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Voyage Optimization Algorithm for Intelligent Shipping – Considering Energy Efficiency 
and Collision Avoidance  
 

YUHAN CHEN 
Chalmers University of Technology 
Department of Mechanics and Maritime Sciences 
Division of Marine Technology 
 

Abstract 
 

Environmental emissions from shipping pose significant challenges caused by the rapid in-
crease in energy consumption. Voyage optimization system is an valuable tool to address this 
challenge by enhancing energy efficiency, with optimization algorithms serving as its core, en-
abling better decision-making. The main objectives of this thesis are to develop voyage optimi-
zation algorithms to improve energy efficiency and investigate the capability of voyage optimi-
zation algorithms for ship collision avoidance. By achieving these goals, it aims to support in-
telligent shipping, characterized by enhanced decision-making capabilities.  Weather routing, 
i.e., voyage optimization with the aim to increase energy efficiency in ship operations, rely on 
ship performance models to estimate energy costs and optimization algorithms to find optimal 
voyages. However, ship performance models may contain large uncertainties in estimating a 
ship’s energy consumption and emissions. In addition, optimization algorithms should also con-
sider uncertain and dynamic factors, e.g., weather conditions and market fluctuations, to ensure 
optimal operations.  
 

To achieve the overall objectives, this thesis first conducts a systematical literature review to 
help researchers and practitioners clearly understand weather routing and identify opportunities 
in current research for the development of its optimization algorithms. Based on the review, this 
thesis proposes two innovative approaches to achieve energy-efficient weather routing, an Iso-
chrone-based predictive optimization algorithm (IPO) and a learning-based multi-objective 
evolutionary algorithm (L-MOEA). They can effectively minimize fuel consumption and opti-
mize energy efficiency, with the aid of emerging machine learning (ML) techniques. In addition, 
IPO can be conducted in real-time to address uncertainties in weather routing while considering 
arrival time, and L-MOEA can consider the essential operational uncertainty due to weather 
forecast. Furthermore, to ensure reliable operations in practice, this thesis investigates the un-
certainty of fuel consumption caused by Specific Fuel Oil Consumption (SFOC) in ship perfor-
mance models, and the impact of this uncertainty on weather routing. Finally, this thesis extends 
the research outcome on Isochrone-based algorithms to assist shipping in confined waterways. 
It seeks to achieve real-time voyage optimization for collision avoidance problems while con-
sidering the arrival time, assist on-time transport, and ensure ship operational safety.  
 

It can be concluded that the proposed IPO method can achieve an average of 5% energy savings 
for weather routing, comparable with L-MOEA. It has also been found that the uncertainty due 
to ship energy performance models should be carefully considered in decision-making to ensure 
reliable voyage planning. In addition, the proposed IPO-based collision avoidance algorithm 
can effectively optimize the voyage in real-time to ensure a ship’s operational safety and on-
time arrival, complying with COLREGs in both confined waterways and open waters. 
 

Keywords: Collision avoidance, energy efficiency, estimated time of arrival (ETA), Isochrone 
algorithm, machine learning, voyage optimization, weather routing. 
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1 Introduction 
 

This chapter introduces the background for the research conducted in this thesis. The motiva-
tions and objectives are also illustrated, followed by limitations and work scope. 
 
1.1 Background  
 

International shipping has traditionally been considered a cost- and energy-efficient mode of 
transportation. It accounts for over 80% of global merchandise trade by volume, while contrib-
uting nearly 3% of global greenhouse gas (GHG) emissions (UNCTAD, 2023). Between 2016 
and 2020, the maritime transportation market nearly doubled, growing from $4.6 billion to $8 
billion (Park et al., 2022). However, this rapid expansion was accompanied by a notable rise in 
GHG emissions as shown in Figure 1.1, with a 20% increase over the past decade (UNCTAD, 
2023). Without intervention, the shipping sector’s share of global GHG emissions is projected 
to rise from 3% to 17% by 2050 (Deng & Mi, 2023). The International Maritime Organization’s 
(IMO’s) revised GHG strategy lists three phased decarbonization targets: a 20% reduction by 
2030, 70% by 2040, and full decarbonization by 2050, relative to 2008 emission levels (IMO, 
2023). Despite these goals, only a 3.6% reduction had been achieved by 2023 (DNV, 2024b).  
 

 
Note: RORO means roll-on/roll-off vehicle carrier. 
 

Figure 1.1: Total carbon dioxide emissions (tons) by vessel type, in January 2012 – March 
2023 from UNCTAD based on data provided by Marine Benchmark in July 2023 (UNCTAD, 

2023). 

 
Driven by these incentives, the shipping industry is taking serious steps to reduce its carbon 
footprint and lower emissions. Both technical and operational measures, as well as policy-based 
strategies, have been developed to increase shipping energy efficiency (Jimenez et al., 2022). 
Energy transition, e.g., adopting carbon-neutral fuels such as hydrogen, ammonia, and methanol, 
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is recognized as the most promising solution for shipping decarbonization. However, the pro-
duction of these alternative fuels is still striving to meet the required demand from the shipping 
industry (UNCTAD, 2023). Currently, 93% of the global fleet continues to run on conventional 
fuels (DNV, 2023, 2024). Given the range of uncertainties, the transition will not happen im-
mediately because of great challenges in practical implementation (DNV, 2024b). Before tech-
nical measures such as carbon-neutral fuels became more available and affordable, developing 
and installing energy-efficient operational measures, such as performance monitoring, weather 
routing, and trim optimization, are essential to meet both short-term environmental goals and 
long-term economic benefits. Through utilizing these operational energy-efficient measures, 4 
– 16% of energy reduction in shipping can be reached  by 2030 (DNV, 2024b). Although ship 
operational measures may not help the shipping industry become fossil free or climate neutral, 
given the large scale of the global shipping market, only a 1% reduction in fuel consumption 
can lead to an annual decrease of around 8 million metric tons of CO2 emissions (IMO, 2020). 
 
Among all available ship operational measures, voyage optimization is one of the most effective 
that can achieve considerable energy savings (DNV, 2023, 2024). Sea environments can signif-
icantly increase the energy consumption of ocean-going ships (Yuan et al., 2022), while voyage 
optimization, often referred to as weather routing, can help the ship easily avoid heavy metocean 
environments and maintain an expected time of arrival (ETA) (Zis et al., 2020; Yu et al., 2021). 
Particularly, it can deliver direct benefits without heavy investment and installation (DNV, 
2024a, 2024b). In addition, cargo ships typically spend up to 50% of their time in port or at 
anchorage (DNV, 2018). They could real-time adjust their voyages to achieve a 'just in time' 
arrival and slowdown, which would not only reduce fuel consumption but also lessen port con-
gestion. This highlights the significant potential to improve the effectiveness and efficiency of 
current ship operations through voyage optimizations, such as achieving just-in-time (JIT) arri-
vals considering ETA (IMO, 2020). Furthermore, voyage optimization is often considered an 
essential component of other innovative shipping technologies, such as wind-assisted propul-
sion ships. Studies have shown that combining wind propulsion with weather routing (voyage 
optimization) offers noticeable benefits in enhancing energy efficiency (Mason et al., 2023; 
Wang et al., 2022).  
 
A typical voyage optimization process involves ship models and various techniques, such as 
ship performance modeling and prediction, multi-variable ship/engine control scheme, and 
multi-objective optimization algorithms. As the maritime industry undergoes digital transfor-
mation, large amounts of data are collected onboard today’s ships by sophisticated sensors. 
These data can be analyzed and leveraged to assist ship operations (DNV, 2024a). This digital 
shift unlocks the potential for digital-enabled and data-driven techniques in shipping (Lang & 
Mao, 2022). For example, statistical models have been developed to predict stresses and fatigue 
damage on ship structures for weather routing (Storhaug, 2007; Mao et al., 2010, 2012, 2015), 
identify ship speed to power relationships for estimating arrival times (Mao et al., 2016), and, 
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more recently, provide machine learning (ML) based ship performance prediction and monitor-
ing (Gupta et al., 2022; Lang et al., 2024; Zhang et al., 2024b). 
 
The main objective of today’s voyage optimization used in open sea sailing is to minimize ship 
fuel consumption (Zis et al., 2020). When transportation activities become intensive, involving 
more complex maritime traffic environments, ship safety in becomes another critical objective. 
As a result, collision avoidance (CA) has become the most critical problem for voyage optimi-
zation, especially for coastal and inland shipping. The decision-making process to avoid colli-
sion is generally divided into three stages: motion prediction, collision detection, and collision 
resolution (Huang et al., 2020). The performance of each stage significantly affects the overall 
effectiveness of addressing CA problems. Among them, algorithms to assist decision-making 
in ship safe operations are the core component. For such CA problems, optimization algorithms 
face challenges from highly dynamic and complex maritime traffic environments surrounding 
the ship. Those environments should be continuously perceived and processed by the algorithm 
in real time to assist ship operations for CA. The dynamic factors involved include moving 
obstacles (e.g., other ships), ship maneuverability, control status, and environmental disturb-
ances (wind and currents). Therefore, the computational efficiency and robustness of the algo-
rithms are crucial for optimization effectiveness (Johansen et al., 2016). For coastal and inland 
shipping, developing such algorithms also becomes a promising strategy for addressing the CA 
problems in those complex traffic conditions (He et al., 2023; Hu et al., 2020; Jiang et al., 2022; 
Tsolakis et al., 2024; Wang et al., 2024).  
 
1.2 Motivation and objectives 
 

To address shipping energy efficiency via weather routing (or voyage optimization), recent de-
velopment of optimization algorithms has focused on incorporating advancement from other 
fields such as control engineering, artificial intelligence (AI) and machine learning (ML) tech-
nologies. This interdisciplinary approach poses difficulties for the research community of ship 
voyage optimizations (Zis et al., 2020; Yu et al., 2021), as terminologies from different fields 
are frequently adopted and mixed used. Meanwhile, the technical pros and cons of those voyage 
optimization algorithms, as well as their fundamental difference and actual improvement in 
terms of voyage planning efficiency and effectiveness, are rarely discussed in literature.  
 
In addition, for practical implementation and installation of weather routing systems, the com-
putational efficiency of optimization algorithms in such systems is vital for facilitating real-
time decision support of ship operations for each voyage, considering dynamic weather condi-
tions, commercial changes, and other operational uncertainties along the voyage. Therefore, the 
two-dimensional (2D) Isochrone method, recognized for fast computation for optimization, re-
mains widely used in the commercial weather routing market (Lee et al, 2018). Initially de-
signed to ensure accurate ETAs, the Isochrone method align well with today’s IMO promoted 
JIT ship operations (IMO, 2020). It can quickly generate optimal routes, adapt to changes, and 
maintain punctuality, making it suitable for both fixed and flexible voyage plans. 
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One example of this method is that proposed by Hagiwara (1989). However, one notable draw-
back of this method is the occurrence of “isochrone loops”, which are irregular shapes due to 
the non-convexity of ship performance at sea (Roh, 2013). As the number of isochrones grows, 
these loops become more prevalent, resulting in impractical outcomes for real operation. Be-
sides the route shape, Hagiwara's 2D Isochrone method (Hagiwara, 1989) also suffers from 
significant issues with route convergence in its final stages. Many researchers have enhanced 
the Isochrone method by incorporating speed optimization or advanced ML algorithms. How-
ever, they also increase complexity which influences their real-time capabilities.  
 
Furthermore, advanced algorithms, such as emerging AI and ML techniques, can manage a 
broader range and more flexible variations of optimization parameters (Zis et al., 2020). Signif-
icant research efforts have been dedicated to incorporating AI/ML methods to achieve superior 
optimization results in some fields, e.g., autonomous control systems (Norouzi et al., 2023). 
However, AI/ML optimization algorithms in weather routing require significant computational 
efforts (Wang et al., 2020a, 2020c). Additionally, voyage planning results generated from those 
algorithms may require frequent changes in ship operational conditions, such as speed, course, 
and power. (Wang et al., 2021). These adjustments are not practical for actual ship operations, 
as they necessitate continuous ship maneuvering, which can lead to increased fuel consumption, 
emissions, and maneuvering risks (Baldauf et al., 2018). This approach may further hinder ap-
plications of weather routing systems with those complex optimization algorithms (Simonsen 
et al., 2015). In addition, some advanced meta-heuristic approaches, unlike deterministic meth-
ods such as Isochrone algorithms, do not always yield optimal voyage planning solutions 
(Halim et al., 2021).  
 
Moreover, a ship energy performance model is another crucial component for weather routing 
systems. Ship energy performance models are used to estimate the fuel costs associated with 
decisions of maneuvering actions for weather routing systems, to achieve fuel savings. However, 
within the ship energy performance model, there is a crucial parameter known as the specific 
fuel oil consumption (SFOC), which is used to estimate a ship’s fuel consumption from shaft 
power (Marques et al., 2019). Different modeling approaches for the SFOC may introduce sig-
nificant uncertainties into the calculations of fuel consumption in ship performance models. 
Marine engine SFOC is often provided by engine manufacturers or estimated as statistical av-
erages only in terms of engine shaft power (Degiuli et al, 2023). However, actual SFOC values 
in ship operations are strongly dependent on engine operation-related control variables (Sarigi-
annidis et al, 2016), which are normally unknown in advance for voyage planning in ship 
weather routing systems. This introduces significant uncertainties in ship energy performance 
models for estimating fuel consumption, possibly rendering ship voyage optimization ineffec-
tive. Alternatively, some of the literature has overlooked the role of SFOC, optimizing engine 
power rather than fuel (Fabbri & Vicen-Bueno, 2021; Lee et al., 2021; Qian et al., 2023), which 
raises concerns about the potential impact of uncertain models on a ship’s voyage optimization 
results. 



 

5 

 

Finally, in addition to minimum fuel consumption and strict punctual requirements for ship 
operations (Lei et al., 2024), voyage optimization systems for inland and coastal shipping need 
to focus more on collision avoidance due to complex traffic and operation environments. To 
avoid collisions with the assistance of voyage optimization systems for inland ship operation, 
the computational efficiency of voyage optimization algorithms is essential to provide real-time 
optimal voyage planning. Many studies on collision avoidance have been striving to develop 
algorithms that achieve a balance between real-time performance and optimal outcomes (Zhang 
et al., 2025; Zhu et al., 2024).  
 
Therefore, to address computational efficiency and optimization effectiveness of ship voyage 
optimization algorithms, based on a systematical literature review about the status, pros, and 
cons of current ship voyage optimization algorithms, the main objectives of this thesis are to 
propose an Isochrone based voyage optimization algorithm that can incorporate ML and exploit 
the learning-based multi-objective evolutionary algorithm (L-MOEA) to leverage advanced ML 
methods. These optimization algorithms should ensure optimal voyage planning for both ship-
ping energy efficiency and collision avoidance considering the uncertainties of ship energy per-
formance models in voyage planning. The proposed algorithms aim to assist seafarers with 
voyage planning for one voyage before departure, based on the provided destination, ETA, and 
weather forecasts. During the operation, when the ship is en route, the proposed algorithms can 
also be utilized on board by seafarers to address any uncertainties or to regularly update the 
voyage, for instance, every 24 to 72 hours when the weather forecast is usually updated (Euro-
pean Centre for Medium-Range Weather Forecasts).  
 
To achieve the overall objectives, this thesis investigated some specific research goals in the 
appended papers as follows: 
 

1) Clarification of terminologies that are often used interchangeably, a systematic review 
of optimization algorithms in weather routing, and highlights of recent research trends 
(Paper I). 

2) Proposal of an effective and efficient improved optimization algorithm that leverages 
the computational efficiency of the Isochrone method to achieve energy-efficient real-
time weather routing (Papers II and III). 

3) Adoption of advanced ML methods to tackle weather routing, addressing the divergence 
issues of MOEA, and accounting for uncertainties in weather forecasts (Paper IV).  

4) Investigation of the uncertainty of fuel consumption caused by SFOC in ship perfor-
mance models and its impact on weather routing (Paper V). 

5) Application of research on Isochrone-based algorithms to address collision avoidance 
problems, to assist on-time transport and ensure ship operational safety for inland and 
coastal shipping (Paper VI). 
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1.3 Assumptions and delimitations 
 

This thesis investigated and developed several voyage optimization algorithms. The demonstra-
tion of such algorithms focus on the proof of concept for their effectiveness and efficiency in 
ship voyage planning. Some of the delimitations are listed below. 
 
For optimization algorithms in weather routing, whose main objective is to minimize fuel con-
sumption during a voyage: 
 

• The optimization algorithm first aims to assist seafarers with voyage planning before 
departure based on the provided destination and ETA and enhances energy efficiency 
for one single voyage.  

