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ABSTRACT
Additive manufacturing (AM) by powder bed fusion 
electron beam (PBF-EB) is a state-of-the-art method 
for processing titanium-based alloys, especially due 
to the high inherent oxygen affinity of the material. 
Ti–Nb–Ta–Zr alloys provide, dependent on composi-
tion and manufacturing, a versatile property profile 
and are of increasing interest as structural materials 
as AM eases their production. Enhancing sustainabil-
ity through reduced purity requirements, alongside 
improved material performance, could lead to more 
efficient and environmentally-friendly material design. 
This study explores the feasibility of producing dense 
β-Ti–35.5Nb–2Ta–3Zr alloys with an elevated oxygen 
content of 2800 ppm through PBF-EB, achieving up 
to 99.7% density and notable mechanical properties 
such as a hardness of 330HV0.3. The microstructure 
was found to be single-β in all samples with low 
segregation of constitutional elements. Indications of 
a fibre texture switch, depending on the chosen pro-
cess parameters, were found.
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1.  Introduction

Compared to (α + β) titanium alloys widely used in various applications, 
β-Ti alloys exhibit a number of unique properties, such as a low modulus 
of elasticity and high yield strength combined with excellent formability. 
In addition, these alloys also exhibit high mechanical strength, high frac-
ture toughness and excellent resistance to stress corrosion cracking and 
hydrogen embrittlement (Achache et  al., 2016; Bönisch et  al., 2017; 
Obbard et  al., 2010; Yuan et  al., 2023). Research into β-Ti alloys increased 
considerably in recent years (da Silva et  al., 2023). Among the β-Ti alloys, 
alloys based on quaternary Ti–Nb–Ta–Zr, so-called Ti–35.5Nb–2Ta–3Zr 
(TNTZ) alloys, also known as gum metals, are of particular interest. The 
alloy family was first described by Saito et  al. (2003) and is characterized 
by a low modulus of elasticity of less than 70 GPa typical of the β-phase 
alloys, high tensile strength, superelasticity, and superplasticity at room 
temperature. Due to their excellent biocompatibility through the exclusive 
use of non-toxic and non-allergenic alloying elements in combination 
with the low modulus of elasticity, these new β-Ti alloys have interesting 
application prospects, particularly in the biomedical field (as stent or den-
tal prosthesis material, etc.) (Nakai et  al., 2009; Obbard et  al., 2010; 
Stráský et  al., 2017; Tahara et  al., 2011).

In contrast to classic titanium alloys, a certain amount of oxygen in the 
solid solution is advantageous in gum alloys in order to achieve improved 
material properties. Oxygen contents between 0.7 and 3.0 at% (Talling 
et  al., 2009) are reported, with 2000 ppm being cited as the minimum. 
The importance of oxygen for the properties and deformation mecha-
nisms of gum metal is a widely studied variable, but there are still some 
contradictions. The addition of oxygen, like any other interstitial element, 
is responsible for an increase in mechanical strength as it causes solid 
solution hardening (Nakai et  al., 2009; Stráský et  al., 2017). In a recent 
investigation on a NbTiZr medium-entropy alloy (An et  al., 2024), it was 
demonstrated that the addition of 1 at% oxygen resulted in a notable 
increase in the yield strength of the material manufactured by laser pow-
der bed fusion (PBF-LB), emphasizing the potential of oxygen as an alloy-
ing element in refractory-based alloys. However, the influence of oxygen 
in β-Ti is complex, and some authors suggest that the addition of oxygen 
hinders the formation of αʺ and ω phases, which play a fundamental role 
in the deformation mechanisms, since these phases strongly influence the 
elastic behaviour of β-Ti alloys (Besse et  al., 2011; Tahara et  al., 2011). 
Alloy concepts including oxygen, while enhancing specific mechanical 
attributes, may also decrease production costs due to higher tolerance for 
oxygen levels during processing, especially in additive manufacturing 
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(AM). The cost of raw materials could also decrease if lower purity mate-
rials can be used, potentially improving the economic feasibility for large-
scale industrial production. However, the reproducibility of the desired 
oxygen concentration and the associated microstructural characteristics 
across larger batches and varied production environments presents a 
potential challenge, especially given the difficulty in achieving the desired 
mechanical properties for TNTZ.

