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Abstract

This thesis investigates scalable strategies for fault-tolerant quantum computation by
developing and analyzing bosonic quantum codes, quantum low-density parity-check
(LDPC) codes, and decoding protocols that aim to unify bosonic and discrete-variable
quantum error correction.

In the continuous-variable regime, we explore the use of native nonlinearities in su-
perconducting microwave circuits to realize a universal gate set for continuous-variable
quantum computing, including the deterministic generation of a cubic phase state. Sep-
arately, we propose and analyze the dissipatively squeezed cat qubit, a noise-biased
bosonic encoding that offers improved error suppression and faster gate implementations
compared to standard cat qubits. To evaluate the broader viability of bosonic encodings,
we study the performance of rotation-symmetric and Gottesman-Kitaev-Preskill (GKP)
codes under realistic noise and measurement models, revealing important trade-offs in
measurement-based approaches.

Recognizing the need to integrate bosonic codes into larger fault-tolerant architectures,
we develop decoding techniques that explicitly leverage analog syndrome information from
the readout of bosonic modes. These methods reduce the need for repeated measurements
and enable quasi-single-shot decoding in concatenated schemes, forming a bridge between
continuous-variable encodings and discrete-variable stabilizer codes.

To advance scalable discrete-variable fault tolerance, we introduce localized statistics
decoding, a flexible and highly parallelizable decoding framework for general quantum
LDPC codes with state-of-the-art accuracy. Based on a novel on-the-fly matrix elimination
strategy, this decoder efficiently identifies and resolves local error configurations, enabling
low-latency and hardware-friendly implementations. Additionally, we present quantum
radial codes, a new family of single-shot quantum LDPC codes constructed from lifted
products of classical quasi-cyclic codes. These codes offer low overhead, tunable parameters,
and competitive performance under circuit-level noise, making them promising candidates
for near-term implementation.

Finally, we propose the concept of fault complexes, a homological framework for repre-
senting and analyzing faults in dynamic quantum error correction protocols. Extending
the role of homology in static CSS codes, fault complexes provide a general language for
the design and analysis of fault-tolerant schemes.

Keywords: Quantum Error Correction, Bosonic Codes, Superconducting Circuits,
Quantum low-density parity-check codes, Squeezed cat qubit, Gottesman-Kitaev-Preskill
code, Belief propagation, Ordered statistics decoding, Localized statistics decoding, CSS
codes, Quantum Radial Codes, Schrieffer-Wolff transformation,
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CHAPTER 1

Introduction

Classical computers have become indispensable tools for solving a wide range of problems.
However, some problems are out of reach for these devices. Quantum computing offers
an alternative paradigm of computing that utilizes the features of quantum mechanics,
which promises to solve some of those problems more efficiently than classical computers.
Most prominently, quantum computers promise an exponential speed up for integer
factorization [1, 2] and the simulation of quantum systems [3]. The latter is particularly
challenging for conventional computers because they require incorporating the laws of
quantum mechanics into the simulation — a task that another quantum system, a
quantum computer, is potentially much better suited for [4, 5]. Being able to more
efficiently and accurately simulate quantum systems could have a significant impact
on material engineering [6], aiding the design of improved batteries and photovoltaics,
quantum chemistry [7–11], and the development of pharmaceuticals [12]. However,
realizing these advantages requires overcoming profound physical and theoretical challenges,
foremost among them the fragility of quantum information. This fragility necessitates the
development of fault-tolerant quantum computers, where encoded quantum information
can be protected and manipulated reliably over time.

It has become evident that quantum error correction will be necessary for almost any
practical application of quantum computers, with one of the few exceptions possibly being
small-scale physics simulations. In general, the need for quantum error correction intro-
duces a substantial overhead [13, 14] that reduces the advantage of quantum algorithms
over conventional classical algorithms. Quantum algorithms are further challenged by
the classical algorithm design based on heuristics, which are efficient methods guided
by intuition and insight that lack formal guarantees yet typically yield accurate results.
Indeed, in classical computing, many algorithms began as heuristics, with their strengths
understood only after broad application, see e.g., Ref. [15]. Approaching the development
of quantum algorithms in a similar spirit is possibly hindered in two ways. First, quantum
mechanics often defies direct intuition, and as a result, important discoveries, such as
gate teleportation [16], were made numerically by accident [17]. Second, the absence of
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CHAPTER 1. INTRODUCTION

large-scale fault-tolerant quantum hardware limits the discovery of new protocols to those
tractable by classical simulation.

The choice of the quantum error-correcting code carries many practical trade-offs. The
current gold standard, the surface code [18–20], requires only nearest-neighbor connectivity
in a planar architecture and has a high resilience against realistic noise, but will require
thousands of physical qubits for each logical qubit it protects against noise. On the other
hand, quantum low-density parity-check (qLDPC) codes [21] can reduce the number of
physical qubits needed but have increased connectivity requirements and are typically
less resilient against realistic noise processes compared to the surface code. Theoretical
progress in this domain is rapid, not only on code construction and design [22–27], but
also decoding [28–33], and logical operations [34–40].

Interestingly, we are approaching a tipping point in the design of quantum error-
correcting codes where theoretical progress is beginning to translate into small-scale
experimental implementations, for example, in superconducting circuits [41–47], neutral
atoms [48–50], or trapped ions [51–56]. Importantly, this allows us not only to refine our
understanding of fault tolerance in practical settings but also to design more efficient
quantum error-correcting codes tailored to the physical architecture.

One of the subfields within quantum computing that has made exceptional experimental
and theoretical progress in the last decade is the field of bosonic quantum computing and
bosonic quantum error correction [57–59]. Bosonic quantum computing possibly resembles
the quantum analog of the almost forgotten field of classical analog computing more
closely than the notion of discrete-variable (quantum) information processing discussed
so far. It is therefore also often referred to as continuous-variable quantum information
processing or quantum computing. On the other hand, bosonic quantum error correction,
or simply bosonic codes, represent discrete quantum information encoded into a system
of quantum continuous variables. Some of the most prominent bosonic codes, such as the
Gottesman-Kitaev-Preskill code [60] or the cat qubit [61, 62], can be viewed as utilizing
ideas present in classical transistors to protect quantum information. For instance, in flash
memory, a logical bit is defined by the charge on a floating gate — for practical purposes,
a continuous quantity — and a threshold is used to distinguish between zero and one. The
physical encoding is analog, but the (logical) computation is digital, similar to bosonic
codes. The premise of bosonic codes is to exploit hardware-level protection to achieve
fault tolerance with fewer physical resources than their (unprotected) discrete-variable
counterparts. However, their improved protection comes with other trade-offs such as
increased physical complexity, susceptibility to other noise channels, and more challenging
gate implementations. Nonetheless, much progress has been made theoretically [63–79] as
well as experimentally [42, 43, 80–89].

1.1 Towards Fault-Tolerant Quantum Computing

The pursuit of practical quantum computing is inextricably linked to the development of
robust fault-tolerant architectures. While small quantum processors have demonstrated
increasingly sophisticated capabilities [90–92], the realization of large-scale, useful quantum
computations continues to be limited by the fragility of quantum information and the

2



1.2. OUTLINE

substantial resource overheads required for its protection.
This thesis explores bosonic codes and qLDPC codes as candidates for building a fault-

tolerant quantum computer. In particular, at the core, this thesis investigates how bosonic
codes and qLDPC codes can contribute to reducing the hardware and time-overhead
of quantum error correction. Instead of focusing on these approaches individually, it
aims to address these questions in a unified approach. On a broader scale, it contributes
to bridging the gap between theoretical abstraction and practical implementations in
fault-tolerant quantum computing. To this end, contributions range from physical-level
encoding strategies and decoding protocols to the introduction of a framework for the
representation of quantum error-correcting codes in space-time.

The following section provides a detailed, chapter-by-chapter outline of the thesis
structure and the specific contributions of each paper.

1.2 Outline

Chapter 2 introduces foundational ideas in fault-tolerant quantum computing that frame
the contributions of this thesis within the broader context of quantum error correction.
It begins by outlining models of quantum computation, including both gate-based and
measurement-based paradigms, and proceeds to cover stabilizer codes as a key class of
quantum error-correcting codes. The chapter further introduces the language of chain
complexes to describe code structure and delves into various approaches to the decoding
problem. These topics form the theoretical foundation for the contributions presented in
Paper VII, Paper VIII, and Paper IX, and quantum computing more generally.

Chapter 3 focuses on the formalism of quantum continuous-variable systems and their
role in quantum information processing. It introduces relevant physical and mathematical
concepts for describing infinite-dimensional quantum systems, followed by an overview of
bosonic quantum error-correcting codes designed to protect information encoded in such
systems. Particular emphasis is placed on cat codes and the Gottesman-Kitaev-Preskill
encoding, which play a central role in the work presented in Paper IV, Paper V, and
Paper VI. The chapter serves as a conceptual bridge between theoretical developments
and their application in hardware-efficient fault-tolerant schemes.

Chapter 4 explores how the continuous-variable systems introduced in the previous
chapter can be implemented using superconducting quantum circuits. It focuses on
circuit quantum electrodynamics as a versatile platform for building quantum hardware,
emphasizing techniques for engineering nonlinear interactions that are essential for quan-
tum control. These capabilities enable the realization of bosonic codes and operations,
connecting directly to the contributions of Paper I, Paper II, and Paper III.

3





CHAPTER 2

Fault-tolerant Quantum Computing

Quantum computers process information using quantum bits, qubits, instead of conven-
tional (classical) bits. A classical bit stores a single unit of binary information, typically
represented as 0 or 1. Similarly, a qubit can be represented by two distinguishable quantum
states, |0⟩ and |1⟩. However, unlike classical bits, a qubit can exist in a superposition of
these states. The general quantum state |ψ⟩ of a single qubit is given by

|ψ⟩ = c0 |0⟩+ c1 |1⟩ , (2.1)

where c0 and c1 are complex coefficients satisfying the normalization condition |c0|2 +
|c1|2 = 1. We can also use a qubit to represent a classical bit by requiring that at most
one of the coefficients ci is nonzero. However, even though the coefficients ci can take on
infinitely many different values and thus allow us to store, in principle, an infinite amount
of information, we can at most retrieve a single bit of information. When measured, a
qubit collapses to the classical state 0 with probability |c0|2 and 1 with probability |c1|2.
This measurement process erases any phase information and prevents direct access to the
values of c0 and c1 from a single measurement. Instead, only their magnitudes can be
inferred statistically by performing multiple measurements on identical copies of the same
quantum state.

The difference in computational power of a qubit over a bit is hence much more subtle
and is partially due to the possibility that the complex-valued coefficients can interfere,
something that is not possible for classical bits. An operation that exemplifies quantum
interference is the Hadamard gate H. The Hadamard operation transforms qubit states
as follows

H |0⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ = |+⟩ , (2.2)

H |1⟩ = 1√
2
|0⟩ − 1√

2
|1⟩ = |−⟩ . (2.3)

5



CHAPTER 2. FAULT-TOLERANT QUANTUM COMPUTING

If we begin initially in the equal superposition state |ψ⟩ = (|0⟩+ |1⟩)/
√
2 and then apply

a Hadamard operation to it, we obtain

H |ψ⟩ =
(
1

2
+

1

2

)
|0⟩+

(
1

2
− 1

2

)
|1⟩ = |0⟩ , (2.4)

due to the cancellation of the |1⟩ term, an example of destructive interference.
Another key ingredient that distinguishes quantum computation from classical com-

putation is entanglement, a form of quantum correlation that arises in multi-qubit
superposition states without a classical counterpart. To illustrate this, let us consider the
so-called Bell state |Φ+⟩ defined as∣∣Φ+

〉
=

1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩). (2.5)

Measuring the first qubit, the outcome is 0 or 1 with equal probability. However, the
result of the measurement determines the state of the second qubit, and the measurement
outcome of it will be perfectly correlated with the measurement result of the first qubit.
On the level of the measurement statistics, one obtains the classical bit string 00 or 11
with equal probability. Yet, these correlations alone do not fully capture the essence of
entanglement. A classical system could mimic the same statistics by randomly selecting 0
or 1 and preparing either |0⟩ |0⟩ or |1⟩ |1⟩ accordingly. What distinguishes entanglement
from mere correlation is its robustness against local operations such as the Hadamard
operation. To see this, consider applying the Hadamard operation to both qubits before
measuring them. A quick calculation shows that the Bell state |Φ+⟩ remains unchanged
under the application of the Hadamard operations as the anti-correlation terms |0⟩ |1⟩
and |1⟩ |0⟩ are canceled by interference effects. This cancellation, however, is not possible
if the Hadarmard operation is applied to one of the non-superposition states |0⟩ |0⟩ or
|1⟩ |1⟩ such that the measurement outcome of the first and second qubit become perfectly
uncorrelated [93].

The quantum mechanical concepts of superposition and entanglement thus can be
viewed as the origin of the separation of computational power of qubits and classical bits,
as they are impossible to reproduce efficiently with classical bits alone. Unfortunately,
harnessing this separation in computational power into useful quantum algorithms appears
to be a highly nontrivial task. This might come as a surprise, especially considering the
common misconception that superposition enables quantum computers to perform an
exponentially large number of operations in parallel. In fact, while superposition does
allow a quantum system to represent all possible solutions to a problem simultaneously,
valid and invalid ones, this does not mean that a quantum computer can simply evaluate all
solutions at once to output the desired answer. This oversimplification completely ignores
the role of quantum interference in quantum information processing. Instead, designing
quantum algorithms should be viewed as the intricate task of steering constructive and
destructive interference by quantum operations in such a way that the measurement of
the quantum state at the end of the algorithm deterministically yields the correct solution.
A weaker statement of the above could be that the role of the algorithm is to amplify the
probability of obtaining the correct solution while suppressing the likelihood of wrong
solutions.

In the following, we provide a brief overview of quantum operations.
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2.1. FUNDAMENTALS OF QUANTUM COMPUTING

2.1 Fundamentals of Quantum Computing

Running a quantum algorithm, and thus performing quantum information processing,
requires a set of operations executed in a particular order that will determine the output
of the algorithm. This set of operations must be general enough to be able to reach any
state with arbitrary precision and is called universal if that is the case. Surprisingly,
even though the coefficients ci of a quantum state can take arbitrary complex values, a
finite set of operations suffices. This celebrated result is known as the Solovay-Kitaev
theorem [94, 95] that states that given a universal set of operations G, there is a finite
sequence of operations S of length O(logc(1/ϵ)) that can be found efficiently such that S
approximates an arbitrary unitary U ∈ SU(d) with accuracy ϵ > 0 in the operator norm
with constant c ≈ 3.97. There are several universal gate sets, and we will focus on a
particular one commonly referred to as “Clifford + T”. This set consists of the controlled-
NOT (CNOT or CX) gate, the phase gate S, the previously discussed Hadamard gate
H, and the π/8-phase gate T . We will define the notion of Clifford gates more precisely
below.

2.1.1 Pauli group and Heisenberg representation

Consider a quantum computer, that is, a quantum system, in the state N |ψ⟩, to which a
unitary operation U is applied, where N is another operation we have previously applied.
Then the state of the system is described by

UN |ψ⟩ = UNU†U |ψ⟩ , (2.6)

that is, the operator UNU† now acts on the (transformed) system as N did before
applying U . As a result, instead of considering how the state vector |ψ⟩ evolves through
the applications of arbitrary operations U , one might equivalently track the evolution

N → UNU†,

for a sufficiently large set of operators {N}. Since the evolution of quantum systems is
linear, it is sufficient to follow a set of operators that spans the space of linear operators
for the Hilbert space H in which |ψ⟩ would evolve, i.e., |ψ⟩ ∈ H.

To this end, let us introduce the set of Hermitian and unitary operations that can be
represented as 2× 2 matrices:

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, (2.7)

where X, Y , and Z are collectively known as the Pauli matrices. Importantly, the matrices
in Eq. (2.7) form a basis for the space C2×2, and thus can be used to describe any operation
on a single qubit. Let us also define an n-qubit Pauli operator P = αPn, where Pn is
the n-fold tensor product Pn ∈ {I,X, Y, Z}⊗n, and α ∈ {±1,±i} is a coefficient. We will
often refer to the n-qubit Pauli operator Pn as a Pauli string and write it by omitting the
tensor product, e.g., X⊗Z⊗Z⊗X is represented as XZZX. The set of all n-qubit Pauli
operators forms the n-qubit Pauli group Pn, and, as in the single-qubit case, the elements
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of Pn form a basis for C2n×2n . A convenient basis is {X1, . . . , Xn, Z1, . . . , Zn} where Xi

(Zi) denote the Pauli X (Z) acting on the ith qubit and trivially elsewhere. Therefore, to
completely specify a general operator on C2n×2n we only need to track the evolution of
2n single-qubit operators. Since the single-qubit Pauli matrices anti-commute with each
other, two n-qubit Pauli operators anti-commute only if an odd number of their tensor
factors anti-commute. We will refer to the set of operators {X1, . . . , Xn, Z1, . . . , Zn} as
logical operators, a term that will be justified in a later section. We denote by Xi and Zi

the operators obtained from transformations of Xi and Zi, respectively.
Within this framework, unitary operators U that map Pauli operators to Pauli operators

are elements of the Clifford group, that is, U is Clifford if UPU† ∈ Pn, ∀P ∈ Pn. The
CX conjugates the Pauli X and Z operators as follows

CX : XI → XX, IX → IX, ZI → ZI, IZ → ZZ. (2.8)

Furthermore, the phase gate S maps X → Y and Z → Z under conjugation, while the
H gate maps X → Z and Z → X under conjugation. As expected, the T gate is not a
Clifford gate. It is commonly represented in the computational basis as

T =
√
S =

[
1 0
0 eiπ/4

]
, (2.9)

and, for example, conjugates the Pauli X operator as TXT † = cos(π/4)X + sin(π/4)Y /∈
P1. In the following, we will also make use of the controlled-Z (CZ) gate that acts
similarly to the CX gate up to a local Hadamard gate, that is, the CZ gate maps

XI → XZ, IX → ZX, ZI → ZI, IZ → IZ, (2.10)

under conjugation.

2.1.2 Stabilizer circuits and measurements

For some quantum circuits, we do not need to follow the evolution of all 2n Pauli operators.
This is the case if some of the circuit inputs are fixed to be +1 eigenstates of elements
of the Pauli group. The set of such operators constrains the state of some qubits and is
closed under multiplication. This set of operators defines the stabilizer group S as

S = {S ∈ Pn | S |ψ⟩ = |ψ⟩} , (2.11)

which must hold for all valid input states |ψ⟩. We will return in more detail to the
stabilizer group when discussing quantum error-correcting codes in Section 2.4. For now,
we will use it to outline an approach that incorporates measurements into the Heisenberg
representation of quantum computing.

To this end, let us recall how the measurement of an observable A with eigenvalues
±1 changes the quantum state |ψ⟩ being measured. The measurement is described by
two orthogonal projectors

P± =
1

2
(I ±A) , (2.12)
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a

|ψ⟩ A

|+⟩
|±⟩

b

|ψ⟩

|+⟩
|±⟩

Figure 2.1: a Quantum circuit for the measurement of an observable A with eigenvalues
±1 by an ancilla. The circuit performs a controlled-A gate between the n qubit system
and an ancilla initially prepared in the state |+⟩ and measures the ancilla in the X basis.
b Circuit for measuring A = ZZ using CZ gates.

where I is the identity operator on the space of the n-qubit state |ψ⟩. One can verify that
P± are projectors, satisfying P 2

± = P±, and that they are orthogonal, meaning P±P∓ = 0.
The post-measurement state |ψ±⟩ = 1

2 (I ± A) |ψ⟩ is projected into an eigenstate of A
with eigenvalue ±1, depending on the measurement outcome. Such an observable A can
be measured using an ancilla system. To achieve this, one applies a controlled-A gate
between the n-qubit system and a single ancilla qubit initially prepared in the |+⟩ state.
Then, the ancilla is measured in the X basis; see also Figure 2.1a. One can verify that
this circuit effectively measures the observable A through the measurement of the ancilla.
To see this, note that the ancilla state is initialized in |+⟩, such that the stabilizer group
is generated by a single element: S = ⟨S1 = X3⟩, where ⟨·⟩ denotes the set of operators
that generate S. After applying the controlled-A operation, this stabilizer is updated
according to the Heisenberg picture: X3 7→ X3A. Since S1 commutes with the X-basis
measurement of the ancilla, the measurement outcome corresponds to the eigenvalue of A
with respect to |ψ⟩.