• Furthermore, the proposed voyage optimization algorithms can consider voyage opera-
tional dynamics due to, e.g., market fluctuations (leading to a new port of call or revised 
ETA, etc.) or dramatic changes in the weather forecast. These dynamics can be consid-
ered by restarting the optimization process in real time with updated ETA, weather con-
ditions, or other voyage planning prerequisites. However, simulations of voyage opti-
mization in dynamic environments during execution, i.e., when the ship is en route, are 
not studied in this thesis. 

• Ship safety and practical operation considerations such as traffic separation zones, keel 
clearance, and real-time operation warnings from an ECDIS (electronic chart display 
and information system), are not considered for weather routing in this thesis. They can 
be easily implemented during commercial development. 

• For the demonstration of these energy efficiency voyage optimization algorithms, the 
departure, destination port, and ETA (associated with the service speed or engine speed 
(RPM)) of case study voyages are assumed to be given as prerequisites, and ship per-
formance models used in these optimization methods have been validated in other stud-
ies and assumed accurate in this thesis.  

• The parameters of the proposed method defining the waypoint grid resolution are deter-
mined based on performance, with discussions provided in the appended papers. How-
ever, sensitivity analysis of the parameters and related convergence analysis have not 
been performed.  

 
For the voyage optimization considering collision avoidance in confined water with dense mar-
itime traffic environment, a linearized model to describe a ship’s dynamic is used for demon-
stration. This model can be replaced with a more accurate model tailored for inland and coastal 
ships, such as ones that can account for shallow water effects. In addition, the following as-
sumptions have been made for the development of this algorithm for collision avoidance: 
 

• A ship domain is used to define the minimal safety area around the ship during collision 
avoidance, indicating that any obstacle entering this area is considered to pose a certain 
collision risk. However, the ship domain in this thesis is based on the definition of 
Coldwell (1983) and assumed to be static, whereas dynamically adapting it based on 
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situations when encountering other ships would be more accurate (Szlapczynski & 
Szlapczynska, 2017). 
 

• The motions and trajectories of the target ships (TSs), i.e., other ships, are assumed to 
be known to the own ship (OS) through interactions. However, in practice, more reliable 
solutions can be considered such as using automatic identification system (AIS) data for 
trajectory prediction for TSs. 
 

• The special hydrodynamic effects in confined waterways, e.g., shallow water effects 
and bank effects are not considered in this thesis. Thus, the power/energy cost of sailings 
in confined waterways is not calculated. The current approach uses the shortest distance 
as a simplified method to estimate the energy cost. 

 
1.4 Outline of the thesis 
 

The thesis consists of two parts: a summary of the research conducted, followed by six appended 
papers. The research summary section integrates and summarize the work from each appended 
paper, while also explaining the connections between the appended paper, as illustrated in 
Figure 1.2. Each appended paper provides more details of approaches presented in this thesis 
and their intermediate steps. 
 

 
 

Figure 1.2: Workflow of the appended publications to achieve the objectives of this thesis. 
 
The remainder of this thesis is structured as follows: Chapter 2 clarifies the work scope and 
some terminologies and presents a literature review of optimization algorithms used in weather 
routing and collision avoidance problems. Chapter 3 illustrates the optimization algorithms pro-
posed for energy efficient weather routing in this thesis. Chapter 4 investigates the uncertainties 
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of energy consumption caused by ship models, and Chapter 5 presents the development of op-
timization algorithm in collision avoidance. Finally, Chapter 6 highlights the main findings and 
results from the appended publications, Chapter 7 concludes the thesis, and Chapter 8 discusses 
future work. 
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2 Literature review 
 

The blurred boundaries of terminologies used within ship voyage optimizations have led to 
confusion and inconsistency in the methods/algorithms developed for ship weather routing sys-
tems. Some confusion problems were presented by Yu et al. (2021) and Zis et al. (2020) to 
explain and distinguish research fields related to either maritime engineering or maritime man-
agement for voyage planning issues. For example, some studies essentially addressed “ship 
scheduling” problems, while being labeled as weather routing such as in (Lee et al., 2023). To 
clarify different topics surrounding the research field of ship voyage optimizations, Figure 2.1 
presents an overlapping diagram for research topics that often appeared alongside voyage opti-
mization. Path planning and pathfinding problems, as the broadest and most fundamental topics, 
are extensively studied beyond the maritime sector (Majumder & Majumder, 2021). They apply 
to moving objects including vehicles and robots, while ship voyage optimization in this thesis 
focuses on ships. As the objectives of ship voyage planning vary, voyage optimization can be 
associated with various sub-problems in terms of their implementation scenarios, i.e., ship 
routing, weather routing, collision avoidance, and operational optimization.  
 

 
 

Figure 2.1. Overlapping diagram of common problems related to voyage optimization. 
 
Ship routing often involves multiple voyages between several ports of call, ETAs at each port, 
or arrival sequences, and it is similar to the vehicle routing problem (VRP) in transportation 
networks (Zis et al., 2020). It often emphasizes commercial factors, such as freight rate, fuel 
prices, market fluctuations, and profitability (Lee et al., 2023; Tran & Haasis, 2018). Weather 
routing and collision avoidance in voyage optimization are significantly different because of 
different sailing areas with different objectives in focus. Weather routing searches for an op-
timal plan for each voyage from one port of call to another, and weather conditions are the main 
factors affecting ship operational indexes, such as fuel consumption and ETA. Collision avoid-
ance becomes the focus in coastal and inland shipping areas, where maritime traffic density 
increases (Gao et al., 2023; Zhang et al., 2025). Because of more complex traffic and less pro-
nounced weather impact, ship sailing in these areas prioritize operational safety and traffic reg-
ulations compliance, focusing on collision risk and avoiding strategies (Huang et al., 2020; Jo-
hansen et al., 2016; Tran et al., 2023). Operational optimization focuses on improving ship 
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operational details (e.g., speed (Li et al., 2024; Sidoti et al., 2023), power (Besikçi et al., 2016; 
Ma et al., 2023), or trim (Coraddu et al., 2017; Hu et al., 2022)), along a fixed route (e.g., fixed 
longitudes and latitudes), to optimize, for example, the fuel consumption for a voyage. These 
problems include voyage division, i.e., separating the entire route into segments, and combina-
torial optimization across multiple sub-routes. Clarifying the problem scope is essential for re-
searchers/engineers to choose proper methods to implement or further development for practical 
maritime operations. 
 
2.1 Optimization algorithms in weather routing 
 

Weather routing algorithms for seagoing ships have been widely investigated throughout the 
years (Zis et al., 2020). Many well-established methods are available in the maritime transpor-
tation community, such as the Isochrone method, dynamic programming (DP), Dijkstra and A* 
algorithms, and emerging AI and ML algorithms (Wang et al., 2021; Wang et al., 2019). They 
can be primarily categorized into two-dimensional (2D) or three-dimensional (3D) methods, 
considering requirements in real applications. Of note, 2D methods are more conventional, sim-
plifying the problem to only involve searching for routes (consisting of longitudes and latitudes 
of waypoints) along the voyage, and assuming the other inputs such as speed and engine power 
to be fixed. Alternatively, these optimization methods can also be divided into static and dy-
namic grid-based methods.  
 

 
Figure 2.2. Grid system and optimal route (shown as an orange solid line) in the static grid-

based voyage optimization methods. 
 
Static grid-based voyage optimization methods discretize the sailing area (a certain range 
between departure and destination) into small grids and pre-define a grid system based on these 
grids as illustrated in Figure 2.2. Examples of static grid-bases methods include the DP method 
(Bellman, 1952) and graph search algorithms, like the Dijkstra (Dijkstra, 1959) and A* algo-
rithms (Hart et al., 1968). DP is based on Bellman’s principle of optimality in which one prob-
lem is broken down into sub-tasks, and each of them is solved in sequence to obtain the optimal 
solution for the original problem. De Wit (1990) employed DP for ship sailing, separating voy-
age planning into a multi-stage process and validating its effectiveness. The Dijkstra algorithm 
is extended to derive the A* algorithm, by incorporating a heuristic component into the cost 
function. They have been applied in voyage optimization in recent years, for example, by Shin 
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et al. (2020a), Ari et al. (2013), Życzkowski et al. (2018), and Gkerekos and Lazakis (2020). 
These static grid-based algorithms are easy to construct into different forms, and suitable for 
single and multiple objective optimization problems. However, the result as well as computa-
tion loads of static grid-based methods relies heavily on the grid parameters, such as resolution, 
the number of nodes, and the spatial extent it covers, which makes the grid generation an influ-
encing factor for the algorithm’s performance and, therefore, needs to be specifically addressed 
in each individual voyage. 
 

 
Figure 2.3. Grid system and the evolution process in the dynamic grid-based voyage optimi-

zation methods. 
 
Dynamic grid-based voyage optimization methods on the other hand, conduct the optimal 
voyage search recursively, eliminating the need for a pre-defined grid. At each step, a subse-
quent node set is generated from the existing nodes, resulting in an iterative grid update, as 
shown in Figure 2.3. This process continues as routes progressively advance until reaching the 
destination. A notable example is the Isochrone method, where an isochrone represents a front 
line encompassing the farthest waypoints, which a ship can reach following different directions 
within a given sailing time. This method was originally introduced by James (1957a). However, 
as the number of waypoints in this method grows exponentially, Hagiwara (1989) enhanced it 
to only keep a specific number of optimal waypoints at each isochrone to resolve the problem 
of expanded candidate waypoints. This improved Isochrone method (Hagiwara, 1989) was used 
both manually and on computers for years because of its convenient implementations. However, 
one drawback of the original Isochrone method by James (1957a) is the phenomenon known as 
the “isochrone loop”. This irregular shape of an isochrone arises from the non-convex nature of 
a ship's performance (Roh, 2013; Wisniewski, 1991). As the number of isochrones increases, 
the isochrone loop effect propagates, resulting in impractical outcomes (Roh, 2013). Hagiwara 
(1989) noticed this problem, however, impractical routes are still yielded by his method. Later, 
Klompstra et al. (1992) presented a similar approach, the Isopone algorithm, which replaced 
equal traveling time with fuel consumption. In general, because of the relatively high computa-
tional efficiency, the Isochrone method has great value in practical applications. Since it con-
tinuously adapts and approaches the destination step by step, it can also handle uncertainty and 
respond fast to the dynamic weather and business environment. 
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Table 2.1: Summary for advantage/disadvantage of optimization algorithm types commonly 
used in weather routing. 

Algorithm 
Type 

2D 3D and multi-variables 

Description Route with fixed speed Route and speed (or power, RPM, etc.) 
Pros 1) Easy to apply for seafarers 

2) Fast for computation 
Superior optimization results compared 
to 2Ds 

Cons Possible suboptimal and local opti-
mization results due to their simpli-
fications made for fast computa-
tions.  

1) Slow computation 
2) Hard to apply results in real operation 

Method Deterministic Stochastic Deterministic Stochastic 
Pros Results can be 

found if they ex-
ist. 
 

Stochastic na-
ture helps avoid 
local optimiza-
tion. 

1) Result can be 
found if it exists. 
2) Improved opti-
mization capabil-
ity is achieved by 
including more 
variations than 
2D. 

1) Stochastic nature 
helps avoid local 
optimization. 
2) More improved 
optimization capa-
bility, compared 
with deterministic 
methods. 

Cons 1) Discretized 
nature can lead 
to suboptimal-
ity.  
2) Optimization  
result improves 
with high grid 
resolution, but 
computation 
load also in-
creases. 

1) It cannot 
guarantee an 
optimized result 
even if one ex-
ists. 
2) Same input 
may not give 
the same re-
sults. 

1) It has heavier 
computation load 
by using extra 
variables than 2D. 
2) Applying re-
sults in real oper-
ation is challeng-
ing. 

1) Computation 
load increases 
heavily. 
2) Same input may 
not give the same 
results. 
3) Applying results 
in real operation is 
challenging. 

Examples (Hagiwara, 
1989) (De Wit, 
1990)   

(Tsou, 2010) 
(Li et al., 2018) 
(Xue, 2022)  

 (Jeong et al., 
2019) (Bahrami 
& Siadatmousavi, 
2024) 

(Ma et al., 2021) 
(Wang et al., 2021) 
(Ma et al., 2024) 

 
A summary of the advantages and disadvantages of these algorithms is presented in Table 2.1. 
For more complicated cases and advanced planning, 3D algorithms have been developed to 
consider additional variables, such as speed, and time. For example, Choi et al. (2023), Du et 
al. (2022a), and Zaccone et al. (2018) developed a 3D DP algorithm; Lin et al. (2013), Fang and 
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Lin (2015), and Lin (2018) improved a 3D Isochrone method; Mannarini and Carelli (2019), 
Mannarini et al. (2023), Zyczkowski and Szlapczynski (2023), and Wang et al. (2019) devel-
oped the 3D Dijkstra algorithms.  
 
Voyage optimization typically requires handling extensive data, adapting to dynamic changes, 
and making predictions under uncertainty, which renders the problem large-scale and complex. 
Consequently, alongside the advancement of AI and ML techniques, more sophisticated meth-
ods have been developed in recent years, such as the utilization of the genetic algorithm (GA), 
evolutionary algorithm (EA), ant colony optimization (ACO), particle swarm optimization 
(PSO), and their variants. Examples include 3D EAs/GAs (Ma et al., 2021; Szlapczynska & 
Szlapczynski, 2019; Wang et al., 2021) and 3D ACO (Dong et al., 2021). Zhang et al. (2022) 
proposed a 3D ACO customized for ice routing. Chen and Tan (2023), and Wang et al. (2022) 
proposed 3D PSO for decision-making; Gkerekos and Lazakis (2020), and Moradi et al. (2022) 
deployed a 3D artificial neural network (ANN) to predict fuel consumption of ships for optimi-
zation. These algorithms consider speed/time variations along the voyage and, therefore, have 
greater capabilities to achieve more competitive performance.  
 
However, a tradeoff exists between performance and efficiency, and because of the complexity, 
the computation loads also increase dramatically. Moreover, stochastic methods, such as GA, 
EA, ACO, and PSO, if given the same specific input, can generate different outputs for each 
execution they operate because of the stochastic nature of these algorithms.  
 
2.2 Ship performance model for weather routing 
 

To minimize energy consumption along a voyage to achieve efficient ship operations, research-
ers have established optimization objectives, such as minimizing power (Fabbri & Vicen-
Bueno, 2021; Lee et al., 2021; Qian et al., 2023), fuel (Chen & Mao, 2024; Wang et al., 2021; 
Wang et al., 2019), emission (Lee et al., 2023; Yu et al., 2021), and economic/operational costs 
(Ma et al., 2024). Ship performance models estimate corresponding optimization-related costs 
using cost functions to achieve these objectives. As an individual research topic, performance 
modeling has developed various approaches, such as empirical/semi-empirical methods, com-
putational fluid dynamics (CFD), model testing, and ML methods. These suitable ship models 
used in today’s weather routing can be generally categorized into white-box models (WBMs), 
black-box models (BBMs), and gray-box models (GBMs) (Lang et al., 2024; Yan et al., 2024).  
 
WBMs rely on established shipping knowledge and physical principles, offering transparency, 
interpretability and good extrapolation ability. Examples include the models developed by 
Holtrop and Mennen (1982), Huang et al. (2018), Tillig and Ringsberg (2019), Mao and Rychlik 
(2017), and Lang and Mao (2020). As WBMs depend on prior knowledge, they are highly suit-
able for predictions in the ship’s early design phase or if measurement data is insufficient. How-
ever, their accuracy may be constrained by assumptions inherent in the model. In contrast, 
BBMs utilize extensive operational data and advanced ML techniques, such as ANNs (Bassam 
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et al., 2023; Du et al., 2019), tree-based models (Soner et al., 2018; Yan et al., 2020), support 
vector machines (Ahlgren et al., 2019), and others (Lang et al., 2021, 2022) to predict ship 
performance. These models are praised for their superior fitting capability compared to WBMs, 
and their generalization capabilities which do not require prior knowledge. However, their com-
plexity and interpretability can limit their acceptance in industry applications. Additionally, 
they may have difficulty providing accurate predictions for unmeasured conditions, limiting 
their practical application in unpredictable dynamic sea environments.  
 
In addition to WBMs and BBMs, researchers have also developed GBMs, which can combine 
the theoretical foundations of WBMs with the data-driven insights of BBMs, such as those by 
Yang et al. (2019) and Wang et al. (2023). These approaches allow for both accurate and theo-
retically explainable predictions. GBMs have two forms: sequential, where WBMs and BBMs 
are applied in sequence, and parallel, where WBMs provide the theoretical framework and 
BBMs refine parameters based on empirical data (Yan et al., 2024).   
 
