensor protein Ddc2 labeled with GFP58 Figure
4A) in actively growing cells expressing high levels of αS than
in cells transformed with an empty vector. On average 14.1 ±
1.8% of control cells contained Ddc2 foci whereas 70.3 ± 4.3%
of αS expressing cells contained Ddc2-GFP foci (Figure 4C).
We confirmed the localization of these foci to the nuclei using
the nucleolar/nuclear marker protein Sik1-RFP (Figure 4B).
Thioflavin T positive inclusions have been shown in yeast

that expresses αS at high levels.59 In similarity, αS in our yeast
system is expressed under the control of a strong constitutive
promoter and from a multicopy plasmid. We directly
confirmed the presence of amyloids in our yeast cells using
the fluorescent amyloid-specific dye Amytracker in combina-
tion with GFP-tagged αS expression. The colocalization of
Amytracker and αS signals inside the yeast cells confirms that
the expressed αS indeed forms amyloids also in this model
(Figure 4D).

3. DISCUSSION
Here we report that αS amyloids interact with dsDNA and that
such interactions result in chemical modification of the DNA.
The amyloid structure is required for activity as the presence of
αS monomers does not result in detectable DNA modifica-
tions. From a biophysical perspective, this adds a new activity

to the repertoire of chemical reactivity that is emerging for
biological amyloid fibrils.
We recently reported catalytic activity of αS amyloids in

vitro in the form of esterase and phosphatase activity on model
ester and phosphoester substrates35,36 (substrates shown in
Figure 5B). Similar activities have been reported for amyloid-β
and glucagon amyloids; in addition, dephosphorylation of ATP
(also shown in Figure 5B) was reported for the latter
amyloid.38,39 Since the phosphate groups in the DNA
backbone are exposed on dsDNA molecules, we speculate
that αS amyloids damage DNA by phosphoester bond
cleavage. If so, one expects αS amyloids, like glucagon
amyloids, to hydrolyze ATP. Indeed, by the use of malachite
green to detect inorganic phosphate,60 we observed a buildup
of free phosphate when αS amyloids were incubated with ATP
(Figure S5).
The αS amyloid structure has an ordered core with a

repetitive surface pattern of identical residues running along
the fiber long axis (Figure 5A). In surface cavities on the
ordered amyloid structures, arrays of reactive sites may exist.
Inspection of a typical wild-type αS amyloid structure
(6h6b.pdb, there are several with similar overall fold) reveals
a positive cleft with lysine residues running along the interface
between the two protofilaments (Figure 5A, more structures in
Figure S6). We propose that this region interacts with the
negatively charged phosphates of the DNA backbone. When

Figure 4. Analysis of DNA damage in actively growing yeast cells.
Exponentially growing cells expressing the double-stranded DNA
break sensor protein Ddc2 fused to GFP58 were imaged by
fluorescence microscopy. (A) Cells were transformed with either
the empty multicopy vector control plasmid (pYX242) or αS
expressed from a strong, constitutive promotor. (B) To verify nuclear
localization of Ddc2-GFP foci, cells were also transformed with a
plasmid expressing a Sik1/Nop56-RFP fusion protein71 and imaged
by fluorescence microscopy. (C) Quantification of the fraction of
control and αS expressing cells displaying Ddc2-GFP foci. On average
14.1 ± 1.8 (5.6% SD) of control cells contained foci whereas 70.3 ±
4.3 (16.1% SD) of αS expressing cells contained foci. A two-sided and
two-tailed t-test (n = 10 vs n = 14) indicates a statistically significant
difference with P < 4.7 × 10−10. (D) Cells expressing GFP tagged αS
or GFP only (green) from a strong constitutive promoter were stained
with Amytracker (red) to assess presence of amyloids.
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comparing dimensions, there will be one phosphate group of
the twisting DNA helix directly facing the amyloid at every
third (for minor groove) or fifth (for major groove) layer of
the amyloid fibril (see Figure 5A, note that it is a hypothetical
model only). Electrostatic attraction may pull on the DNA
backbone toward the positively charged amyloid cleft. The
affinity will be magnified due to the repetitive nature of both
molecules and, at some places along the interface, protruding
side chains on the amyloid surface may create sites that favor
cleavage of DNA phosphodiester bonds (Figure 5B). Notably,
the ordered αS amyloid core is surrounded by floppy N-
(approximately 40 residues) and C-termini (approximately 45
residues) that do not adopt well-defined structures when
analyzed by cryo-EM and other high-resolution methods (the
positions of these extensions in the amyloid core are indicated
in Figure 5A). Instead, they are thought to form a “fuzzy coat”
surrounding the amyloid core. These peptides may affect
interactions between the amyloid core and DNA; in fact, they
could be responsible in full for the DNA interactions. Parts of
the flexible N-terminus of αS harbor many positively charged
side chains that may interact with DNA independently or
provide stabilizing interactions around the DNA in addition to
core amyloid interactions. In accord with termini contribu-
tions, another study showed that when a protein bound to the
C-terminal floppy parts of αS amyloids, part of the αS floppy
N-terminus folded onto the amyloid core.61 We did not find
increased DNA damage activity by αS amyloids with a C-