Before continuing, let us consider a concrete example: the measurement of A = ZZ;
see also Figure 2.1b. For a general two-qubit state |ψ⟩ =

∑
i,j∈{0,1} cij |i j⟩, the post-

measurement state is∣∣ψ±〉 =
1

2
(I ± ZZ) |ψ⟩ =

{
1
2 [c00 |00⟩+ c11 |11⟩] , m = +1,
1
2 [c01 |01⟩+ c10 |10⟩] , m = −1,

(2.13)

where m = ±1 denotes the measurement outcome of the ancilla qubit. In this example,
the measurement projects the state into one of two subspaces: the even-parity subspace
(⟨ZZ⟩ = 1) or the odd-parity subspace (⟨ZZ⟩ = −1). This observation is noteworthy, as
it is a crucial component in quantum error correction with stabilizer codes, which will be
described in Section 2.4.2 — it underpins the discretization of errors.

The example above does not capture the full picture — more generally, a measurement
may not commute with all elements of the stabilizer group. We will see an example of
this below. To update operators in the Heisenberg picture after measuring an observable
M ∈ Pn, apply the following rules [96]. First, identify an element N ∈ S that anti-
commutes with M . Remove N from the stabilizer group and replace it with M in the
updated stabilizer group S ′. Then, for each remaining S ∈ S \ {N}, add NS to S ′ if S

9
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anti-commutes with M , and add S unchanged otherwise. Apply the same procedure to
the logical operators Xj and Zj being evolved in the Heisenberg representation. This
update ensures that the post-measurement state lies in the +1 (or −1) eigenspace of M ,
consistent with the observed measurement outcome.

Importantly, as long as a quantum circuit consists only of gates from the Clifford
group, together with initialization and measurement in the Pauli basis, the circuit can
be efficiently simulated on a classical computer. This result is known as the Gottesman-
Knill theorem [96]. It is the foundational reason why we can simulate the behavior
of large quantum error-correcting codes on classical hardware — enabling the efficient
benchmarking of codes such as those studied in Paper VI, Paper VII, Paper VIII,
and Paper IX.

2.2 Measurement-based Quantum Computing

As an alternative to the gate-based or circuit-based model of quantum computation [97]
described above, the measurement-based approach of quantum computing was proposed in
the early 2000s [98–101]. While different variants of this model of quantum computation
exist, we will restrict the discussion here to the graph state model and note that all
variants can be unified [102]. In the graph state or cluster state model, one begins with a
sufficiently large resource state and performs adaptive single-qubit measurements. The
adaptivity in the measurement bases is based upon the fact that earlier measurement
outcomes will influence the measurement bases at later stages in the computation. In
comparison to gate-based computation, measurement-based quantum computing (MBQC)
is often thought of as trading space for time, as it only requires shallow entangling
circuits but resource states consisting of a large number of qubits. However, this is
only partially correct, as there is no requirement for the full cluster state to exist before
the computation begins, and it is sufficient for the cluster state to be extended while
the computation proceeds. Furthermore, we note that one might argue that if one is
concerned with fault-tolerant quantum computing, modern computation schemes employ
the measurement-based approach of quantum computing in practice [103].

2.2.1 Cluster States and Measurements

We will begin with the general definition of a graph state. To this end, recall that a graph
G = (V,E) consists of a set of vertices V and edges E between pairs of vertices. If one
refers to a graph state, one typically considers that each vertex of G represents a qubit
initialized in the state |+⟩ and each edge (v1, v2) ∈ E corresponds to a CZ(v1, v2) gate
applied between qubits v1 and v2. The graph state is then described by the state vector
|G⟩ given by

|G⟩ =
∏

(v1,v2)∈E

CZ(v1, v2) |+⟩⊗|V |
, (2.14)
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where |V | is the number of vertices in the graph. Equivalently, we can describe the graph
state in terms of its stabilizers, that is, for every qubit v ∈ V , there is a stabilizer

Sv = Xv

∏
u∈N(v)

Zu, (2.15)

where N(v) is the set of neighboring qubits of v. It is easy to show that all stabilizers
commute and that they are indeed stabilizers of the state |G⟩.

The Heisenberg representation is convenient for describing how measurements in the
Pauli basis affect the graph state. Let us illustrate this based on a small example, the
five-qubit star graph given by the graph and stabilizers

1

2 3

4

5G = , S = ⟨X1Z5, X2Z5, X3Z5, X4Z5, Z1Z2Z3Z4X5⟩. (2.16)

Measuring qubit 5 with outcome m
(5)
P ∈ {±1} with P ∈ {X,Y, Z} produces the stabilizer

groups

m
(5)
X : S = ⟨m(5)

X X5, X1X2, X1X3, X1X4,m
(5)
X Z1Z2Z3Z4X5⟩, (2.17)

m
(5)
Y : S = ⟨m(5)

Y Y5, X1X2, X1X3, X1X4,m
(5)
Y Z1Z2Z3Z4Y5⟩, (2.18)

m
(5)
Z : S = ⟨m(5)

Z Z5,m
(5)
Z X1Z5,m

(5)
Z X2Z5,m

(5)
Z X3Z5,m

(5)
Z X4Z5,m

(5)
Z Z1Z2Z3Z4Z5⟩.

(2.19)

Thus, ignoring the measurement outcome, a Z measurement effectively “deletes” the
measured qubit. This is not surprising, as after all, the measurement commutes with the
entangling circuit of the graph state. An X measurement creates a stabilizer group that
can be separated into generators consisting solely of Pauli X and Z operators, respectively.
This will be an important detail when we discuss fault-tolerant graph states in the later
sections of this thesis.

2.2.2 The teleportation primitive

In the following, we discuss briefly an important underlying idea of MBQC, that is, the
one-bit teleportation circuit, see also Figure 2.2a. This circuit consists of two input qubit
states, the first one prepared in an arbitrary state |ψ⟩ and the second one prepared in
|+⟩. The states are entangled through the application of the CZ gate. Finally, upon
measurement of the first qubit in the Pauli X basis, the state of the second qubit
conditioned on the measurement outcome m1 is Xm1H |ψ⟩. Thus, up to local Clifford
operations, the state of the first qubit has been teleported onto the second qubit. Note
that a measurement in the Z basis would disentangle the qubits, and the second qubit
would always be in the state |+⟩ independent of the measurement outcome. The circuit
can be slightly generalized by considering the following modification.

Instead of preparing the second qubit in the state |+⟩, prepare the state P (φ) |+⟩ =
(|0⟩+ eiφ |1⟩)/

√
2, with P (φ) the arbitrary phase gate. Then, the output of the one-bit
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a

X|ψ⟩ m1

P (φ) |+⟩ P (φ)Xm1H |ψ⟩
=

b
Xφ|ψ⟩ m1

|+⟩ P (φ)Xm1H |ψ⟩

Figure 2.2: The one-bit teleportation primitive. The left-hand side of the equality shows
how to teleport an arbitrary phase gate P (φ) onto the input state |ψ⟩ by preparing the
second qubit in the state P (φ) |+⟩. The right-hand side shows an equivalent circuit that
only requires preparation of the state |+⟩ and instead requires measurement of the first
qubit in the rotated basis P (φ)XP †(φ).

teleportation circuit is modified, and one obtains P (φ)Xm1H |ψ⟩ conditioned on the
measurement outcome. Importantly, this means that even if we are unable to perform
the phase gate P (φ), as long as we are able to prepare the state (|0⟩+ eiφ |1⟩)/

√
2, we

can apply the gate to state |ψ⟩ by performing the teleportation circuit and teleporting
the gate P (φ) onto it. This is also known as gate-teleportation, see Refs [16, 100] for
generalizations. Note that for φ = π/4 one realizes the non-Clifford T gate, see Eq. (2.9).

Lastly, let us mention that if one cannot prepare the initial state P (φ) |+⟩, it is possible
to derive an equivalent circuit that prepares the second qubit in the state |+⟩ and measures
the first qubit in the rotated basis Xφ = P (φ)XP †(φ), see also Figure 2.2b. Thus, one
can defer the choice of which gate should be applied until a basis for the destructive
measurement is chosen and the measurement is performed. By concatenating multiple
one-bit teleportation circuits, one can achieve arbitrary single-qubit unitary operations
even if one is restricted to a finite set of measurement angles φ, see also Figure 2.3 for a
simplified example.

a

|ψ⟩ |+⟩ |+⟩ . . .

b

m1 Xm1H|ψ⟩
c

m1 m2 Xm2Zm1 |ψ⟩

Figure 2.3: Illustration of measurement-based quantum computing. A five-qubit cluster
state is shown, with qubits (nodes) entangled as indicated by edges. Measurement proceeds
left to right, with measured qubits shown in blue. a The left-most qubit is initialized
in the state |ψ⟩; others are in |+⟩. b Measuring the first qubit in the X basis teleports
|ψ⟩ one node right, up to a Hadamard gate and a Pauli correction Xm1 . c Measuring
the next qubit in the X basis further teleports the state, resulting in Xm2Zm1 |ψ⟩ on the
third qubit.
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2.2.3 Measurement-induced entanglement

A key building block for understanding MBQC is what we refer to as the measurement-
induced entanglement primitive. This protocol enables the entanglement of two information-
carrying qubits via intermediate measurements, without requiring direct interaction
between them. A prominent instance of this primitive implements the CZ gate, as
illustrated in Figure 2.4a.

Using the rules of Heisenberg operator evolution, one can verify that the equivalent
gate-based circuit shown in Figure 2.4b realizes the same conjugation of logical operators
as a controlled-phase gate acting between |ψ1⟩ and |ψ4⟩. This equivalence is depicted in
Figure 2.4c.

Combined with the teleportation primitive, measurement-induced entanglement suffices
to perform arbitrary quantum computation on a two-dimensional graph state. We will
return later to the requirements for universal and fault-tolerant quantum computation
within this model. However, it is worth emphasizing here that this entangling operation
plays a foundational role in fault-tolerant quantum computing more broadly, even outside
the MBQC formalism. In particular, this primitive underlies the realization of the logical
CX through lattice surgery in the surface code [104], and it generalizes naturally to the
context of quantum low-density parity-check (qLDPC) codes through recent developments
in generalized lattice surgery [34, 36, 37].

a b c

X

X

|ψ1⟩

|+⟩

|+⟩

|ψ4⟩

|ψ1⟩

|+⟩

|+⟩

|ψ4⟩

X1 = X1 → X1Z4

Z1 = Z1 → Z1

X4 = X4 → Z1X4

Z4 = Z4 → Z4

Figure 2.4: a Cluster state representation of the remote entanglement primitive. b The
remote entanglement primitive from the gate-based view consists of a low-depth circuit
and measurement of the central qubits in the X basis. c Evolution of the unmeasured
qubits in the Heisenberg picture.
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2.3 Classical Error Correction

Classical error correction addresses the problem of transmitting messages through a noisy
channel. Typically, a message consists of a sequence of bits, known as a bit string, which
can also be referred to as a word in the context of information processing. Each element
of a bit string belongs to the finite field GF(2), commonly denoted as F2, containing the
elements 0 and 1. Consequently, a bit string of length n can be viewed as a vector in the
vector space Fn

2 .
When Alice wants to communicate with Bob, she sends a message u, a bit string,

through the channel. Bob then receives the message, which is called the received vector
and denoted by v. In the ideal case of a noiseless channel, Bob receives exactly the
message Alice sent, that is, u = v. However, in the general case where noise is present,
the message is corrupted during transmission. The error e that occurs during this process
is defined as the difference between the sent and received messages:

e = u− v. (2.20)

It is crucial to note that the error vector e is unknown to both Alice and Bob. The goal
of classical error correction is to infer the error e based only on the received vector v, and
to recover the original message u.

2.3.1 Classical Noise Channels

There is a plethora of different ways a noisy channel may act upon the bit string u. We
will focus on the three most relevant ones for this thesis, which share a common feature,
namely, that they act on each bit in the bit string individually. We also show a pictorial
representation of them in Figure 2.5.

The erasure channel. The erasure channel can be considered the simplest form of a
noisy channel. Each bit in a bit string is erased with a certain probability pe. An erasure
is typically represented by replacing the binary value with a “?”, indicating complete
uncertainty about the value of that bit. Maybe counter-intuitively, an error e due to
an erasure channel is, in many cases, easier to correct than errors stemming from other
channels. Intuitively, the reason is that while for erased bits there is complete uncertainty
about their value, we have precise information about which bits are erased and which
ones are not, and thus, which ones are not to be trusted and which ones can be trusted.

The binary symmetric channel. The binary symmetric channel can be considered
one of the most important models for noisy communication, and we will mostly focus on
this channel. The action of this channel is to flip the value of each transmitted bit with
probability p < 0.5, changing it from 0 to 1 or from 1 to 0, depending on the transmitted
word u. As the name implies, the channel is symmetric with respect to 0 and 1 such that
we can assign a probability to an error e. To this end, it is instructive to define the weight
wt(e) of an error e ∈ Fn

2 as the number of nonzero components of e, also known as the
Hamming weight of e. In the simplest case, if the channel acts identically on all bits, the

14



2.3. CLASSICAL ERROR CORRECTION

probability for a given error e to occur is proportional to pwt(e), making errors of small
weight more probable. This is important as one cannot correct arbitrary errors, and our
goal is to be able to correct errors that only affect a small fraction of components of v.

The additive white Gaussian noise channel. The additive white Gaussian noise
channel, also AWGN channel, describes a basic model that aims to model various random
processes in nature and is particularly useful for satellite-based communication, for
example. It is distinct from the erasure and the binary symmetric channel, as this channel
considers a continuous type of noise in comparison to the previously considered discrete
channels. The name implies specific characteristics, that is,

• additive — the noise term acts additively to the transmitted signal. For this noise
model, it is common to assume the transmitted bit x to have values ±1 instead of
0/1 such that the noisy “bit” y is obtained as

y = x+ δ, (2.21)

where δ ∈ R is a random variable connected to the noise,

• white — refers to the idea that the power spectral density is uniform across a
frequency range, as this is a noise model relevant for wireless communication,

• Gaussian — the noise, i.e., the random variable δ ∼ N (µ, σ2), follows a Gaussian
distribution characterized by a mean µ and variance σ2.

In practice, the received vector y is usually quantized, and the magnitude of the elements
of y is used as soft-information to infer the send message x. This quantization allows
one to treat this channel as a binary symmetric channel, but with a varying prior from
shot to shot and for each received bit. Thus, for the following discussion, we restrict our
attention to discrete noise channels. However, the definitions and techniques introduced
here can be naturally extended to the continuous setting.

Erasure Channel

0

1

0

1

?

1− pe

1− pe

pe

pe

Binary Symmetric

0

1

0

1

1− p

1− p

p

p

AWGN

+1

−1

N (0, σ2)

Figure 2.5: Pictorial representation of three different classical noise channels, from left to
right, the erasure channel, the binary symmetric channel, and the additive white Gaussian
noise channel.
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2.3.2 Fundamentals of Error-Correcting Codes

All these channels effectively specify a set of errors E. We say that with respect to E two
words u1 and u2 are distinguishable if and only if

u1 + e1 ̸= u2 + e2, ∀e1, e2 ∈ E. (2.22)

Clearly, for bit strings of length n not all words, that is, all elements of Fn
2 , can be

distinguished if E is nontrivial. Instead, we should restrict to a subset C of words from
Fn
2 . The subset C then is an error-correcting code of length n and the elements of C are

called code words. If the size of C is |C| = 2k then we say that C encodes k (logical)
bits. A set of errors E is correctable by C if all pairwise combinations of code words are
distinguishable with respect to E. Suppose E(t) contains errors of bounded weight, that
is, wt(e) ≤ t, ∀e ∈ E. If C corrects E(t) but does not correct E(t+ 1) then we say that
C is a t-error-correcting code.

It is more common, however, to characterize C by its distance d(C). The distance of
two code words c1 and c2 is defined as d(c1, c2) = wt(c1 − c2). The code distance d(C)
is the minimum distance between any pair of code words, that is,

d(C) = min
c1,c2∈C,c1 ̸=c2

d(c1, c2) = min
c1,c2∈C,c1 ̸=c2

wt(c1 − c2). (2.23)

A code C is t-error-correcting if and only if its minimum distance d satisfies d ≥ 2t+ 1.
This follows because if two distinct code words were indistinguishable by errors of weight
at most t, then the error difference would have weight at most 2t, contradicting the
definition of the distance. For a code C of length n that encodes k (logical) bits with
distance d, C is typically denoted as an [n, k, d] code.

2.3.3 Linear Block Codes

There are many classes of codes, but we will focus on linear (block) codes. These codes
have certain properties that make them convenient and extendable to quantum error-
correcting codes. A linear [n, k, d] code is a k-dimensional subspace C of Fn

2 with distance
d = minc∈C/{0} wt(c). The code C can be efficiently specified by a full-rank1 (n− k)× n
parity-check matrix H over F2, that is,

C = {c ∈ Fn
2 | Hc = 0} , (2.24)

where we assume that any vector is a column vector. The parity-check matrix, therefore,
identifies correctable errors independent of the transmitted code word, i.e., H(c1 + e) =
H(c2 + e) = He. The product He is referred to as the syndrome s and

s = He, (2.25)

is the syndrome equation.

1H doesn’t need to be full rank; redundant parity checks are allowed and define the same code.
However, there always exists a full-rank matrix H̃ that specifies the same code. Nevertheless, including
redundant checks can be relevant in certain settings, for example, in the classical theory of locally testable
codes [105], or in quantum error correction schemes where redundancy enables single-shot decoding [106].
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Through the parity-check matrix, linear codes admit a natural interpretation. To this
end, consider an arbitrary element x ∈ Fn

2 that we write as x1x2 . . . xn. For x to be a
code word as specified by Eq. (2.24), x needs to fulfill a set of constraints specified by the
rows of the parity-check matrix H. These constraints are also sometimes referred to as
parity constraints as all algebra is done over F2 such that a constraint is either fulfilled
(0) or not (1). As there are only n− k constraints for n variables, the linear system of
equations Hx = 0 is under-constrained, leaving k degrees of freedom that are connected
to the k encoded bits. This redundancy is a necessary ingredient for error-correcting
codes, and one can derive criteria for an [n, k, d] code to exist, see, e.g., Refs. [107, 108].

The relation between redundancy and encoded bits becomes even more apparent if
one considers an alternate definition of the code space C. To this end, note that the rows
of H do not form a basis of the code space C but instead its orthogonal complement
C⊥, that is, the subspace of vectors that are orthogonal to all vectors in C. Instead, the
matrix whose rows specify a basis for C is called the generator matrix G ∈ Fk×n

2 and it
satisfies GHT = 0 such that it is determined by H. Given the generator matrix G and
the check matrix H, we can define the n×n invertible encoding matrix V over F2 as [109]

V =

(
G

(H−1)T

)
, (2.26)

where, by slight misuse of notation, we denote by H−1 the right inverse of H over F2 such
that HH−1 = 1n−k, with 1n−k the identity operation on Fn−k

2 . Then, the code space
can be equivalently defined in terms of the encoding matrix as

C =
{
c = (b : 0n−k)

TV | b ∈ Fk
2

}
, (2.27)

where the notation (a : b) denotes the concatenation of a followed by b as column vectors.
The representation of the code space through the encoding matrix is rather uncommon,
however, it is beneficial to understand the connection between error-correcting codes and
quantum stabilizer codes. For this note that for a noisy code word v = c+e resulting from
the binary symmetric channel, we can use the inverse encoding matrix V −1 to decompose

v into the syndrome s ∈ F(n−k)
2 and a logical error ℓ ∈ Fk

2 as eTV −1 = (ℓ : s). The reason
that both the logical error ℓ and the syndrome s appear here is that an uncorrectable
error from the set E(t+ 1) typically will have the same syndrome as a correctable error
from E(t). As the encoding matrix is invertible, opposed to the parity-check matrix H,
the logical error ℓ encodes the additional information that is not contained in s that is
necessary to reconstruct e.