These types of ship models have been used in weather routing, as demonstrated by Tzortzis and 
Sakalis (2021), Wang et al. (2020b), and Li et al. (2020), who used WBMs; Beşikçi et al. (2016), 
Du et al. (2019), and Moradi et al. (2022) who used BBMs; and Coraddu et al. (2017) who used 
a GBM. However, to the author’s knowledge, no previous study has comprehensively consid-
ered a critical issue: the uncertainty in the energy transfer processes within the ship’s main 
engine system, specifically SFOC, which leads to uncertainties in ship fuel consumption (Guo 
et al., 2024). Additionally, no studies have verified the extent to which this stochastic and un-
certainty affects weather routing with the objective of saving fuel. This motivates research into 
the uncertainties in weather routing caused by the stochastic ship fuel consumption models, 
which is further detailed in Chapter 4. 
 
2.3 Collision avoidance for ship safety 
 

Collision avoidance (CA) problems have been critical for maritime traffic safety, particularly 
for coastal and inland shipping with complex and high-density transport activities. The process 
of collision avoidance can generally be divided into three stages: motion prediction, collision 
detection, and collision resolution (Huang et al., 2020). The performance of each stage can 
significantly affect the overall effectiveness of addressing CA problems, with optimization al-
gorithms inside the stage of collision resolution serving as a key component because of their 
responsibility for decision-making. 
 
CA problems remain highly challenging for optimization algorithms, mainly stemming from 
the dynamic and complex sailing environments of ships, necessitating real-time perception and 
decision-making during operations. These dynamic factors include moving obstacles such as 
TSs, ship maneuverability, and environmental disturbances from wind and currents. As such, 
the computational efficiency and robustness of the optimization algorithms are crucial for their 
effectiveness (Johansen et al., 2016). Many studies have contributed to addressing CA problems 
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with a focus on algorithm development, and readers interested in further details can refer to 
comprehensive review papers by Huang et al. (2020), Zhu et al. (2024), and Zhang et al. (2025). 
 
Generally, based on their optimization or control variables which are outlined by the solution 
space, optimization algorithms to address CA problems can be categorized into continuous and 
discrete search methods. As the name suggests, continuous search methods refer to those where 
the optimization variables can change continuously, meaning the feasible values for the optimi-
zation variables are theoretically infinite. Discrete search methods, on the other hand, typically 
specify the step size and the range for variable changes or provide only a finite set of choices 
for the optimization variables. From the perspective of algorithm processes, each of these meth-
ods can further be classified as global or stepwise. Global search algorithms first identify a 
collision-free solution space, i.e., the space containing all solutions that satisfy constraints, and 
then conduct search and optimization within this space. Stepwise search progresses iteratively, 
performing collision checks and optimization at each step, advancing only one step length at a 
time, and repeating the process until completion.  
 
As presented in Table 2.2, if using continuous spaces, global search examples include the ve-
locity obstacle algorithm (Alonso-Mora et al., 2018; Fiorini & Shiller, 1998; Zhuang et al., 2016) 
and cone-based approaches (Chakravarthy & Ghose, 1998; Fan et al., 2019). Stepwise search 
is exemplified by model predictive control (MPC) - based strategies (Abdelaal et al., 2018; 
Chen et al., 2018). Discrete input-based algorithms use limited variations in optimization to 
enhance computational efficiency and responsiveness. Examples of global search using discrete 
inputs includes grid-based methods (Shah et al., 2016; Svec et al., 2014), and stepwise search 
methods include the dynamic window approach (Fox et al., 1997; Serigstad, 2017) and MPC-
based strategies (Johansen et al., 2016). Other algorithms, such as artificial potential fields (He 
et al., 2023; Li et al., 2021) and ML approaches like reinforcement learning (Jiang et al., 2022; 
Wang et al., 2024), are applicable to both continuous and discrete inputs. 
 
Global search algorithms can often present better outcomes as they comprehensively assess the 
problem that appears particularly effective in complex environments. However, achieving effi-
ciency while maintaining optimality is difficult, making them less suitable for real-time opera-
tions. On the contrary, stepwise search algorithms sacrifice some computational intensity to 
achieve much faster execution speeds, but their limited solution space and common reliance on 
greedy strategies may lead to suboptimal outcomes. 
 

Table 2.2: Examples of different methods used in collision avoidance. 
Type Global Stepwise 
Continuous Velocity obstacle algorithm, vision cone MPC-based  
Discrete Grid-based methods Dynamic window approach, MPC based  
Others Artificial potential field, ML (reinforcement learning algorithms) 
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3 Methods of weather routing for energy efficiency 
 

This chapter summarizes the optimization algorithms developed in Papers II, III, and IV to solve 
weather routing problems. For the completeness of the thesis, a general overview of weather 
routing is first described. Then, the contributions and dedicated development of optimization 
algorithms in this thesis are presented afterwards. 
 
3.1 An overview of the weather routing problem 
 

In a ship’s weather routing system, a voyage is normally discretized into a series of waypoints 
accompanied by operational parameters defined for each sub-route between every two way-
points, as shown in Figure 3.1.  
 

 
 

Figure 3.1: An illustration of a ship voyage with its waypoints, operational parameters and 
sailing sea conditions. 

 
Let P0 denote the departure and Pf the destination. A waypoint at the ith time stage between P0 
and Pf is defined as: 
 

𝑷𝑷𝑖𝑖 = [ 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑇𝑇𝑖𝑖 ]   (3.1) 

 
where xi, yi and Ti are the longitude, latitude, and the time that ship passes this waypoint respec-
tively. The sea condition w at the waypoint P are described by the wave, wind and current as:  
 

𝒘𝒘 =  [ 𝑆𝑆 (𝜔𝜔 |𝐻𝐻𝑠𝑠,𝑇𝑇𝑧𝑧),𝑉𝑉𝑐𝑐,𝜃𝜃𝑐𝑐 ,𝑉𝑉𝑤𝑤,𝜃𝜃𝑤𝑤 ]  (3.2) 

 
where 𝑆𝑆 (𝜔𝜔 |𝐻𝐻𝑠𝑠,𝑇𝑇𝑧𝑧) is the wave given by significant wave height 𝐻𝐻𝑠𝑠 and wave period 𝑇𝑇𝑧𝑧. Ocean 
current and wind are represented by 𝑉𝑉𝑐𝑐,𝜃𝜃𝑐𝑐,𝑉𝑉𝑤𝑤 and 𝜃𝜃𝑤𝑤, where V and θ denote their speed and 
direction respectively. The operational parameters along the sub-route from Pi to the next way-
point Pi+1 at the (i+1) th time stage are defined as: 
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𝒖𝒖(𝑷𝑷𝑖𝑖,𝑷𝑷𝑖𝑖+1) =  [𝑣𝑣𝑖𝑖 ,𝜃𝜃𝑖𝑖 ,𝑁𝑁𝑖𝑖, … ]  (3.3) 
 
where u (Pi, Pi+1) includes parameters that can guide the ship’s sailing, such as the sailing speed 
vi, heading θi, engine speed (RPM) Ni, etc.  
 
The optimization variables of the weather routing are the set of waypoints P and their corre-
sponding operational parameter U: 
 

𝑷𝑷 =  [ 𝑷𝑷0,𝑷𝑷1,𝑷𝑷2, …𝑷𝑷𝑛𝑛−1,𝑷𝑷𝑛𝑛 ] 
 

𝑼𝑼 =  �𝒖𝒖(𝑷𝑷0,𝑷𝑷1), … ,𝒖𝒖(𝑷𝑷𝑛𝑛,𝑷𝑷𝑓𝑓)�  (3.4) 
 
where n indicates the last time stage before Pf, and Pn denotes the last waypoint before Pf. A 
general framework for weather routing is outlined in Figure 3.2, featuring four key components: 
constraints, objectives, cost function, and optimization algorithm.  
 

 
 

Figure 3.2: A general framework of weather routing problem. 
 
The constraints outline the solution space where optimization variables P and U choose feasi-
ble values. Assume SP is the feasible solution space for P, i.e., the allowed sailing area between 
P0 and Pf; and SU is the feasible solution space for U, i.e., the ship’s allowed range of operational 
settings. SP excludes areas such as land, no-go zones, shallow water or emission control areas, 
and SU considers ship’s specific maneuverability, etc. The aim of weather routing is to find the 
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optimal set of P and U, i.e., P* and U*, which optimizes pre-defined optimization objectives. 
Some common objectives are energy efficiency, accurate ETA, emission or ship safety at sea. 
A total cost function should be defined to evaluate if such objectives are achieved:  
 

𝐽𝐽𝑛𝑛 = ∑  𝐿𝐿𝑖𝑖(𝑷𝑷𝑖𝑖,𝒖𝒖(𝑷𝑷𝑖𝑖,𝑷𝑷𝑖𝑖+1)|𝒘𝒘)𝑛𝑛
𝑖𝑖=0   (3.5) 

 
where Li (Pi, u (Pi, Pi+1) |w) is the instantaneous cost function, calculating the one step’s cost at 
the ith time stage or sub-route. For example, if the optimization objective is to achieve minimal 
fuel consumption, Li (Pi, u (Pi, Pi+1) |w) will calculate the fuel consumed at the sub-route fol-
lowing waypoint Pi to Pi+1, by sailing with operational parameter u (Pi, Pi+1) at the local sea 
states w. Correspondingly, Jn is the accumulated cost function, presenting the accumulative cost 
from P0 to the final nth time stage. Ji indicates the current accumulated cost function at the ith 
time stage. 
 
The ship performance model is incorporated in the instantaneous cost function Li given in Eq. 
(3.5) to numerically evaluate the impact of weather on the ship’s sailing. Specifically, the ship 
model calculates the energy that the ship needs to consume, to sail at the given speed under the 
local weather conditions. That is, the ship model presents a speed to energy mathematical rela-
tionship. This energy needed by sailing could be defined by fuel consumption, power of engine, 
or emissions, etc. The cost function needs the ship model to calculate an energy cost for algo-
rithm, however, the formulation of the cost function can be problem specific.  
 
In the end, constraints, objectives and the cost function are given to the optimization algorithm, 
and the algorithm searches for the P* and U*, that can lead to the minimal value of the total cost 
function Jn given in the previous Eq. (3.5): 
 

𝑷𝑷∗,𝑼𝑼∗  = arg min
 𝑷𝑷𝑖𝑖∈𝑺𝑺𝑃𝑃,𝒖𝒖(𝑷𝑷𝑖𝑖,𝑷𝑷𝑖𝑖+1)∈𝑺𝑺𝑈𝑈

∑  𝐿𝐿𝑖𝑖(𝑷𝑷𝑖𝑖,𝒖𝒖(𝑷𝑷𝑖𝑖,𝑷𝑷𝑖𝑖+1)|𝒘𝒘)𝑛𝑛
𝑖𝑖=0    (3.6) 

 
where P* and U* are the final output of the weather routing. 
 
Optimization algorithms are the core of enabling intelligent decision-making in weather routing. 
They involve three key processes: 1) defining the solution space, 2) generating feasible solution 
candidates, and 3) searching for the optimal solution. Different algorithms employ various strat-
egies to execute and integrate these processes. Typically, the solution space is first defined 
based on constraints. Feasible candidate solutions are generated within this space and their costs 
are evaluated. The search is conducted in all candidates to identify the optimal one based on 
their cost, to meet optimization objectives. Thus, the effectiveness of weather routing highly 
depends on the optimization algorithms, as well as the accuracy of weather forecasts and ship 
performance models (Tsai et al., 2021). As weather forecasting belongs to the domain of mete-
orological expertise, it falls outside the scope of this thesis. The later chapters will present re-
search on optimization algorithms, followed by ship performance model given in Chapter 4. 
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3.2 The process of the Isochrone algorithm 
 

The Isochrone algorithm is a long-established ship weather routing method, which was first 
proposed in 1957 (James, 1957b; Wisniewski, 1991). Different from other methods, it was de-
veloped for marine applications in the first place with specific consideration for ETA. An iso-
chrone is a contour line or isopleth showing the farthest distance that a ship can reach in an 
equal sailing time, as shown in Figure 3.3 a). The general procedures of the Isochrone method 
are shown in Figure 3.3. 
 

 
(a)  (b)  (c) 

 

Figure 3.3: Graphical illustrations for the processes of the Isochrone algorithm. 
 
How to generate a new isochrone based on the current one (i.e., moving from (a) to (b) in Figure 
3.3) has always been a core issue in improving this algorithm. Hagiwara (1989) refined the 
method and proposed a practical approach for the development, while effectively controlling 
the computational load. He introduced the concept of a “subsector”. In his method, some way-
points are first generated based on the current isochrone, then the subsector is used to select 
some of the best ones from these waypoints. This process is repeated iteratively until reaching 
the destination. His method (referred to as the Isochrone method hereafter) serves as the main 
reference for improving the Isochrone method in this thesis, with the detailed steps outlined 
below.  
 
Denote the departure as P0 and the destination as Pf, following Eq. (3.1). The great circle (GC) 
route between P0 and Pf is chosen as the reference route, denoted as GCref. For each (ith) time 
stage, waypoints are given as 𝑷𝑷𝑖𝑖,𝑗𝑗𝑘𝑘 , and it is derived from the latest ((i-1) th) stage’s point Pi-1, k. 

Here, j in 𝑷𝑷𝑖𝑖,𝑗𝑗𝑘𝑘  means the jth new point generated from the waypoint Pi-1, k, where k refers to the 
kth pre-reserved point at the (i-1) th isochrone {Pi-1}. The ship's speed is assumed to remain 
constant throughout the voyage. If engine limitations prevent maintaining this speed under cer-
tain weather conditions, the ship will operate at the maximum allowable speed. The parameters 
that need to be initialized are listed in Table 3.1 which is introduced in the following process. 
 
The voyage is segmented into a sequence of time stages, i.e., Ti, where i = 0, 1, …, n, f, from 
P0 to Pf, as shown in Figure 3.1. T0 represents the departure time and Tf represents the required 
time of arrival of the voyage. Let a ship’s initial service speed be denoted by Vs:  
 



 

21 

 

𝑉𝑉𝑠𝑠  = 𝐷𝐷 �𝑇𝑇𝑓𝑓 – 𝑇𝑇0�⁄  (3.7) 
 
where D is the length of the reference great circle route GCref. The other inputs and outputs of 
the Isochrone algorithm are listed together in Table 3.1. 
 
Table 3.1: Parameters to initialize the Isochrone algorithm with its input and output features. 

Parameter and descriptions 
∆t Sailing time between two adjacent time stages 

∆θ 
Change in heading angles between two consecutive sub-routes from each of the 
‘optimal’ waypoints at the current time stage. 

2m+1 Number of successor waypoints for each waypoint at the current stage 
2r Number of subsectors 
∆D Width of the searching limit within each local subsector 

Input and output features 

Input 

Parameters to be initialized As listed above 
Departure waypoint  P0 = [𝑥𝑥0, 𝑦𝑦0,𝑇𝑇0] 
Destination waypoint  Pf = [𝑥𝑥𝑓𝑓 ,𝑦𝑦𝑓𝑓 ,𝑇𝑇𝑓𝑓] 
Service speed Vs 

Output  A series of waypoints consisting of the optimal voyage  P0, P1, P2, …, Pn, Pf 

 
The process of the Isochrone voyage optimization (Hagiwara, 1989) is illustrated in Figure 3.4. 
The first step is to generate the first isochrone {P1} starting from P0 (Figure 3.4 (a)). At P0, head 
forward in the initial headings θ =θref ± j∙∆θ (j= 0, 1, …, m) using the GC route to find new 
points for {P1}. At this step, θref is Cref at P0, and Cref is the initial course of GCref at P0. 
 

1) Check the sailing constraints: 
a) Check if Vs can be achieved with the headings θ under the weather at P0. If not, adjust 

the speed Vs in accordance with engine limitations. 
b) Check for land-crossing, shallow water, no-go zones, etc. 

2) Proceed from P0 for ∆t hours, with headings θ  and speed V using the GC route. Way-
points of the first isochrone {P1}, i.e., {P1, k, k = 1, 2, …, 2m+1} are found. Link P0 to 
every P1, k with directions from P0 to {P1} using an edge/sub-route. 

 
The next step is to generate {P2} based on {P1}. Start from each waypoint in {P1} following the 
same steps as above, candidate waypoints {𝑷𝑷2,𝑗𝑗

𝑘𝑘 , k = 1, 2, …, 2m+1, j = 1, 2, …, 2m+1} is 
obtained. To prevent the excessive growth, the sub-sector is introduced to select waypoints 
(Hagiwara, 1989), which is sub-areas distributed evenly around GCref. Thus, starting from {P1}, 
the following voyage search is carried out as given in Figure 3.4: 
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(a) (b) 

 

 
(c) (d) 

 

Figure 3.4: Generation of waypoints in the Isochrone algorithm. 
 
