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Dark matter-induced electron excitations in silicon and germanium
with deep learning
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We train a deep neural network (DNN) to output rates of dark matter (DM) induced electron excitations
in silicon and germanium detectors. Our DNN provides a massive speedup of around 5 orders of magnitude
relative to existing methods (i.e., QEdark-EFT), allowing for extensive parameter scans in the event of an
observed DM signal. The network is also lighter and simpler to use than alternative computational
frameworks based on a direct calculation of the DM-induced excitation rate.
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Introduction. Learning the nature of dark matter (DM) is a
key challenge in modern astroparticle physics. It is known
to exist from its gravitational influence on the visible
Universe, and plays a crucial role in a multitude of
phenomena across vastly different astrophysical scales [1].
On cosmological scales, DM initiates the formation of

large scale structures, giving rise to galaxies and galaxy
clusters. It also generates the density fluctuations leading to
the observed patterns of anisotropy in the cosmic micro-
wave background temperature and polarization maps [2].
On galactic scales, the influence of DM is visible through
gravitational lensing [3], and the flattening of rotation
curves in spiral galaxies [4].
Despite the crucial role of DM in explaining these

phenomena, its nature is yet to be determined. The leading
hypothesis in the field of astroparticle physics is that DM is
made up of new particles, waiting to be discovered [1]. The
identity and properties of these particles do however still
remain to be determined.
The strong gravitational evidence for the presence of

large amounts of DM in the Universe contrasts with the
lack of a microscopic description for this invisible and
unidentified cosmic component. This contrast makes the
pursuit of the nature of DM a key focus in the present
scientific research. There are several kinds of experiments
searching to unveil the nature of DM. An important family
relies on the direct detection technique [5,6]. These experi-
ments seek to observe rare interactions between DM

particles from the Milky Way and detector materials placed
deep underground in low-background environments.
Traditionally, direct detection experiments have pri-

marily focused on searching for nuclear recoil events
induced by weakly interacting massive particles scattering
off target nuclei in crystals or liquid noble gases [7]. As a
result, these experiments have mainly been sensitive to DM
masses in the GeV–TeV range, as lighter particles would be
unable to generate observable nuclear recoils.
With the absence of direct evidence for weakly interact-

ing massive particles, efforts have been put in towards
alternative experimental approaches better suited to probe
DM particles with sub-GeV masses [8]. In this context, a
crucial role is played by direct detection experiments
designed to detect DM-induced electronic transitions or
electron ejections in materials, offering a novel avenue for
uncovering the nature of DM [9–20].
To interpret these experiments, a theoretical understand-

ing of DM-electron interactions in detector materials is
needed. In Refs. [21–25], the interactions DM can have
with the electrons bound to silicon and germanium crystals
(as well as individual atoms and graphene targets) were
classified and explored using a nonrelativistic effective
theory formalism. We implemented our formalism in
QEdark-EFT [26], which interfaces with the plane-wave
self-consistent field Density Functional Theory (DFT) code
Quantum ESPRESSO [27] and extends the QEdark code [28] to
the case of general DM-electron interactions. This allowed
for covering several DM models, although an extensive
exploration was hindered by computational costs.
The deep neural network (DNN) developed in this paper

is trained on the output of QEdark-EFT and serves mainly two
purposes. First, it is easier to use and run than QEdark-EFT.
It takes less space on a hard drive and does not require
computation of or access to material response functions.
Second, it allows for evaluating a large number of
DM-induced electronic transition rates cheaply on a laptop,
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and demonstrates the potential DNNs have for speeding
up rate evaluations. Such a speedup will be necessary to
perform extensive parameter scans in the event of detection
of a DM signal. For example, evaluating the rate of
electron-hole pair creation in silicon and germanium for
106 DM models takes 30 s with our DNN, compared to
days with QEdark-EFT.
This work is organized as follows. In the next section, we

review the theory of DM-electron scattering in materials,
focusing on the effective theory approach of Ref. [22].
Following that, we introduce our DNN structure and
training strategy. Finally, we report the results we find
when testing the accuracy of our DNN in our third section
and then conclude.