We will delay a detailed discussion on decoding algorithms that can be used to obtain
an estimate of the error e until Section 2.6. Here, we simply note that a key advantage
of linear codes is that many of them can be constructed such that their structure allows
one to efficiently infer the error from the syndrome. An instructive example for this is
the [7, 4, 3] code, also known as the Hamming code, that does not require a dedicated
decoding algorithm in the conventional sense. The parity-check matrix of the Hamming
code is given by

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

. (2.28)
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As the columns are the binary representation of the numbers from one to seven, the
syndrome s = s1s2s3 directly gives the error location in binary representation (for a single
error).

2.3.4 Tanner graphs

The Tanner graph is a useful tool for visualizing the structure of the parity-check matrix
H. To this end, one can associate H with the biadjacency matrix of a bipartite graph
G = (Vv ∪Vc, E) consisting of variable nodes Vv, check nodes Vc, and edges E between Vv
and Vc. In particular, there is an edge (vi, cj) ∈ E between a variable node vi ∈ Vv and a
check node cj ∈ Vc if and only if H[j, i] = 1, where H[j, i] denotes the jth row and ith

column of the matrix H. As the variable nodes correspond to the bits of the linear codes,
we call them bit nodes synonymously. In Figure 2.6 we show the Tanner graph of the
Hamming code defined in Eq. (2.28). In this representation, we typically represent bit
nodes as circle nodes and check nodes as squares (or boxes). As Tanner graphs contain
the structure of the parity-check matrix, they are incredibly useful for the formulation of
decoding algorithms. They can be extended to the case of quantum codes, and they play
an important role in fault-tolerant measurement-based quantum computing as well.

v0 v1 v2 v3 v4 v5 v6

c0 c1 c2

Figure 2.6: Tanner graph of the [7, 4, 3] Hamming code defined in Eq. (2.28). Variable
nodes vj are represented as circles and check nodes ci as squares.

2.4 Quantum Error Correction

The role of quantum error correction is to protect quantum information from noise.
However, this task is significantly more intricate than its classical counterpart. For some
time, it was believed that quantum error correction might be impossible due to the
continuous nature of quantum errors, reminiscent of error accumulation in classical analog
computing. Fortunately, this pessimism was misplaced. As is often the case in science,
the word “impossible” was eventually replaced by the less daunting “difficult.”

In 1995, Peter Shor [110], and independently, Andrew Steane [111, 112] demonstrated
that it is possible to measure a carefully chosen set of observables that detect the presence
of errors without disturbing the encoded quantum information. These measurements not
only reveal whether an error has occurred, but also discretize the noise: they project the
state into one of several orthogonal subspaces, effectively collapsing a continuous error
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into a discrete one. Importantly, these observables do not distinguish between different
logical states, but only between error-free and erroneous subspaces. One can then use
measurement outcomes to infer which kind of error has occurred. It turns out that many
tools of classical coding theory can be applied from here.

2.4.1 Noise channels

As in the classical case, designing quantum error-correcting codes requires choosing a
noise model that reflects the types of errors the code is meant to protect against. A
physically motivated example is the single-qubit depolarizing channel, defined as

E1(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ), (2.29)

where ρ is the density operator of the quantum system. This channel leaves the state
unchanged with probability 1− p, and applies a random single-qubit Pauli error X, Y , or
Z with probability p/3. It captures decoherence due to independent noise on each qubit.

However, this model is typically insufficient for describing realistic noise in quantum
circuits. Two-qubit gates, such as the controlled-NOT (CX) gate, often introduce
correlated noise. Such effects can be modeled using the two-qubit depolarizing channel,

E2(ρ) = (1− p)ρ+
p

15

∑
E∈P̃2/{II}

EρE†, (2.30)

where P̃2 denotes the effective two-qubit Pauli group P2/{±1,±i}.
In circuit-level noise models, noisy single-qubit gates are typically modeled as the ideal

gate followed by the single-qubit depolarizing channel (2.29), and noisy two-qubit gates
as the ideal gate followed by the two-qubit depolarizing channel (2.30).

Although such discrete noise models may appear overly simplistic — given that
quantum systems evolve continuously — the act of measurement discretizes this evolution
in a physically meaningful way. To understand this, consider again the Bell state (2.5)
|Φ+⟩ = (|00⟩+ |11⟩)/

√
2. Suppose the first qubit undergoes a small rotation generated by

the Pauli X operator, leading to the evolved state

exp(iδX1t/2)
∣∣Φ+

〉
= cos(δt)I1

∣∣Φ+
〉
+ i sin(δt)X1

∣∣Φ+
〉
. (2.31)

Now, imagine measuring the ZZ parity as described in Section 2.1.2. If δt ≪ 1, with
probability cos2(δt) close to one, we obtain the outcome +1, and the state collapses back
to the original Bell state. With small probability sin2(δt), we instead obtain the outcome
−1, projecting the state onto X1 |Φ+⟩, which is equivalent to a discrete Pauli error on the
first qubit.

This example illustrates a key point: even continuous errors become discrete upon
measurement of appropriate observables that anti-commute with the (generator of the)
error. More generally, because any quantum operation can be decomposed into a super-
position of Pauli operators, correcting all Pauli errors of weight less than t ensures the
correction of arbitrary errors affecting at most t qubits.
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2.4.2 Stabilizer codes

Quantum stabilizer codes [113] can be viewed as the quantum analog of classical linear
block codes. Abstractly, a stabilizer code is defined by an Abelian subgroup S of the
n-qubit Pauli group Pn, with the condition that −I /∈ S. The group S is called the
stabilizer group, and its elements are referred to as stabilizers. The code space is defined
as the joint +1-eigenspace of all elements in S,

C = {|ψ⟩ | S |ψ⟩ = |ψ⟩ , ∀S ∈ S} . (2.32)

The stabilizer group is typically specified by a set of independent generators S1, S2, . . . , Sr ∈
Pn, such that S = ⟨S1, S2, . . . , Sr⟩. Each generator defines a constraint that any valid code
state must satisfy. If the stabilizer group has r independent generators, the code encodes
k = n − r logical qubits into n physical qubits. This mirrors the role of parity-check
constraints in classical linear codes, a connection that will be made explicit later.

Having defined the stabilizer group and its generators, we now turn to the logical
operators of the code. Logical operators correspond to symmetries of the code space that
preserve the code space but act non-trivially on the logical qubits. The logical operators
L are the set of operators that commute with S but are themselves not elements of S, or
more formally, the logical operators are given by

L ∼= N (S)/S = {L ∈ Pn | SL = LS ∀S ∈ S}/S, (2.33)

where we write N (S) for the normalizer of S in Pn.

The distance d of the code is defined as the minimum weight of a non-trivial logical
operator, i.e., the smallest number of qubits on which such an operator acts non-trivially.
We use the notation [[n, k, d]] to refer to a stabilizer code with n qubits, k encoded logical
qubits, and distance d. For a code encoding k logical qubits, there will be 2k logical
operators, an encoded Pauli Zj and Xj for each logical qubit. As the minimum weight of
Zj and Xj are not necessarily equal, one also encounters the notation [[n, k, dX , dZ ]] for
stabilizer codes.

In the absence of errors, measuring the generators of the stabilizer group S will
deterministically have outcome +1. This is because all code states |ψ⟩ ∈ C are stabilized
by every Si ∈ S, i.e., Si |ψ⟩ = |ψ⟩. However, in the presence of errors, any generator
Si that anti-commutes with an error E ∈ Pn results in a measurement outcome −1, as
SiE |ψ⟩ = −Egi |ψi⟩ = −E |ψ⟩. By measuring all generators Si of the stabilizer group,
we obtain a list of measurement outcomes σ(E) known as the syndrome. We typically
view σ(E) as a bit string s ∈ Fn−k

2 that encodes the commutation relations of the errors
with the generators, that is, ESi + (−1)siSiE = 0 and make the dependence of s on the
error E implicit.

We note that the elements of the stabilizer group, together with the logical operators,
do not generate the full Pauli group Pn. As a result, we cannot represent any error E as
a product of a logical operator L ∈ L and a stabilizer S ∈ S, as we could in the classical
case (see the discussion around Eq. (2.27)). This discrepancy arises because Pn contains
4n elements (up to phases), whereas the stabilizer group S contains 2n−k elements and
the logical operators L contain 22k independent elements. Together, S and L contribute
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2n+k elements, leaving the remaining 4n/2n+k = 2n−k elements to be called pure errors
or destabilizers, denoted T . These pure errors are formally defined as

T ∼= N (L)/S. (2.34)

Together with the stabilizers S and logical operators L, the destabilizers T complete the
set of operators that span the full n-qubit Pauli group Pn. Any operator E ∈ Pn can
therefore be represented as

E = TLS, (2.35)

where T ∈ T , L ∈ L, and S ∈ S.
While the notion of pure errors is useful for the optimal decoding of stabilizer codes,

as we will discuss later, their introduction also provides insight into an alternative
characterization of a stabilizer code. Alternatively to Eq. (2.32) a stabilizer code can be
specified through a Clifford transformation V on n qubits such that

C = {|ψ⟩ = V (|φ⟩ ⊗ |0n−k⟩) | |φ⟩ ∈ C2k}, (2.36)

where V is known as the encoding unitary, analogous to the encoding matrix in the
classical linear code definition in Eq. (2.27). Since the encoding matrix is an element
of the Clifford group, it can be implemented using Clifford operations, such as CX, S,
and H, only. This encoding unitary implicitly determines the logical operators, stabilizer
generators, and the generators of the pure errors. These generators are obtained by
conjugating the single-qubit Pauli operators, as follows:

V :


Zj → Zj = V ZjV

†, for j = 1 . . . k,

Xj → Xj = V XjV
†, for j = 1 . . . k,

Zj+k → gj = V Zj+kV
†, for j = 1 . . . n− k,

Xj+k → Tj = V Xj+kV
†, for j = 1 . . . n− k.

(2.37)

Binary symplectic representation. To make the connection between classical linear
codes and stabilizer codes more explicit, we now introduce the binary symplectic represen-
tation due to Ref. [114]. This representation defines a map MatB : Pn → F2n

2 such that a
n-qubit Pauli operator can be written as a vector with elements in F2, that is,

α

n⊗
i=1

XxiZzi → (x1, x2, . . . , xn | z1, z2, . . . , zn). (2.38)

We will typically ignore the phases α ∈ {±1,±i} of elements in the Pauli group. The
reason is that in the context of quantum error correction, we typically identify Pauli
operators that differ only by a phase α, as such phases do not affect the syndrome.
Additionally, whenever the stabilizer group S that specifies the stabilizer code C (2.32)
contains an element Si with phase −1, we can replace Si with −Si without changing
properties of the code. Hence, the phase α is irrelevant for error correction, but it is
relevant for the simulation of Clifford circuits with measurements [96].
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Through the binary symplectic representation, we can specify the stabilizer group
S = ⟨S1, . . . , Sr⟩ that defines a stabilizer code C through Eq. (2.32) by an r × 2n binary
parity-check matrix H where the ith row is MatB(Si). Multiplying two Pauli strings
P1, P2 ∈ Pn corresponds to a simple addition within the binary symplectic representation,
i.e., MatB(P1)+MatB(P2) = MatB(P1P2). P1 and P2 commute if and only if the symplectic
inner product vanishes, i.e., MatB(P1)ΛMatB(P2)

T = 0, where Λ is the symplectic matrix
and given by

Λ =

[
0 1n

1n 0

]
, (2.39)

with 1n the n × n identity matrix. Hence, for S to be Abelian we require that
HΛHT = HXH

T
Z + HZH

T
X = 0 where we used that we can write H = [HX | HZ ].

Similar to the classical case, the rank of the parity-check matrix is related to the number
of encoded logical qubits, that is, it determines the number of independent genera-
tors of S, such that k = n − rank(H). It is instructive to consider the five-qubit
code as an example. The stabilizer group of the five-qubit code can be written as
S = ⟨XZZXI, IXZZX,XIXZZ,ZXIXZ⟩, which has the following binary symplectic
representation

H =


1 0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 0 1 1 0
1 0 1 0 0 0 0 0 1 1
0 1 0 1 0 1 0 0 0 1

 . (2.40)

It can be verified that the five-qubit code has parameters [[5, 1, 3]].

Calderbank-Shor-Steane codes. A particularly important class of stabilizer codes
are Calderbank-Shor-Steane (CSS) codes [111, 112, 115] whose defining property is that
their stabilizer group admits a set of generators S1, S2, . . . , Sr such that they are either
X-type or Z-type, that is, their check matrix H admits a block diagonal structure,

H =

[
HX 0
0 HZ

]
, (2.41)

where HX ∈ Fmx×n
2 and HZ ∈ Fmx×n

2 . This particular structure simplifies the commuta-
tivity condition to

HXH
T
Z = 0 (2.42)

and the number of encoded logical qubits becomes k = n − rank(HX) − rank(HZ).
The additional structure inherent to CSS codes significantly simplifies their construction,
making them a powerful tool in quantum error correction. As a result, many breakthrough
results in the field have been achieved through CSS codes. These results have relied upon
what is today often referred to as the “CSS-to-homology” correspondence, a mathematical
framework that employs chain complexes, objects that are studied in homological algebra,
to represent not only CSS codes but also classical linear codes. This formulation has
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become the modern perspective on (quantum) error correction and is expected to influence
the field further. We will give a brief introduction to this formalism after reviewing how
fault-tolerance properties of CSS stabilizer codes can be lifted to the measurement-based
setting.

2.4.3 Fault-tolerant graph states

We have seen previously that universal quantum computation can be achieved in the
measurement-based model by using a two-dimensional cluster state as a resource. This
model mimics the circuit model in that logical gates are implemented through sequences
of single-qubit measurements. However, to protect such computations against noise, addi-
tional redundancy is required. Unlike in the circuit model, where stabilizer measurements
can be used to identify and correct errors during computation, the measurement-based
approach requires that fault tolerance can be built directly into the resource state. This
raises the question: how can one design such a resource state so that it supports fault-
tolerant quantum computation? One answer is given by the method of foliation, which
produces a fault-tolerant cluster state from any CSS code. This method, due to Bolt et
al. [116], generalizes the construction of Raussendorf et al. [117] for the surface code.

Recall that a CSS code is characterized by two parity-check matrices HZ and HX .
As described in Section 2.3.4, with each of these matrices one can associate a bipartite
graph G = (Vb ∪ Vc, E). We can also associate with such a graph G a graph state or
cluster state by identifying the vertex sets Vb and Vc with code qubits and check qubits,
respectively. The edges E in the graph state indicate between which qubits a CZ gate is
applied, see Section 2.2.1.

Consider the graph state GZ associated with the Z parity-check matrixHZ as described
above. It is straightforward to see that the stabilizers centered on the ancilla qubits of
the graph state can be written as

Scj = Xcj

n⊗
i=1

Z
H[j,i]
bi

, (2.43)

for any cj ∈ Vc and the notation H[j, i] denotes the ith entry in the jth row associated
to the check cj . Thus, upon measurement of the ancilla qubits in the Pauli X basis, the
resulting graph state is an eigenstate of the stabilizer group described by HZ . Importantly,
the graph state GZ is also an eigenstate of the stabilizer group generated by HX . The
reason is that HX and HZ must commute and thus X- and Z-stabilizers must overlap
on an even number of code qubits. As a result, when constructing X-type stabilizers
associated with elements SX from graph state stabilizers of code qubits Sb = Xb⊗a∈N(b)Za,
any ancilla qubit a appears an even number of times. Since logical X operators can be
seen as a special form of X-type stabilizer, the same argument applies to them. Hence,
measurement of the ancilla qubits in the graph state projects the remaining qubits into
the logical dual basis code state of the CSS code described by HX and HZ .

By layering the graph states GZ and GX in an alternating pattern and entangling code
qubits between adjacent layers by CZ gates, one obtains the foliated code, see Figure 2.7
for an example. The foliated code is a fault-tolerant graph state that inherits properties of
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the underlying CSS code and can protect against Z-type errors on code and ancilla qubits.
Within this fault-tolerant graph state, one distinguishes between two types of qubits:
primal and dual qubits. Code qubits in GZ and ancilla qubits in GX are considered primal,
while code qubits in GX and ancilla qubits in GZ are considered dual. This assignment
aligns with the alternating structure of the foliated code and reflects the duality between
X- and Z-type checks. Parity-check operators, also called detectors, can be identified
within the graph state and inferred from sets of single-qubit X measurement outcomes.
The parity of individual detectors yields a syndrome s which can be used together with a
decoder to infer the presence and location of Z errors. We will not reproduce here the
expression for the detectors of the foliated code and instead refer to Ref. [116] for the
original derivation or to Paper IX for a derivation based on chain complexes and the
hypergraph product, which we introduce in the next section.

Lastly, we mention that foliated codes do not belong to the class of stabilizer codes
described in Section 2.4.2, but instead more closely resemble subsystem CSS stabilizer
codes [118]. Furthermore, while we described the foliation of CSS codes, the approach
can be extended to ordinary stabilizer codes, see Ref. [119].

HZ HZ HZHX HX

Figure 2.7: Foliation of the [[4, 1, 2]] CSS code described by check matrices HZ = [1 1 1 1]

and HX =
[
1 1 0 0
0 0 1 1

]
. The fault-tolerant graph state shown contains L = 2 foliation

layers. Gray and red nodes indicate primal and dual qubits, respectively. Highlighted in
blue is a set of X measurement outcomes that yield a detector of the foliated code, that
is, a product of measurement outcomes that is deterministic in the absence of errors.

2.5 Chain Complexes

For a more thorough introduction to chain complexes, we refer the interested reader to
Refs. [21, 120]. For the purpose of this thesis, a chain complex C of length n is defined as
a sequence of n+ 1 F2-vector spaces Ci and n linear maps ∂Ci called boundary operators,

C = {0} ∂C
n+1−→ Cn

∂C
n−→ . . .

∂C
1−→ C0

∂C
0−→ {0}, (2.44)

with the composition of boundary operators fulfilling

∂Ci ∂
C
i+1 = 0. (2.45)
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Here, the spaces Ci always have finite dimension ni, and a basis of Ci can be identified
with Fni

2 . We suppress the superscripts if no distinction is necessary, as well as make
implicit the trivial boundary operators ∂n+1 : {0} → Cn and ∂0 : C0 → {0} that are
treated formally as zero nn × 0 and 0× n0 matrices, respectively.

It is common to refer to elements of the kernel Zi(C) := ker ∂i as i-cycles, and elements
of the image Bi(C) := im ∂i+1 as i-boundaries, and one has the embedding relation

Bi ⊆ Zi ⊆ Ci. (2.46)

The quotient vector space

Hi(C) = Zi/Bi = ker ∂i/ im ∂i+1, (2.47)

is called the ith homology group of C and is a central object of interest for the study of
stabilizer codes through the presented formalism.

Associated with C is also a cochain complex, with coboundary operators δi : Ci → Ci+1

defined as δi = ∂Ti+1. This cochain complex is given by

CT = {0} δ−1

→ C0
δ0→ . . .

δn−1

→ Cn
δn→ {0}, (2.48)

with cohomology groups defined as

Hi := ker δi/ im δi−1. (2.49)

Elements of Zi := ker δi and Bi := im δi−1 are referred to as cocycles and coboundaries,
respectively. Thus, the ith cohomology group of C is defined as

Hi(C) = Zi/Bi = ker δi/ im δi−1 = ker ∂Ti+1/ im ∂Ti , (2.50)

which is similarly important to the ith homology group of C in capturing the essential
features of the underlying structure.