1) Repeat the processes above as in Figure 3.4 (a) at each (kth) waypoint P1, k. The reference 

heading θref is the arrival course at P1, k from P0. Each P1, k leads to 2m+1 potential way-
points {𝑷𝑷2,𝑗𝑗

𝑘𝑘 , j = 1, 2, …, 2m+1}. 
Sub-sectors are defined based on 2r+1 initial courses Cref ± k∙∆Si (k= 0, 1, …, r) of the GC 
route from P0, shown as grey lines in Figure 3.4 (b). 

2) The increment ∆Si (i = 2, indicating the second time stage) is defined following (Hagi-
wara, 1989): 
 

∆𝑆𝑆𝑖𝑖 = 𝑐𝑐 ∙ ∆𝐷𝐷 ⁄  sin (𝑐𝑐 ∙ 𝑑𝑑𝑖𝑖), 𝑐𝑐 = 𝜋𝜋 ⁄ (60 ∙ 180)   (3.8) 
 

where di (i = 2) is the expected traveled distance equal to i∙∆t∙Vs (i = 2). 
Then, subsectors {Si, k} are given based on sub-areas between GC routes with adjacent 
initial headings, i.e., [Cref + (k-r-1)∙∆Si, Cref + (k-r)∙∆Si], (i =2, k =1, 2, …, 2r).  

3) In each (kth) sub-sector S2, k, identify the optimal waypoint P2, k with the optimum cost 
given by the cost function in Eq. (3.5), shown as blue dots in Figure 3.4 (c). 

4) Only optimal waypoints {P2, k, k =1, 2, …, 2r} are pre-reserved. Connect by directed 
edges with its predecessor in {P1} respectively, as shown in Figure 3.4 (d). The second 
isochrone {P2} is obtained. 
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Repeatably, based on the isochrone {P2}, and follow the above steps in recursion: at the ith time 
stage, generate waypoints {𝑷𝑷𝑖𝑖,𝑗𝑗𝑘𝑘 , k = 1, 2, …, 2r, j = 1, 2, …, 2m+1}, and identify the isochrone 

{Pi, k, k =1, 2, …, 2r} from {𝑷𝑷𝑖𝑖,𝑗𝑗𝑘𝑘 } using sub-sectors {Si, k}. New isochrones are generated in 
sequence, until the destination is reached.  
 
3.3 Isochrone-based predictive optimization 
 

Hagiwara's improvements have been proven to perform well in practice with computational 
efficiency (Lee et al., 2018). However, some shortcomings are still evident, such as it often 
generates sharp turning routes as shown in Figure 3.5, which are not suitable for operations.  
 

 
 

Figure 3.5: Routes given by the Isochrone method with sharp turns. 
 
To solve this problem, an Isochrone-based predictive optimization (IPO) is proposed to improve 
the Isochrone method, addressing the following research objectives, and achieving real-time 
energy efficient weather routing: 
 

1) Remain computationally efficient,  
2) Avoid the route convergence problem in Figure 3.5,  
3) Improve optimization performance and avoid local optimization. 

 
The proposed IPO method is briefly introduced in the following, based on above introduction 
for the Isochrone method (Hagiwara, 1989). 
 
Isochrones of the first half voyage in the IPO method 
 

The first phase of the IPO method proceeds following steps illustrated in Figure 3.4. The cost 
function is defined to identify the waypoint nearest to Pf, and the objective is to minimize the 
deviation from Pf, as deviations at early stages can result in long and fuel-consuming routes. 
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Isochrones of the second half voyage in the IPO method 
 

When diS < 0.5D, the second half of the voyage search begins. At this stage, special attention 
needs to be given to two problems: (1) smooth convergence towards Pf, and (2) avoiding local 
optimization as depicted in Figure 3.6. 
 

 
 

Figure 3.6: Example of a local optimized result giving overlapped candidate routes. 
 

 
Figure 3.7: Reversed subsectors generated during the second half voyage. 

 
 
 
 

To solve problem (1), the reversed subsectors are adopted, as shown on the right side in Figure 
3.7. The subsectors introduced in Eq. (3.8) are reformulated, making it converging toward Pf in 
the late stages. In the second half of the voyage, the distance from the departure P0 is calculated, 
i.e., di is replaced by the current distance to Pf (denoted as diS), which is used to define the width 
of subsectors in the second half of a voyage:  
 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑑𝑑𝑖𝑖 ,∆S𝑖𝑖𝑖𝑖 = 𝑐𝑐∙∆𝐷𝐷
sin(𝑐𝑐∙𝑑𝑑𝑖𝑖𝑖𝑖)   (3.9) 

 
where dtotal is the total distance from P0 to Pf along the reference route. A symmetric subsector 
set is generated as shown in  Figure 3.7, which reduces its range when approaching Pf. 
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Further to address problem (2), predictive optimization is conducted referring to the A* algo-
rithm, which includes a heuristic term in its cost function, to account for future predictions:  
 

𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛),   (3.10) 
 
where usually for A*, g(n) is defined as the accumulative cost from departure, h(n) is the esti-
mated cost to the destination, and f(n) is the estimated cost for entire route. Based on Eq. (3.10), 
the cost/evaluation function Cp for choosing waypoints in each subsector in the proposed IPO, 
is augmented with a heuristic term h (S):  
 

𝐶𝐶𝑝𝑝  =  ∫ 𝑗𝑗(𝑺𝑺)𝑑𝑑𝑑𝑑 𝑇𝑇𝑖𝑖
𝑇𝑇0

+ ℎ(𝑺𝑺)   (3.11) 

 

where ∫ 𝑗𝑗(𝑺𝑺)𝑑𝑑𝑑𝑑 𝑇𝑇𝑛𝑛
𝑇𝑇0

accumulates the consumed fuel from P0 to Pi, k, h (S) predicts the future fuel 

needed to reach Pf from Pi, k. This prediction relies on a ship model and weather forecasts, 
assuming the ships adheres to the GC route and incorporates dynamic weather updates at each 
time stage. Consequently, Cp estimates total fuel consumption from P0 to Pf.  
 
The complete IPO methods are outlined as follows, assuming the current ith isochrone: 
 

 
(a) (b) 

 
(c) (d) 

 

Figure 3.8: Generation of isochrones in the second half of the voyage using the IPO method. 
 
 
 



 

26 

 

1) At current waypoint Pi, k (kth waypoint in the ith isochrone), follow the heading θ =θref_s ± 
j∙∆θ (j= 0, 1, …, m) and obtain the new waypoints for the next/(i+1)th stage.  
θref_s is the initial course of the GC route from Pi, k to Pf. Each Pi, k generates 2m+1 new 
points {𝑷𝑷𝑖𝑖+1,𝑗𝑗

𝑘𝑘 , j = 1, 2, …, 2m+1} as shown in Figure 3.8 (a).  
2) The reversed sub-sectors are indicated by 2r+1 GC routes with arrival courses Cinv(ref) ± 

k∙∆S(i+1) s (k= 0, 1, …, r) at Pf, as shown by the grey lines in Figure 3.8 (b). ∆S(i+1) s can be 
calculated following Eq. (3.9). 
Define the sub-sectors {S(i+1) s, k} as sub-areas between adjacent arrival headings at Pf, i.e., 
[Cinv(ref)+(k-r-1)∙∆S(i+1) s, Cinv(ref)+(k-r)∙∆S(i+1) s], (k =1, 2, …, 2r).  

3) In each sub-sector S(i+1) s, k (kth sub-sector at (i+1)th time stage), choose the optimal point 
Pi+1, k as the one with the lowest cost, using the function Cp defined in Eq. (3.11), as 
shown by the blue dots in Figure 3.8 (c). 

4) Connect each optimal points {Pi+1, k, k =1, 2, …, 2r} with its predecessor, as shown in 
Figure 3.8 (d), and obtain the next/(i+1)th isochrone {Pi+1}. 

5) Continue from Step 1) until Pf is closer than one stage’s sailing. Connect directly to Pf. 
 
A feasible route set {R} is generated, with all candidate routes having comparable ETAs. The 
total fuel consumption is the sum of all sub-routes’ cost, i.e., a sequence from P0 to {P1}, {P1} 
to {P2}, …, {Pn} to Pf, as shown in Figure 3.9, and the optimal voyage R* has the lowest 
accumulative fuel in {R}.  
 

 
 

Figure 3.9: Examples of the optimal route R*. 
 
3.4 Learning-based Pareto optimum weather routing 
 

In this thesis, the application of an advanced ML method, specifically an innovative multi-ob-
jective evolutionary algorithm (MOEA), is explored to address weather routing challenges by 
proposing a learning-based EA approach, L-MOEA.  
 
Evolutionary learning network 
 

MOEAs are population-based metaheuristic methods inspired by biological evolution. Typi-
cally, based on a set of initial solutions, MOEA finds their potential directions for effective 
evolution through random exploration, aiming to achieve optimal objectives. However, it can 
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be inefficient with slow convergence. This thesis introduces an intelligent learning network 
capable of capturing knowledge about positive evolutionary directions. This drives more aimed 
searches to generate new solutions, achieving efficient search than random exploration. 
 
The Pareto front (PF) is a set of non-dominated solutions in multi-objective optimization, con-
sidered optimal when no objective can be improved without worsening at least one other objec-
tive. In this thesis, the proposed algorithm is anticipated to efficiently converge towards the real 
Pareto front (PF*), to achieve superior optimization performance. A learning network activated 
by rectified linear units (ReLU) is implemented to achieve this goal as illustrated in Figure 3.10. 
A dataset is used to gather successful instances that emerge from previous populations, where 
offspring Pareto dominate their parents. Then the network learns the evolutionary characteris-
tics of these samples, with the input and output representing the parents and offspring in the 
evolutionary process.  
 

 
 

Figure 3.10: The evolutionary learning network and dynamic retraining mechanism of the 
proposed L-MOEA. 

 
An individual 𝒙𝒙��⃗  in the population of MOEA is a feasible voyage from P0 to Pf in a predefined 
static grid, consisting of waypoints P and operational parameters U defined in Eq. (3.4), i.e., 
𝒙𝒙��⃗ = {𝑷𝑷,𝑼𝑼}. Denote 𝑷𝑷𝑡𝑡𝑖𝑖  (0 < 𝑡𝑡 ≤ 𝑖𝑖 ) and 𝑶𝑶𝑡𝑡

𝑖𝑖 (0 < 𝑡𝑡 ≤ 𝑖𝑖 ) as the parent and offspring sets at each 
(tth) generation in the past, till the current (ith) generation. The initial learning network takes all 
the parental samples X from successful evolutions as input, and their offsprings Y as output, to 
fit the latent evolution directions, i.e.: 
 

𝑿𝑿 = { 𝑥⃗𝑥𝑡𝑡𝑃𝑃 | 𝑥⃗𝑥𝑡𝑡𝑃𝑃 ∈  𝑷𝑷𝑡𝑡𝑖𝑖  }𝑡𝑡=1𝑖𝑖  
𝒀𝒀 = { 𝑥⃗𝑥𝑡𝑡𝑂𝑂 | 𝑥⃗𝑥𝑡𝑡𝑂𝑂 ∈  𝑶𝑶𝑡𝑡

𝑖𝑖  }𝑡𝑡=1𝑖𝑖    (3.12) 
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The signal forward propagation in this network is as follows: 
 

𝒁𝒁(𝑙𝑙) =  𝑨𝑨(𝑙𝑙−1) ∙  𝑾𝑾(𝑙𝑙−1) +  𝑩𝑩(𝑙𝑙−1),       l = 2, 3 
 

𝑨𝑨(𝑙𝑙) =  �
ReLU �𝒁𝒁(𝑙𝑙)�,
linear �𝒁𝒁(𝑙𝑙)�,

   
l = 2, 3  
l = 4 (3.13) 

 
where 𝒁𝒁(𝑙𝑙)and 𝑨𝑨(𝑙𝑙)denote the input and output at the lth layer in the network and is 𝑨𝑨(𝑙𝑙) an en-
coding result of the input X. W and B are the weight matrix and the bias vector respectively. 
With the loss function based on the mean squared error, the network is guided to minimize the 
difference between the output and the ground truth by adjusting its weights and biases: 
 

∆(𝑙𝑙)=  �∆
(𝑙𝑙+1) ∙  𝑾𝑾(𝑙𝑙)T⨀ReLU′ �𝒁𝒁(𝑙𝑙)�,

       �𝐘𝐘 − 𝑨𝑨(𝑙𝑙)�⨀ReLU′ �𝒁𝒁(𝑙𝑙)�,
  

l = 2, 3  

l = 4  
 

𝑾𝑾(𝑙𝑙)  ←  𝑾𝑾(𝑙𝑙) +  𝛼𝛼𝑨𝑨(𝑙𝑙) ∙  ∆(𝑙𝑙),   l = 2, 3, 4,  
 

𝑩𝑩(𝑙𝑙) ←  𝑩𝑩(𝑙𝑙) +  𝛼𝛼∆(𝑙𝑙),   
 

l = 2, 3, 4, 
 

(3.14) 
 
where ReLU′is the derivative of the activation function, and 𝛼𝛼 denotes the learning rate. 
 

In subsequent iterations, to track changes in the positive evolutionary direction during the pro-
cess, a dynamic retraining mechanism is introduced, which will continuously accumulate suc-
cessful cases from the process and regularly refresh the training dataset. 
 
Multi-objective evolutionary processes 
 

Combined with the above evolutionary learning network, L-MOEA follows the integrated 
framework illustrated in the flowchart shown in Figure 3.11. 
 

• Initial population generation 
 

Initially, each individual is represented as a set of waypoints from P0 to Pf and the RPM of the 
ship's engine at each sub-route. The initialization employs the GC route and several random 
routes, and routes optimized for the shortest duration and minimal fuel consumption, each de-
termined through single-objective optimization at constant RPM. They (denoted as DRs) are 
also incorporated into the initial population G0. 
 

• Population renewal 
 

A clustering-based crowding distance sorting method is developed, as illustrated in the popula-
tion renewal module in Figure 3.11, to enhance the diversity of solutions. First, an unlimited-
capacity archive At is established to filter all the non-dominated solutions to date. Further, the 
elite archive 𝑨𝑨𝑡𝑡𝑒𝑒 is used to select solutions from At that have superior crowding distances. The 
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crowding distances are calculated and ranked on a regional basis. Then the solutions with su-
perior distances in each region are extracted into 𝑨𝑨𝑡𝑡𝑒𝑒 until it reaches maximum capacity.  
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• Selection, crossover and mutation 
 

For selection, fitness-based roulette selection is implemented in 𝑨𝑨𝑡𝑡𝑒𝑒 to select populations to pro-
duce next generations, ensuring the quality of solutions. For route crossing, a common point is 
randomly selected as the breakpoint, then two parental routes exchange segments at this point 
to create new offspring routes. For route mutation, identifying a random point allows for the 
regeneration of the route. For RPM, the same crossing and mutation are conducted. But since it 
cannot change instantaneously, the offspring will undergo a repair to ensure a gradual change, 
as shown in the crossover module in Figure 3.11. The RPM will undergo acceleration, deceler-
ation, or random changes, continuing for a certain duration.  
 
• Uncertainty-driven optimization 
 

This thesis aims to select a voyage that has the lowest uncertainty in achieving the optimization 
objectives under dynamic weather impacts. As shown in Figure 3.12, 𝑓𝑓𝑘𝑘𝑢𝑢(𝑥⃗𝑥) = 𝑠𝑠(𝜎𝜎𝑘𝑘) denote 
the uncertain results of a sailing plan 𝑥⃗𝑥, 𝜎𝜎𝑘𝑘represents the standard deviation of 𝑓𝑓𝑘𝑘𝑢𝑢(𝑥⃗𝑥) based on 
the ensemble forecast, k = 1, 2 is the fuel cost and duration time. The function 𝑠𝑠 (⋅) is the Min–
Max normalization (Kiran & Vasumathi, 2020), to mitigate the interference of magnitude. 
 
L-MOEA first employs the expectations of ensemble forecast data during the process. In the 
end (i.e., when t reaches the terminating threshold T) for each solution in the optimal set At, all 
members of the ensemble forecast are input into the performance model, generating multiple 
𝑓𝑓𝑘𝑘𝑢𝑢 values. If replacing crowding distance with  𝑓𝑓𝑘𝑘𝑢𝑢 values as introduced in the population re-
newal, the solution with lowest uncertainty will be identified.  
 