The target properties of TNTZ are typically achieved when a strong 
mechanical cold working of about 90% area reduction takes place during 
the processing of these alloys (Furuta et  al., 2005; Saito et  al., 2003). In 
general, cold working reduces the modulus of elasticity and increases the 
yield strength. In view of these aspects, the requirement for processing 
these materials is usually a high degree of plastic deformation (Saito et  al., 
2003). Gum metal is therefore usually produced by powder metallurgy or 
by arc melting with subsequent plastic deformation. These manufacturing 
routes are comparatively complex, especially for the production of filigree 
components, which is the motivation for the use of AM.

It has been shown that gum metal can be successfully processed by 
AM. Batalha et  al. employed a β-TNTZ alloy (Ti–35Nb–5Ta–7Zr) for 
PBF-LB and demonstrated excellent mechanical properties in compression 
tests, exhibiting a modulus of elasticity of around 45 GPa. Moreover, bio-
compatible implants were manufactured as prototypes in the study, thereby 
providing successful proof of the filigree components (Batalha et  al., 
2020). The authors found columnar grain growth, which is typical for 
AM and is aligned in the direction of construction, which was associated 
with the anisotropy of the mechanical properties that were also observed. 
The same research group successfully fabricated oligocrystalline structures 
with a combination of PBF-LB and heat treatment (Batalha et  al., 2020), 
which exhibited significantly increased strength compared to untreated 
material, which was partly attributed to oxygen uptake during heat treat-
ment. With regard to the production of biocompatible metal implants, Xu 
et  al. (2022) investigated the scanning strategy and corrosion properties 
in 3.5 wt% NaCl solution of Ti–35Nb–2Ta–3Zr–0.3O produced by PBF-LB. 
Nadammal et  al. (2022) investigated the influence of volume energy den-
sities in an additively manufactured by PBF-LB Ti–35Nb–7Zr–5Ta. They 
reported that higher values for the energy densities led to higher mechan-
ical strengths with a slight decrease in ductility. A cellular to dendritic 
solidification morphology was observed in the processed samples. Lower 
niobium concentrations were also investigated. Luo et  al. (2019) per-
formed promising cell proliferation tests on Ti–30Nb–5Ta–3Zr (PBF-LB). 
They also found that stress relieve heat treatment at 600 °C for 3 hrs pro-
moted the formation of α-needles. In a different study (Luo et  al., 2021), 
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PBF-LB of Ti–34.2Nb–6.8Zr–4.9Ta–2.3Si was investigated with a focus on 
processing parameters. The researchers achieved high densities (99.7%) 
and reported on different Si-containing intermetallic phases in the solids. 
Yang et  al. (2020) were the first group to publish on powder bed fusion 
electron beam (PBF-EB) of a TNTZS alloy (Ti–35Nb–5Ta–7Zr–2Si). 
PBF-EB is particularly well-suited for the production of TNTZ alloys due 
to its ability to operate in a high-vacuum environment, which minimizes 
oxygen contamination—crucial for maintaining the alloy’s unique mechan-
ical properties. They also focused on post heat treatment, and reported a 
compressive yield strength of 791.15 ± 23.17 MPa, an elastic modulus of 
67.82 ± 3.06 GPa and a ductility of 48.22 ± 0.9% after heat treatment at 
1000 °C for 2 h followed by water quenching. Their study thus provided 
valuable input for developing processing parameters in our own work. 
The work by Hafeez et  al. (2019) on PBF-LB of Ti–35Nb–2Ta–3Zr–0.12O 
is also of particular interest as per the similarity of the used alloy. The 
authors focused on cyclic loading–unloading tests on as-built samples and 
extensive high-resolution transmission electron microscopy (HRTEM) 
investigation with special regard to stress-induced phase transformation 
and deformation. The measured recoverable strain (4.8% at 27% deforma-
tion) outlines the prospective capabilities of additive manufactured TNTZ.