2.5.1 The CSS-to-homomology correspondence

Since the boundary maps of a chain complex C can be identified with matrices over F2,
any length-1 chain complex can be viewed as a classical linear [n, k, d] code by identifying
∂1 = H, where H maps an error vector from the space C1

∼= Fn
2 to the syndrome space

C0
∼= Fr

2 with r ≥ n− k. The codespace, denoted by C, coincides with the first homology
group of C. In other words, for a length-1 chain complex with boundary map ∂1 = H, the
first homology group is given by

H1(C) = kerH/ im ∂2 = kerH/{0}, (2.51)

and the smallest non-trivial weight element of H1(C) determines the distance d.
Notice that the defining property of a chain complex, namely the composition property

of boundary operators in Eq. (2.45), is equivalent to the commutation condition (2.42)
for the check matrices of a CSS code.
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Thus, any CSS code, C, can be represented by a length-2 chain (sub)complex

. . .→ Ci+1
∂i+1−→ Ci

∂i−→ Ci−1 → . . . , (2.52)

where, by convention, ∂i+1 = HT
Z and ∂i = HX . Identifying qubits with the space Ci, the

number of qubits is n = dimCi.
The sets of X and Z logical operators are elements of the groups Hi(C) and Hi(C),

respectively, with the smallest non-trivial weight element defining the distances dX and
dZ , respectively. Intuitively, for a CSS code, a logical Z operator from the group

Hi(C) = kerHX/ imHT
Z , (2.53)

is an element ℓ of Ci that does not produce an X-syndrome (i.e., ℓ ∈ kerHX) and is not
generated by the Z-stabilizers (i.e., ℓ /∈ imHT

Z ).

2.5.2 Quantum codes from classical codes

Why should we explore this abstract formalism for representing a CSS code? To address
this question, we first need to highlight two key points. First, while we can represent any
CSS code as a length-2 chain complex, the reverse is also true: any length-2 chain complex
corresponds to a valid CSS code. This equivalence between chain complexes and CSS
codes forms the foundation for understanding how classical codes can be used to design
quantum codes. Second, constructing good qLDPC codes — stabilizer codes with sparse
check matrices and asymptotically linear parameters — has proven to be significantly more
challenging than in the classical case. For classical linear codes, Gallager demonstrated in
1960 [121, 122] that taking a random sparse parity-check matrix is sufficient to obtain a
good low-density parity-check (LDPC) code with parameters [n,Θ(n),Θ(n)]. However, the
commutation condition for quantum codes prevents a similar straightforward construction.

It was only in 2021, following a series of breakthrough results [22–24, 123], that the
existence of good qLDPC codes was established. These advancements largely rely on
the formalism described here and the development of product constructions for pairs of
chain complexes, while also applying techniques due to Sipser and Spielman [124] for the
explicit construction of good LDPC codes in the classical setting. Interested readers can
refer to Refs. [21, 125], and we now consider a simple example — the hypergraph product
(or homological product) [126, 127] which illustrates how to construct quantum codes
from classical ones. For a generalization to higher-dimensional cases, see Ref. [128].

Hypergraph product codes. Consider two length-1 chain complexes, A : A1
HA−→ A0

and B : B1
HB−→ B0, corresponding to two classical linear codes with parameters [ni, ki, di]

and mi × ni check matrices Hi for i ∈ {A,B}. The hypergraph product code C = A× B
is a length-2 chain complex with boundary operators given by:

∂1 = HX =
(
HA ⊗ 1nB

| 1mA
⊗HB

)
, ∂T2 = HZ =

(
1nA

⊗HB | HA ⊗ 1mB

)
, (2.54)

and spaces given by

C2 = A1 ⊗B1, C1 = A1 ⊗B0 ⊕A0 ⊗B1, C0 = A0 ⊗B0. (2.55)
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The resulting chain complex corresponds to a CSS quantum code with parameters
[[nAmB+mAnB , kAk

T
B+kTAkB ,min(dA, dB , d

T
A, d

T
B)]], where k

T
i and dTi are the parameters

of the transpose codes. We use the convention that d = ∞ if k = 0.
Thus, through this product construction, we can generate quantum codes by combining

classical codes in a structured way that preserves their error-correcting properties while
satisfying the constraints of quantum error correction.

To exemplify this procedure and illustrate the origin of the name, let us consider a
simple example, the product of two classical repetition codes. The length-n repetition
code is a classical code with parameters [n, 1, n], and its codewords are the all-zero and
all-one vectors of length n, that is 0n and 1n, respectively. The (n− 1)× n parity-check
matrix of the code is given by

HR =


1 1

1 1
1 1

. . .

 , (2.56)

where we left the zero entries blank. Then, we define the repetition code length-1 chain
complex

R : R1
HR−→ R0, (2.57)

where R1
∼= Fn

2 represent the n bits and R0
∼= Fn−1

2 represents the n− 1 checks. Recall
that with HR we can associate a bipartite Tanner graph. In this case, this is the line graph,
starting and ending in a variable node. From a graphical perspective, the hypergraph
product can be viewed as the Cartesian product of the Tanner graphs of HA and HB.
There will be four types of nodes: the product of a bit node with another bit node, the
product of a bit and a check, the product of a check and a bit, and the product of two
checks. Visually, we represent the nodes of the different products as

vA × vB : × →

cA × cB : × →

vA × cB : × →

cA × vB : × →

where we have chosen the coloring and shapes according to the classification VA×VB ∼= C2,
VA × CB ⊗ CA × VB ∼= C1, and CA × CB

∼= C0. Recall that by Eq. (2.52), C2 is the
space of Z-syndromes, C1 is the space of qubits, and C0 is the space of X-syndromes.
There is an edge between two nodes (a1, a2) and (b1, b2) in VA ∪ CA × VB ∪ CB if either
(a1, b1) ∈ EA and a2 = b2 or if a1 = b1 and (a2, b2) ∈ EB. The product of two n = 3
repetition codes, with one of them transposed, is shown in Figure 2.8, showing the Tanner
graph of the surface code [129].
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×

Figure 2.8: Hypergraph product of the n = 3 repetition code with its transpose yielding
the surface code with rough edges on the sides and smooth edges on the top and bottom.
The code has parameters [[13, 1, 3]]. Red and blue grid lines correspond to the edges in Z
and X Tanner graphs of the check matrices of HZ and HX , respectively.

2.6 Decoding of Quantum Error-Correcting Codes

The redundancy in (quantum) error-correcting codes yields protection against noise.
However, this protection is usually not autonomous in the sense that some additional
work is required to restore the corrupted code words to the code space. This task is
carried out by a decoding algorithm, commonly referred to as the decoder. We will give
a formal definition of the decoder later on, and for now, describe a decoder, informally,
as an algorithm that takes into account the measured syndrome information, as well
as information about the noise model, to determine a correction that returns the noisy
code word to the code space. The problem that the decoder solves is known as the
decoding problem. Unfortunately, solving the decoding problem exactly turns out to be
an exceptionally hard problem in general — solving the decoding problem for stabilizer
codes, which we will define more concretely later, is #P-complete [130], while the decoding
of classical linear codes is easier but still NP-complete [131]. Hence, solving the decoding
problem is considered (under standard hardness assumptions) intractable in general, and
one can typically only find an approximate solution. As a result, different decoding
algorithms are typically characterized by their accuracy and speed trade-offs.

Access to highly accurate decoders is beneficial as it can lead to reduced hardware
requirements, for example, lower overhead of additional qubits used for redundancy
or less stringent requirements on the physical error rates present in the architecture.
However, fault-tolerant quantum computing will require solving the decoding problem in
real time and thus the decoder must operate at least as fast as the syndrome information
is generated through measurements to prevent the backlog problem [132]. To achieve this,
decoding algorithms with linear or almost-linear complexity in the size of the parity-check
matrix are desirable.
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In practice, decoders will most likely be required to be implemented on specialized
hardware such as FPGAs or ASICs to achieve the necessary speed, especially for qubit
architectures that generate measurements with a high rate such as quantum computers
based on superconducting circuits [133] or integrated photonics [134, 135], likely yielding
one terabit of syndrome information per second [136]. However, fast decoders, especially
all-purpose decoders, are also highly relevant for researchers to study the performance
of quantum error correction protocols numerically. Estimating the performance of a
stabilizer code under a realistic noise model typically requires millions of Monte Carlo
samples to accurately estimate the probability of extremely rare events. Each sample
requires solving the decoding problem for 104 to 105 or more distinct fault locations, that
is, a parity-check matrix with equally many columns.

2.6.1 The decoding problem

We will now define the decoding problem and the condition of success. Quite generally, a
decoder is a map D : {0, 1}r → Pn that, given a list of measurement outcomes, returns
a correction C and is successful in correcting a Pauli error E if CE ∈ S. Typically, in
quantum error correction, the list of measurement outcomes is related to the syndrome
σ(E) of E such that one can alternatively write D(σ(E)) = E/S. In the following,
we will phrase the problem through the binary symplectic representation, which allows
one to reason about the implementation of decoding algorithms much less abstractly.
In particular, we express the Pauli error E as e = ΛMatB(E) where we include the
symplectic matrix into the definition of e such that all products are ordinary products
and not symplectic products. Thus, e = (eZ , eX) where eX , eZ ∈ Fn

2 are the Z and X
components of the error, respectively, and are differently ordered in comparison to the
ordinary representation of a Pauli string. The syndrome equation

s = He, (2.58)

then defines the syndrome s ∈ Fr
2 as in the classical case of linear codes, see also Eq. (2.25),

through the binary representation of the r × 2n parity-check matrix. As He effectively
computes the symplectic inner product of H and e, the ith entry of s, si, determines if E
commutes with the stabilizer generator Si of the code.

In addition to the syndrome, the decoder receives information about the noise model,
typically in the form of error probabilities p ∈ R2n where pi is the probability that the
ith bit of e is flipped. For an independent error model, the probability of an error e for
the prior p is given by a product distribution

Pr(e) =

2n∏
i=1

(1− pi)
1−eipeii =

2n∏
i=1

(1− pi)

2n∏
i=1

(
pi

1− pi

)ei

. (2.59)

The correction c returned by the decoder is valid if H(c + e) = 0, and is successful if
the logical action of c and e is identical, that is, if Lc = Le. Here, L is the binary
representation of the logical operators, usually written as

L =

(
ℓX
ℓZ

)
, (2.60)
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where ℓX and ℓZ are given by Eq. (2.33) via the binary symplectic representation of {Xj}
and {Zj}.

Circuit-level noise. In the related literature, the above definition of the decoding
problem is commonly referred to as the case of perfect syndrome measurements, with
a distinction made for the case of noisy syndrome measurements. Here, we avoid this
distinction, as we believe it is unnecessary and potentially misleading. Rather than
distinguishing at the level of the decoding problem, we argue that the distinction should
be made at the level of the quantum error-correcting code and noise model. That is,
the parity-check matrix H and the logical correlation matrix L should be derived from
the quantum error-correcting (QEC) code in space-time [137–139], rather than from
the instantaneous QEC code defined purely in space. In such a setting, the columns of

H ∈ F|D|×|F |
2 correspond to independent fault mechanisms F , while the rows correspond

to so-called detectors D, which are distinct from the stabilizers of a static QEC code.2

The entry H[j, i] of the parity-check matrix — also known as the detector check matrix —

is 1 if the ith fault mechanism flips the parity of the jth detector. Similarly, L ∈ F|K|×|F |
2

encodes the logical correlations K in space-time, with L[j, i] = 1 indicating that the ith

fault mechanism flips the jth logical correlation.

Importantly, the space-time formulation typically leads to a significantly larger QEC
code than its static counterpart. This increase in size stems primarily from the need to
repeat syndrome measurements over time to maintain fault tolerance against measurement
errors and the additional fault locations in the circuit. Each additional round of syndrome
extraction introduces new fault mechanisms and new detectors into the space-time code,
effectively adding an extra (discrete) temporal dimension to the structure of the code,
see also Section 2.4.3 and Figure 2.7. Thus, a code in space-time can be understood
as an ordinary stabilizer code at a single moment in time, but one that operates in a
higher-dimensional space with a correspondingly increased number of checks and errors.

Therefore, in the following, we will not distinguish between the decoding problem
arising from a code capacity noise model with perfect syndrome measurements and one
due to the more realistic circuit-level noise model, see also Section 2.4. We will instead
emphasize, if necessary, specific features that originate from the space-time formulation
of the decoding problem. However, for most purposes of decoding, a code in space-time
can be regarded as an ordinary, albeit larger, stabilizer code at a single moment in
time. Accordingly, we will use the terms error and fault, as well as check and detector,
interchangeably throughout the text.

We have now seen that the decoding problem in quantum error correction closely
resembles that of classical linear binary codes. This analogy becomes even more evident
when comparing the definitions of the code space via the encoding matrix, see Eq. (2.26)
for classical linear codes and Eq. (2.36) for stabilizer codes. For classical linear codes,
decoding succeeds only if the correction matches the error exactly, that is, e = c. This
ensures that the logical content remains unchanged, as can be seen explicitly by noting
that eV −1 = (ℓ : 0n−k) = cV −1 where V is the encoding matrix as defined in Eq. (2.26).

2A detector is typically understood as a parity constraint on a set of measurement outcomes.
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In contrast, stabilizer codes allow for a more relaxed decoding criterion. As discussed
above, decoding is successful as long as Le = Lc, meaning that the logical prediction of
the error and correction coincide. The vectors e and c may still differ by an element of
the stabilizer group without affecting the encoded information. This becomes particularly
transparent when decomposing the Pauli operators E and C into their logical, destabilizer,
and stabilizer parts, see Eq. (2.35). Specifically, we write E = TELESE and C = TCLCSC .
Successful decoding requires LC = LE , while TC = TE holds by construction for a valid
correction. Any residual difference between SC and SE corresponds to stabilizer elements,
which act trivially on the code space. This logic is also reflected in the action of the
inverse encoding unitary. After applying V † to the noisy encoded state E |ψ⟩, we find:

V †E |ψ⟩ = V †TELESEV (|φ⟩ ⊗ |0n−k⟩) (2.61)

= ℓE |φ⟩ ⊗
n⊗

j=k+1

X
sj−k

j Zj |0n−k⟩ (2.62)

= ℓE |φ⟩ ⊗ |s1, . . . , sn−k⟩ , (2.63)

where ℓE ∈ Pk is the logical operator obtained from V †LEV , compare also Eq. (2.37).

This expression shows that the logical operator ℓE acts on the logical state |φ⟩ ∈ C2k

2 ,
while the stabilizer component determines the syndrome information that is encoded into
the state of n− k additional qubits used for redundancy.

2.6.2 Maximum-likelihood decoding

As the decoding problem for stabilizer codes is not identical to that of classical linear
codes, we must solve a more general task that corresponds to determining the most likely
logical correction, that is, the maximization problem

ℓC = argmax
ℓ∈im(L)

[ ∑
e∈F|F |

2 :Le=ℓ,He=s

Pr(e)
]
= argmax

ℓ∈im(L)

[∑
S∈S

Pr(TsLS)
]
. (2.64)

The obtained logical coset ℓC is, by construction, the most likely logical error Le, such that
a decoder that evaluates Eq. (2.64) is called a maximum-likelihood decoder. Unfortunately,
evaluating Eq. (2.64) is, in general, an extremely hard problem, belonging to the complexity
class of #P-complete problems [130]. Intuitively, the hardness of (naively) evaluating
Eq. (2.64) becomes apparent by recognizing that im(L) contains 2|K| elements and that

additionally exponentially many elements e ∈ F|F |
2 exist. Note that by decomposing the

error as E = TsLS, it is possible to reduce the number of elements in the sum to 2|S|,
reducing the prefactor but retaining the exponential scaling in the size of the code. Some
quantum error correction codes exhibit sufficient structure such that Eq. (2.64) can be
efficiently evaluated [140], or allow approximate evaluations with high accuracy for modest
system sizes [141–143]. Unfortunately, at the time of writing, it is unknown whether there
exist classes of codes for which the maximum-likelihood decoding problem can be solved
(approximately) efficiently under a realistic noise model. In other words, it remains unclear
whether quantum codes in space-time exist that are efficiently (approximately) optimally
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decodable. As a result, the maximum-likelihood decoding problem is typically not solved
directly, even approximately. Instead, the focus is often on solving the minimum-weight
decoding problem.

2.6.3 Minimum-weight decoding

Instead of predicting the most likely logical error, as the maximum-likelihood decoder does,
a minimum-weight decoder predicts the most probable physical error. The correction c
returned by the minimum-weight decoder is obtained through

c = argmax
c̃∈F|F |

2 :Hc̃=s

[
Pr(c̃)

]
, (2.65)

which still is an NP-hard problem [131, 144, 145]. We note that for classical linear codes,
this is the optimal solution.

The difference in accuracy between a maximum-likelihood decoder and a minimum-
weight decoder cannot be easily quantified and depends on various properties of the
decoding problem. However, a common observation is that the difference increases if
the stabilizer group contains many low-weight elements [146, 147], a common feature
of qLDPC codes and quantum codes in space-time. As in the case of the maximum-
likelihood decoding problem, there exist codes with sufficient structure such that the
minimum-weight decoding problem is efficiently solvable.

In many cases, for Eq. (2.65) to be efficiently solvable, it is required that the parity-check
matrix H is sparse, or more specifically, has low column and row weights. If additionally,
H contains no short cycles when viewed as the biadjacency matrix of a bipartite graph,
also known as the decoding graph, then iterative message-passing algorithms are efficient
in approximately solving Eq. (2.65). We will describe this algorithm and the decoding
graph in more detail below.

Before concluding this section, we note a particular relevant structure in H that
allows the problem to be solvable efficiently. Given that the column weight of H is
bounded by two, the minimum-weight perfect matching (MWPM) decoder [148] solves
the minimum-weight decoding problem exactly in polynomial time [149]. Codes, for
which the column weight condition is satisfied, are usually referred to as matchable. An
important example of a matchable code is the two-dimensional toric code [94, 148], also
known as the surface code when embedded into the plane. Surface codes are currently
the gold standard for building a fault-tolerant quantum computer due to a variety of
desirable properties, such as the possibility to realize them in a 2D architecture with
only nearest-neighbor connectivity, a high error-correction threshold, and the existence of
efficient minimum-weight decoders even under realistic circuit-level noise models [150].
Unfortunately, while scalable to achieve arbitrary distance d, surface codes are limited
to encoding a single logical qubit k = 1. That is, when laid out as a two-dimensional
grid of linear size L, the surface code is a quantum error-correcting code with parameters
[[L2, 1, L]]3. The drawback that the surface code can only encode a single logical qubit is
significant, as one requires roughly 1000 physical qubits for each additional surface code
logical qubit [129] for a realistic physical error rate of p = 10−3.

3To be precise, this is the rotated version of the surface code [151].
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Lastly, in light of the discussion on circuit-level noise in Section 2.6.1, it is important to
clarify that matchability is not a property of a code alone, but rather of the combination
of a code and an error model. In particular, under the general depolarizing noise model
introduced in Section 2.4.1, optimal decoding of the surface code is as hard as decoding
an arbitrary stabilizer code [152]. This hardness arises because, although each qubit in
the surface code is involved in only two X- and Z-type stabilizers, a Pauli Y error flips
four syndrome bits, two X and two Z, making it incompatible with a matching-based
decoder.

To faithfully represent all single-qubit Pauli errors as independent events, one constructs
a parity-check matrix of the form

H =

[
HX 0 HX

0 HZ HZ

]
, (2.66)

where the columns correspond to X, Z, and Y errors, respectively. However, a common
simplification is to represent Y errors as the combination of an X and a Z error, thereby
eliminating the third column in Eq. (2.66). This renders the decoding problem match-
able, but introduces a critical inaccuracy: it treats Y errors as two independent faults,
misrepresenting their true physical probability O(p) as O(p2). Representing Y errors as
combinations of X and Z errors is common practice, not solely to enable matchability, but
also because it decouples the decoding into smaller, independent subproblems. Beyond
that, it also alleviates issues in other decoding approaches, as we will see shortly.

2.6.4 Message-passing decoding

Unfortunately, implementing a minimum-weight decoder by exhaustively comparing the
syndrome with all valid codewords is infeasible, especially for codes with large n. Instead,
we describe here a decoding approach that dates back to Gallager [121] in the context
of classical error-correcting codes. This algorithm is known under various names in
different communities (see Notes of chapter 2 in [108]), and we will usually refer to it as
belief propagation (BP) or message-passing. More generally, the algorithm utilizes the
generalized distributive law, see Ref. [153]. In the following, we often (implicitly) assume
that the r × c parity-check matrix H is sparse and, more importantly, that both its row
and column weights are small and constant. In other words, the Tanner graph associated
with H has low-degree variable and check nodes. Tanner graphs are a crucial tool for
understanding the algorithm outlined below.

The parity-check matrix H imposes rank(H) constraints on potential codewords c ∈ Fc
2.