 
 

Figure 3.12: Robust optimization based on the proposed uncertainty-driven module. 
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4 Ship performance model in weather routing 
 

From the above research in optimization algorithms, a crucial observation is that the weather 
routing exhibits significant uncertainty, which may have a substantial impact on the effective-
ness of their applications. Besides the dynamic weather condition which was investigated in 
Chapter 3.4, another source of uncertainty stems from the estimation of fuel consumption due 
to the ship performance model.  
 
This thesis aims to investigate the uncertainty in fuel consumption due to the ship performance 
model and its impact on weather routing. An artificial neural network (ANN) is used to model 
the speed-to-power performance of the ship, as it is widely recognized for its strong ability to 
fit complex models. A Gaussian Process Regression (GPR) model is used to estimate the dis-
tribution of SFOC, as it can provide probabilistic predictions along with uncertainty estimation 
without specifying a specific functional form (Zhang et al., 2023). Three main steps is illustrated 
with more details in Figure 4.1. 
 

 
 

Figure 4.1: Steps of uncertainty investigation conducted in this thesis. 
 
• Step 1 - Develop a genetic algorithm – back propagation (GA-BP) neural network (NN) 

model to predict ship power in terms of speeds and weather conditions. (Chapter 4.1) 
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• Step 2 – Develop a Gaussian Process Regression (GPR) model, to establish a model that 
predicts SFOC, and its uncertainty based on power and weather conditions (Chapter 4.2). 

 

• Step 3 - The ship performance GA-BP model (Step 1) and the stochastic SFOC GPR model 
(Step 2) are integrated into a voyage optimization method (e.g., the 3D-Dijkstra algorithm 
(3DDA)). Monte Carlo simulations are conducted to analyze the impact of uncertainty in 
fuel consumption based on the optimization results (Chapter 4.3). 

 
4.1 Model for ship speed-power performance 
 

ANNs are renowned ML methods for developing complex data-driven models (Du et al., 2019; 
Yan et al., 2024). This thesis employs an ANN, specifically a BP-NN, to establish a ship per-
formance model. The proposed performance model is used to predict the engine power 𝑃𝑃𝑠𝑠 based 
on the ship speed, heading, and metocean conditions, etc. Based on the ith input 𝜶𝜶𝑖𝑖 among all 
the inputs, the GA-BP model can be represented as:  

 
𝑃𝑃𝑆𝑆 = 𝑓𝑓𝑝𝑝(𝜶𝜶𝑖𝑖) + 𝜌𝜌𝑖𝑖   (4.1) 

 
where 𝜌𝜌𝑖𝑖 denotes the prediction error; 𝑓𝑓𝑝𝑝(·) is a function mapping the n-dimensional input 𝜶𝜶𝑖𝑖 
to the 1-dimensional output power 𝑃𝑃𝑠𝑠. The attributes in the input 𝜶𝜶𝑖𝑖 are listed in Table 4.1. 
 

Table 4.1: Attributes used as input features and outputs for the proposed GA-BP model. 
Class Description Attributes 

Input 

Speed through water [knots] Vs  
Heading [°] θ  
Significant wave height [m] Hs  
Mean wave period [s] Tz  
Mean wave direction [°] Dwave  
Current speed [m/s] Vc 
Current direction [°] θc 
Wind speed [m/s] Vw  
Wind direction [°] θw  

Output  Propulsion power [kW] Ps  

 
BP-NN is a variant of ANN which features an input layer and output layer, with multiple hidden 
layers in between. Each layer is associated with network parameters such as weight and thresh-
old. BP-NN adjusts these network parameters via the gradient descent method during training, 
making it particularly sensitive to the initial values. Inappropriate initial weights and thresholds 
may lead to slow convergence during training. Thus, GA is initially employed to address the 
issue of choosing initial weights and thresholds, before further refinement through BP-NN.  
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The general process of this GA-BP model is presented in Figure 4.2. GA is inspired by the 
process of natural selection. For each generation of population, GA iterates through the follow-
ing steps: individuals are selected from the population based on their fitness; selected individ-
uals undergo crossover to exchange information; mutations are applied to introduce random 
variations; and fitness-based selection continues. Gradually, GA improves the quality of the 
solutions until a predefined termination criterion is met, at which point the best individual in 
the population represents the optimal solution.  
 

 
 

Figure 4.2: Structure of the proposed GA-BP Neural Network ship performance model. 
 
For this GA-BP model, network parameters of the BP-NN (weights and thresholds of all layers) 
are first encoded into GA to obtain optimal values to start BP-NN. The training residual of the 
BP-NN is taken into the fitness function: 
 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �𝑃𝑃𝑆𝑆  −  𝑃𝑃𝑆𝑆��   (4.2) 
 
The fitness of each population will be evaluated, where one population consists of a series of 
network parameters (weights and thresholds) for BP-NN. Through selection, crossover, and 
mutation, the new populations are iteratively generated, evaluated, and selected until the re-
quirements are met:  



 

34 

 

𝒘𝒘∗ = arg min
𝒘𝒘
 ℒ(𝒘𝒘)    (4.3) 

 
where 𝒘𝒘∗ is optimized values for initial network parameters (weights and thresholds); ℒ(·) in-
dicates objective function, which is the fitness function 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.  
 
In the above process, GA offers an approximate global search, while the fine-tuning of param-
eters is performed by subsequent BP-NN using gradient descent during the backpropagation 
process. As the BP-NN network features multiple hidden layers between input layer and output 
layer, after obtaining initial weights and thresholds for each hidden layer which has been opti-
mized by GA, the output for a single hidden layer can be defined as follows: 
 

ℎ𝑗𝑗 = 𝑓𝑓𝑎𝑎(∑  𝑛𝑛
𝑖𝑖=1 𝜔𝜔𝑖𝑖𝑖𝑖𝜶𝜶𝑖𝑖 − 𝜃𝜃𝑖𝑖𝑖𝑖)    (4.4) 

 
where ℎ𝑗𝑗  represents the output from the hidden layer; fa represents the activation function of the 
hidden layer; ωij and θij represent its weights and thresholds. The output of the overall network 
can be calculated as follows:  
 

𝑃𝑃𝑠𝑠� = 𝑔𝑔𝑎𝑎(∑  𝑙𝑙
𝑗𝑗=1 𝜔𝜔𝑗𝑗ℎ𝑗𝑗 − 𝑏𝑏𝑗𝑗)    (4.5) 

 
where 𝑃𝑃𝑠𝑠�  represents the predicted power given by the overall network; 𝑔𝑔𝑎𝑎(·) represents the ac-
tivation function of the output layer; 𝜔𝜔𝑗𝑗 and 𝑏𝑏𝑗𝑗 represent the weights and thresholds of the out-
put layer. The prediction residual 𝜀𝜀 can be calculated as:  
 

𝜀𝜀 = 1
2

(𝑃𝑃𝑠𝑠 − 𝑃𝑃𝑠𝑠�)2 = 1
2
∑  𝑛𝑛
𝑘𝑘=1 �𝑃𝑃𝑠𝑠 − 𝑔𝑔𝑎𝑎�∑  𝑙𝑙

𝑗𝑗=1 𝜔𝜔𝑗𝑗𝑓𝑓𝑎𝑎�∑  𝑛𝑛
𝑖𝑖=1 𝜔𝜔𝑖𝑖𝑖𝑖𝜶𝜶𝑖𝑖 − 𝜃𝜃𝑖𝑖𝑖𝑖� − 𝑏𝑏𝑗𝑗��

2
 (4.6) 

 
The total error of the BP-NN is accumulated from all the output errors of each individual neuron. 
This total error will propagate backward from the output layer to the input layer, according to a 
specified learning rate. All the weights and thresholds in the network will be updated through 
gradient descent, to reduce the overall error until the terminating criteria is met. 
 
4.2 Model for stochastic fuel consumption 
 

Uncertain SFOC modeling using GPR 
 

SFOC indicates the fuel consumption per kilowatt-hour (kWh) of power, which is a critical 
measure for evaluating energy performance of an engine. Typically, fuel consumption is calcu-
lated using a SFOC regression curve which relates power to SFOC. The general process is as 
follows, as shown in Figure 4.3.  
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Figure 4.3: Theoretical calculations for fuel costs using a regressed power - SFOC curve.  
 
First, based on a ship speed-power performance model introduced in Chapter 4.1, the power 
required for a given speed is determined. The corresponding SFOC can be found using the 
regressed curve of power to SFOC. Finally, multiplying the power Ps by the SFOC yields the 
fuel consumption Fc for a voyage segment: 
 
 

𝐹𝐹𝑐𝑐  =  𝑃𝑃𝑆𝑆  ∙  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   (4.7) 
 
However, factors influencing SFOC values extend beyond only power Ps, and for each power 
level, SFOC is in fact a probabilistic distribution rather than a deterministic value, as shown in 
Figure 4.4.  
 

 
 

Figure 4.4:  SFOC measurement data under different operation conditions. 
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This thesis employs a Gaussian Process Regression (GPR) model to estimate the distribution of 
SFOC, modeling it with power and metocean conditions as input variables. GPR is a non-para-
metric Bayesian approach to address regression problems (Zhang et al., 2023), providing prob-
abilistic predictions along with uncertainty estimation without specifying a specific functional 
form. In this thesis, the GPR model for SFOC can be defined as: 
 

𝑐𝑐𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑓𝑓(𝒙𝒙𝑖𝑖) + 𝜀𝜀𝑖𝑖    (4.8) 
 
where 𝜀𝜀𝑖𝑖 ∼ 𝒩𝒩(0,𝜎𝜎𝑛𝑛2) and 𝜎𝜎𝑛𝑛2  is the noise variance. The unknown latent function 𝑓𝑓(·) is as-
sumed Gaussian process prior, i.e., 𝑓𝑓(·) ∼ 𝒢𝒢𝒢𝒢(𝜇𝜇(·),𝑘𝑘(·)), where 𝜇𝜇(·) refers to the mean func-
tion, which is usually assumed zero for simplicity, and 𝑘𝑘(·) is the covariance (kernel) function. 
The formulation of 𝑓𝑓(·) is unknown, and the value of 𝑓𝑓(𝒙𝒙𝑖𝑖) follows a joint Gaussian distribu-
tion. The input 𝒙𝒙𝑖𝑖 and output features are listed in detail in Table 4.2. 
 
Table 4.2: Attributes used as input and output features for the proposed GPR model of SFOC 

prediction. 
Class Description Attributes 

Input 

Propulsion power [kW] Ps
  

Significant wave height [m] Hs  
Mean wave period [s] Tz  
Mean wave direction [°] Dwave  
Current speed [m/s] Vc 
Current direction [°] θc 
Wind speed [m/s] Vw  
Wind direction [°] θw  

Output  The observed corresponding SFOC value 𝑐𝑐𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

 
Further, let denote: 
 

𝑿𝑿 = {𝒙𝒙𝑖𝑖, 𝑖𝑖 = 1, …, n}   (4.9) 
 

𝐟𝐟 = [f1, f2, f3, … , f𝑛𝑛]𝑇𝑇 = [𝑓𝑓(𝒙𝒙1),𝑓𝑓(𝒙𝒙2),𝑓𝑓(𝒙𝒙3), … ,𝑓𝑓(𝒙𝒙𝑛𝑛)]𝑇𝑇 (4.10) 
 
where 𝐟𝐟 ∼ 𝒩𝒩(𝝁𝝁(𝑿𝑿),𝑲𝑲(𝑿𝑿,𝑿𝑿)). All the observed values of SFOC can be defined as: 
 

𝒄𝒄𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶  = {𝑐𝑐𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 𝑖𝑖 = 1, …, n}  (4.11) 
 
where 𝒄𝒄𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶  is joint Gaussian distributed, i.e., 𝒄𝒄𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 ∼ 𝒩𝒩(𝝁𝝁(𝑿𝑿),𝑲𝑲(𝑿𝑿,𝑿𝑿) + 𝜎𝜎𝑛𝑛2𝑰𝑰), and I de-
notes an identity matrix. For a new input 𝒙𝒙∗, the prior assumption is that there exists the same 
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Gaussian distribution between the training and the testing data sets, 𝒄𝒄𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶  and 𝑓𝑓(𝒙𝒙∗) follow the 
joint Gaussian prior distribution: 
 

�𝒄𝒄
𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶

f∗
� ∼ 𝒩𝒩 ��

𝝁𝝁(𝑿𝑿)
𝜇𝜇(𝒙𝒙∗)

� , �𝑲𝑲(𝑿𝑿,𝑿𝑿) + 𝜎𝜎𝑛𝑛2𝑰𝑰 𝑲𝑲(𝑿𝑿,𝒙𝒙∗)
𝑲𝑲(𝒙𝒙∗,𝑿𝑿) 𝑘𝑘(𝒙𝒙∗,𝒙𝒙∗)

��  (4.12) 

 
Finally, in a Bayesian framework, the key equation of GPR is the conditional distribution given 
the observed data samples described as: 
 

f∗ ∣ 𝑿𝑿, 𝒄𝒄𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 ,𝒙𝒙∗ ∼ 𝒩𝒩�f∗̅ , Σf∗�  (4.13) 
 
where: 
 

f∗̅ = 𝑲𝑲(𝒙𝒙∗,𝑿𝑿)[𝑲𝑲(𝑿𝑿,𝑿𝑿) + 𝜎𝜎𝑛𝑛2𝑰𝑰]−1 𝒄𝒄𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶  (4.14) 
 

 Var (f∗) =  𝑘𝑘(𝒙𝒙∗,𝒙𝒙∗) −  𝑲𝑲(𝒙𝒙∗,𝑿𝑿) [𝑲𝑲(𝑿𝑿,𝑿𝑿) + 𝜎𝜎𝑛𝑛2𝑰𝑰]−1𝑲𝑲(𝑿𝑿,𝒙𝒙∗) (4.15) 
 
where f∗̅ is the predicted SFOC mean value based on input 𝒙𝒙∗, and Var (f∗) is the variance to 
incorporate the uncertainty into the predictions.  
 

Using this method, the mean value f∗̅ and variance Var (f∗) of SFOC at different power levels 
under various metocean conditions can be predicted (Luo et al., 2024). The predicted SFOC 
represents a distribution that accounts for its uncertainty, and it can be used in weather routing 
to investigate the reliability of the optimization results. 
 
4.3 Uncertainty of fuel consumption in weather routing 
 

In this part, the GA-BP performance model and stochastic GPR SFOC model are used for the 
calculation of fuel consumption. They are employed in 3DDA to estimate fuel, further investi-
gating the impact of uncertainty on weather routing. 3DDA is an optimization algorithm for 
weather routing where speed is one of the optimization variables. During the optimization pro-
cess, each time a waypoint and speed need to be determined, uncertainty arises due to the sto-
chastic SFOC GPR model. This uncertainty accumulates and may eventually lead to different 
fuel consumptions.  
 
This thesis aims to analyze this uncertainty and investigate its impact. By calculating the fuel 
consumption for each sub-route using the mean and variance of the SFOC distribution, and 
integrating the fuel consumption of each sub-route, the uncertainty of the entire voyage can be 
calculated, as illustrated in Figure 4.5.  
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Figure 4.5: The impact of the stochastic SFOC on fuel consumption in weather routing. 
 
 
 
 

 
 

Figure 4.6: The impact of SFOC induced uncertain fuel consumptions on weather routing. 
 
This approach enables not only the optimization for fuel consumption, but also the assessment 
of the reliability of the potential voyage in actual operations as illustrated in Figure 4.6. Reduc-
ing fuel consumption and emissions has always been crucial goals of IMO, which introduced 
the Energy Efficiency Operational Indicator (EEOI) to regulate the energy efficiency of ships 
during their operational phase. The formula for calculating EEOI is: 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐹𝐹𝑐𝑐 × 𝐶𝐶𝑓𝑓
𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝐷𝐷   

   (4.16) 

 
where Fc is the fuel consumption of the voyage, Cf  is the carbon dioxide (CO2) emission factor 
for the type of fuel used during voyage, mcargo is the cargo weight transported during voyage, 
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and D is the distance traveled during voyage. EEOI measures the CO2 emissions per ton of 
cargo transported over one nautical mile. As illustrated in Figure 4.6, incorporating the uncer-
tainty of fuel consumption further introduces uncertainty about whether the targets for EEOI 
set by shipping companies or maritime authorities can be met. The lower the EEOI the better, 
as it indicates that the ship is using energy more efficiently during transportation, which results 
in less CO2 and smaller environmental impact.  
 