In this work, we investigate the manufacturing of dense solid samples 
out of Ti–35.5Nb–2Ta–3Zr–0.28O by PBF-EB in vacuum. The resulting 
microstructure and hardness are investigated and correlated with build 
parameters. It is assumed that within the process window for dense 
samples, the microstructure can be specifically influenced by the selected 
process parameters. In perspective, this points the way towards locally 
customizable properties, one of the main advantages of AM.

2.  Experimental (method and material)

2.1.  Material

The powder material (Figure 1) with the nominal composition 59.05Ti– 
35.55Nb–2.96Zr–2.0Ta (wt%) and 0.28 wt% O was produced by GfE 
Metalle und Materialien GmbH using electrode inert gas atomization 
(EIGA) with D10 = 60 µm, D50 = 100 µm and D90 = 165 µm after sieving 
(Figure 1(c)). The particles appear predominantly spherical in shape 
(Figure 1(a)), occasional gas inclusions are visible upon the analysis of 
particle cross sections (Figure 1(b)), origination from the atomization pro-
cess. Irregular shaped chunks interpreted to be incompletely dissolved 
mixed refractory metals can occasionally be observed. The substrate mate-
rial used for all samples was Ti6Al4V with as-milled surface.
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2.2.  Manufacturing

For PBF-EB manufacturing of samples, a Freemelt ONE electron beam 
powder bed fusion machine was used. In Figure 2, the setup is depicted 
schematically. To diminish the risk of smoke events, preheating and sinter-
ing were done indirectly by radiation from an electron beam heated car-
bon plate close above the powder bed. As a geometry, cubic volumes of 
10 mm edge length were built. Results of one exemplary build job are pre-
sented to document the part (Figure 2(b)) and surface quality (Figure 2(c))  
respectively.

Process parameters applied in this study are depicted in Figure 3. Both 
line offset Δys and layer offset DL were set to be 0.1 mm with a track 
width of approximately 0.25 mm. The preheating temperature was held 
constant at 650 °C during each respective build. A layer wise 90° rotated, 
bidirectional stripe pattern was applied as a scanning strategy. The line 
energy E

L
 is given according to EL = PEB/vs with PEB = electron beam power 

and vs = scan speed. Currents of 12, 15, and 20 mA were used, while the 
voltage was 60 kV. For clearer representations, the unit Watt (W) as the 
multiplication product is used in the following. No contour scan was 
applied, as can also be seen from the rough surface of the samples 
depicted in Figure 2(c).

Figure 1. P owder material used in this study: SEM imaging (a), light optical micros-
copy (LOM) imaging of cross sections (b), results of particle size measurement by 
means of laser diffraction (c) using a Helos/Br + Oasis/L + Vibri/L (Sympatec) device. 
Red arrows indicate remaining chunks of presumable refractory metals (a) and gas 
inclusions (b) respectively.

Figure 2. S chematic PBF-EB process (a), produced cubic samples of 10 × 10 × 10 mm3 
size (b) inside the machine and (c) after depowdering.
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2.3.  Material characterization

All samples were cut and metallographically prepared parallel to the build 
direction to create x–z cross sections. For density and hardness measure-
ments, the samples were analysed in standard polished surface condition. 
The density was determined by optical analysis, using a Leica DM2700 
for light microscopy imaging and ImageJ 1.53. for quantification. For each 
sample, one complete cross section was measured, so that no error bars 
are included in the visualization of the measurements. Scanning electron 
microscopy (SEM) imaging has been done using a Zeiss Gemini 450. For  
electron backscatter diffraction (EBSD), the sample’s surfaces were addi-
tionally polished using oxide polishing suspension (OP-S). The detector 
for EBSD was an Oxford symmetry, and measurements were performed 
at 20 keV acceleration voltage and 15 nA current. Data analysis was done 
using the opensource MATLAB tool MTEX on maps obtained by AZtec 
software (Oxford Instruments). The detector used for energy dispersive 
X-ray spectrometry (EDS) was an Oxford Ultim Max. High-energy X-ray 
experiments were conducted at the Hereon run beam line HEMS (High 
Energy Materials Science) at PETRA III at the Deutsches Elektronen-
Synchrotron (DESY), Hamburg, Germany (Schell et  al., 2013; Staron et  al., 
2011). The specimens were measured in transmission with a beam size of 
1 mm by 1 mm and a photon energy of 100 keV (λ = 0.1240 Å). During the 
High-energy X-ray diffraction (HEXRD) experiments, the Debye–Scherrer 
diffraction rings were recorded on a Perkin Elmer XRD 1622 flat panel 
detector. In order to calibrate the instrument, a measurement was con-
ducted with a standardized lanthanum hexaboride (LaB6) powder, which 