terminal truncation of 21 residues, implying that the floppy C-
terminus does not block DNA interactions. However, many
further studies of reaction mechanisms and substrate binding
sites are needed to understand how αS amyloids chemically
damage DNA on a molecular level. From a fundamental
scientific view, the range of chemical reactivity that is harbored
in biological amyloids (that can adopt many polymorphs of the
common cross-β structure) may be vast and deserves
exploration.
Although most of our experiments involve purified αS and

DNA in vitro, the findings have biological significance as αS
amyloids are found in nuclei of neuronal cells, along with
widespread DNA damage, in PD patients and animal
models.15,16 Many studies focus their investigations on Lewy
body formation in the cytoplasm, but consistently report αS
positive inclusions also in the nuclei.32−34 One study could
demonstrate, using GFP-tagged aS, that nuclear αS amyloids
are able to move between cells and enter nuclei of cells not
expressing GFP-tagged αS.31 Since monomeric αS is present in
the nucleus at normal conditions,19 and moves in and out in a
dynamic fashion,21,22 amyloid formation may also be triggered
directly in the nucleus from monomers residing there. Several
in vitro studies have demonstrated that the presence of DNA
can stimulate αS amyloid formation.27,28 Even if DNA is
wrapped around histones and interacts with other proteins in
nuclei, the DNA is exposed at transcriptionally active sites. In
accord with our findings, Vasquez et al. showed nuclear

Figure 5. (A) Illustration of possible amyloid-DNA interaction. High-resolution structure of wild-type αS amyloid (6h6b) with 5 layers of
monomers in two protofilaments is shown next to a piece of B-form DNA (3bse) positioned at the suggested interaction site near the protofilament
interface (see text). The surface of the αS amyloid is colored according to electrostatics (blue, positive; red, negative); in the DNA, phosphorus is
orange and oxygen is red. The positions where N- and C-termini disordered segments will extend from the ordered amyloid core are indicated. (B)
Chemical structures of substrates (PNPA, PNPP, ATP, DNA; the latter two, this work) reported to be cleaved by αS amyloids so far. PNPA, p-
nitrophenyl acetate (ester bond); PNPP, p-nitrophenyl phosphate (phosphoester bond). Phosphodiester bonds, proposed cleavage sites in DNA,
are marked with red arrows in the DNA chemical structure. We note that other bonds in the DNA backbone may also be targets for the amyloid
reactivity.
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localization of αS to be necessary for genome damage in
cultured neurons.26

From a clinical perspective, amyloid formation in neuronal
cell nuclei in PD patients may be destructive in two ways: by
sequestering αS monomers and thereby blocking their
proposed DNA repair activities17 (loss-of-function), as well
as by inducing DNA chemical perturbation by direct DNA-
amyloid interactions (toxic gain-of-function). αS amyloids may
not only damage nuclear DNA: cytoplasmic αS amyloids may
damage both RNA molecules and mitochondrial DNA, if
mitochondrial membranes are perturbed. Indeed, mitochon-
drial dysfunction (which includes mitochondrial genome
instability) is another signature of PD.19,62 Our work suggests
that in addition to several reported toxic effects of αS amyloids,
αS amyloids may also contribute to disease progression by
direct chemical damage of DNA.