Monte Carlo simulation 
 

The Monte Carlo method uses random sampling to estimate the probabilities of different out-
comes, or to approximate numerical solutions of complex problems. Due to computational 
speed, or when faced with uncertainties that are difficult to describe clearly, deterministic meth-
ods can sometimes be limited. The Monte Carlo method, relying on randomness to evaluate 
solutions for nonlinear and uncertain problems, becomes very effective. This thesis employs 
Monte Carlo simulation to incorporate the uncertainty of SFOC, systematically analyzing the 
uncertainty of weather routing results. 
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5 Method of collision avoidance for ship safety 
 

Based on the above research outcome in weather routing, the Isochrone algorithm is further 
improved to address the collision avoidance (CA) problems, leveraging its computational effi-
ciency and ETA considerations. In the following, an overview of CA problems is first presented. 
Then, the proposed Isochrone method to address CA problems to assist intelligent ship opera-
tions in coastal and inland waterways is briefly described.  
 
5.1 Overview of the collision avoidance problem 
 

Figure 5.1 illustrates the structure of a typical ship collision avoidance problem. This CA prob-
lem is treated as a voyage optimization problem in this thesis. The optimization algorithm to 
address CA problems will consider constraints such as avoiding riverbanks, shallow waters, 
obstacles, and compliance with traffic regulations. By satisfying these constraints, a collision-
free voyage can further be optimized for factors such as safety, estimated time of arrival (ETA), 
or energy consumption, etc.  
 

 
 

Figure 5.1: Framework for a typical collision avoidance problem. 
 
CA problems mainly involve three steps: motion prediction, collision detection, and collision 
resolution (Huang et al., 2020). Figure 5.2 further illustrates these steps in detail. Assume the 
own ship (OS) is currently at P0, aiming to reach the target Pf. In the first step, based on obser-
vational data, the motion prediction module predicts trajectories of all moving objects within 
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a specified future period. This includes the trajectory of the OS (e.g., the gray dashed line in-
cluding the coordinates of P1 as depicted in Figure 5.2 (a)) and the trajectories of other target 
ships (TSs) (e.g., orange dashed lines as depicted in Figure 5.2 (a)). Details of motion prediction 
will be introduced later. Using the predicted trajectories of the OS and TSs, the collision detec-
tion module decides whether a collision is likely to occur or if any evasive action is needed by 
the OS. If a potential collision or need for avoidance is identified, the collision resolution mod-
ule responds by calculating and generating collision-free trajectories (gray dashed lines as il-
lustrated in Figure 5.2 (b)), and determine the optimal collision-free trajectory for the OS to 
follow. This updated trajectory is then provided to the ship's actuators for operation.  
 

 

(a)    (b) 
 

Figure 5.2: Graphical illustration of collision avoidance processes. 
 
5.2 Isochrone-based real-time CA in confined waterways  
 

Based on the framework presented in the Figure 5.1, this thesis proposes an Isochrone-based 
real-time optimization algorithm addressing CA problems in both open water and confined wa-
terways. The method comprises three steps: motion prediction, collision detection, and collision 
resolution, following the structure presented in Figure 5.1. Each of these three steps will be 
illustrated in detail below, with the core innovation residing in the stage of collision resolution.  
 
Motion prediction 
 

• Own ships (OS) 
 

The trajectory prediction of the OS (gray dashed lines in Figure 5.2) requires a ship dynamics 
model. This model predicts the ship’s future motion under specific control commands and en-
vironmental disturbances from wind and currents. A linear maneuvering model is used in this 
thesis, which is a classical model describing the basic maneuverability of a ship under hydro-
dynamic forces proposed by Clarke et al. (1983):  
 

(𝑀𝑀𝑅𝑅𝑅𝑅 +  𝑀𝑀𝐴𝐴) 𝑣̇𝑣𝑟𝑟  +  (𝐶𝐶𝑅𝑅𝑅𝑅∗ + 𝐶𝐶𝐴𝐴∗) 𝑣𝑣𝑟𝑟 =  𝜏𝜏 +  𝜏𝜏𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤   (5.1) 
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where 𝑣𝑣𝑟𝑟 represents the relative velocity of the ship with respect to the current. 𝑀𝑀𝑅𝑅𝑅𝑅 and 𝑀𝑀𝐴𝐴 
denote the rigid-body and added mass matrix respectively, while 𝐶𝐶𝑅𝑅𝑅𝑅∗  and 𝐶𝐶𝐴𝐴∗ represent the Cor-
iolis and centripetal matrices for the rigid-body and added mass. 𝜏𝜏 denotes the thrust, and 𝜏𝜏𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
represents the wind force. The ship model is based on the Python toolbox developed by Fossen, 
which accounts for the dynamic behaviors of the propulsion and steering systems. However, as 
listed in limitations in Chapter 1.3, it does not include bank and shallow water effects. 
 
• Target ships (TSs) 
 

The trajectory prediction of target ships (TSs) (orange dashed lines in Figure 5.2) are treated as 
moving obstacles whose characteristics are unknown to the OS. In this thesis, it is assumed that 
the motion of the target ships is known to the OS through communication and interaction.  
 
Collision detection 
 

Collision detection determines whether a collision is likely to occur and when evasive measures 
need to be taken, based on the predicted motions of OS and TSs. In this thesis, the ship's arena 
and domain are adopted to detect collisions. The ship domain defines the minimal safety zone 
around the ship, indicating that any obstacle entering this area is considered to pose a certain 
probability of collision accident (Hörteborn et al., 2019). The ship arena is an extended version 
of the ship domain, representing an area where any violation would necessitate collision avoid-
ance actions (Davis et al., 1980).  
 
In this thesis, the ship domain is constructed based on the definition of Coldwell (1983) and 
simplified into a static ellipse, as shown by the orange ellipse in Figure 5.3. L and B represent 
the length and width of the OS. For the ship arena, it is dynamically defined based on DCPA 
(Distance to Closest Point of Approach) and TCPA (Time to Closest Point of Approach) as 
given in Eq. (5.2).  
 

0 <  DCPA <  6𝐿𝐿, 0 <  TCPA <  120s   (5.2) 
 

 
 

Figure 5.3: Definitions of ship domain in the simulations of CA in this thesis. 
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Collision resolution 
 

In this thesis, the contribution of the proposed optimization algorithm for CA focuses on the 
collision resolution strategy, with its problem formulation given in Table 5.1, and the general 
workflow is given in Figure 5.4. 
 
Table 5.1: The input, optimization formulation, and output of the proposed optimization algo-

rithm to address CA problem. 
Input 

Departure P0 = {x0, y0, t0} 
Destination Pf = {xf, yf, tf} 
Parameters Δt Time interval in each isochrone [s] 
 2r Number of sub-sectors [-] 
 Δθ  Increments in heading [°] 
 2m+1 Number of candidates generated for one waypoint [-] 
 Thrust power Constant thrust in each time interval [N] 

Optimization formulation 
Variables Ship heading θ 
Objectives Lowest probability of collision accidents, accurate ETA, and shortest travelling 

distance 
Constraints Shallow water, static obstacles, COLREGs rules 
Cost  
functions 

Collision probability 
OR travelling distance  
OR deviations from reference route (depending on sailing situations) 

Output 
Optimal  
voyage  

θ* = {θ0, θ1, …, θ2, θf} which gives R* = {P0, P1
*, P2

*, …, Pi
*, …, Pf} 

 
1) Determine the time interval (Δt) and the constant ship propulsion power for each interval. 
2) If the stopping condition is met (e.g., reaching Pf within the time less than Δt), connect 

to Pf and terminate the process; otherwise, proceed to the next step. 
3) For each waypoint in the current (ith) isochrone {Pi}, generate new waypoints for the 

next isochrone {Pi+1}, which stay the same as in Figure 3.4. 
4) Check whether the generated candidate waypoints satisfy the constraints, including 

avoidances of static obstacles, and COLREGs compliance in the presence of any TS, as 
shown in Figure 5.6. 

5) Divide the waterway into 2r parallel subsectors as shown in Figure 5.5. Retain one op-
timal candidate waypoint in each subsector. 

6) The retained candidate points form the next isochrone {Pi+1}. Repeat from Step 2). 
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Figure 5.4: Flowchart for the collision resolution process in the proposed method. 

 
• Parallel sub-sectors 
 

The grid partition by parallel subsectors is illustrated in Figure 5.5. It is important to note that 
black lines along the outermost exclude areas containing shallow water, not the riverbanks. The 
division of parallel subsectors is based on the width of this operating area, with the river evenly 
partitioned into 2r intervals along its width.  
 
In each subsector, the optimal waypoint is selected based on the criteria listed in Table 5.2. This 
thesis assumes that, in the absence of any obstacles, OS will sail along the centerline of the river, 
which serves as the OS's reference route (shown as the green dashed line in Figure 5.5).  
 

Table 5.2: Waypoint evaluation criteria in subsectors to achieve the optimization objective 
Scenarios Open area Confined waterway 
No encountering Shortest distance to Pf Least deviation to the reference route 
Encountering Lowest probability of col-

lision accident 
Lowest probability of collision acci-
dent 
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Figure 5.5: Illustration of parallel sub-sectors based on topography of confined waterways. 
 
For sailing in open areas, the parallel subsectors are replaced with open subsectors as proposed 
in Figure 3.7 in previous studies in Chapter 3.3. When avoiding collisions, the waypoint with 
the lowest probability of collision accident is chosen. To evaluate the collision probability, a 
Collision Risk Index (CRI) is calculated using DCPA and TCPA, following the method outlined 
in (Hu et al., 2020). 
 
• COLREGs compliance 
 

This thesis follows the work of Johansen et al. (2016) for COLREGs compliance. Figure 5.6 
illustrates an example of waypoint generation for a head-on situation in compliance with 
COLREGs. Waypoints that fail to satisfy the COLREGs rules for head-on encounters are re-
moved, which are shown in transparency in Figure 5.6. 
 

 

(a)            (b) 
 

Figure 5.6: Graphical illustration of COLREGs compliance for the head-on encountering. 
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6 Summary of appended papers 
 

This chapter summarizes the major findings and results from the studies of the appended papers. 
In addition, case studies are conducted to investigate the effectiveness of methods in Papers II, 
III, and V, using a chemical tanker with full-scale measurements operating in the North Atlantic. 
The ship was guided by a conventional weather routing system and the ship crews onboard, 
with its specifications detailed in Table 6.1. Its actual routes were planned and chosen based on 
the crew’s experience, and the actual ship had certain weather routing capabilities.  
 

Table 6.1: Principal particulars of the chemical tanker ship. 
Length  178.4 m  Design draft 10.98 m 
Length  174.8 m  Block coefficient 0.8005 
Beam  32.2 m  Deadweight 50752 t 
Depth  17.0 m   

 
These studies include six voyages in 2015 and 2016 of the ship as shown in Figure 6.1. These 
voyages include eastbound and westbound trips throughout winter and summer, covering a wide 
range of environmental conditions with Beaufort Scale ratings from 0 to 10. The scale extends 
up to 12, indicating exceptionally strong hurricane-force conditions (National Weather Service 
Portland). Additionally, weather data, including wind, waves, and currents, are necessary to 
describe sailing environments and estimate ship performance. Historical meteorological and 
oceanographic data from 2015 and 2016 were retrieved in 2023 from the ECMWF ERA-5 da-
taset for wind (speed and direction) and wave (height, direction, and period), and from the Co-
pernicus 2023 server (http://marine.copernicus.eu/) for current.   
 

 
 

Figure 6.1: Actual case study voyages used in the thesis for validations. 
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6.1 Summary of Paper I  
 

State-of-the-art optimization algorithms in weather routing — ship decision support sys-
tems: challenge, taxonomy, and review.  
 

This paper summarized in Chapter 2.1 provides a systematic review and highlights recent re-
search trends of optimization algorithms applied in weather routing, including the influence of 
AI and ML technologies since 2020.  
 
Motivations and objectives 
 

Noticeable inconsistencies and confusions are in the literature regarding the use of common 
terminologies within the weather routing research community, which has led to misunderstand-
ings about weather routing and, possibly, resulted in incorrect solutions. In addition, to the au-
thor’s knowledge, no existing review has comprehensively summarized the evolution of 
weather routing optimization algorithms over the years. This paper aims to help researchers and 
practitioners gain a clear understanding of weather routing, identify the correct problem-solving 
approaches, and avoid misunderstandings to facilitate the efficient development of weather 
routing services. Furthermore, it aims to identify gaps in current research and opportunities for 
future development of optimization algorithms by presenting a comprehensive review of the 
scientific literature published in recent years on this topic and discussing future directions for 
the development of weather routing algorithms. 
 
Results and conclusion remarks 
 

Several commonly confused subtopics are briefly summarized in Chapter 2. In this part, the 
main types of optimization algorithms used in related literature are first summarized. Subse-
quently, some research results on optimization algorithms are shown in Table 6.2, followed by 
a summary of the discussions for future research directions.  
 
Table 6.2: Average quantitative optimization results reported from literature compared with 

real voyage cases. 
Metrics Average results with references from full-scale measurement 
Fuel savings 1%-10% (Chen & Mao, 2024), 9.4% (Du et al., 2022b), 9% (Lee et al., 2018) 
Time savings 1.65% (Shin et al., 2020), 5% (Du et al., 2022a) 
Economics 
profit 

2.55% (Du et al., 2023), 1.5% (Ma et al., 2024), 7.9% (Bahrami & Sia-
datmousavi, 2024) 

Emission  
reductions 

19% (Du et al., 2022a), 6.4% (Du et al., 2022b), 2% -12.5% (Wang et al., 
2021) 

Fatigue 50% - 90% (Lang et al., 2021), 50% (Wang et al., 2019) (X. Lang et al., 2021) 

 
The literature review reveals that four main types of algorithms are mostly studied in weather 
routing: the Isochrone algorithms, DP-based algorithms, PSOs/ACOs, and EAs/GAs. Some 
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examples of optimization results from the literature are presented in Table 6.2. When illustrating 
the effectiveness of their proposed approaches, many studies evaluated their proposed algo-
rithms against established methods, with some also incorporating comparisons using real sailing 
data. The benchmarks used for comparison vary across studies, complicating the assessment of 
these algorithms' performance. Additionally, the optimization results reported vary significantly 
across studies as detailed in Table 6.2.  
 
The potential research directions in the future can be summarized as follows.  

1) Algorithm performance improvement, which includes developing enhanced heuristic 
and learning-based methods.  

2) Applicability in real-world operations, such as handling uncertainty, and supporting 
clean fuel-powered ships.  

3) Benchmark studies, which may provide valuable insights for the application of weather 
routing. 

 
6.2 Summary of Paper II  
 

Strategies to improve the Isochrone algorithm for ship voyage optimization. 
 

This paper investigates the improvement of the Isochrone method (Hagiwara, 1989) by propos-
ing five strategies. Subsequently, this paper compares these strategies to identify the most ef-
fective ones. The findings serve as an intermediate step that contributes to proposing the IPO 
method in Paper III, which is summarized in Chapter 3.3.  
 
Motivations and objectives 
 

Real-time algorithms are valuable in weather routing as they can effectively handle uncertain-
ties. The Isochrone algorithm is commonly used in weather routing applications because of its 
high computational efficiency and ETA considerations. However, it also has significant draw-
backs, including impractical routes and results from local optimization that may not save fuel. 
Thus, this paper aims to propose an optimization algorithm based on the Isochrone method that 
can effectively minimize fuel consumption in real-time, while considering ETA and optimizing 
energy efficiency. More specifically, this paper aims to explore effective strategies to leverage 
the advantages of the Isochrone algorithm while addressing its shortcomings. 
 
Summary of five strategies proposed in Paper II 
 

The proposed five strategies are presented in Figure 6.2, each with a focus on improving the 
optimization process in the second half of the voyage search. Each strategy is introduced re-
spectively in the following context. 
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Figure 6.2: Five improvement strategies of the Isochrone method proposed in Paper II. 
 
• Reversed subsectors 
 

The “Reversed subsectors” strategy focuses on solving the route convergence problem, by pro-
posing the reversed subsectors defined in Eq. (3.9). The overall procedure of this improved 
method follows the steps of the Isochrone method (Hagiwara, 1989) which is illustrated in Fig-
ure 3.4. The change is that when reaching the second half of the voyage, the subsector defined 
in Eq. (3.9) will be used. 
 
• Optimal subsectors 
 

The reversed subsectors given above, however, may cause the subsectors to become very nar-
row at a late stage, and locally optimal routes would be chosen because of these compact sub-
sectors. The following method to define optimal subsections is proposed to solve the above 
problem: 

1) In the latter half of the voyage, generate the waypoint grid following the “Reversed 
subsectors” strategy. The optimal waypoint in each subsector is chosen as the closest 
one to the destination. 

2) Define the number of waypoints that can be chosen in each subsector, instead of only 
one in “Reversed subsectors” strategy. Restrict the number of successors that can be 
reserved for one predecessor to prevent dominance. These values are set to three and 
five in this thesis, respectively. 