DM-induced electron excitations in crystals. The rate at
which DM events occur creating i electron hole pairs in
crystals is given as [22]

Ri ¼
nχNcell

128πm2
χm2

e

Z
Egapþiε

Egapþði−1Þε
dðlnΔEÞ

Z
dq qη̂ðq;ΔEÞ

×
X5
l¼1

ℜ
�
R�
l ðq; vÞW̄lðq;ΔEÞ

�
; ð1Þ

where nχ is the number density of DM particles,mχ andme

are the mass of the DM particle and the electron, Ncell is the
number of unit cells in the crystal and ΔE and q are the
energy and momentum that the DM particle deposits to
the crystal. η̂ðq;ΔEÞ denotes the velocity integral [22],
which is performed using the Standard Halo Model (SHM)
with v0 ¼ 238 km=s, ve ¼ 250.5 km=s, and vesc ¼
544 km=s [29]. Rl and W̄l are the DM and material
response function [22]. We calculate the latter within
DFT, using the Si.pbe-n-rrkjus_psl.0.1.UPF
pseudopotential for silicon and the Ge.pbe-dn-
rrkjus_psl.0.2.2.UPF pseudopotential for germa-
nium. These are provided with Quantum ESPRESSO, and
include the 3s2, 3p2 electrons for silicon, and the 4s2,
4p2, and 3d10 electrons for germanium in the valence
configuration. For the treatment of electron-electron
exchange and correlation we use the PBE functional,
and sample reciprocal space using a 6 × 6 × 6
Monkhorst-Pack k-point grid. Following Ref. [28], we
supplement this sampling with additional k points at and
close to Γ and half way to the zone boundary. We perform
our calculations at the experimental value of the lattice
constants aSi ¼ 10.3305 a:u: and aGe ¼ 10.8171 a:u:,
and take an energy cutoff Ecut ¼ 120 Ry (1.6 keV) for
silicon and Ecut ¼ 100 Ry (1.4 keV) for germanium.
Furthermore, we apply a Hubbard U correction with a
value of Ueff ¼ 9.45 eV to the Ge 3d orbitals, which has
the effect of shifting the Ge 3d band down in energy by
approximately Ueff=2, so that its position below the Fermi
level is consistent with experimental observations. Finally,

we use a scissors correction to set the band gap of silicon
(germanium) to the experimental value of 1.2 eV (0.67 eV).
The energy required to create an additional electron hole
pair ε and the band gap Egap depend on the material and are
given by [30,31]

ε ¼ 3.8 eV silicon

ε ¼ 3.0 eV germanium

Egap ¼ 1.2 eV silicon

Egap ¼ 0.67 eV germanium:

For fixed material properties and DM velocity distribution,
the observable quantity Ri is a unique function of the mχ

and the DM response function. The DM response function
is in turn specified by the nonrelativistic effective theory
couplings. We follow Ref. [22], and expand the matrix
element—from which the DM and material response
functions arise—in nonrelativistic effective operators as

Mðq; v⊥elÞ ¼
X
j

�
csj þ clj

q2ref
jqj2

�
hOii; ð2Þ

and consider only DM models in which the mediator mass
is either much smaller than the typical momentum transfer,
qref ¼ αme, or much larger than qref . We refer to these
two cases as “long range” and “short range” interactions,
respectively. We denote by clj and csj the corresponding
couplings, and use the index j to label the operator type.
As shown in [21], if DM has spin 0 or 1=2 there are 14 such
effective theory couplings for every mediator mass
scenario. The associated operators are listed in Table I.
Note that these operators contain different powers of
q=me ∼ α ¼ 1=137 and v⊥el ∼ 10−3. This leads to different
levels of suppression for the different operators, namely

TABLE I. Interaction operators defining the nonrelativistic
effective theory of spin 0 or spin 1=2 DM-electron inter-
actions [21,32,33]. Se (Sχ) is the electron (DM) spin, while v⊥el ¼
v − l=me − q=ð2μχeÞ is the transverse DM-electron relative
velocity (in the limit of elastic interactions). Here, μχe is the
DM-electron reduced mass, v is the incoming DM particle
velocity, l is the initial electron momentum, me is the electron
mass, and 1χe is the identity in the DM-electron spin space.

O1 ¼ 1χe O9 ¼ iSχ · ðSe ×
q
me
Þ

O3 ¼ iSe · ð q
me

× v⊥elÞ O10 ¼ iSe ·
q
me

O4 ¼ Sχ · Se O11 ¼ iSχ ·
q
me

O5 ¼ iSχ · ð q
me

× v⊥elÞ O12 ¼ Sχ · ðSe × v⊥elÞ
O6 ¼ ðSχ ·

q
me
ÞðSe ·

q
me
Þ O13 ¼ iðSχ · v⊥elÞðSe ·

q
me
Þ

O7 ¼ Se · v⊥el O14 ¼ iðSχ ·
q
me
ÞðSe · v⊥elÞ

O8 ¼ Sχ · v⊥el O15 ¼ iO11½ðSe × v⊥elÞ · q
me
�
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Operators Suppression parameter Sj