Each of these constraints can also be interpreted as defining a local subcode involving
a single check and a subset of the codeword bits, specifically, those bits connected to
that given check node. While such a subcode has distance d = 2, each bit typically
participates in wc such subcodes, where wc is the column weight of H, and the global
code can therefore have a significantly larger distance. This local structure is illustrated
in Figure 2.9 from the perspective of a variable node vb.

Within the subcode, what is the probability that the bit associated with variable node
vi is in error? More formally, we aim to evaluate the conditional probability that an error
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ei = 1 occurred given the observed syndrome s, that is,

Pr[ei = 1 | s]. (2.67)

Note that only a subset of the syndrome bits in s are relevant to this probability. It
turns out that the above conditional probability has a relatively simple expression when
expressed as a likelihood ratio. Let sc ∈ {0, 1} denote the observed syndrome bit for check
c. Then, following [121], we find

Pr[ei = 0 | s]
Pr[ei = 1 | s] =

1− pi
pi

∏
cj∈N(vi)

[
1 + (−1)scj

∏
vi′∈N(c)\{vi}(1− 2pi′)

1− (−1)scj
∏

vi′∈N(c)\{vi}(1− 2pi′)

]
. (2.68)

Here, we have excluded the variable vi from the product over v ∈ N(c) since we are
computing the conditional likelihood ratio with respect to ei. Each term in the product
corresponds to the contribution of a parity check cj connected to vi. The expression inside
the product reflects the likelihood of an even or odd number of errors occurring among
the neighboring variable nodes of cj , excluding vi. The factor (−1)sc ensures that the
check contributes with the correct sign depending on whether the observed syndrome bit
is 0 or 1. To obtain this expression, we assume that the error on each bit is independent,
and denote the corresponding vector of bitwise error probabilities by p = (p1, . . . , pc).
Each pi ∈ [0, 1] is the probability that the ith bit is in error, i.e., ei = 1.

Equation (2.68) forms the basis of the message-passing decoding algorithm. To see this,
first note that the expression can be rephrased in terms of likelihood ratios λ = (1− p)/p,
such that 1 − 2p = (λ − 1)/(λ + 1). Moreover, the right-hand side of Eq. (2.68) can
be evaluated in parallel for all bits. However, since the equation only considers a local
neighborhood in the Tanner graph, the resulting estimate is not the true marginal
probability. Fortunately, it is possible to derive an iterative algorithm based on Eq. (2.68)
that explores the whole graph.

This algorithm works by sending messages between check and variable nodes according
to specific update rules. That is, for each iteration step, first, each check node cj sends
the message

µcj→vi =
∏

vi′∈N(cj)\{vi}

[
µvi′→cj

](1−2scj ), (2.69)

to all its connected variable nodes vi ∈ N(ci) and, in turn, each variable node vi sends
updated probabilities to its connected check nodes cj ∈ N(vi) as the message

µvi→cj = λi
∏

cj′∈N(vi)\{cj}
µcj′→vi , (2.70)

where λi = (1 − pvi)/pvi is the original likelihood of vi being in error obtained from
the channel probabilities p. The messages µvi→cj can be understood as a posteriori
probabilities for the ith bit to be in error given the constraints of the jth check, that is, the
jth subcode. The algorithm is initialized by setting the messages µvi→cj as the likelihoods
λi. By inserting Eq. (2.69) into Eq. (2.70), one almost recovers Eq. (2.68) with the only
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Figure 2.9: a Local subcodes or parity checks overlapping on the variable node vi. b
Message-passing during a single iteration from the perspective of a variable node vi
sending a message to check node cj . c Message-passing during a single iteration from the
perspective of a check node cj sending a message to variable node vi.

modification that the product is not taken over all checks. This assures that there is no
immediate self-interference in the calculation of the ith a posteriori probability. That is,
information sent from a variable node to a check node will never flow back through the
same edge from the check node to the variable node, and the independence assumption
made to derive Eq. (2.68) remains valid, see also Figure 2.9. Thus, if this iteration process
were continued until the local information has explored the whole graph, it would calculate
the exact marginal probability of the ith bit to be in error. After the iteration steps, the
marginal probability can be obtained by multiplying all messages from neighboring check
nodes, that is,

µvi = λi
∏

cj′∈N(vi)

µcj′→vi . (2.71)

However, this is only true if the independence assumptions remain valid, which requires
the Tanner graph not to have cycles, that is, it must be a tree. For a graph with cycles
of length g, also called the girth of the graph, the independence assumption holds for
⌊(g− 2)/4⌋ iterations [154]. As already pointed out by Gallager, we can ignore the lack of
independence and continue the iteration process which “is ultimately justified, of course,
only by the fact that it works” [121]. It is also common to express the algorithm in the
logarithmic domain by introducing the log-likelihood ratio L(vi) = log((1− pi)/pi). In
this formulation, the product in Eq. (2.70) becomes a sum, which is why the algorithm is
also known as the sum-product algorithm. In this variant of the algorithm, one can make
an approximation to reduce the cost of evaluating Eq. (2.69), which replaces the product
with the min function, which leads to the min-sum algorithm, see, e.g., Ref. [155, 156].

A significant feature of the algorithm is its computational complexity. Without
parallelization, the algorithmic complexity is linear in the number of nodes in the Tanner
graph, the degree of the nodes, and the number of iterations. As noted above, the
calculation of messages is completely local and can be straightforwardly parallelized.
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Additionally, for a family of (quantum) LDPC codes, typically, the check and bit degrees
are constant. Thus, a parallel implementation has at most a time complexity that is
linear in the number of iterations. As the algorithm does not have any formal convergence
guarantees in the presence of cycles in the graph, a stopping criterion is required. To this
end, after each iteration step, one typically performs a hard-decoding ei = 0 if µvi < 0.5
and ei = 1 otherwise. If the current estimate of the error e satisfies the syndrome equation
s = He, the algorithm is terminated. However, for quantum error-correcting codes
subject to realistic noise, it is unclear whether the average number of iterations required
is bounded or scales with the size of the code, see, e.g., Ref. [157, App. E].

Unfortunately, applying the BP algorithm to quantum error-correcting codes yields
additional issues. One of those is related to the requirement of commutating stabilizers
and is observed for many noise models. For stabilizers to commute in a CSS code, a
X stabilizer SX and a Z stabilizer SZ must overlap on an even number of qubits, but
at least two, say qi and qj . Now, a Pauli Y error on qubit qi will anti-commute with
both stabilizers SX and SZ and if we represent it as an independent faults mechanism
in the parity-check matrix, this leads to a cycle of length-4 (SZ , Yqi , SX , Yqj , SZ). A
simple solution is to not represent Y errors as independent faults and represent them as
a product of Pauli X and Z operators, and solve the decoding problems for X and Z
faults separately. While doing this alleviates the problem of the existence of 4-cycles, it
ignores correlations in the noise model that can aid the decoding performance in general,
as it misrepresents the probability of a Y error as O(p2) instead of O(p). For practical
considerations, one might accept this performance degradation if it is not too large for a
decoder that has a linear complexity in the number of fault locations.

The second issue, however, is not as easily averted and is due to degeneracy. To
reiterate, degeneracy refers to the fact that logical observables are only well defined up
to elements of the stabilizer group S. Equivalently, there exist combinations of faults
{t | t ∈ kerH∩kerL} that neither flip a detector nor a logical observable and therefore can
be considered stabilizers. For a low-weight combination of faults t, it is possible for two
corrections c and c+t to be both equally highly probable, such that BP does not converge
to one of them. This situation is referred to as the split belief problem and occurs as the
a posteriori probability distribution is not sufficiently peaked on a single configuration of
faults. Forcing the algorithm to terminate after a finite number of iterations typically
yields no correction or the sum of both of the solutions, however, neither of them will
return a valid correction that satisfies the syndrome, i.e., H(c + c + t) = Ht = 0 ̸= s.
It is no coincidence that we refer to such errors by the symbol t as an analogy of the
issue that exists in the classical literature, where it is known as a trapping set, see,
e.g., Refs. [158–162]. We will now describe a way to reduce the impact of this problem,
unfortunately, at the cost of a significant increase in complexity.

2.6.5 Inversion decoding

The syndrome decoding problem, introduced around Eq. (2.25), s = He, is concerned
with finding an estimate of e given the observed syndrome s. While so far we have been
mostly focused on describing the maximum-likelihood decoding problem (Section 2.6.3)
and the easier minimum-weight decoding problem (Section 2.6.3), we have seen that
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due to the existence of short cycles in the decoding graph, the standard approach of
decoding (quantum) LDPC codes through BP may fail due to non-convergence, that is,
the correction c does not reproduce the syndrome s. Naively, one might expect that it
is simple and efficient to always obtain a correction that agrees with the syndrome by
computing

c = H−1s, (2.72)

which has cubic complexity in the size of the check matrix H due to the necessity to
calculate the inverse H−1, which can be achieved by Gaussian elimination. However, this
approach does not work: a (left) inverse of H does not exist, since H lacks full column
rank — a necessary condition for H to be the parity-check matrix of a nontrivial linear
code. Nonetheless, the conceptual idea of Eq. (2.72) can be preserved by considering a
more informed method.

Let I be a set of column indices constructed by selecting a linearly independent subset
of the columns of the check matrix H. Accordingly, the size |I| of the index set is given by
|I| = rank(H) ≤ r < c for the r × c matrix H. Then, H[I] is an invertible matrix formed
by selecting the columns of H indexed by the set I. We can therefore compute a partial
correction c′ = H−1

[I] s, which specifies the correction only on the coordinates indexed by

I. To obtain a full correction vector c ∈ Fc
2, we define it component-wise as

cj =

{
c′j , ∀j ∈ I,

0, otherwise.
(2.73)

Since I indexes a linearly independent set of columns, each choice of I defines a unique
partial solution c′. However, in general, randomly choosing the basis described by I is
unlikely to result in a good correction c. In other words, it is unlikely that c corresponds
to the minimum-weight correction as defined by Eq. (2.65). For instance, if I does not
contain the index corresponding to a symbol in error, the correction cannot reproduce
the error4, c ̸= e.

After describing the conceptual ideas involved in inversion decoding, we now turn
to the ordered statistics decoding (OSD) algorithm. Originally introduced by Fossorier
and Lin [163], OSD serves as a post-processing step to improve upon invalid solutions
produced by BP, helping to reduce error floors in classical LDPC codes. To this end,
OSD leverages the marginal probabilities output by the BP decoder as soft information
to guide the construction of the index set I, as we explain below. In 2019, Panteleev
and Kalachev [164] were the first to apply OSD in the quantum setting, introducing
BP+OSD as a surprisingly effective two-stage decoder of random qLDPC codes. Due to
the generality of the (combined) decoding algorithm and its applicability even to codes in
space-time, BP+OSD has become the gold standard for decoding general qLDPC codes.

We begin by describing the post-processing step, often referred to as OSD-0, which is
invoked when the BP algorithm fails to converge within a maximum number of iterations.
The OSD-0 algorithm is presented formally in Algorithm 1.

4We note that this is not necessarily an issue for stabilizer codes as the correction must only agree up
to a stabilizer with the error.
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Algorithm 1 OSD-0 Post-Processing Step

1: Input: Soft information λ (from BP decoder)
2: Output: Correction c
3: Utilize the soft information vector λ to construct an ordered list of indices Πλ (from

most to least likely in error, MLE).
4: Rearrange the columns of the check matrix H according to the ordering Πλ to obtain
H ′.

5: Construct the set of indices I as the first rank(H) linearly independent columns of H ′

6: Calculate the OSD-0 solution based on the indices I by matrix inversion: c[I] = H−1
[I] s.

7: Obtain the correction across all bits as:

c′ = (c[I], c[J]) = (c[I],0),

where J = Ī is the complement of I.
8: Reverse the column ordering induced by Πλ to go from MLE ordering to the physical

ordering, resulting in the final correction c.

There we see that the inversion decoding algorithm aims to solve the minimum-weight
decoding problem (2.65) by selecting a basis that corresponds to the bits most likely in
error, that is, the MLE basis. Indeed, if I corresponds to the rank(H) most likely bits
according to the ordering Πλ, the OSD-0 solution is the minimum-weight solution, that
is, it is the optimal solution for the decoding problem of a linear code [165]. The attentive
reader notices that the complexity of obtaining the optimal solution is polynomial, which
hints that the OSD-0 solution constructed in this way will not always yield the optimal
solution to the classical decoding problem. This issue arises when the |I| most likely error
locations are not linearly independent, that is, they do not form a basis of the column
space of H. In that case, the set I does not index the MLE basis and elements of the MLE
basis are contained in Ī = J , the complement of I, such that J contains error locations
that have larger error probabilities according to the soft information vector λ than some
error locations contained in I. To find the optimal solution, one can systematically search
through all error configurations in J that potentially provide a more likely estimate c̃. As
this search space is exponentially large in the size of J , the computational cost of finding
the optimal solution becomes prohibitively large for all but a few smaller codes. Thus,
in practice, only configurations with a Hamming weight up to w are considered, known
as order -w reprocessing. We refer the interested reader to Refs. [163–166] for a more
complete discussion of higher-order reprocessing and briefly discuss the idea here.

In ordered statistics decoding, higher-order reprocessing refers to considering solutions
for which c[J] ̸= 0. Given the OSD-0 solution c[I], the higher-order OSD solution for a
particular choice of c[J] is given by

c′ =
(
c[I] +H−1

[I] H[J]c[J], c[J]

)
, (2.74)

which fulfills the syndrome equation for arbitrary c[J]. Completing the reprocessing
routine of order w then involves systematically searching through the set of admissible c[J]
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of Hamming weight w and retaining the solution c′ of lowest total weight. It is possible
to choose from various search strategies that explore different admissible subspaces for
c[J] at finite w, see, e.g., Refs [163, 166].

2.7 Conclusion and Outlook

In this chapter, we have described most of the fundamentals required for fault-tolerant
quantum computing. Rather than providing a comprehensive account of all aspects of
quantum computing and quantum error correction, we have focused on the concepts most
crucial for understanding the contributions of this thesis.

To this end, we have revisited classical error-correcting codes, in particular, linear block
codes, to gain additional intuition about the structure of stabilizer codes. Stabilizer codes,
especially Calderbank-Shor-Steane (CSS) codes, form the backbone of most practical
quantum error correction strategies today. The correspondence between CSS codes and
chain complexes, the primary elements of study in homology theory, is an additional
reason for the importance of CSS codes. While homology initially provided a language
that explained already known properties of codes, it has since proven to be tremendously
productive, yielding various quantum low-density parity-check (qLDPC) codes with good
properties. The appended work on fault complexes, see Paper IX, aims to extend the
power of this framework from (CSS) codes at an instantaneous moment in time, to codes
in space-time, or more generally, fault-tolerant protocols. It intends to serve as a unifying
umbrella that incorporates multiple previously distinct viewpoints, that of gate-based and
measurement-based computing, while making the full suite of mathematical tools from
homology theory available to analyze these systems.

Regardless of the introduction of abstract structures such as chain complexes, this
chapter aimed at introducing quantum error correction not merely from a theoretical
viewpoint, but as a practical tool for scalable devices. This includes the questions of
deriving low-complexity decoding algorithms that are capable of achieving the throughput
and low-latency requirements that come with real-time quantum error correction. Pa-
per VII introduces the localized statistics decoding algorithm, the first parallel decoding
algorithm for general quantum error correction protocols that matches the performance of
the current state-of-the-art belief propagation plus ordered statistics decoding algorithm
whilst being substantially faster. Central to this is a novel linear algebra routine for
parallel matrix factorization, which can efficiently solve sparse linear systems that we call
on-the-fly elimination.

While low-complexity decoders will be necessary for fault-tolerant quantum computing,
reducing the size of the decoding problem alleviates the issue. A promising path to
achieve this is by considering quantum error-correcting codes that can be accurately
decoded over a small (constant) window of time, or equivalently, a small window of
syndrome measurement cycles. Such codes are also known as single-shot (decodable)
quantum codes [106, 167]. Quantum radial codes, introduced in Paper VIII, are a
family of qLDPC codes derived from the lifted product of classical quasi-cyclic codes.
Numerical simulations suggest that these codes are single-shot decodable even under
circuit-level noise, while additionally showing comparable error suppression to surface
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codes of similar distance while using approximately five times fewer physical qubits.
Overall, their error correction capabilities, tunable parameters, and small size make them
promising candidates for implementation on near-term quantum processors.

It is worth emphasizing that this chapter has mostly omitted the discussion of a
fundamental aspect of fault-tolerant quantum computing. That is, fault-tolerant quan-
tum computing is not only about quantum memories but also about enabling reliable
computation on encoded information. The question of fault-tolerant logical operations is
largely beyond the scope of this thesis and is therefore omitted here. However, outside
of this thesis, fault-tolerant operations for qLDPC codes are an extremely active topic
of research. One illustrative approach to fault-tolerant logical operations is surface code
lattice surgery [104], where logical operations are realized by merging and splitting en-
coded patches through local measurements. Lattice surgery can be naturally interpreted
within the framework of measurement-based quantum computation and connects closely
to the idea of Pauli-based computation [103], where computation proceeds via sequences
of multi-qubit Pauli measurements. Generalizing lattice surgery to qLDPC codes poses
unique challenges because these codes typically encode multiple logical qubits into a single
block. As a result, addressing individual qubits becomes generally challenging. We point
the interested reader to Ref. [36, Sec. 3] for an overview of the current developments
around logical operations on qLDPC codes.

Finally, the methods discussed so far inevitably lead to large resource overheads.
While stabilizer codes offer a powerful framework for protecting quantum information,
their practical implementation demands substantial redundancy in physical qubits and
operations. This motivates the exploration of alternative approaches. In the next chapter,
we will shift focus to bosonic quantum error correction, where the structure of continuous-
variable systems may offer a path toward reducing the overheads that plague traditional
qubit-based schemes. By leveraging the rich physics of bosonic modes, new strategies for
fault-tolerant quantum computing become accessible, expanding the toolkit available for
future devices.
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CHAPTER 3

Quantum Continuous Variables

Up to this point, we have focused on finite-dimensional quantum systems. By combining
multiple two-level systems, we expanded the Hilbert space, either to enhance computational
capabilities or to introduce redundancy for error correction. However, not all physical
systems are inherently two-dimensional — or even finite-dimensional. Many naturally
occurring quantum systems are described by infinite-dimensional Hilbert spaces. A
prominent example are continuous-variable (CV) systems, where the expectation values
of observables such as position and momentum take values over a continuum.

While a mathematically rigorous treatment of continuous-variable quantum mechanics
lies beyond the scope of this chapter, we will introduce the essential concepts required
to understand their use in quantum information. We will not concern ourselves with
subtleties such as unphysical infinite-energy states, instead focusing on the tools and
intuition needed for practical applications. This introduction aims to provide readers,
particularly those familiar with discrete-variable systems, with the prerequisites for
understanding the results presented in the appended papers.

We will consider the case of a single degree of freedom, also known as a single mode,
for this presentation and note that the generalization to a finite number of modes is
straightforward.