 
• Isochrone-A* 
 

Another approach to resolving the local optimization is to explore more comprehensive criteria 
to select optimal waypoints in subsectors, i.e., changing cost functions. This “Isochrone-A*” 
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strategy proposes the cost function defined in Eq. (3.11) to be used in the second half of the 
voyage search. The other steps are the same as given in the strategy of “Reversed subsectors”. 
 
• Power subsectors  
 

An alternative method is also proposed to resolve the local optimization, referred to as “Power 
subsectors”. This method removes the subsectors but selects the optimal point among the suc-
cessors for each waypoint. The procedure is as follows: 
 

1) In the first half of the voyage, conduct the same procedures as in “Reverse subsectors”.  
2) In the latter half, every waypoint proceeds toward Pf following the heading Cni ± j∙∆θ (j 

= 0, 1, …, m). Then, among 2m+1 successors, keep the point with the lowest fuel cost, 
and append it as the optimal one. Continue toward Pf.  

 
• Isochrone-Dijkstra 
 

In the Isochrone algorithm, waypoints are generated following a tree structure. Removing one 
waypoint may lead to removing a route and causing local optimization. To address this issue, 
this approach combines Dijkstra’s algorithm in the second half of the voyage to cover a suffi-
cient search range during the search. Based on this static grid illustrated in Figure 6.3, the Dijks-
tra algorithm can enumerate the lowest cost route by evaluating every possible solution. This 
approach is as follows.  
 

 
Figure 6.3: Static grid initialized at the latter half voyage for the Dijkstra algorithm. 

 
1) In the first half of the voyage, apply the same procedures as with “Reverse subsectors”.  
2) In the second half, generate a static grid as shown in Figure 6.3. The waypoints in sub-

sequent stages are obtained by translating the latest isochrone following the direction of 
the GCref toward Pf. 
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3) Assign a cost for all sub-routes based on the estimated fuel cost. Apply the Dijkstra 
algorithm to find the lowest cost route, starting from each waypoint in the latest iso-
chrone to Pf respectively. 

4) This yields several potential sailing routes. These candidate half-routes possess different 
ETAs as the distance varies in sub-routes, and the sailing speed is constant. Choose the 
optimal route as the one with the closest ETA to the required arrival time.  

 
Results and conclusion remarks 
 

The effectiveness of these five strategies is compared using the case study chemical tanker and 
its measurement data. The results of two case study voyages, Voyages 2016.11.08 (winter) and 
2015.07.21 (summer), are summarized. The optimization results of fuel consumption, sailing 
time (ETA), and sailing distance are listed in Table 6.3, with the highlighted cells showing the 
most fuel reductions. 
 

Table 6.3: Results from the improved Isochrone algorithms for the two case study voyages. 

Optimization 
Methods 

Voyage 2016.11.08 Voyage 2015.07.21 

ETA 
[h] 

Fuel 
[ton] 

Dis. 
[km] 

Average 
Speed 
[knot] 

ETA 
[h] 

Fuel 
[ton] 

Dis. 
[km] 

Average 
Speed 
[knot] 

Actual Route 164.3 159.7 3877.5 12.8 139.8 177.7 3453.6 13.4 
Isochrone method 167.8 162.0 3896.1 12.5 142.4 170.8 3533.5 13.4 
Reversed subsectors 164.8 163.2 3807.2 12.5 139.8 168.5 3474.3 13.4 
Optimal subsectors 164.4 162.9 3798.5 12.5 139.8 168.5 3474.3 13.4 
Power subsectors 165.4 156.1 3840.7 12.5 139.9 168.3 3482.3 13.4 
Isochrone-A* 165.1 155.6 3836.1 12.5 140.0 167.5 3487.1 13.5 
Isochrone-Dijkstra 165.1 155.7 3834.3 12.5 140.0 168.7 3478.0 13.4 

 
For Voyage 2015.07.21, all improved Isochrone methods successfully reduced fuel consump-
tion compared to the actual route, achieving savings between 3.9% and 5.7%. In contrast, for 
Voyage 2016.11.08, certain modified Isochrone methods performed better, notably the “Iso-
chrone-A*”, “Power subsectors”, and “Isochrone-Dijkstra” methods. Specifically, “Isochrone-
A*” demonstrated the best performance with 2.6% energy improvement. From these two west-
bound cases, the “Isochrone-A*” method provided the most energy-efficient route for voyage 
optimization. The Isochrone method, however, did not perform well, resulting in the highest 
fuel consumption, longer sailing distances, and sharp turns near the destination in both cases, 
as shown in Figure 6.4. Additionally, the “Optimal subsectors” method behaved similarly to the 
“Reversed subsectors” method, with nearly identical routes and comparable fuel expenses in 
both cases. 
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Figure 6.4: Optimization for Voyage 2015.07.21 (above) and 2016.11.08 (below) using dif-
ferent methods. 

 
6.3 Summary of Paper III  
 

An Isochrone-based predictive optimization for efficient ship voyage planning and execu-
tion. 
 

Based on the strategies in Paper II, this paper further proposes the IPO algorithm as previously 
introduced in Chapter 3.3.  
 
Motivations and objectives 
 

Paper II demonstrated that the strategies “Reversed Subsectors” and “Isochrone-A*” effectively 
improve the Isochrone method, highlighting the importance of heuristics in enhancing 
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optimization performance. Based on this finding, to facilitate timely and energy-efficient 
weather routing, this paper aims to propose an Isochrone-based algorithm that can effectively 
minimize fuel consumption in real-time while considering ETA. Furthermore, this paper seeks 
to achieve predictive optimization by utilizing ML-enhanced heuristics to improve the Iso-
chrone algorithm. Additionally, it aims to maintain computational efficiency, enabling real-time 
executions to handle potential uncertainties in operations. 
 
Results and conclusion remarks 
 

The IPO method is proposed in this paper, featuring ML-enhanced heuristics to achieve predic-
tive optimizations. The efficiency and effectiveness of the proposed IPO method are compared 
using six actual voyages in Figure 6.1, and four weather routing methods detailed in Table 6.4.  
 
Great Circle (GC) routing is a traditional manual voyage planning method used in industrial 
practice. It follows the shortest GC route as a fixed path and divides the route into several stages 
based on the ETA. The speed of the sub-routes can be adjusted according to local sea conditions 
to ensure punctuality. It serves as a baseline to verify the practicality of the proposed method 
for real operations. The proposed IPO method is derived from MI (modified Isochrone), allow-
ing for a comparison to demonstrate the IPO’s improvements. The 2D Dijkstra algorithm 
(2DDA) is a widely used method known for its optimization capability and generalization, and 
the 3D Dijkstra algorithm (3DDA) is an enhanced version of 2DDA that includes speed opti-
mization. They can provide a standard for comparison outside of Isochrone types. 
 

Table 6.4: Four voyage optimization methods used in the comparison. 
Method Description Reference 
GC Traditional GC routing - 
MI Modified Isochrone method (Hagiwara, 1989)  
2DDA Conventional 2D Dijkstra algorithm (Dijkstra, 1959) 
3DDA 3D Dijkstra algorithm (Wang et al., 2019)  

 
 
 
 
 

• Highlighted results from three case study voyages 
 

In the North Atlantic, storms driven by the prevailing westerly generally move from west to 
east, resulting in ships facing more head-on waves on westbound voyages. This makes west-
bound sailings more challenging and fuel-intensive, necessitating careful planning to improve 
efficiency and safety. This paper investigates three westbound voyage cases: one in winter and 
two in summer. The optimization results are summarized in Table 6.5, with ETA, fuel con-
sumption, sailing distance, average speed, and runtime for each voyage. The actual voyage is 
highlighted in gray, and the proposed method’s result is highlighted in green. The optimized 
routes generated by each method are illustrated in Figure 6.5.  
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Figure 6.5: Optimized voyages for three westbound cases. 
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Table 6.5: Optimization results of the three case study voyages. 
Voyage Category ETA 

[h] 
Fuel 
[ton] 

Dis. 
[km] 

Ave. 
Speed 

[knots/h] 

Runtime 
[s] 

2015.07.21 

Actual route 139.8 180.6 3453.6 13.3 - 
GC 138.7 180.8 3452.4 13.4 5 
MI 142.4 170.7 3533.5 13.4 25 
2DDA 146.5 161.6 3660.9 13.5 80 
3DDA 142.0 165.9 3462.1 13.2 3432 
IPO 140.0 167.5 3487.1 13.5 40 

2016.07.19 

Actual route 168.8 141.4 3780.3 12.1 - 
GC 168.5 139.7 3741.8 12.0 4 
MI 168.8 139.5 3783.1 12.1 28 
2DDA 173.4 136.3 3852.4 12.0 76 
3DDA 168.5 137.2 3765.8 12.1 4189 
IPO 168.8 137.4 3749.8 12.0 45 

2016.11.08 

Actual route 164.3 160.2 3877.5 12.7 - 
GC 163.8 164.1 3789.3 12.5 5 
MI 167.8 162.0 3896.1 12.5 30 
2DDA 172.5 154.2 4024.3 12.6 100 
3DDA 164.0 162.4 3838.4 12.6 4921 
IPO 165.1 155.6 3836.1 12.5 48 

 
For Voyage 2015.07.21, 2DDA and 3DDA show the least fuel consumption but with seven- 
and two-hour arrival delays respectively. Considering punctuality, the IPO method achieves the 
most significant fuel reduction at 7.3%. For Voyage 2016.07.19, IPO and 3DDA closely result 
in the largest reductions at 3.0% with accurate ETAs. For Voyage 2016.11.08, IPO and 2DDA 
provide the most fuel savings at around 3.0%, and 2DDA again fails to meet the ETA. 

 
In summary, across the three voyages, IPO consistently delivers the most energy-efficient 
routes with on-time arrivals. Although IPO and 3DDA result in similar fuel cost, the IPO 
method operates roughly 90 times faster than 3DDA and twice as fast as 2DDA in terms of 
runtime. Although 2DDA can offer considerable fuel savings, it frequently fails to guarantee 
the ETA and often suggests longer sailing routes. GC routing does not demonstrate significant 
improvements in energy efficiency compared to the actual routes, and the MI method also does 
not perform well, showing similar fuel consumption to the actual routes with abrupt turns near 
the destination in all three cases, as depicted in Figure 6.5. 
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6.4 Summary of Paper IV  
 

Learning-based Pareto-optimum routing of ships incorporating uncertain met-ocean 
forecasts.  
 

The exploration of a sophisticated ML algorithm, notably an MOEA (multi-objective evolu-
tionary algorithm), is conducted to tackle the challenges of weather routing. An L-MOEA is 
presented in this paper, as introduced in Chapter 3.4.  
 
Motivations and objectives 
 

The application of emerging ML methods in weather routing, specifically MOEA, presents 
powerful optimization capabilities. However, typical MOEAs face challenges with convergence 
due to their reliance on random evolutionary processes. Additionally, the uncertainty of weather 
conditions significantly impacts the effectiveness of weather routing. This paper aims to achieve 
energy-efficient weather routing with the aid of emerging ML-based MOEA, while considering 
the essential operational uncertainty caused by dynamic weather. Furthermore, this paper aims 
to address the challenging convergence problem of MOEA, achieving efficient and effective 
optimization performance. 
 
Results and conclusion remarks 
 

The effectiveness of L-MOEA is compared with several widely concerned algorithms for multi-
objective optimization from relevant studies. Firstly, the multi-objective optimization perfor-
mance of the proposed L-MOEA is evaluated by presenting outcomes of weather routing. Then 
the uncertainty of the optimization results due to dynamic weather is also examined. 

 
• Results of weather routing 
 

Overall, compared to the other algorithms, the proposed L-MOEA achieves an average saving 
of approximately 2.5% in fuel consumption and a 2.0% reduction in travel time per voyage. An 
optimized route is depicted in Figure 6.6, accompanied by the met-ocean conditions encoun-
tered by the ship, which are illustrated with color-coded segments.. 
 
The voyage for comparison, i.e., the original route given in green involves a ship sailing at a 
fixed engine speed (set at 111 rpm) along the GC route between the port of origin and the 
destination. It can be observed that the original plan led the ship through an area with waves 
exceeding six meters, posing a significant potential threat to the ship crew and cargo. However, 
the optimized plan guides the ship to sail along the edge of the high-wave zone and experience 
a deceleration, returning to the originally set engine speed. In the end, the optimized voyage 
further suggests reducing the engine to 109 rpm. From a numerical standpoint, the optimized 
voyage achieves almost 2% savings in fuel consumption while arriving five hours earlier. 
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• Results of uncertainty-integrated optimization  
 

The uncertainty evaluation module is integrated into L-MOEA (abbreviated as L-MOEA-U) 
and further compared. Three results, i.e., sailing with the shortest duration but highest fuel con-
sumption (DT-Opt), the least fuel consumption but longest duration (FC-Opt), and a balance 
between fuel consumption and duration (BL-Opt), are selected.  
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As shown in Table 6.6, the percentages in parentheses indicate the increases in uncertainties 
generated by other algorithms compared to L-MOEA-U. The voyages given by L-MOEA-U 
demonstrate more stable time and fuel savings under uncertain met-ocean conditions. The var-
iances in voyage costs generated by other algorithms are significantly higher, generally exceed-
ing 20% more than those of L-MOEA-U, and in some cases, nearly quadruple. Such unstable 
voyage plans can significantly affect the supply chain system. Thus, the application of these 
algorithms with high uncertainty can be severely limited. Taking the BL-Opt route as an exam-
ple, qualitative results are presented in Figure 6.7. The optimized voyage recommended by L-
MOEA-U exhibits a more concentrated distribution in objective functions. In other words, 
while ensuring optimal convergence of the solution set, it can also recommend more reliable 
plans to decision-makers. 
 

 
 

Figure 6.7: Standardized kernel density histograms and PF∗. 
 
6.5 Summary of Paper V  
 

A machine learning method to model stochastic Specific Fuel Oil Consumption induced 
fuel consumption for ship voyage optimization. 
 

Paper V investigates uncertainties of weather routing due to the stochastic fuel consumption 
model and develops an ML ship performance model to comprehensively consider uncertainties 
due to SFOC, as presented in Chapter 4.  
 
Motivations and objectives 
 

In weather routing, uncertainty arises not only from weather conditions but also from the esti-
mation of fuel consumption. Today’s ship performance models, especially those involving 
SFOC exhibit significant uncertainties when estimating fuel consumption. These uncertainties 
may render voyage optimization results in ineffective applications. This paper aims to investi-
gate this uncertainty of ship fuel consumption due to the ship performance model, and its impact 
on weather routing. Specifically, this paper aims to investigate the uncertainties in fuel con-
sumption caused by stochastic SFOC. 
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Results and conclusion remarks 
 

This paper aims to quantify the uncertainty in ship fuel consumption and its impact on weather 
routing, which involves three main steps: 1) developing a GA-BP model for ship speed-power 
performance prediction; 2) developing a GPR model for stochastic SFOC prediction; 3) inte-
grating the two models to estimate fuel consumption. In addition, the uncertainty in ship fuel 
consumption and its impact on weather routing is investigated. 
 
• Speed-power ship performance prediction  
 

Figure 6.8 and Figure 6.9 presents the comparison between the GA-BP model’s prediction, the 
actual measurements using the test set, and predictions using a semi-empirical approach (Lang 
& Mao, 2020). The red dashed lines indicate the ideal fit, corresponding to 𝑅𝑅2 = 1.  

 

 
Figure 6.8: Comparison between measurements and predictions for propulsion power using 

the proposed GA-BP model (left) and the semi-empirical approach (right). 
 

 
Figure 6.9. Comparison between different methods and true values for 80 samples (2.5% of 

test set). 
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The proposed GA-BP model includes some hyperparameters that needed to be first determined, 
which were obtained using a Bayesian optimization approach (Xuan & Tian, 2021), and those 
in GA were tuned based on performance. The measurement dataset was split into the training 
set (70%) and test set (30%), then standardized. Figure 6.8 and Figure 6.9 show that the pro-
posed GA-BP model exhibits excellent prediction performance with 𝑅𝑅2 = 0.99. 

 
• Stochastic fuel prediction with SFOC model 
 

The four-fold cross-validation technique is used to assess the effectiveness of the proposed 
methods, a common strategy for validating ML methods (Zhang et al., 2023). The dataset was 
divided into four subsets, with each subset taking turns serving as the validation set while the 
others are used as the test sets. Evaluating the model with four distinct datasets yields four 
separate scores, and the final performance metric is calculated as the average of these four val-
idation results. This method effectively prevents overfitting and enhances the model's general-
ization ability. In this paper, the RMSE of the GPR model is calculated using a four-fold cross-
validation framework. As shown in Table 6.7, the results highlight the proposed model's strong 
predictive power on unseen datasets.  
 