O1;O4 ðv⊥elÞ0ðq=meÞ0
O9;O10;O11 ðv⊥elÞ0ðq=meÞ1
O7;O8;O12 ðv⊥elÞ1ðq=meÞ0
O6 ðv⊥elÞ0ðq=meÞ2
O3;O5;O13;O14 ðv⊥elÞ1ðq=meÞ1
O15 ðv⊥elÞ1ðq=meÞ2:

ð3Þ

When using the suppression parameter Sj to rescale the
couplings as explained below in Sec. II, we set q=me ¼
1=137 and v⊥el ¼ 10−3.
The observable Ri is thus uniquely determined by

29 real parameters. This problem is well suited to emulate
with a feed forward neural network taking the 29 model
parameters as input and outputting Ri for the n most
relevant values of i. We restrict ourselves to consider i
ranging from 1 to n ¼ 4, as these rate bins dominate for the
DM masses considered here.
Ri varies over several orders of magnitude depending

on mχ and the effective theory couplings. Rather than
outputting Ri directly, we find it beneficial to output s and
R0

i defined as

s ¼
P

n
i lnðRiÞ
n

; ð4Þ

R0
i ¼ lnðRiÞ − s: ð5Þ

Here, s sets the overall scale of the rate, whereas R0
i gives

the shape of the spectrum. This distinction allows the
network to learn the shape given by R0

i, and the overall
scale of the rate set by s separately. Furthermore, to avoid
terms in Eq. (5) diverging, we consider only values of mχ

for which Ri is nonzero for all i. To avoid parameter space
with Ri ¼ 0, we only consider

mχ > 2
Egap þ εðn − 1Þ
ðve þ vescÞ2

; ð6Þ

where ve þ vesc ¼ 788 km=s [29] is the maximal speed of
Milky Way bound DM particle seen from Earth. For n ¼ 4
and the properties of silicon and germanium we include
DM masses

4 MeV ≤ mχ ≤ 1 GeV silicon;

3 MeV ≤ mχ ≤ 1 GeV germanium: ð7Þ
As such, the DNN has 29 real scalars as input and 5 real
scalars as output.

DNN structure and training. We use a feed forward neural
network with 29 neurons in the flattening input layer,
followed by six dense layers with 64, 128, 128, 64, 32,

16 neurons, respectively, and finally a dense output layer
with 5 neurons. This gives a total of 37,701 trainable para-
meters, and we use ReLu [34] as the activation function in all
the hidden layers. We implement the DNN using TensorFlow

[35], and train on two precomputed datasets of 4.2 × 106

combinations of mχ and effective couplings, one for silicon
and one for germanium. The training is performed using the
Adam [36] optimizer and mean square error as loss function.
The training loop shown in Fig. 1 is used to avoid overfitting,
with the test datasets consisting of 1.4 × 106 combinations
of mχ and effective couplings. After training we evaluate the
network on a third data set with 105 data points.
We generate the dataset by drawing mχ from a log

distribution in the range given in Eq. (7). We also set m
effective couplings different from 0, where m is a random
integer drawn from a uniform distribution between 1
and 28. We make it random which couplings are different
from 0, and these are drawn from a uniform distribution
between −1 and 1. Having drawn csj, c

l
j and mχ , Ri is

computed using the code we developed in Refs. [22,26],
QEdark-EFT. During the computation, csj and clj are adjusted
upward by S−1j from Eq. (3). This is done to avoid j ¼ 1

and j ¼ 4 always dominating. Before training the neural
network mχ is transformed as

mχ →
−2

ln
� mmin
1 GeV

� ln
�

mχ

1 GeV

�
þ 1; ð8Þ

where mmin ¼ 4 MeV (mmin ¼ 3 MeV) is the minimal
mass considered for Si (Ge). This is done to ensure that
the mass parameter fed to the neural network approx-
imately lies between −1 and 1.
To summarize, the DNN takes in 28 csj or c

l
j parameters

between −1 and 1 together with a mass parameter between
−1 and 1. The DNN outputs s and R0

i from Eq. (5), where
Ri is the rate of electron hole pairs expected to be created by
a DM model with couplings between −S−1j and S−1j and a
DM mass between 4 MeV (3 MeV) and 1 GeV for Si (Ge).