4. MATERIALS AND METHODS
4.1. aS Expression and Purification. Wild-type and C-

terminally truncated αS [αS(1−119); 21 C-terminal residues
removed] was expressed in Escherichia coli grown in LB medium
and purified using anion exchange chromatography and size exclusion
chromatography as previously reported.63 Purified protein was stored
at −80 °C. Before each experiment, gel filtration was performed to
obtain homogeneous monomeric αS using a Superdex 75 10/300
(Cytiva, Uppsala, Sweden) column in TBS buffer (50 mM Tris, 150
mM NaCl, pH 7.6 at 25 °C, Medicago, Uppsala, Sweden).
4.2. Preparation of αS Amyloids. Amyloids of αS were prepared

as described earlier.36 In short, freshly gel filtered monomeric αS was
incubated with ∼5% premade amyloid fibrils for 5 days at 37 °C.
Following incubation, samples were centrifuged at 13,400 rpm for 30
min. The pellet was resuspended in TE buffer (10 mM Tris, 1 mM
EDTA pH 8.0). The amount of monomers that became amyloids
were determined indirectly by measuring protein concentration left in
the supernatant (as a measure of nonamyloid protein) using
absorbance at 280 nm (extinction coefficient for αS of 5960 M−1

cm−1). In all experiments the concentration of amyloid fibrils denotes
the monomer-equivalent concentration.
4.3. Surface Plasmon Resonance. Interactions between αS

amyloids and DNA were studied using SPR on a Biacore X100
instrument with streptavidin coated sensor chip (Cytiva, Uppsala,
Sweden). Amyloid fibrils of αS (prepared as above) were first
sonicated to obtain shorter amyloids. Sonication was performed for 10
s using a probe sonicator (stepped microtip with Ultrasonic Processor
Sonics Vibra-Cell; Sonics & Materials, Newtown, CT) running at 20%
amplitude in an alternating cycle of 5 s (on mode) and 5 s (off mode).
A 50-bp double-stranded biotin-labeled DNA (3′-CCTCTA-
GACCTGTACTACTCGAGAGATCGATCGACAGACGATGACT-
TAGC-5′) (Merck, Darmstadt, Germany) was immobilized on the
sensor surface as described earlier.64 The level of immobilization was
200 RU. Single cycle measurements were performed by injecting
increasing concentrations up to 5 μM of monomeric or fibrillar αS on
the surface. Five M NaCl was used to regenerate the surface after each
cycle. Background correction was done by subtracting the signal of the
flow channel where no DNA was immobilized. The running buffer
was HBS-P (10 mM HEPES, 15 0 mM NaCl supplemented with
0.002% P20 detergent) (Cytiva, Uppsala, Sweden). The dissociation
constant was obtained by fitting of the binding levels at the end of the
injection versus protein concentration data to a 1:1 binding model
(using αS monomer concentrations) using evaluation software
provided by the manufacturer (Cytiva, Uppsala, Sweden). The
dissociation constant obtained is an average of 3 independent
experiments.
4.4. Atomic Force Microscopy (AFM). Prior to imaging, 50 ng/

μL of λ-DNA (48.5 kb, Thermo Fisher, Waltham, MA, USA) in the
absence or presence of 40 μM αS amyloids as well as αS amyloid
fibrils alone, were incubated overnight at room temperature in TE
buffer. Deposition of DNA and protein samples on mica surface were

performed according to published guidelines.65 Freshly cleaved mica
(Ted Pella Inc., Redding, CA, USA) was treated with 100 mM NiCl2
for 1 min and washed with Milli-Q grade water 3 times. The samples
were diluted 10 times in 10 mM MgCl2, 25 mM KCl, 10 mM HEPES
(pH 7.5) and incubated on the mica for 10 min followed by washing
with Milli-Q grade water and drying with a gentle N2 flow. Images
were recorded on an NTEGRA Prima setup (NT-MDT, Moscow,
Russia) using a gold-coated single crystal silicon cantilever (NT-
MDT, NSG01, spring constant of ∼5.1 N/m) and a resonance
frequency of ∼180 kHz in tapping mode. 512 × 512-pixel images
were acquired with a scan rate of 0.5 Hz. Images were analyzed using
the WSxM 5.0 software. For the determination of αS amyloid heights,
at least nine 5 × 5 μm images were taken in three different areas of the
mica. The amyloid fibrils were automatically identified and average
height of each individual fiber was measured using flooding analysis
using the WSxM software.66 The presented data is based on 160
amyloid fibers for each condition.
4.5. DNA Damage Assay Using Repair Enzymes. 50 ng/μL of