Table 6.7: Validation results using four-fold cross-validation. 
Iteration RMSE 

1 2.03 
2 3.22 
3 2.75 
4 3.62 

Mean 2.9 

 
• Uncertainty of fuel consumption in weather routing 
 

The two proposed models are utilized by the 3DDA to estimate fuel consumption for weather 
routing. The Monte Carlo experiment is conducted, and the result is presented in this part. Based 
on an actual route with an ETA of 159 hours, 1000 optimization simulations are conducted 
starting from its departure to its destination and this ETA. The uncertain SFOC first leads to 
variations in the waypoints. The probability of distribution of EEOI for the most frequently 
resulting route is further shown in Figure 6.10, which indicates significant variations. A lower 
EEOI is preferable, but the average EEOI improved noticeably in simulations that considered 
the fuel uncertainty. This means that in actual operations, the EEOI can be adversely affected 
by uncertainties, leading to performance that does not meet the set requirements. 
 
The scenarios with ETAs of 155.25 and 155.5 hours are particularly notable, as shown in Figure 
6.11. The expected EEOI is lower for an ETA of 155.5 hours compared to 155.25 hours. This 
is because to achieve a shorter ETA, ships must travel faster and consume more fuel, which 
leads to a decrease in EEOI and, thus, less energy efficiency. However, when considering the 
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likelihood of meeting the EEOI targets, the scenario with the lower expected EEOI (and ETA 
of 155.5 h) demonstrates a reduced probability of achieving the EEOI standards. This demon-
strates the importance of accounting for the uncertainty in fuel consumption during weather 
routing, to effectively apply the optimization results in practice and meet the energy efficiency 
goals. 
 

 
Figure 6.10: Probability distribution of fuel consumption with an ETA of 159 hours. 

 

 
Figure 6.11: Probabilistic analysis of EEOI distribution for ETAs of 155.25 and 155.5 hours. 
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6.6 Summary of Paper VI 
 

Isochrone-based real-time ship collision avoidance complying with COLREGs in confined 
waterways. 

 

Paper VI extends the research outcomes of the Isochrone-based real-time optimization algo-
rithm by applying it to the CA problem, as introduced in Chapter 5. 
 
Motivations and objectives 
 

Timely arrivals and accurate ETAs are essential objectives for inland and coastal shipping (Lei 
et al., 2024), while the CA algorithm is expected to support real-time applications, achieving a 
balance between real-time performance and optimal outcomes (Zhang et al., 2025; Zhu et al., 
2024). These goals motivate this paper to further explore the research of improving the Iso-
chrone method and apply it to the CA problem for both open waters and confined waterways. 
It seeks to achieve real-time collision avoidance while considering the ETA, assist timely ship 
operation, and ensure ship safety in traffic. More specifically, this paper aims to enhance the 
land avoidance capabilities of the Isochrone method to adapt to terrain restrictions and integrate 
compliance with traffic regulations, such as COLREGs.  
 
Results and conclusion remarks 
 

The proposed method is demonstrated in two scenarios: open water and confined waterways. 
Demonstration in open water focuses on the effectiveness of the proposed algorithm in com-
plying with COLREGs. Further validation in the confined waterway scenario highlighted the 
algorithm’s CA capabilities in narrow spaces, considering both COLREGs and restrictions, 
such as land and other inland waterway infrastructures. The OS and TSs are assumed to be 100 
meters long and 9 meters wide.  
 
 

• Collision avoidance in an open water area 
 

The proposed method is first demonstrated in open water as shown in Figure 6.12. The area 
includes static obstacles and three TSs. Static obstacles are simulated as circles with a diameter 
of 10 meters, with an additional safety distance of 50 meters.  
 
The situation for collision avoidance in the head-on scenario is shown as an example in Figure 
6.12. In general, the behaviors of the OS comply with COLREGs for the head-on encountering 
situation. It can be observed that the OS first turns to starboard as regulated by COLREGs and 
takes early evasive action to avoid the upcoming TSs. After the encounter, the OS returned to 
the centerline, then moved left to avoid static obstacles, and finally converged toward the des-
tination. In addition, the entire moving trajectory is smooth without irregular turns, suitable for 
the ship to follow in operations. 
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Figure 6.12: CA demonstrations for the head-on scenario in the open water area. 

 
• Collision avoidance in confined waterways 
 

The proposed method is further demonstrated in the confined waterway shown in Figure 6.13. 
The river width is set to 200 to 400 meters. In addition to the same static obstacles as those in 
Figure 6.12, a 250-meter-long and 10 to 20-meter-wide waterway lock is also simulated. Its 
dimensions correspond to small to medium-sized locks and it is located along the riverbank and 
centered within the waterway, as shown in Figure 6.13 (a), occupying 20% of the river width. 
 
In inland traffic, ships rarely cross rivers laterally, thus only head-on and overtaking scenarios 
are simulated in this confined waterway. As mentioned earlier, the TS trajectories are assumed 
to be known in advance by the OS. Figure 6.13 (b) and (c) illustrate the TS trajectories for head-
on and overtaking scenarios, respectively, where green points indicate target points.  
 
Figure 6.14 illustrates the process of avoiding a head-on collision with TSs. The OS initially 
follows the reference route (centerline) when no collision is detected. To avoid a collision and 
prioritize starboard maneuvering, the OS passes through the central waterway lock from its 
starboard side. After passing through the lock, the two TSs leave the nearby waterway, allowing 
the OS to return to the centerline and continue toward the target point Pf.  
 
The CA process for overtaking two TSs is also shown in Figure 6.14. On the right side of the 
river, the TSs travel at slower speeds than that of the OS. Similarly, the OS initially follows the 
centerline while avoiding obstacles. After passing the static obstacles, it begins a starboard turn 
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and overtakes the two TSs from the right side. Once the overtaking maneuver is complete, the 
OS returns to the centerline with a relatively smooth turn, converging toward the target point 
Pf. These two cases in the confined waterway demonstrate the CA capability of the proposed 
algorithm, which complies with COLREGs while considering the constraints of the waterway's 
terrain.  
 

 
    (a) 

 

 
(b)    (c) 

Figure 6.13: Demonstrations of confined waterway with water waterway locks in (a), and 
TS’s trajectories information in (b) and (c). 

. 
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Figure 6.14: Simulations of collision avoidance in head-on and overtaking scenarios in con-

fined waterways. 
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In summary, for the simulated cases in both open areas and confined waterways, the OS’s eva-
sive maneuvers effectively avoid both static and moving obstacles. Additionally, the suggested 
trajectories comply with COLREGs, ensuring smooth route without sharp turns, making them 
suitable for practical operations. The computational time for these cases averages less than 10 
seconds, including trajectory prediction using the ship dynamics model. By leveraging parallel 
computing techniques, the computational cost of trajectory prediction can be further reduced, 
indicating strong potential for real-time applications of the proposed Isochrone-based method. 
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7 Conclusions  
 

This thesis investigates and develops voyage optimization algorithms to achieve intelligent mar-
itime transportation, i.e., to enhance the decision-making in operations, with a focus on improv-
ing energy efficiency in weather routing and ensuring ship operational safety for collision 
avoidance. It has been found that both the proposed IPO and L-MOEA methods effectively 
minimize fuel consumption and optimize energy efficiency in weather routing. Furthermore, 
the application of the real-time IPO method has been extended to effectively address collision 
avoidance (CA) problems in both open waters and confined waterways.  
 
All the proposed methods can assist seafarers with voyage planning for one voyage before de-
parture based on the information provided, which includes destination and ETA. Weather rout-
ing also incorporates weather forecasts. When the ship is en route, the proposed algorithms can 
also be utilized on board by seafarers to address any uncertainties in real-time or to regularly 
update the voyage. It can be every 24 to 72 hours for weather routing when the weather forecast 
is usually updated. For CA, it can be when TSs are found approaching, with updates occurring 
usually in seconds or minutes depending on the frequency of environmental and traffic data 
refresh. 
 
Specifically, several tasks have been conducted to meet the following objectives respectively. 

1) A systematic review and clarification of terminologies in weather routing and identify 
opportunities in current research for the development of optimization algorithms (Paper 
I). 

2) Proposal of an effective and efficient algorithm based on the Isochrone method to 
achieve energy-efficient real-time weather routing (Papers II and III).  

3) Adoption of an efficient ML MOEA to address energy-efficient weather routing and 
consider uncertainties in weather forecast (Paper IV).  

4) Investigation of the fuel consumption uncertainty caused by SFOC in ship performance 
models and its impact on weather routing (Paper V).  

5) Application of Isochrone-based algorithms research to address CA problems, to assist 
on-time transport and ensure ship operational safety for inland and coastal shipping (Pa-
per VI).  

 
Some conclusions on each of the topics investigated are summarized as follows.  
 
Systematic review for optimization algorithms in weather routing 
 

The literature review was conducted in Paper I, which reveals that algorithms and models have 
been the two main research focuses on weather routing research, and ML applications started 
to emerge after 2020. For optimization algorithms in weather routing, the findings are as follows:  
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• Isochrone, DP-based, EA/GA, and PSO/ACO are the four major types of optimization 
algorithms frequently used in weather routing.  

• Their recent algorithmic development trends share similarities, focusing on four areas:  
o Enhancing the diversity of candidate solution sets.  
o Preserving superior candidate sets during the process, to enhance the optimiza-

tion performance of the algorithms, finding a balance between avoiding local 
optima and excessive divergence.  

o Creating hybrid algorithms that leverage the strengths of different algorithms. 
o Strengthening practical applications to meet specific operational requirements. 

• Based on these insights, future directions may also be divided into two aspects:  
o Improving algorithm performance through enhanced heuristics and integrating 

learning-based methods 
o Enhancing practical applications, such as effectively handling uncertainties and 

supporting future clean-fuel-driven ships. 
 
Development of optimization algorithms for weather routing 
 

The voyage optimization Isochrone algorithm is improved for real-time energy efficient 
weather routing, as its computational efficiency is demonstrated in industrial practice. This 
work is sequentially presented in Papers II and III. Five strategies are proposed to address the 
drawbacks of the Isochrone method, e.g., sharp turning and local optimization issues. Based on 
the findings, the IPO algorithm is proposed to achieve real-time energy efficient ship voyage 
planning and execution. It has been found that: 
 

• All five improvement strategies can lead to an improved capability compared to the 
Isochrone method. Among these, two strategies, “Reversed subsector” and “Isochrone-
A*”, are found to be the most effective. 

• The two strategies are integrated with ML-enhanced heuristics, resulting in the IPO 
method. It has been demonstrated that the IPO method can provide smooth voyages with 
gradual turns and an average of 5% fuel reduction. Its runtime can be on average 20 
seconds including ship performance predictions, allowing for real-time applications.   

• Other optimization methods included for comparison either show no fuel savings or less 
than 5%, or their computational time is at least twice that of IPO. 

 
The application of an advanced ML algorithm, MOEA in weather routing is further investigated 
in Paper IV, to leverage its powerful optimization capability while addressing the convergence 
inefficiency of a typical MOEA. It has been found that: 
 

• The proposed self-evolving learning network in L-MOEA can capture positive evolu-
tionary directions and conduct efficient searches. Compared with other state-of-the-art 
optimization methods, the proposed L-MOEA significantly reduces fuel consumption 
and duration on given voyages.  
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• An uncertainty-driven module (L-MOEA-U) is proposed to address uncertainties in 
weather conditions. L-MOEA-U also contributes to providing more robust solutions, 
with an overall improvement exceeding 20%, ensuring the reliability of voyage optimi-
zation results.  

 
SFOC induced uncertain fuel consumption in weather routing 
 

Paper V introduces a ML-based predictive model to estimate uncertain fuel consumption and 
assesses its impact on weather routing. This consists of three components: (1) a GA-BP model 
developed to predict ship power; (2) a GPR model developed to predict stochastic SFOC; and 
(3) Monte Carlo simulations applied to analyze the effects of SFOC induced uncertain fuel 
consumption on weather routing. It has been found that: 
 

• Under specific operational conditions, a ship's SFOC is not determined but varies within 
a range.  

• Results from Monte Carlo simulations further suggest that the impact of uncertainty on 
the effectiveness of ship weather routing cannot be ignored in practical applications. 

• Moreover, optimization should account not only for the actual fuel consumption but also 
for the probability of achieving compliance with relevant standards, such as EEOI.  

 
Real-time Isochrone-based collision avoidance in confined waterways 
 

In Paper VI, an Isochrone-based CA algorithm developed to ensure ship safety helps meet real-
time operations and punctual arrival requirements. In addition to leveraging computational ef-
ficiency and ETA considerations of traditional Isochrone algorithms for weather routing, this 
algorithm specifically enhances land avoidance capabilities to account for terrain/bathymetry. 
The results reveal the following: 
 

• The proposed Isochrone-based CA method features terrain adaptability and regulatory 
compliance, including adherence to COLREGs both in confined waterways and open 
water areas. 

• It can recommend an optimized voyage that ensures short-distance sailing and ship 
safety during collision avoidance.  

• Moreover, the algorithm can be executed on average for less than 10 seconds which 
includes trajectory predictions, allowing for real-time applications.  
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8 Future work 
 

Weather routing to assist intelligent maritime operations 
 

Intelligence in ship operations indicates a high level of decision-making capability, enabling 
the generation of optimal plans that can consider various objectives, particularly with the sup-
port of data (Sarker, 2022). The current implementation of the IPO assumes constant speed. 
However, ship speed is not the most direct operational variable in shipping but rather engine 
speed (RPM). Therefore, engine speed (RPM) should replace ship speed in future adaptations 
to achieve better practicality. Additionally, 3D algorithms present enhanced optimization per-
formance and better decision-making capabilities; thus, developing a 3D-IPO that incorporates 
RPM variations may be worthwhile. Although this can lead to an increased computational load 
due to the greater number of voyage options, such variability may be effectively managed by 
using ML-based heuristics based on data-driven techniques, to filter and refine the choices. 
 
Additionally, weather routing is a research topic with significant potential in practical applica-
tion, and the literature review revealed that enhancing its applicability is an important direction. 
To better support the energy transition in the future, a wider variety of clean-fuel powered ship 
types will emerge, including hybrid, electric, or wind-assisted propulsion ships (WAPS). Voy-
age optimization for these ships will take into consideration their specific operational charac-
teristics, such as the wind angle of attack for WAPS. Exploring research developments in this 
area is also highly worthwhile supporting their smoother implementations. In addition, different 
fuels may require different engine RPMs, leading to varying optimization outcomes for power 
or fuel consumption, which may be dependent on the type of fuel used. Future research could 
further comprehensively explore the differences and impact in optimizing power or fuel in 
weather routing, and its relationship with the type of fuel used. 
 
Sensitivity of weather routing on various factors  
 

Future work can also investigate the sensitivity of the proposed IPO method to some factors 
that may have a great impact on its performance. These factors include waypoint resolution in 
the Isochrone algorithm defined by its parameters, and how that would influence convergence. 
Additionally, incorporating improved weather forecast models will be critical to enhancing pre-
diction accuracy, leading to enhanced performance. However, the impact of update frequency 
of weather information on weather routing may need to be further investigated through real-
time applications.  
 
Enhanced considerations for real traffic in collision avoidance 
 

The current work on collision avoidance is based on several assumptions. Firstly, ship dynamic 
models are assumed to be linear, but they can later be replaced with more precise models tai-
lored for inland ships, such as those accounting for the effects of shallow water on ship move-
ment (Zhang et al., 2023b). Additionally, the ship domain is considered static, whereas it should 
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dynamically adjust based on encounters with other vessels. It is also assumed that the OS knows 
the movement and trajectory of the TS through communications in traffic. However, more reli-
able solutions can be considered in practice (Tran et al., 2023), such as using AIS data for 
trajectory prediction (Rothmund et al., 2022; Zhang et al., 2023a). Lastly, as the shallow water 
effects are not analyzed, the current method cannot comprehensively estimate the energy con-
sumption of maneuvering and sailing (Zhang et al., 2024a), which should be considered a more 
realistic and critical objective for optimization. Thus, the existing method uses short distances 
as a simplified way to estimate energy costs. Future work can consider optimizing energy effi-
ciency in addition to enhanced ship safety for collision avoidance, based on dynamic models 
for inland ships.   

 
Real case study and validation 
 

The real behavior of traffic ships may be unpredictable with constantly changing trajectories, 
as their future movements may not be strongly correlated with their previous ones because of 
varying operational tasks and conditions. Therefore, simulations cannot fully capture the com-
plexity of real traffic situations. Consequently, validating the proposed CA algorithm based on 
real traffic data is extremely necessary to comprehensively demonstrate its effectiveness, espe-
cially for such an operational challenge as collision avoidance.  
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