3.1 Fundamentals of Quantum Continuous Variables

In continuous-variable systems of a single degree of freedom, there exists a pair of self-
adjoint operators, q̂1 and p̂, that we refer to in the following as position and momentum,
respectively, that satisfy

[q̂, p̂] = iℏ1, (3.1)

1In the literature one will also often encounter the symbol x or X for this operator. Here we use q to
distinguish it clearly from the Pauli X operator.
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where in the following we will work in natural units ℏ = 1 and make the (infinite-
dimensional) identity operator 1 implicit. The above equation is known as the canonical
commutation relation (CCR) and the pair of operators q̂ and p̂ as canonical operators,
accordingly. The naming terminology originates from classical Hamiltonian dynamics,
where the commutator in Eq. (3.1) is replaced by the Poisson bracket. Indeed, the above
commutation relations typically arise when quantizing a simple phase space. Typically,
one aims to find a representation for operators through matrices; however, in this case,
no representation with finite dimensional matrices exists. Informally, this can be seen
by taking the trace of Eq. (3.1). The cyclic property of the trace leads to 0 = iTr1,
which is undoubtedly incorrect. Therefore, mathematically speaking, the position and
momentum operators q̂ and p̂ are unbounded, and hence they cannot be trace-class,
finite-rank, or represented on a finite-dimensional Hilbert space H. Instead, one can define
representations of these operators on the Hilbert space of square-integrable functions over
the real line, H = L2(R), such that

(q̂ψ)(q) = qψ(q), (p̂ψ)(q) = −i d
dq
ψ(q), ∀ψ ∈ L2(R). (3.2)

While the eigenstates of q̂ and p̂ do not belong to L2(R), we adopt the standard formalism
in which we work with their quasi-eigenstates |q⟩ and |p⟩, defined by

q̂ |q⟩ = q |q⟩ , p̂ |p⟩ = p |p⟩ , q, p ∈ R, (3.3)

which, although not normalizable, are conceptually useful for analytical computations.
Note that their eigenvalues form a continuous set on the real line, constituting the basis
of the terminology of quantum continuous variables. Position and momentum eigenstates
also form a basis in the generalized sense, allowing any quantum state to be represented
as a superposition of these basis elements

|ψ⟩ =
∫ ∞

−∞
ψ(a) |a⟩ da, (3.4)

where |a⟩ denotes the eigenstate of either q̂ or p̂ with eigenvalue a, and the complex-valued
function ψ(a) ∈ L2(R) is called the wavefunction in the corresponding representation.

3.2 The Wigner function

While either the position or momentum representation completely describes the quantum
state, it is still useful to have a representation that includes both. This is somewhat
analogous to the description of a classical system within phase space. For example, the
position and momentum of a single particle along one dimension can be represented by
a point in a two-dimensional phase space, one axis representing position and the other
momentum. Uncertainties in the knowledge of the position or momentum of that particle
can be represented if we replace the point with a probability distribution that indicates the
relative likelihood of encountering the particle with a particular combination of position
and momentum.
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In quantum mechanics, position and momentum are fundamentally linked by the
uncertainty principle. As a result, constructing a phase-space representation of a quantum
state is less straightforward than in classical mechanics. Nevertheless, several useful
functions have been developed to describe quantum states in phase space [168–170].
Possibly one of the most prominent of those is known as the Wigner function, due to
Wigner and Szilard [171], and is defined in terms of the density operator ρ̂ by

W (q, p) =
1

π

∫ ∞

−∞
ei2py⟨q + y|ρ̂|q − y⟩dy . (3.5)

This expression shows that the Wigner function is essentially the Fourier transform of
the off-diagonal elements of ρ̂ in the position basis. Just like the representation of a
quantum state in the position or momentum basis, the Wigner function contains all
the information about the quantum state2. As Eq. (3.5) is invariant under complex
conjugation by flipping the sign of y, the Wigner function is real-valued for all physical
states. This makes the Wigner function representation a valuable tool to explain the
behavior of continuous-variable quantum states intuitively. To this end, it is useful to
note that the marginal distributions of the Wigner function recover the usual probability
distributions, that is,

P (q) = ⟨q|ρ̂|q⟩ =
∫ ∞

−∞
W (q, p) dp, P (p) = ⟨p|ρ̂|p⟩ =

∫ ∞

−∞
W (q, p) dq, (3.6)

and consequently, the Wigner function is normalized like an ordinary probability distribu-
tion, ∫ ∞

−∞

∫ ∞

−∞
W (q, p) dq dp = 1. (3.7)

However, the Wigner function is only a quasi-probability distribution, as it can take
on negative values. These negativities are typically observed in Wigner functions of
superpositions of distinct states, as we will see in more detail later.

Indeed, it is possible to use the Wigner function to visually distinguish different
quantum states through their Wigner functions or to gain intuition about the expectation
values of operators with respect to a quantum state. This is due to the fact that operator
expectation values can be calculated as phase-space averages of their Wigner function
representation weighted by the Wigner function of the corresponding quantum state, that
is,

Tr[Âρ̂] =

∫ ∞

−∞

∫ ∞

−∞
W (q, p)WA(q, p) dq dp, (3.8)

where Â is an arbitrary Hermitian operator andWA denotes its phase space representation
as defined by Eq. (3.5). For example, let Â represent another quantum state ρ̂2 = |ψ2⟩⟨ψ2|.

2Indeed, all of quantum mechanics can be recast into quantum phase space.
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For two states to be orthogonal, |⟨ψ1 | ψ2⟩|2 = 0, this orthogonality condition translates
to the requirement that the overlap integral in terms of their Wigner functions vanishes∫ ∞

−∞

∫ ∞

−∞
W1(q, p)W2(q, p) dq dp = 0.

This can occur in two ways. Either the Wigner functions have no overlapping support in
phase space, or their product includes positive and negative contributions that exactly
cancel out. In the latter case, regions where the Wigner function takes negative values
play a crucial role, allowing for cancellation due to interference effects and symmetries in
the states.

3.3 Quantum Harmonic Oscillators

A particularly relevant example where quantum continuous variables appear is during
the quantization of the modes of an electromagnetic field. To this end, let us consider
the electromagnetic field confined in a finite volume. The vector potential of this field
obeys the wave equation, and its solution is a linear combination of frequency modes with
a spatial profile determined by the boundary conditions. In terms of these modes, the
Hamiltonian of the electromagnetic field reduces to that of a set of independent harmonic
oscillators. Quantization of the electromagnetic field then reduces to the quantization of
these individual modes.

The Hamiltonian that describes a single quantized mode of the electromagnetic field
is given by

Ĥ =
1

2

(
p̂2 + ω2q̂2

)
, (3.9)

where ω is the frequency of the mode. The above Hamiltonian is also known as the
quantum harmonic oscillator and it can be diagonalized by introducing the bosonic
annihilation â and creation â† operators such that

â =
1√
2ω

(ωq̂ + ip̂) , â† =
1√
2ω

(ωq̂ − ip̂) , (3.10)

that fulfill the bosonic canonical commutation relations [â, â†] = 1. In the following we
will always work with the dimensionless version of the operators q̂ and p̂, that is, we
redefine q̂ → √

ωq̂ and p̂→ p̂/
√
ω such that q̂ = (â+ â†)/

√
2 and p̂ = i(â† − â)/

√
2. We

will also sometimes refer to q̂ and p̂ as field quadratures, as they yield a Hamiltonian that
is a sum of squares.

Expressed in terms of the annihilation and creation operators, the quantum harmonic
oscillator takes the form

Ĥ = ω

(
â†â+

1

2

)
, (3.11)

but we will typically neglect the constant energy shift. Surprisingly, even though the
field quadratures represent continuous variables, the energy spectrum of the quantum

44



3.3. QUANTUM HARMONIC OSCILLATORS

harmonic oscillator is discrete, with possible energy levels En = ω(n+ 1
2 ) with eigenstates

|n⟩ for all n ∈ N. These states are called Fock states and form an orthonormal basis.
Physically, we associate with |n⟩ a state with n bosonic excitations, which in the case of
the electromagnetic field we call photons. As the name implies, annihilation and creation
operators subtract and add excitations, that is,

â |n⟩ = √
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ , â†â |n⟩ = n̂ |n⟩ = n |n⟩ , (3.12)

where we introduced the number operator n̂.

3.3.1 States of Quantum Harmonic Oscillators

To gain intuition about the state space of a single bosonic mode, we now turn to specific
examples of quantum states and their behavior in phase space. We will use the Wigner
function introduced in Section 3.2 to visualize some of those states.

The ground state of the quantum harmonic oscillator in Eq. (3.11) is called the vacuum
state, corresponding to the state |n = 0⟩ in the Fock basis. The Wigner function of the
state corresponds to a rotation-symmetric Gaussian function in two dimensions that is
centered at the origin of the phase space, see Figure 3.1a. The vacuum state saturates
the Heisenberg uncertainty relations, that is, it minimizes the standard deviation in the
position and momentum quadrature simultaneously. As expected from the quadratic
potential of the harmonic oscillator, Fock states with non-zero excitation number n occupy
a larger area in phase space and are not minimum uncertainty states. Their Wigner
function remains rotational symmetric but now displays oscillations that are also apparent
in the marginals, see Figure 3.1b and Figure 3.1c. These oscillations make those states
highly non-classical.

A more classical-like family of states is formed by the coherent states, which are
eigenstates of the annihilation operator

â |α⟩ = α |α⟩ . (3.13)

They are labeled by a complex amplitude α and can be generated from the vacuum via
the displacement operator

|α⟩ = D̂(α) |0⟩ , D̂(α) = exp
(
αâ† − α∗â

)
. (3.14)

Coherent states preserve the Gaussian shape of the vacuum in phase space but are
displaced to the point (q =

√
2Re(α), p =

√
2Im(α)), see Figure 3.1d. They follow

classical trajectories under free evolution and are often regarded as the “most classical”
quantum states. Importantly, they also form an overcomplete basis for the Hilbert space,
satisfying the resolution of the identity

1

π

∫
|α⟩⟨α|d2α = 1. (3.15)

A further generalization is provided by squeezed states, which also have Gaussian
Wigner functions but redistribute uncertainty between the q̂ and p̂ quadratures. This
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Figure 3.1: Wigner function W (q, p) and marginals of various states of the quantum
harmonic oscillator. a The vacuum state |0⟩, b Fock |1⟩, c Fock |5⟩, d Coherent (α = 1+1i),
e Squeezed (−10 dB), f Squeezed displaced (10 dB, α = −2).

squeezing can reduce noise below the vacuum level in one quadrature, at the expense
of increased fluctuations in the conjugate variable, while still respecting the uncertainty
principle. The resulting Wigner function becomes elliptical rather than circular, see
Figure 3.1e. Squeezed vacuum states are generated by applying a squeezing operator to
the vacuum, as we will discuss in Section 3.5. More generally, squeezed coherent states
combine displacement and squeezing to yield squeezed states centered away from the
origin, see Figure 3.1f, representing finite-energy approximations of position or momentum
states dependent upon the squeezing direction.

3.4 Noise Channels

If we want to use quantum continuous-variable systems for quantum information processing,
we need to interact with the system in order to manipulate and control it. However, if we are
able to interact with the quantum system in a controllable way, then there must also be an
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environment that is interacting in an uncontrolled way with the system. This uncontrolled
interaction with an environment causes decoherence, as is does for qubit systems. However,
for continuous-variable quantum systems, due to their infinite-dimensional Hilbert space,
there is a plethora of relevant decoherence mechanisms. Under certain, typically fulfilled,
assumptions, noise can be modeled through the Gorini-Kossakowski-Sudarshan-Lindblad
master equation [172, 173] given by

d

dt
ρ̂ = Lρ̂ = −i

[
Ĥ, ρ̂

]
+
∑
j

κjD[L̂j ]ρ̂, (3.16)

where L is known as the Lindbladian, and D[L̂j ]ρ is the Lindblad dissipator acting on ρ̂,

that is D[L̂j ] is a superoperator, given by

D[L̂j ]ρ̂ = L̂j ρ̂L̂
†
j −

1

2
L̂†
jL̂j ρ̂−

1

2
ρ̂L̂†

jL̂j . (3.17)

The operators L̂j are called jump operators which depend on the type of noise and κj ≥ 0
are dissipation rates that characterize the strength of the noise. Without loss of generality,
we will typically assume that Ĥ = 0 which can be achieved by an appropriate reference
frame transformation. In this case, we can also represent the noise channel written in the
Kraus representation [174–178],

ρ̂(t) =
∑
k

K̂k(t)ρ̂(0)K̂
†
k(t), with

∑
k

K̂†
k(t)K̂k(t) = 1, (3.18)

which is obtained by formally integrating Eq. (3.16) up to time t, with K̂k(t) the so-called
Kraus operators.

In the following, we summarize some of the most common continuous-variable noise
channels and describe intuitively their effect on quantum states. We will usually not
comment on their physical origin as this can depend on the physical system we are trying
to model. See also Refs. [179–181] for an in-depth introduction.

Photon Loss. One of the dominant noise channels in optics as well as superconducting
circuits, is the loss of excitations, often referred to as photon loss in those architectures.
Losses are represented in the master equation by the Lindblad jump operator,

L̂(loss) = â, (3.19)

or within the Kraus representation, by the Kraus operator

K̂
(loss)
k =

(1− e−κt)k/2√
k!

e−κn̂t/2âk. (3.20)

For the loss channel, the Kraus operator K̂
(loss)
k describe the time evolution generated by

the exact loss of k photons, and 1− exp(−κt) is the probability for losing a single photon.
Additionally to the factor âk that maps Fock state |n⟩ to Fock state |n− k⟩, the other
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contribution is the Fock damping operator e−κn̂t/2 that leaves Fock states invariant. Its
effect is more readily observed by considering the Heisenberg evaluation it generates. Using
the Baker-Campbell-Hausdorff (BCH) formula, one finds that â→ âe−κt/2, contracting
phase space towards the center, representing a continuous loss of energy from the system
to the environment.

Photon Number Dephasing. While photon number dephasing is typically considered
small in superconducting architectures, it becomes important if the system is nonlinear or
is coupled to a nonlinear system, such as a two-level system. The Lindblad jump operator
is given by

L̂(dephasing) = â†â = n̂ (3.21)

and the channel can equivalently be represented through the Kraus operators

K̂
(dephasing)
k =

(κϕt)
k/2

√
k!

e−κϕn̂
2t/2n̂k. (3.22)

Notice that in this case the exponential is quadratic in n̂ such that the BCH formula does
not yield a closed-form expression as above. While the discrete Kraus representation is
sufficient to realize that the channel is energy-preserving, that is, it commutes with the
harmonic oscillator Hamiltonian, additional intuition can be derived from the continuous
Kraus representation of the channel given by

eκϕD[n̂]tρ̂ =

∫ ∞

−∞
pκϕt(θ)e

−iθn̂ρ̂eiθn̂ dθ , with pκϕt(θ) =
1√

2πκϕt
exp

(
− θ2

2κϕt

)
(3.23)

from which dephasing can be interpreted as causing random rotations of the state with
respect to an underlying Gaussian distribution of variance σ2 = κϕt.

Photon Gain. Photon gain can be considered the opposite of photon loss and is
accordingly represented by the Lindblad jump operator

L̂(gain) = â†, (3.24)

and Kraus operators,

K̂
(gain)
k =

(eκt − 1)k/2√
k!

e−κn̂t/2
(
â†
)k
. (3.25)

Using the BCH formula, one finds that â → âeκt/2, expanding phase space. Typically,
photon gain does not appear on its own and instead appears together with photon losses.

Thermal Noise. Thermal noise originates from the coupling of a system to a finite
temperature environment and corresponds to a combination of loss and gain, requiring
two Lindblad jump operators

L̂− =
√
nth + 1â, L̂+ =

√
nthâ

†, with nth =
1

exp(ℏω/kBT )− 1
, (3.26)
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where we introduced the average thermal occupation number nth and both jumps happen
with rate κ. The loss channel is recovered in the limit of T → 0. Since creation and
annihilation operators, together with the identity, form a closed algebra, it is possible to
express the Kraus operators of this channel as a product of the Kraus operators for loss
and gain, see Ref. [174] for details.

Gaussian displacements. The Gaussian displacement channel has Lindblad jump
operators

L̂1 = â, L̂2 = â†, (3.27)

and thus is recovered from the thermal noise channel in the infinite temperature limit
T → ∞ and zero coupling limit κ → 0 with nthκt/2 = σ2. Here, we introduced
the variance σ2 that appears in the continuous Kraus representation of the Gaussian
displacement channel given by

ρ̂→ 1

2πσ2

∫
e−|α|2/2σ2

D̂(α)ρ̂D̂†(α) d2α, (3.28)

giving the channel its name. A somewhat uncommon way to write this channel is in the
following form [60]

d

dt
ρ̂ = −D

2
[p̂, [p̂, ρ̂]]− D

2
[q̂, [q̂, ρ̂]] , (3.29)

where D = κ/2 plays the role of a diffusion constant. As a result, the channel be
interpreted as broadening features of the Wigner function and thus washing out rapidly
oscillating parts of the phase space distribution. We note that this channel is somewhat of
a quantum analog of the additive white Gaussian noise channel discussed in Section 2.3.1.

3.5 Universal Gates

A universal quantum computation generally consists of three steps: preparing an initial
computational state, applying a sequence of universal operations, and finally measuring
the system’s state. In this section, we define the notion of universality for CV quantum
computing and introduce a set of operations that enable universal quantum computation
in this framework.

We have seen earlier that the concept of universality in discrete-variable (DV) quantum
computing is well established: a finite set of single- and two-qubit gates can approximate
any unitary operation to arbitrary accuracy. In the CV setting, it was long believed that
this notion does not directly carry over. The core difficulty lies in the fact that unitary
transformations on an infinite-dimensional Hilbert space are generally characterized
by infinitely many parameters and thus cannot be approximated using a finite set of
elementary operations [182]. However, recent results [183] have shown that any physical
single-mode unitary operation can, in fact, be approximated by a finite-degree polynomial
P (q̂, p̂) in the quadrature operators, likely generalizable to the multimode case. This
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insight opens the door to defining a meaningful notion of universality in CV quantum
computation based on polynomial Hamiltonians.

Therefore, one is interested in being able to synthesize arbitrary polynomials in the
bosonic creation and annihilation operators. To achieve this, one does not need to be
able to implement any monomial â†mân, but instead can synthesize them from a few
generating Hamiltonians {Ĥl}. For that note, the two identities following from the
Baker-Campbell-Hausdorff formula [184]

e−iÂδte−iB̂δteiÂδteiB̂δt = e[Â,B̂]δt2 +O
(
δt3

)
, (3.30)

eiÂδt/2eiB̂δt/2eiB̂δt/2eiÂδt/2 = ei(Â+B̂)δt +O
(
δt3

)
, (3.31)

which are valid for two operators Â and B̂. A necessary condition for the generating set
{Ĥl} is that it does not form a closed algebra with respect to the commutator. One can
easily convince oneself that this requires at least one of the generators {Ĥl} to be higher
than quadratic order in the bosonic operators.

In the following, we describe a set of operations that is sufficient for the above notion
of universality in CV quantum computing, see also Refs. [182, 184, 185].

Rotation. Arbitrary rotations in phase-space by an angle θ are obtained by the unitary

R̂(θ) = e−iθâ†â = e−iθ(q̂2+p̂2)/2. (3.32)

The gate transforms the quadrature operators q̂ and p̂ as q̂ → cos(θ)q̂ + sin(θ)p̂ and
p̂→ cos(θ)p̂− sin(θ)q̂. For the choice θ = π/2 the gate is termed the Fourier transform
F̂ = R̂(θ) since it takes the quadrature operators to its conjugate. We remark that the
Fourier transform F̂ is the continuous-variable version of the Hadamard gate H.

Displacement. We have already encountered the displacement operator as the operator
that creates coherent states. The displacement operator D̂(α) = exp(αâ†−α∗â) transforms
the bosonic annihilation operator as D̂(α)âD̂†(α) = â+ α.

Squeezing. The squeezing operation with real squeezing factor s is given by

Ŝ(s) = e−i log(s)(q̂p̂+p̂q̂)/2. (3.33)

This corresponds to an operation with 10
log(10) log(s

2) dB of squeezing. The action of Ŝ(s)

on the quadrature operators is given by q̂ → sq̂ and p̂→ s−1p̂, i.e., the operator squeezes
one quadrature and stretches the conjugate one. The operator is also commonly expressed
in terms of creation and annihilation operators as

Ŝ(ξ) = e
ξ∗
2 â2− ξ

2 â
†2
, (3.34)

with complex squeezing parameter ξ = reiθ. The squeezing operator implements a Bogoli-
ubov transformation given by â→ â cosh r − eiθâ† sinh r from which the transformation
Eq. (3.33) is obtained for r = |log s| and θ = π if s > 1 and θ = 0 if s < 1.
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Beam Splitter. The beam splitter is usually given in terms of annihilation and creation
operators of two modes a and b as

B̂(θ) = eθ(âb̂
†−â†b̂), (3.35)

and we omit the representation in terms of quadrature operators. The action of the
beam splitter on the annihilation operators is given by â → √

τ â +
√
1− τ b̂ and b̂ →√

τ b̂−
√
1− τ â where τ = cos2 θ is known as the transmissivity of the beam splitter in

quantum optics.