Figure 3. P BF-EB processing parameters applied in this study.
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was used to calculate the instrumental parameters, the beam centre, and the 
sample-detector distance. The diffraction rings were integrated azimuthally 
using the Fit2D software package (Hammersley, 1997; Hammersley et  al., 
1996), and phase fractions were calculated with the Rietveld analysis soft-
ware package MAUD (Lutterotti, 2010). Micro-hardness measurements on 
all samples were performed using an ATM Qness Carat 930 Vickers hard-
ness tester with measuring minimum 10 indents parallel to the build direc-
tion each. Samples with low density were excluded from this type of 
investigation. The chemical composition of powder and consolidated mate-
rial was determined by X-ray fluorescence (XRF, main elements), induc-
tively coupled plasma spectrometry (ICP), and carrier gas hot extraction 
analysis (CGHE, O).

3.  Results

3.1.  Macroscopic properties

3.1.1.  Relative density and defects
In Figure 4, an overview of the achieved relative densities in relation to the 
applied line energy which is directly related to the respective scanning 
velocity is depicted. It can be derived that for nearly dense samples (>99.0%) 
at least 370 J/m, or 37 J/mm3, are required. The width of the processing 
window regarding scanning speeds is thus being observed to be similar for 

Figure 4. R elative densities determined in dependence of processing parameters. 
Data point sizes indicate the value of EL on a relative scale, ranging from 180 J/m 
(min. size) to 1200 J/m (max. size) for easier correlation with Figure 3. Red arrows 
mark the samples selected for microstructural investigation.
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all tested electron beam energies; however, highest densities of over 99.5% 
were achieved for 720 W. Light microscopic images (Figure 5(a–c)) provide 
an overview of the respective samples with highest densities per electron 
beam power, which are also marked by red arrows in Figure 4.

Typical defects when exceeding the parameter range for dense samples 
are depicted in Figure 5(d,e). An excess in energy, resulting from a rela-
tively slow scanning speed or increased applied energy, leads to higher 
porosity. This occurs due to overheating, which can cause vaporization of 
the material and entrap gas during solidification. Additionally, the com-
paratively large melt pools caused by the high layer thickness of 100 µm 
further promote entrapment of gas, either previously dissolved or enclosed 
in powder particles. Lack of fusion (Figure 5(e)), on the other hand, indi-
cates insufficient energy to achieve complete melting and bonding between 
layers, and this defect is consistently observed in samples built with low 
energy densities. While not relevant in this case, similar defects can also 
arise from issues with powder deposition or unsuitable scanning strategies.

3.1.2.  Microhardness
For microhardness measurements (HV0.3), samples with a density <98.0% 
were neglected. The results (Figure 6) show almost no significant differ-
ences between the averaged hardness values of the samples. A clear dis-
tinction between the 900 and 720 W samples cannot be established due to 
the significant margin of error, which can be attributed to the observed 
porosity (Figure 5) causing high scatter. However, a significant decrease in 

Figure 5. L ight microscopy images of PBF-EB processed samples at: (a) 720 W 
(BD = build direction), (b) 900 W, and (c) 1200 W electron beam power. Typical defects 
observed in this study: (d) pores (720 W, 1.5 m/s) and (e) lack of fusion (LoF, 720 W, 
3.2 m/s).
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hardness for 1200 W (high scanning velocity) samples compared to 720 W 
(low scanning velocity) samples with the latter exhibiting about 15% 
higher values was observed.