λ-DNA in the absence or presence of 40 μM αS amyloid fibrils or
monomers were incubated in TE buffer overnight at room
temperature. The DNA was separated from the amyloids using the
Genomic DNA Clean and Concentrator-10 kit (D4010, Zymo
research) before labeling of damage sites. For this, 100 ng of the
purified λ-DNA was incubated with a cocktail of repair enzymes
which consists of 2.5 U each of APE1, Endo III, Endo IV, Endo VIII,
hAAG, Fpg, and UDG, in 1× CutSmart Buffer (New England
BioLabs) for 1 h at 37 °C. This was followed by incubation with
dNTPs (1 μM of dATP, dGTP, dCTP, 0.25 μM dTTP (Bionordika
Sweden) and 0.25 μM aminoallyl-dUTP-ATTO-647N (Jena Bio-
science)) in 1× NE Buffer 2 (Bionordika Sweden) and 1.25 U DNA
polymerase 1 (Promega) for 1 h at 20 °C. The reaction was
terminated with 2.5 μL of 0.25 M EDTA (Sigma-Aldrich). Samples
were stored at −20 °C until imaged on chemically modified glass
coverslips.

Glass coverslips (18 × 18 mm2) were arranged in a coverslip rack
and immersed in an acetone solution containing 1% (3-aminopropyl)-
triethoxysilane and 1% allyltrimethoxysilane (Sigma-Aldrich). After
activation, the coverslips were rinsed with a (2:1 v/v) acetone/water
solution and dried using N2 gas flow prior to DNA sample addition.
Prior to analysis, the DNA samples were stained with 320 nM YOYO-
1 (Invitrogen) in 0.5× TBE, supplemented with 2% β-mercaptoetha-
nol (BME, Sigma-Aldrich) to prevent photobleaching, in a final
volume of 50 μL. Next the DNA samples were added to the
coverslips. To stretch the DNA, 3.2 μL of stained DNA sample was
placed at the interface of a silanized glass coverslip and a clean
microscopy slide (VWR).

Imaging of stretched DNA molecules were performed using an
epifluorescence microscope (Zeiss AxioObserver.Z1) equipped with a
Colibri 7 LED light source. For the DNA damage assay, the
microscope was equipped with an Andor iXON Ultra EMCCD
camera and 100× oil immersion objective. Band-pass excitation filters
(475/40 and 640/30 nm) and bandpass emission filters (530/50 and
690/50 nm) were used for YOYO-1 and aminoallyl-dUTP-ATTO-
647, respectively.

Data was analyzed with custom-made MATLAB software. DNA
molecules were detected by the software to measure DNA length and
count colocalized aminoallyl-dUTP-ATTO-647N labels (dots) along
the DNA. The results were expressed as dots/μm. This was then
converted to dots per megabase pairs (dots/Mbp) using a conversion
factor of 3000 bp/μm estimated from stretching of intact λ-DNA
molecules. Dots at ends of molecules, which could result from breaks
during sample handling, and overlapping molecules were excluded.
Damage, expressed as dots/Mbp, thus corresponds to the total
number of damage sites detected per Mbp DNA.