Cubic Phase Gate. The cubic phase gate is defined as [185–190],

Γ̂(γ) = exp(iγq̂3), (3.36)

and is commonly used in quantum information protocols as the necessary nonlinear gate.
The coefficient γ is known as the cubicity of the gate. Any non-zero value for the cubicity
is in principle sufficient as it can be enhanced by a squeezing transformation, i.e,

Γ̂(γ′) = Ŝ†(−r)Γ̂(γ)Ŝ(−r), (3.37)

with γ′ = γe3r and r the real squeezing parameter.

3.6 Bosonic Quantum Error Correction

Bosonic quantum error correction is a field in which one is interested in achieving robust
quantum information processing by encoding quantum information into a subspace of
the Hilbert space of one or multiple harmonic oscillators. The basis of this idea is that
instead of using many qubits to provide the redundancy required to protect the encoded
information, one can directly benefit from the vastness of the harmonic oscillator Hilbert
space. While one can approach this field from an information-theoretic approach, here we
are more interested in a practical approach that encodes information in a non-local way
in phase space and in this way achieves protection against physical noise channels such
as the ones previously described, e.g., photon loss, but also undesired nonlinearities that
appear as natural consequences of the hardware platform used to realize the encoding.

While thinking about bosonic codes, it is important to consider that those are not
simply generalizations of two-dimensional qubit systems to d-dimensional qudit systems
in an appropriate limit. The reason that this is not the case is that while qudit Pauli
operators are a natural object to study from the viewpoint of stabilizer theory, these
are not naturally realized in physical realizations of bosonic systems. What is realized,
though, are products of creation and annihilation operators, â† and â. Even though
this seems to be a major complication, it necessitates thinking more closely about the
physical constraints and leads to a tighter co-design of quantum systems and quantum
error correction codes. Thinking outside the usual stabilizer theory framework leads to
exploring things that have not been considered or are strictly forbidden by no-go theorems.
Particular examples are the possibility of a bias-preserving CNOT gate [64] or even a
continuous-parameter set of transversal gates [191], both of which are possible due to the
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continuous-variable nature of the system and cannot be achieved in finite-dimensional
systems [64, 192].

In the following, we will focus on two prominent examples of bosonic quantum error-
correcting codes encoded in a single harmonic oscillator. Even though such an encoding
possibly accesses an infinite-dimensional Hilbert space, these bosonic codes do not have
an error threshold [193] that allows for arbitrarily low logical error rates — in contrast
to certain families of stabilizer codes. As a result, they are often used as inner codes
concatenated with an outer stabilizer code to achieve fault tolerance. Furthermore,
depending on the noise channel, implementing the recovery unitary to restore the noisy
state to the code space can be highly complicated. Instead, one of the two alternative
approaches is typically considered: engineering the dynamics of the system such that the
noisy states get autonomously restored to the code space, or employing the measurement-
based paradigm of quantum error correction such that physical errors cannot spread
throughout the computation.

3.6.1 The cat code

The cat code, as we are thinking about it today, most likely originated from the work of
Leghtas et al. [61, 62] that proposed the bosonic cat encoding designed to protect against
single photon losses. That is, the computational basis states are defined as

|0⟩L =
|α⟩+ |−α⟩√
2(1 + e−2|α|2)

=
1

cosh(α2)

∞∑
n=0

α2n√
(2n)!

|2n⟩ , (3.38)

|1⟩L =
|iα⟩+ |−iα⟩√
2(1 + e−2|α|2)

=
1

cosh(α2)

∞∑
n=0

(−1)nα2n√
(2n)!

|2n⟩ . (3.39)

Notice that both computational basis states are supported on even Fock states only.
Additionally, a single photon loss would take us from the subspace of even Fock states to
the subspace of odd Fock states, the error space. While we cannot perform a measurement
in the Fock basis without collapsing the state, it is possible to perform a syndrome
measurement that only distinguishes even and odd Fock states. This measurement
is known as a photon number parity measurement and allows one to infer whether a
photon has been lost without collapsing the states. Intuitively, the photon number parity
measurement is determined by the sign of the Wigner function at the origin of the phase
space, see Figure 3.2.

It should be emphasized that it is not possible to correct the loss of two photons.
Indeed, the operator â2 acts like a Pauli Z operator on the logical subspace, that is,
â2(|0⟩L ± |1⟩L) ∝ (|0⟩L ∓ |1⟩L) as the coherent states are eigenstates to the annihilation
operator. Using our intuition that the parity measurement is determined by the sign
of the Wigner function at the origin, we can also convince ourselves that the cat code
protects against dephasing errors. However, the dephasing rate should be small enough
such that the computational states |0⟩L and |1⟩L are still distinguishable, as they are
related by a π/4 rotation in phase space.

More recently, the above bosonic quantum error correction code is more commonly
referred to as the four-component cat code, while the encoding of the “cat code” is more
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Figure 3.2: Wigner functions W (q, p) and marginal distributions of the four-component
cat code, see Eqs. (3.38) and (3.39), for the six different cardinal states given by, up to
normalization, a |+Z⟩ = |0⟩, b |−Z⟩ = |1⟩, c |+X⟩ = |0⟩ + |1⟩, d |−X⟩ = |0⟩ − |1⟩, e
|+Y ⟩ = |0⟩+ i |1⟩, f |−Y ⟩ = |0⟩ − i |1⟩. The amplitude of the coherent states is α = 2.5.

likely to refer to a simpler encoding [194–196] defined via the dual basis states

|±⟩cat =
|α⟩ ± |−α⟩√
2(1± e−2|α|2)

, (3.40)

|0⟩cat =
|+⟩cat + |−⟩cat√

2
≈ |α⟩+O(e−2|α|2), (3.41)

|1⟩cat =
|+⟩cat − |−⟩cat√

2
≈ |−α⟩+O(e−2|α|2), (3.42)

which is unable to correct a single photon loss, as in this case, the annihilation operator
acts like a Pauli Z operator on the logical subspace. The Wigner functions of the six
cardinal states of the encoding are shown in Figure 3.3. Instead, interest in this encoding is
due to Mirrahimi et al. [197], Puri et al. [63], and related work which introduced a scheme
that dynamically protects cat qubits against photon number dephasing errors, introducing
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stabilized cat qubits. Here, we will sometimes refer to these ideas as the confinement of
cat qubits to distinguish more clearly from stabilizer codes in the discrete-variable setting.

To describe the idea of confinement, note that the code space of a bosonic encoding
is typically not stable under physical noise channels. Thus, any logical information will
eventually leak outside of the code space. However, it is possible to stabilize the code space
through appropriate confinement schemes. To this end, one aims to engineer effective
interactions whose dynamics yield a degenerate ground state isomorphic to the code space.
To achieve this, recall that the dynamics of a quantum system are either described by the
Schrödinger equation, ∂t |ψ⟩ = −iĤ(t) |ψ⟩, for the evolution of a closed system, or by the
master equation, ∂tρ̂ = L(t)ρ̂, for an open system. If we can find Ĥ or L such that the
code states are eigenstates to these (super)operators with vanishing eigenvalues, then the
code space is a fixed point of the evolution. Also, the dissipative evolution generated by
L ensures that if leakage occurs, the state will relax back to the code space.

Let us make these ideas more explicit based on the example of the cat code. Notice
that the coherent states |±α⟩ are eigenstates of the operator F̂ = (â2−α2) with eigenvalue
zero such that, by linearity, |±⟩cat are eigenstates of F̂ as well. Then, the dissipative

evolution generated D[F̂ ] and the Hamiltonian evolution generated by ĤF = 1
2 F̂

†F̂ both
continuously stabilize the code space [198]. From the Knill-Laflamme conditions [199], one
finds that for single photon losses, stabilized cat codes allow for an arbitrary suppression
of the logical bit-flip rate ΓX , however, at the cost of an increasing phase-flip error rate
ΓZ , that is,

ΓX ∝ | ⟨−α|â|α⟩|2 = |α|2e−2|α|2 , (3.43)

ΓZ ∝ | ⟨+cat|â|−cat⟩|2 = |α|2 tanh(|α|2) |α|2→∞∼ |α|2. (3.44)

We refer the interested reader to Refs. [67, 200, 201] for a more detailed discussion on
error suppression properties of the cat qubit.

The equations above highlight a key advantage of the simpler cat qubit encoding: for
sufficiently large coherent state amplitudes (α), the bit-flip rate of the encoded qubit
can be suppressed to the point of becoming practically negligible. Consequently, the
problem of correcting errors on the qubit is reduced to that of a classical bit, significantly
simplifying the approach. This leaves only one type of error to correct, almost turning
the quantum error correction challenge into a classical one and making the overall process
of building a fault-tolerant quantum computer much more manageable.

We conclude this section by taking a step back and emphasizing that both the four-
component cat code introduced in Eqs. (3.38)-(3.39) and the ordinary cat code introduced
in Eq. (3.40) correspond to coherent states arranged on a circle of radius |α| in phase
space, with code states that are invariant under π and 2π rotations, respectively. This
concept was further generalized by Grimsmo, Combes, and Baragiola [202], who consider
rotation-symmetric bosonic (RSB) codes composed as superpositions of arbitrary states
and not just coherent states. This framework also encompasses other well-known codes
such as binomial codes [203]. Using this construction, it is possible to design a code
that is protected against the loss of N − 1 photons by considering dual basis code states
(|±⟩) that possess an N -fold discrete rotation symmetry in phase space, that is, they are
invariant under discrete rotations by an angle 2π/N .
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Figure 3.3: Wigner functions W (q, p) and marginal distributions of the ordinary cat
code, defined by the dual basis code states in Eq. (3.40), for the six different cardinal
states given by, up to normalization, a |+Z⟩ = |0⟩, b |−Z⟩ = |1⟩, c |+X⟩ = |0⟩+ |1⟩, d
|−X⟩ = |0⟩− |1⟩, e |+Y ⟩ = |0⟩+ i |1⟩, f |−Y ⟩ = |0⟩− i |1⟩. The amplitude of the coherent
states is α = 2.5

3.6.2 The Gottesman-Kitaev-Preskill code

While cat qubits cannot be viewed as stabilizer codes in the conventional sense, the
bosonic encoding proposed by Gottesman, Kitaev, and Preskill (GKP) in 2001 [60] can
be viewed as a stabilizer code. Indeed, GKP codes can be formally derived as the d→ ∞
limit of d-dimensional qudit stabilizer codes. Restricting to a single bosonic GKP qubit
encoded in a single mode of the harmonic oscillator, the logical Pauli X and Z operators
are given by

X = exp(αâ† − α∗â) = D̂(α), (3.45)

Z = exp(βâ† − β∗â) = D̂(β), (3.46)
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where the complex displacements α and β need to fulfill

βα∗ − β∗α = iπ, (3.47)

such that X and Z commute up to a phase, that is, they reproduce the commutation
relations of the Pauli operators, XZ = −ZX. Since X2 should act like the identity
on the code space, one can define the stabilizer generators of the GKP encoding as
SX = X2 = D̂(2α) and SZ = Z2 = D̂(2β). As the stabilizer generators are displacement
operators with a particular amplitude, code words require a translation symmetry in phase
space, which is determined by the choice of α and β that can be seen as the generators of
a lattice on which the states have support. For brevity, we will restrict to the simplest
and one of the most common choices, that is, the square lattice with α =

√
π/2 and

β = iα = i
√
π/2. For this choice, logical operators and stabilizer generators reduce to

X = e−i
√
πp̂, Z = ei

√
πq̂, ŜX = e−i2

√
πp̂, ŜZ = ei2

√
πq̂. (3.48)

Then, the ideal, infinite energy computational states are infinite trains of position
eigenstates, that is,

|µGKP⟩ =
∞∑

n=−∞

∣∣q = (2n+ µ)
√
π
〉
, (3.49)

with µ ∈ {0, 1}. Measuring the SX stabilizer is equivalent to measuring non-destructively
the q quadrature modulo

√
π and reveals any displacement error along the q quadrature.

If the shift is less than
√
π/2, applying a displacement with the same magnitude and

opposite sign restores the state into the code space without applying a logical operation.
The same applies to shifts in the p quadrature.

The ideal code states of the GKP code are unphysical and non-normalizable. Nev-
ertheless, it is possible to work with approximate code states for which high-energy
contributions are exponentially suppressed. The finitely squeezed code states can be
expressed in various equivalent ways [204], for example, in terms of a weighted sum of
squeezed coherent states as [205]

|µ∆⟩ ∝
∞∑

n=−∞
e−

π
2 ∆2(2n+µ)2D̂

(√
π/2 (2n+ µ)

)
Ŝ (− ln∆)) |0⟩ , (3.50)

where ∆ ∈ [0, 1] and we have treated both quadratures symmetrically and point to Ref. [60]
for the general case. We show the six cardinal states of this encoding in Figure 3.4. We
mention that an alternative regularization can be achieved by applying the Fock damping
operator to ideal code words, that is, |µδ⟩ ∝ exp(−δ2n̂) |µGKP⟩ and |µδ⟩ ≈ |µ∆⟩ for δ ≈ ∆
and δ,∆ ≪ 1 such that it is possible to use both views for intuitive explanations. Both
of those representations yield a pure state. A representation of finite energy states that
yields a mixed state is known as state twirling [206] and can be viewed as sending the state
through the Gaussian displacement channel with a standard deviation that corresponds
to the per-peak squeezing.

A relevant trait of the ideal GKP code is that all Clifford operations — and therefore
also the syndrome extraction circuit — can be performed by Gaussian operations, that
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Figure 3.4: Wigner functions W (q, p) and marginal distributions of the finite-energy
Gottesman-Kitaev-Preskill code, see Eq. (3.50), for the six different cardinal states given
by, up to normalization, a |+Z⟩ = |0⟩∆, b |−Z⟩ = |1⟩∆, c |+X⟩ = |0⟩∆ + |1∆⟩, d
|−X⟩ = |0⟩∆ − |1⟩∆, e |+Y ⟩ = |0⟩∆ + i |1⟩∆, f |−Y ⟩ = |0⟩∆ − i |1⟩∆. The regularization
parameter is chosen as ∆ = 0.25.

is, unitary operations that have a generating Hamiltonian which is at most quadratic
in the quadrature operators. This makes this encoding particularly relevant for optical
platforms where those operations are considered easily implementable. However, the
Clifford operations of the finite-energy GKP code are not Gaussian anymore, indeed, they
are non-unitary as they are obtained from the conjugation of the ideal operation with
the non-unitary damping operator. Applying the ideal operations to the finite energy
states thus yields additional errors. This makes the GKP encoding especially suited for
measurement-based quantum computing, where the accumulation of errors is limited due
to low-depth circuits followed by measurements [207–209].

When Gottesman, Kitaev, and Preskill proposed encoding a qubit into an oscillator
25 years ago, some considered their proposal a purely theoretical endeavor, due to the
encoding being highly non-classical and therefore beyond impossible [210] to realize

57



CHAPTER 3. QUANTUM CONTINUOUS VARIABLES

experimentally. Fast forward 25 years, and preparing GKP states is yet another example
of why we should think twice before calling something “impossible” — “difficult” is
usually closer to the truth. Today, GKP states have been stabilized in motional states
of trapped ions [211], superconducting circuits [43, 212, 213], and a universal gate set
has been implemented in trapped ions as well [214]. Even on the optical side, significant
progress has been made, and low-quality states have been prepared [215].

3.7 Conclusion and Outlook

In this chapter, we reviewed the framework for describing quantum information encoded
into bosonic modes. Starting from the basic structure of states, observables, and trans-
formations for a quantum harmonic oscillator, we established a formalism for quantum
information processing with continuous variables.

Gaussian operations, for example, unitary evolution generated by a quadratic Hamil-
tonian, have an important role in continuous-variable quantum computing. They play an
analogous role to Clifford gates in the discrete-variable setting in the sense that they are
efficiently simulatable with classical computers, assuming Gaussian input states such as
squeezed coherent states. Similar to their discrete-variable counterparts, these operations
are not enough to prepare arbitrary quantum states, requiring, in this case, the addition
of a non-Gaussian operation such as the cubic phase gate.

However, continuous-variable quantum systems are subject to noise, as any other
quantum system. While analog stabilizer codes exist [216, 217], this approach has
not been considered extensively due to several complications, such as unphysical code
states and a no-go theorem for protecting Gaussian states against Gaussian errors in
quantum communication protocols [218]. In practice, one therefore mostly considers
discrete encodings of quantum information into quantum continuous variables, for example.
Paper IV investigates the performance of two prominent classes of bosonic codes within
the measurement-based paradigm of quantum computing. The work particularly focuses
on the role of imperfect or noisy measurements when measuring the bosonic modes.
To this end, numerically exact simulations of rotation-symmetric bosonic codes and
Gottesman-Kitaev-Preskill codes under realistic measurement models are performed,
revealing vulnerabilities and requirements for this approach to be viable with near-term
devices.

Single-mode bosonic codes alone will not suffice to achieve fault-tolerant quantum
computing, and they must therefore be concatenated with discrete-variable stabilizer codes
described in the previous chapter. To bridge bosonic and discrete-variable codes, Paper VI
proposes decoding strategies that explicitly exploit analog syndrome information available
from bosonic qubit readout. These techniques apply to general concatenated architectures
and reduce the need for repeated measurements, offering a promising route toward efficient
fault-tolerant schemes based on those concatenated encodings.

Additionally, Paper V introduces the dissipatively stabilized squeezed cat qubit, a
nonlocal encoding in phase space based on squeezed coherent states. This approach signif-
icantly enhances the error suppression properties of the dissipative cat qubit by deforming
its basis states through a squeezing transformation. Importantly, for superconducting
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circuits, the same physical device that dissipatively stabilizes cat qubits can, in principle,
be used to stabilize squeezed cat qubits, only requiring two additional drive tones supplied
through the same drive line. Indeed, in Ref. [80], the experimental stabilization of squeezed
cat qubits and ordinary cat qubits on the same device was demonstrated, following the
proposal of Paper V.

The following chapter of this thesis explores how one can utilize superconducting
circuits to engineer almost arbitrary interactions and, in this way, realize quantum
continuous variable systems in hardware.
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CHAPTER 4

Quantum Computing Architectures

4.1 Superconducting Circuit Architectures

The field of circuit quantum electrodynamics (cQED) emerged after the discovery of the
Josephson effect [219] as a way to explore quantum effects in macroscopic systems [220],
including the observation of quantum tunneling [221] and the measurement of discrete
energy levels [222]. Later, the observation of coherent oscillations in a superconducting
qubit [223] showcased the potential of superconducting quantum circuits as a platform
for quantum information processing [224]. Today, superconducting quantum circuits
provide a highly flexible and controllable platform for quantum information processing.
Their design leverages a toolbox of fundamental circuit elements, which, when combined
strategically, allow for precise control over quantum states and interactions. These
circuits enable the realization of artificial atoms [223, 225–228] with tunable energy levels,
strong nonlinearities, and tailored couplings to their environment. Achieving high-fidelity
quantum operations demands both a deep understanding of the approximations underlying
effective circuit models and the development of analytical and numerical techniques to
systematically obtain better approximations. Ultimately, the goal is for these refined
methods to enable the engineering of quantum operations with significantly lower physical
error rates.

In what follows, we begin by reviewing the Hamiltonian formulation for superconducting
quantum circuits, setting the stage for a deeper understanding of these systems. Following
this, we offer an intuitive approach to engineering effective interactions, both within the
system and with its environment. To this end, we also propose a method to systematically
account for higher-order effects accurately.

4.1.1 Lumped-element circuit diagrams

We briefly review the Hamiltonian formulation of superconducting circuits, see, for
example, Refs. [133, 229, 230] for more details. In this approach, we describe an electrical
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circuit in terms of a graph consisting of branches that represent two-terminal lumped
circuit elements. Furthermore, the properties of the lowest frequency modes of distributed-
element systems can also be described within this formalism if they are represented as
lumped-element circuits. An example of a lumped-element circuit is shown in Figure 4.1a
and we will discuss its different components in more detail in Section 4.1.2. To derive the
equations of motion of the electrical circuit, we can construct its Lagrangian in terms of
the energy associated with each circuit component.