3.1.3.  Chemical composition
The chemical composition (Table 1) remains nearly constant during the 
build. The slight decrease in oxygen can be attributed to deoxidation in 
vacuum (Ono & Moriyama, 1982), which is rather low particularly because 
of high Ti and Zr contents. With oxygen being a crucial alloying element 
(Stráský et  al., 2017), its tracking is essential for TNZT alloys.

3.2.  Microstructure

3.2.1.  Grain characteristics and texture
The microstructure of the material in Figure 7(a–c) consists of similar 
epitaxially grown, columnar grains, while the pattern resulting from layer 

Figure 6.  Microhardness plotted over scanning velocity. Data point sizes indicate the 
value of EL on a relative scale, ranging from 180 J/m (min. size) to 1200 J/m (max. 
size) for easier correlation with Figures 3 and 4 (identical scale). Red arrows mark the 
samples selected for microstructural investigation.

Table 1.  Chemical composition determined by XRF and CGHE.
Composition (wt%) Ti Nb Zr Ta O

Powder material 59.05 35.55 2.96 2.02 0.28
PBF-EB bulk samplea 59.10 35.55 2.96 2.01 0.27
aBuild parameters: PEB = 720 W and vs = 1.35 mm/s.
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wise change of the scan direction remains visible as marked (Figure 7(a), 
red rectangle). While layer n is cut perpendicular to the scan direction 
and is thus shown in the y–z plane, the subsequent layer n + 1 is cut par-
allel to the scan direction and is depicted in the x–z plane. Upon closer 
observation (Figure 7(d)), the cellular morphology inside the grains 
becomes evident; most clearly seen at the lower melt track boundaries. 
The composition obtained from EDS analysis (Figure 7(e), table) of the 
investigated sample (720 W) closely matches the chemical composition 
determined by full chemical analysis. The compositional maps for Ti and 
Nb indicate that the sample is predominantly chemically homogeneous, 
with no noticeable segregation. However, isolated inclusions are observed, 
also visible in the SEM image, which are identified as being highly Ta-rich 
according to the analysis. For the other elements, no anomalies are 
observed. It is worth noting that the signals for Ta, Zr, and O are gener-
ally quite weak, as also indicated by the fact that the Ta inclusion is not 
visible in the Zr and O maps. However, due to the good solubility of both 
elements, and especially considering the homogeneous distribution of Nb, 
an overall homogeneous distribution can be assumed.

Figure 8 reveals grain sizes and morphologies as well the crystallo-
graphic textures of the samples analysed by EBSD. While the latter is 
mostly (001) for all samples, it is strongest for the material produced with 
1200 W electron beam power. The texture in both 720 and 900 W pro-
duced samples is visibly weaker, while especially in the 720 W sample, in 

Figure 7.  Microstructures revealed by SEM of etched samples (Kroll): (a) 720 W (BD = 
build direction), (b) 900 W, (c) 1200 W electron beam energy, (d) close up of grain 
boundaries, and (e) EDS compositional mapping for the main elements (720 W sample). 
Corresponding EDS measurement results are O = 3.12 ± 0.03, Ti = 58.2 ± 0.06, Nb = 
33.51 ± 0.05, Zr = 2.97 ± 0.04, Ta = 2.19 ± 0.06 (in wt%). The inset in (a) illustrates exem-
plarily the tracks of two subsequent layers, in order to highlight the size relationships 
in comparison to the image section.
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parts, a mixture of (011)/(111) crystallographic orientation of the grains 
can also be observed. The structure of all resolved grains was found to 
be bcc (β-Ti). No significant difference in the amount of low-angle sub-
grain boundaries was observed.

3.2.2.  Phase composition
The three selected TNTZ samples, with their respective build parameters 
referring to PEB = 720, 900, and 1000 W, exhibit an almost single-phase appear-
ance. In all three samples, the majority phase is the Ti(β) phase (Figure 9).