To assess statistical significance, experiments were performed in
biological replicates (4 and 2 for amyloid and monomer experiments,
respectively) unless otherwise noted, and differences between groups
were assessed by one-way Anova with Tukey’s multiple comparison
test, with a family wise alpha threshold and confidence level of 95%
(confidence interval). Total number of images analyzed for λ-DNA, λ-
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DNA + αS monomers and λ-DNA + αS amyloids were 85, 37 and 67,
respectively, and at least 7000 DNA molecules (corresponding to over
300 Mbp) in total were analyzed for each condition. P-values are
represented using the GraphPad Prism style; ns, not significant; ***P
≤ 0.0002; ****P < 0.0001.
4.6. Nanofluidic DNA Length Experiments. Lengths of

individual DNA molecules as a function of added αS amyloids were
measured by confining DNA in nanofluidic channels. For this, 5 μM
(base-pair) λ-DNA was incubated with varying concentrations (0, 2.5,
4 and 10 μM) of αS amyloids in 1 × TE (10 mM Tris and 1 mM
EDTA) buffer at room temperature for 4 h. After the incubation,
YOYO-1 dye was added to the samples at 1:5 dye to base pair ratio
and incubated at room temperature for 30 min. 3% (v/v) BME was
added as an oxygen scavenger to suppress oxygen radical induced
photodamage of the DNA.

The nanofluidic devices were fabricated in a cleanroom facility
using standard semiconductor fabrication procedures, the details of
which are described in detail elsewhere.67,68 Briefly, each device
consists of two microfluidic channels that are 850 nm deep, and each
microfluidic channel being connected to two sample loading
reservoirs at its ends. The two microfluidic channels are connected
by 200 parallel nanofluidic channels, with each nanofluidic channel
being 150 nm in width, 100 nm in depth and 500 μm in length. The
sample is loaded in one of the four loading reservoirs and the other
three loading reservoirs are filled with buffer only. N2 pressure (2 bar)
was applied to push the sample first from the loading reservoir into
the microchannels and then into the nanochannels. DNA molecules
are stretched in the nanofluidic channels due to nanoconfinement. For
these experiments, the microscope described above was equipped
with a Photometrics Evolve EMCCD camera, a 63× oil immersion
objective and band-pass excitation (475/40 nm) and emission (530/
50 nm) filters were used for YOYO-1 imaging. Using the imaging
software ZEN, 20 subsequent images were recorded with an exposure
time of 100 ms. Analysis of DNA lengths was performed using a
custom-written MATLAB code after converting images to TIFF.
Histogram plots (Figure 3C) were made using Origin Pro 2022b with
X-axis as DNA length (μm) and Y-axis as number of DNA molecules
(counts), with bin size of 0.3 μm.
4.7. DNA Damage in Yeast Cells. Saccharomyces cerevisiae yeast

transformed with a multicopy plasmid expressing αS under the
control a strong constitutive promoter69 was used in parallel with an
empty-vector control strain (transformed with the empty vector
pYX242). The proportion of cells exhibiting nuclear foci of the
double-stranded DNA break sensor protein Lcd1/Ddc2 was
compared for yeast with and without aS. For this, cells expressing a
genomic Lcd1/Ddc2 GFP fusion protein were employed.58,70 Cells
were grown overnight, diluted to OD 0.1, grown until in exponential
phase (A600 = 1.2) and imaged using a Zeiss AxioObserver.Z1
inverted microscope equipped with Apotome/Axiocam 506 camera
with a Plan-Apochromat 100x/1.40 Oil DIC M27 objective.

The percentage of cells containing Ddc2-GFP foci were evaluated
in 16 different z-stacks per image. For empty vector yeast, a total of
854 cells were imaged in 3 independent experiments comprising in
total 10 different images. For αS expressing cells, 1610 cells were
imaged in 3 independent experiments comprising 14 different images.
Cells were also transformed with the nucleolar/nuclear marker
protein Sik1/Nop56-RFP71 and grown to exponential phase (A600 =
1.2) in synthetic defined (SD) glucose medium lacking uracil.70

Doubly labeled cells expressing αS were used to confirm nuclear
localization (red, Nop56-RFP) of the Ddc2-GFP foci (green). To
confirm amyloid formation of αS expressed in yeast, cells expressing
αS-GFP or GFP only from a constitutive strong promoter (pRS426-
GPD-αS-GFP or pRS426-GPD-GFP)72 were grown to midexponen-
tial phase and stained with 1:100 diluted Amytracker 680 (1 mg/mL
dissolved in DMSO, Ebba Biotech, Stockholm, Sweden) for 6 h
before visualized in the fluorescence microscope.
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used in this study were fabricated at MyFab Chalmers
cleanroom facility.
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