Train 20 epochs Evaluate on test data

Update best network

Improvement

FIG. 1. Training loop designed to avoid overfitting. Every
20 epochs the performance of the network on the test data is
evaluated, and the network configuration that performs the best
on the test data is being updated and stored.
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Results. After training, the DNNs are evaluated on 105 data
points in the validation set. These are generated in the same
way as the training data, and the network reproduces
these data points with an average relative error of around
2.76% (2.62%) for silicon (germanium). In order to test the

accuracy of our DDN-based computational framework, in
Fig. 2 we compare the electron-hole creation rate computed
in Ref. [22] for anapole, electric dipole, and magnetic
dipole interactions through a direct calculation with pre-
dictions obtained here using our DNN. These interactions

FIG. 2. Comparison between the excitation rates from Ref. [22] (solid lines) and the rates inferred here by the DNN (dashed lines). The
panels to the left correspond to silicon, whereas the panels to the right correspond to germanium. The blue lines are for mχ ¼ 5 MeV
while the red lines are for mχ ¼ 100 MeV. See legends, for further details about the assumed DM interaction.
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generate the following nonzero coupling constants [22]:

cs8 ¼ 8ememχ
g
Λ2

; ð9aÞ

cs9 ¼ −8ememχ
g
Λ2

; ð9bÞ

for the anapole interaction,

cl11 ¼
16emχm2

e

q2ref

g
Λ
: ð10Þ

for the electric dipole interaction, and finally

cs1 ¼ 4eme
g
Λ
; ð11aÞ

cs4 ¼ 16emχ
g
Λ
; ð11bÞ

cl5 ¼ 16em2
emχ

q2ref

g
Λ
; ð11cÞ

cl6 ¼ −
16em2

emχ

q2ref

g
Λ
; ð11dÞ

for the magnetic dipole interaction. We stress that the DNN
has not been trained on these particular interactions. It is thus
remarkable that our DNN reproduces the associated excita-
tion rates with a good accuracy, as one can see from Fig. 2.
The DNN predictions for magnetic dipole interactions in
silicon exhibit the largest deviation from the actual excitation
rate, this deviation being larger than 30% for i ¼ 3 and
mχ ¼ 5 MeV. In all other cases, we find that our DNN
reproduces the expected rates of electron-hole pair creation
within an accuracy of about 10% or below. Finally, in a wide
range of DM masses and interactions, the predictions of our
DNN match the results obtained by an explicit rate calcu-
lation within an accuracy which is below 5%.
Focusing on the computational costs, we stress that

generating excitation rates within our DNN-based compu-
tational framework is extremely fast. On the CPU of a
laptop, generating 106 (107) rates takes roughly 30 seconds
(300 seconds), showing that we are in a regime where the
computation time is linear in the number of rate evalua-
tions. This is five orders of magnitude faster than our code
from Refs. [22,26], QEdark-EFT, which relies on precom-
puted and tabulated material response functions.

Summary and conclusion. We trained a feed forward DNN
to generate rates of DM-induced electron excitations in
silicon and germanium detectors as an output. We per-
formed this training with TensorFlow [35] using the Adam
[36] optimizer. Both for silicon and for germanium,
we trained our DNN on precomputed training, test, and
evaluation datasets of 4.2 × 106, 1.4 × 106, and 105

combinations of DM particle mass and effective couplings,
respectively. The evaluation set was reproduced with an
average relative error of around 2.79% (2.62%) for silicon
(germanium). Focusing on anapole, electric and magnetic
dipole DM interactions, we find that our DNN reproduces
the expected rates of electron-hole pair creation within
an accuracy of about 10% or below in a wide range of
DM particle masses. In terms of computational costs, the
improvement compared to existing computational frame-
works is remarkable. Generating 106 excitation rates with
our DNN takes roughly 30 seconds on the CPU of a laptop,
and is thus five orders of magnitude faster than with
QEdark-EFT [22,26], which relies on precomputed and tabu-
lated material response functions. This massive speedup in
the computing time allows us to perform extensive para-
meter scans, which are relevant both in the event of an
observed DM signal and in the analysis of the null result
reported by the operating experiments.
Our analysis serves as a proofs of concept and can be

improved in different ways. In particular, since we use
QEdark-EFT to generate the training data, the accuracy of
our modeling of the DM-electron interaction is that of
QEdark-EFT. A first improvement would be to include in-
medium screening via the dielectric function in our rate
calculations. Interestingly, an estimate of this effect could
be performed within our DNN framework by realizing that
(1) the imaginary part of the dielectric function is propor-
tional to W̄1, and (2) the Kramers-Kronig relations can be
used to obtain the real part of the dielectric function from
its imaginary part. A second improvement would consist
in training our DDN to emulate the transition rates in
germanium detectors for events with a number of e-h pairs
that is larger than four. This extension of our analysis is
expected to be relevant in the case of DM candidates of
mass larger than about 100 MeV [28]. Finally, our analysis
could be further improved by refining the electron-hole pair
production model we employ within our DNN framework,
which is known to break down at low enough energies [37].
In the case of silicon, this could be done by implementing
in the DNN training data the results of [37], where a
ionization response model valid between 1.2 and 8 eV is
reported.
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