Figure 8.  EBSD results for (a,d) 720 W, (b,e) 900 W, and (c,f ) 1200 W electron beam 
power with (a–c) representing invese pole figure (IPF) colour maps in y-direction 
according to the key depicted as inset (g) in (c), and corresponding visualization of 
grain boundaries with black lines indicating high-angle (>10°) and red lines low-angle 
(≤10°) grain boundaries, respectively (BD = build direction). Whitish areas in (a–c) can 
be attributed to porosity and remaining artefacts from preparation.

Figure 9.  XRD results for samples built with 720, 900, and 1200 W electron beam 
power; (a) diffraction patterns with associated phases and (b) colour-coded XRD pat-
terns (original graph) with indicated phase positions.
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The lattice parameters differ only slightly from each other (Table 2). It 
is evident that the different energies used do not significantly influence 
the lattice parameters of the as-built states. All samples also show signs 
of the ω phase. Their peak intensity is very low, combined with a large 
peak width. This is indicative of small, very finely dispersed ω phase par-
ticles. The exact phase fraction cannot be accurately determined from the 
appearance and low peak intensity. An estimate based on the peak inten-
sities gives a phase fraction <1%.

4.  Discussion

The challenging process of atomization of a high refractory metal con-
taining alloy has been successful in terms of producing material of appro-
priate size distribution and flowability. However, the isolated inclusions 
found in the consolidated samples suggest that a small fraction of the 
pre-material, particularly Ta due to its high melting point, was not dis-
solved homogeneously. This observation is consistent with the findings in 
Pereira et  al. (2022), where the stepwise sintering of a TNTZ alloy and 
the increasing dissolution of the high-temperature elements were investi-
gated. A promising approach for further homogenization of the powder 
could be the optimization of the atomization process. In particular, the 
atomization of electrodes made of master alloys and pure elements with 
the EIGA process requires longer dwell times at the electrode tip to 
enable a sufficient alloying time. Couret et  al. (2021) demonstrated that 
reducing the deposition rate resulted in a significant improvement in 
homogeneity in a TiAl alloy containing tungsten. In terms of the homo-
geneity of the PBF-EB material, the high processing temperatures might 
be of interest, as they effectively act as an in-situ heat treatment. However, 
it is also clear that 600 °C is not sufficient to fully dissolve the high-
melting elements. Therefore, any fragments or powder particles must be 
sufficiently small to ensure complete melting during the process, and a 
high level of homogeneity in the starting material is also essential. 
According to the compositional maps, this was almost fully achieved.

The determined process parameter range for samples of high density is 
in good accordance with the information from Yang et  al. (2020), where 
highest densities were reportedly achieved with line energies of 

Table 2. P hase fractions and lattice parameters of as-built PBF-EB samples.

Electron beam 
power (PEB) Ti (α)

Ti (β)

ωa (Å) Phase fraction (%)

720 W No 3.2910 ≈100.0 0–1%
900 W No 3.2877 ≈100.0 0–1%
1000 W No 3.2881 ≈100.0 0–1%
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approximately 200–300 J/m for Ti–35Nb–5Ta–7Zr for a 30% smaller layer 
offset of 0.07 mm, translating to approximate volume energy densities of 
30-45 J/mm³. Highest densities achieved in this study were about 99.7%, 
which is expected to be further reduced when smaller layer heights are 
selected. The observed epitaxial growth of columnar grains is typical for 
especially additively manufactured materials built with high process ener-
gies and low layer wise variation (here: 90°) of the scan vector orienta-
tion. Thus, further grain size variation is prospectively expected to be 
enabled by more complex line scan strategies, characterized by the length, 
orientation, and sequence of the scan vectors, while new degrees of free-
dom can also be realized by spot melting strategies, as we described in, 
for example, Rittinghaus et  al. (2023). While samples produced in previ-
ous studies by Yang et  al. (2020) showed a weak metallographic texture, 
in our work a strong (001) texture was determined for all but specifically 
high-energy produced samples. This is also typical for PBF-EB, it is inter-
esting though that in some regions of the 720 W produced samples also 
grains with mixed (011)/(011) orientation can be recognized, which indi-
cates great possibilities for targeted texture design. Similar observations of 
fibre texture switch were also made in PBF-EB of, for example, molybde-
num (Fernandez-Zelaia et  al., 2021) and tungsten (Ledford et  al., 2023) 
with experimentally being correlated with decreasing beam current and 
scan velocity. Is has been assumed in the aforementioned literature that 
the evolution of the weld pool shape governs the fibre selection. However, 
the mechanism behind the switching phenomena has not yet been clearly 
elucidated. Fernandez-Zelaia et  al. (2021) found a similar correlation 
between PBF-EB processing and the presence of low-angle grain bound-
aries, possibly indicating different levels of stress to which the material 
was subjected during processing. In the present study on TNTZ, we could 
not observe this effect. However, unlike the mentioned study, the energy 
densities were very similar here, combined with high processing tempera-
tures, suggesting that the stresses hypothesized as the cause in the other 
study were likely to be comparatively low in our case.

For the alloy investigated in this study, both grain boundary hardening 
according to the Hall–Petch relation (Hall, 1934) and possible phase trans-
formations, specifically the formation of α-phase, were considered to con-
tribute to the materials hardness. The material was found to be 
predominantly in the β phase, with EBSD measurements showing visible 
microstructural differences between the samples at 750 and 900 W as com-
pared to those processed at 1200 W. The lower hardness values in the latter 
samples can be attributed to increased grain size. However, a clear correla-
tion with the classic Hall–Petch relationship could not be confirmed; this 
can in part be attributed to the large uncertainty in the hardness value at 
750 W, but is also indicative of additional factors that influence hardness. 
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Refractory metal inclusions from the atomization process may contribute 
to hardening, though SEM analysis did not reveal a quantitatively signifi-
cant presence of these oxygen-rich phases. Further, the presence of retained 
fine particles, such as high-melting-point metal clusters (e.g., Ta), may 
contribute to the higher hardness values observed in samples processed 
with lower local energies; higher energy input, resulting in higher process-
ing temperatures, promotes the dissolution of these inhomogeneities, and 
facilitates dislocation annihilation reducing their impact on the mechanical 
properties. To investigate these hypotheses, further studies using high-
resolution analytical techniques, such as TEM or atom probe tomography 
(APT), are required. Furthermore, higher process temperatures promote 
the dislocation annihilation. However, it should be noted that the material 
studied here may also undergo athermal stress-induced phase transforma-
tions (Zhang et  al., 2017). As these are reversible, they were not possible 
to be investigated with the methods being available for this study, never-
theless, this might be considered a worthy subject for future in-situ studies 
especially in combination with further investigation on thermal phase 
transformations of the metastable material. Investigating the impact of 
varying oxygen contents is also of significant interest. For example, in bio-
medical implants, the oxygen content may influence the material’s corro-
sion resistance and biocompatibility, potentially affecting its long-term 
performance within the human body. Therefore, while the initial proper-
ties of PBF-EB-manufactured TNTZ alloys are promising, a more in-depth 
study of these factors is essential to fully evaluate their potential for real-
world applications.

5.  Conclusions

In this study, prealloyed TNTZ powder produced by EIGA was processed 
via PBF-EB, and the resulting components were analysed for microstruc-
tural characteristics. The findings indicate a broad processing window 
that allows for the production of defect-free samples with low porosity 
(<0.3%). The chosen parameters significantly influenced the initial hard-
ness of the material, which ranged from approximately 270 to 340 HV0.3. 
This variation in hardness was primarily, though not exclusively, linked 
to differences in grain size. Further, the parameters had a mild effect on 
the texture, suggesting potential for targeted microstructure optimization. 
The material largely consisted of a single β phase after processing, with 
no premature heat treatment effects observed from the elevated process-
ing temperatures. The controlled oxygen content achieved through vac-
uum processing offers promising opportunities for oxygen-compatible 
TNTZ alloys in medical and structural applications, particularly given 
the successful production of prealloyed, atomized powders containing 
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high-melting refractory metals. Future work will focus on more detailed 
microstructural analysis and explore methods for tailoring microstruc-
tures and mechanical properties through suitable post-processing tech-
niques. Of specific interest is the determination of the elastic modulus 
and in-depth investigation of the expected superelastic behaviour.
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