In general, each branch element b of a circuit is characterized by a voltage Vb(t) across
it and a current Ib(t) through it, see Figure 4.1b, which are defined in terms of the
electromagnetic fields. The total energy stored in a branch element b is obtained by
integrating the power Vb(t)Ib(t) over time leading to

Eb(t) =
∫ t

−∞
Vb (t

′) Ib (t
′) dt′. (4.1)

We also define the branch charge Qb(t) and the branch flux Φb(t) variables as

Φb(t) =

∫ t

−∞
Vb (t

′) dt′ , Qb(t) =

∫ t

−∞
Ib (t

′) dt′ (4.2)

where we assumed that at t′ = −∞ the voltage and current are both equal to zero. The
branch variables are not completely independent but related through Kirchhoff’s laws,∑

all b incident to n

Qb = qn,
∑

all b around l

Φb = Φ̃ℓ, (4.3)

such that the number of degrees of freedom will always be less than the number of branch
elements because the directed sum of the voltages must be zero. Here, qn is the charge at
node n and Φ̃ℓ is the electromagnetic flux through the loop ℓ. The terminology of nodes
and branches already hints at the fact that a natural language for analyzing circuits is
graph theory.

Whether we want to choose a formulation in terms of branch fluxes Φb(t) or branch
charges Qb(t) depends on the type of elements the circuit is composed of. In particular,
this choice is determined by the element-dependent constitutive laws that relate Ib(t) and
Vb(t). For a capacitive element, the constitutive relation has the form

Vb(t) = fb(Qb(t)), (4.4)

where in the case of an ideal capacitor fb(Qb(t)) = Qb(t)/C is a linear function. Similarly,
an inductive element has a constitutive relation of the form

Ib(t) = gb(Φb(t)), (4.5)

with gb(Φb(t)) = Φb(t)/L for an ideal inductor L. Typically, the relevant capacitive
elements have a linear constitutive relation and we will choose to work with branch fluxes.
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Figure 4.1: a Example of a lumped-element circuit consisting of a loop of Josephson
junctions and a capacitor in parallel connected by a capacitor to another subcircuit formed
by a linear inductor and a capacitor. b An arbitrary two-terminal branch element b with
two nodes. The branch element is characterized by a voltage Vb(t) across it and a current
Ib(t) through it, in the opposite direction. c A dc-SQUID, consisting of two Josephson
junction with energies EJ1 and EJ2 in parallel, forming a loop. An external flux Φext is
threading the loop.

4.1.2 Circuit components

We will list here the three primary components of superconducting circuits and how they
contribute to the Lagrangian of the circuit, see Ref. [231] for a derivation of these energy
contributions. Additionally, voltage and current sources provide a means of (externally)
manipulating the properties of the circuit in time. Lastly, we treat loop configurations
of Josephson junctions, such as the dc-SQUID, as primary elements. We summarize all
those elements in Table 4.1.

Capacitors. We consider capacitors as linear elements where the voltage is proportional
to the charge stored on the capacitor V (t) = q(t)/C = Φ̇(t), where C is the capacitance.
The energy stored in a capacitor is given by

E =
1

2
CΦ̇2(t) (4.6)

resembling a kinetic energy term within the Lagrangian.

Inductors. For a linear inductor with inductance L, the current is related to the
magnetic flux, I(t) = Φ(t)/L. The energy stored in an inductor is given by

E =
1

2L
Φ2(t), (4.7)

resembling a potential energy term within the Lagrangian.
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Josephson junctions. A Josephson junction consists of two superconductors separated
by a thin insulating layer. Because the layer is thin, Cooper pairs can tunnel through
this barrier, leading to a current across the junction. The current depends on the phase
difference φ between the wave functions describing the condensate of Cooper pairs on
each superconductor, which is captured by the first Josephson relation [219]

I(t) = Ic sinφ(t), (4.8)

where Ic is the critical current that depends on the geometry of the junction. Additionally,
the voltage between the superconductors is given by V (t) = (ℏ/2e)φ̇. This allows us to
view the phase difference as a generalized flux, that is, Φ = ℏφ/2e.

Up to a constant energy shift, the energy of the Josephson junction that behaves like
a nonlinear inductance takes the form

E = Ic

∫ (
dt

dΦ

)
sin(

2π

Φ0
Φ) dt = −EJ cos

[ 2π
Φ0

Φ(t)
]
, (4.9)

with EJ = Φ0Ic/2π the Josephson energy and Φ0 = 2πℏ/2e is the magnetic flux quantum.
It is common to introduce the reduced flux φ(t) = 2πΦ(t)/Φ0 to lighten the notation, as
we will do in the following.

Voltage and current sources. The Lagrangian formulation introduced above allows
us to incorporate ideal current and voltage sources into the circuit description in terms of
node fluxes. A voltage source is modeled as a large capacitor Cs → ∞ with large charge
Qs → ∞ so that Qs/Cs = Vg is constant, where the constant Vg is the applied voltage.
The voltage source is included in the Lagrangian by adding a kinetic energy term of the
form

E =
1

2
Cg[Φ̇(t)− Vg(t)]

2. (4.10)

Current sources are treated similarly, that is, we consider a large inductor Ls → ∞
with large flux Φs → ∞ so that Φs/Ls = Is is constant, where Is is the applied current.
Accordingly, we add a potential energy term of the form

E = IsΦ(t), (4.11)

to the Lagrangian.

dc-SQUID. Above, we have introduced two methods, external current and voltage
sources, to change the properties of the system (in time) by classical control. Another way
to change the state of the system is by applying an external magnetic field through a loop
formed by several Josephson junctions or a loop formed by a linear inductance and at
least a single Josephson junction. The presence of an external magnetic flux Φext(t) enters
in the Lagrangian as a phase ϕext(t) = 2πΦext(t)/Φ0 due to the flux quantization (4.3).
The potential energy of the SQUID, shown in Figure 4.1c, can be written as [232]

E = −EJ1 cos(φ+ αϕext)− EJ2 cos[φ+ (α− 1)ϕext]. (4.12)
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For time-independent ϕext(t), the parameter α ∈ R is a gauge degree of freedom and
can be chosen arbitrarily: any choice will give rise to the same predictions. Recently, it
has been pointed out [232, 233] that additional care should be taken when considering
time-dependent magnetic fields1. We will ignore such issues here, which is typically
sufficient for qualitative results and gaining an intuition.

As an example, let us continue from Eq. (4.12), choosing α = 1/2, then one can
derive that the potential energy of the dc-SQUID corresponds to the potential of a single
Josephson energy with a (flux) tunable Josephson energy EJ(ϕext), that is,

E = (EJ1 + EJ2)

√
cos2(ϕext/2) + δ2 sin2(ϕext/2)︸ ︷︷ ︸

EJ (ϕext)

cos(φ− φ0), (4.13)

where φ0 = arctan[δ tan(ϕext/2)] is an inconsequential flux offset and δ = (EJ1 −
EJ2)/(EJ1 + EJ2) characterizes the asymmetry of the two junctions.

4.1.3 Method of nodes and the Lagrangian

Having introduced a toolbox of components for assembling superconducting circuits, we
now briefly present the methods of nodes as a practical approach to modeling most circuits
containing Josephson junctions. We will restrict this overview to static external fields,
referring to [232, 233] for time-dependent fields. See Refs. [230, 231] for a more complete
presentation.

Above, we already began utilizing the language of graph theory, and we will continue
to do this here, especially to remove unnecessary degrees of freedom in a way that does not
require Kirchhoff’s law. As each branch flux Φb corresponds to an edge b in the network
graph, we can equivalently represent it by two consecutive node fluxes ϕn and ϕn′ that
correspond to the vertices of b. Thus, all voltages will be determined as the difference
of two node fluxes, and we can arbitrarily choose one reference node called ground to
which we associate the value 0. Additionally, we want to choose a spanning tree TC of the
circuit C, that is, informally, a connected subgraph of the circuit that contains all nodes
but does not contain loops. The spanning tree naturally bipartitions the branches of the
circuit into two sets, those contained within the spanning tree, and those contained in its
closure (or complement) T C . Whether a branch b is contained in the spanning tree or is
a closure branch determines how we express it in terms of the node fluxes, that is,

Φb =

{
ϕn − ϕn′ , ∀b ∈ T ,
ϕn − ϕn′ +Φext, ∀b ∈ T , (4.14)

where Φext is the external flux through the loop closed by the branch. We list the energies
of the different components if they are contained in the spanning tree in Table 4.1, the
energies for elements in the closure branch follow immediately from Eq. (4.14). From this,
the Lagrangian of the circuit can be obtained as a signed sum of capacitive and inductive

1This can be best understood by noting that the unitary transformation relating different gauges now
requires additional terms in the Schrödinger equation, i.e., H′ = Û(t)HÛ(t)† + i d

dt
ÛÛ(t)†(t)
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elements with the latter carrying a minus sign. As customary, the classical Hamiltonian
is obtained through the Legendre transformation of the Lagrangian, that is,

H =
∑
k

qkϕ̇k − L, with qk =
∂L
∂ϕ̇k

, (4.15)

with the generalized momentum qk also known as node charges.

4.1.4 Quantization and anharmonic oscillators

Given the classical Hamiltonian, we can obtain a quantum-mechanical description of the
circuit through canonical quantization by promoting the variables to operators, that is,
ϕk → ϕ̂k and qk → q̂k. With the node flux operator ϕ̂k corresponding to a generalized
coordinate and the node charge operator q̂k corresponding to generalized momentum2,
they should obey the canonical commutation relations [ϕ̂n, q̂m] = iδnm where δnm is the
Kronecker delta.

In the case of an ordinary LC circuit, the quantum Hamiltonian is that of the quantum
harmonic oscillator. We have seen previously, Section 3.3, that the harmonic oscillator is
diagonalized by introducing the bosonic annihilation â and creation â† operators fulfilling
the canonical canonical commutation relations [â, â†] = 1. In this case, the flux and
charge operators are expressed as

ϕ̂ = ϕzpf(â+ â†), q̂ = −iqzpf(â− â†), (4.16)

with ϕzpf =
√
ℏZ0/2 and qzpf =

√
ℏ/2Z0, the zero-point fluctuations of flux and charge,

respectively, and Z0 =
√
L/C is known as the impedance. We introduce here the

impedance explicitly as it plays an important role in the quantization of nonlinear circuits,
as we will see in the following.

For superconducting circuits that include Josephson junctions, the Hamiltonian is
inherently nonlinear, preventing direct diagonalization in terms of bosonic annihilation
and creation operators. Nevertheless, in the weakly nonlinear regime, a common strategy
is to first solve the linearized version of the circuit to obtain a basis in which the system
is diagonal and then treat the junction’s nonlinearity as a small perturbation. This
approximation holds when the system remains in the low-energy regime, where flux
fluctuations are confined near the minimum of the potential. Under this assumption, the
flux across the junction can be expressed as a linear combination of the M mode system,
that is,

ϕ̂ =

M∑
m=1

√
ℏZeff

m

2
(âm + â†m), (4.17)

where Zeff
m is the effective impedance of the mth mode of the circuit, a classical quantity,

that is, in principle measurable. This approach is known as blackbox quantization [234].

2We have maneuvered ourselves into a corner. The node charge operators q̂k that take the role of a
generalized momentum variable should not be confused with the position quadrature q̂ introduced in
Chapter 3.
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Element Symbol Spanning tree Black-box quantization

Capacitor C
2 (ϕ̇n − ϕ̇n′)2 q2zpf(b̂− b̂†)2

Inductor 1
2L (ϕn − ϕn′)2 ϕ2zpf(b̂+ b̂†)2

Josephson
junction

−EJ cos(ϕn − ϕn′) −EJ cos[
∑

m ϕm(b̂m + b̂†m)]

Current
source

ISϕn IS(t)(b̂+ b̂†)

Table 4.1: Circuit elements and their corresponding representations as symbols in diagrams,
as Lagrangian terms if they are contained in the spanning tree, and as terms in the
Hamiltonian within the framework of black-box quantization. For the Josephson junction,
ϕm denotes the zero-point fluctuations of the mth mode mixing in the junction.

Note that in the junction, typically all modes of the circuit mix, allowing for the design
of higher-order interactions between the modes.

For a nonlinear superconducting circuit in a parameter regime for which the black
box quantization approach is valid, the linearized circuit is obtained through the Taylor
expansion of the potential energy in the Hamiltonian. For example, for a single Josephson
junction, we have

EJ cos ϕ̂ = EJ − EJ

2
ϕ̂2 +

EJ

24
ϕ̂4 +O(ϕ̂6). (4.18)

Ignoring the constant term and incorporating the quadratic contribution into an effective
linear inductance, the remaining quartic term introduces an anharmonicity to the otherwise
linear system. Combining the Josephson junction with a capacitor results in what is
commonly referred to as an anharmonic quantum oscillator3. For a single mode, expressing
the quantized Hamiltonian in terms of the bosonic operators â and â†,

ĤAHO = ωâ†â+
EJ

24
ϕ4zpf(â+ â†)4 ≈ ωeff â

†â−Kâ†2â2, (4.19)

one often finds the anharmonic oscillator in the latter form. Here, ωeff = ω − 6K is the
effective frequency of the oscillator and the parameter K is known as the Kerr nonlinearity.
The approximation we have performed above is known as the rotating wave approximation
and will be described in more detail in the following section.

3In a particular parameter regime, the resulting circuit can be viewed either as the charge qubit [223]
or the transmon qubit [235–237], see also Ref. [238] for a review.
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4.2 Engineering Effective Interactions

The dominating energy scale in a Hamiltonian that describes a superconducting quantum
circuit is typically set by the resonance frequency of the circuit ωr which is on the order
of GHz. Any other coupling strengths, such as nonlinearities from Josephson junctions,
are usually small compared to ωr and typically on the order of tens to hundreds of kHz or
MHz. They can be seen as perturbations to the evolution of the system governed by the
oscillator Hamiltonian Ĥ0 = ωrâ

†â. Hence, any desired interaction can only be obtained
effectively with respect to a specific frame, i.e., the interaction picture with respect to the
free evolution Ĥ0. Because the corresponding unitary transformation Û(t) = exp(iĤ0t)
results in a rotation of the phase space with frequency ωr, it is common to refer to this
frame as the rotating frame.

In the rotating frame, the effective Hamiltonian takes the form

Ĥeff(t) = Û(t)ĤÛ(t)† + i
dÛ(t)

dt
Û†(t) = Û(t)ĤÛ(t)† − ωrâ

†â. (4.20)

The transformation Û(t)ĤÛ(t)† corresponds to the replacement â→ â(t) = âe−iωrt and
the transformation for the creation operator â† is obtained by Hermitian conjugation.
Therefore, Ĥeff(t) will often become time-dependent even if Ĥ is time-independent.
Because ωr is on the order of GHz, this leads to fast oscillations which approximately
average out over relevant time-scales set by a given interaction with strength g on the
order of MHz or less. They can therefore be neglected if their coupling g is small compared
to their effective oscillatory frequency. This is known as the rotating wave approximation
(RWA) [239, 240].

Energy preserving terms, for example, diagonal terms such as the Kerr interaction
Kâ†2â2 are time-independent (and thus resonant) in any rotating frame. On the other
hand, energy non-conserving terms, for example, off-diagonal terms containing an unequal
number of creation and annihilation operators, become time-dependent and have negligible
effects. To select these processes resonantly, it is therefore necessary to achieve an
external time-dependent modulation of the relevant prefactors that counters the time-
dependence of â(†) so that the desired interaction becomes effectively time-independent
in the rotating frame. For example, the squeezing type interaction gsq(a

2 + a+2) requires
a time modulation of the coupling strength at twice the frequency of the oscillator, that
is, gsq → gsq cos(2wrt).

In cQED, there are two common approaches to achieve modulation of couplings in
time, which we are going to discuss now qualitatively. The first method is based on
modulating the flux through a superconducting loop, such a the SQUID, see Section 4.1.2.
This approach is commonly used for parametric amplification [241] or to engineer an
exchange interaction between two modes [242, 243]. Ignoring the issue of quantization in
the presence of time-dependent fluxes, the potential term of the SQUID containing the
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external magnetic flux φext(t) can be written as [242]

cos(φ− φext(t)) = cos(φ) cos(φext(t))− sin(φ) sin(φext(t))

≈
(
1− 1

2!
φ2 +

1

4!
φ4

)
cos(φext(t))−

(
φ− 1

3!
φ3 +

1

5!
φ5

)
sin(φext(t))

(4.21)

+O(φ6).

This results in time-dependent couplings in general. In principle, any arbitrary interaction
can be selected by an appropriate modulation of φext(t).

Alternatively, effective time-dependent couplings can be obtained by applying an
external current source, which leads to a displacement α(t) of the annihilation operator
â→ â+α(t). Here, the displacement parameter α(t) depends on the driving strength and
the time-dependence is determined by the external modulation of the current source (see
also Section 4.1.2). Thus, the presence of an n-th order nonlinearity allows for resonantly
selecting nonlinear terms of order n− 1 or lower, which can be seen from the binomial
identity, (

â+ â†
)n →

(
â+ â† + α(t) + α∗(t)

)n
(4.22)

=

n∑
k=0

(
n

k

)(
â+ â†

)n−k
(α(t) + α∗(t))k . (4.23)

Both approaches have advantages and drawbacks depending on the concrete microwave
architecture that is considered and the specific interaction that is desired.

Engineering Effective Environments

It is not always sufficient to solely engineer the interaction of closed quantum systems, as
in some cases we desire to engineer the dissipative dynamics of an open quantum system.
In particular, we aim for dynamics that do not drive the state of the system to a “trivial”
thermal state but rather to a desired quantum state or manifold of quantum states. For
example, imagine that we wish to engineer the dissipation such that, ideally, the system
of interest evolves according to the master equation,

d

dt
ρ̂ = D[Â]ρ̂, (4.24)

where D[Â] is the Lindblad dissipator with arbitrary jump operator Â, compare Sec-
tion 3.6.1 where we required Â = â2 − α2 to confine the states of the harmonic oscillator
to the code space of the cat qubit. It is possible to engineer such effective dissipation
channels by starting from a larger system and adiabatically eliminating the dynamics of
all but the system of interest. To exemplify this procedure, let us consider a two-mode
system (â, b̂) evolving according to the master equation

d

dt
ρ̂SB = −i

[
ĤSB , ρ̂SB

]
+ κSD[â]ρ̂SB + κBD[b̂]ρ̂SB , (4.25)
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where ĤSB = g(Âb̂†+ Â†b̂) is the system-bath interaction with rate g and b̂ is the bosonic
annihilation operator of the auxillary mode. We emphasize that the operator Â can be
an arbitrary function of â and â†. For the system and the auxiliary mode, single-photon
losses with rates κS and κB, respectively, occur. Consider a regime characterized by a
small dimensionless parameter λ such that g/κB ∼ λ and κS/κB ∼ λ2. Phrased similarly,
the rate of single-photon losses of the auxiliary system is the dominating energy scale
of the system, and we have κS ≪ g ≪ κB. We can therefore assume that the state of
the auxiliary mode is close to the vacuum state and thus has a photon population much
smaller than one. To gain intuition, consider the case where the auxillary mode B is in
the vacuum state while the system S is in an arbitrary state, i.e., ρ̂SB = ρ̂S ⊗ |0⟩⟨0|B . In
this case, the interaction Âb̂† will generally be allowed whereas the reverse process, Â†b̂, is
prohibited due to b̂ |0⟩ = 0. That is, the system S is transferring an effective excitation Â

to the ancilla B, which creates a photon (b̂†) of the same energy. As the reverse process is
forbidden, the system is effectively dissipating Â. As a result, the system evolves towards
a state ρ̂ that satisfies Âρ̂ = 0. This state must lie within the kernel of the operator Â. If
there is only a single state within the kernel of Â, the state satisfying Âρ̂ = 0 becomes
the unique stationary state irrespective of the initial state. If the kernel of Â contains
multiple states, the stationary state is not unique and will depend upon the initial state.

To make the above arguments more rigorous, let us consider an initial state of the
form

ρ̂SB = ρ̂00 |0⟩⟨0|+ λ [ρ̂10 |1⟩⟨0|+ ρ̂01 |0⟩⟨1|] + λ2ρ̂11 |1⟩⟨1| . (4.26)

Here we used ρ̂nm to denote the projection of ρ̂SB onto the Fock states n,m of the
ancillary mode. We aim to derive the effective dynamics of the system alone, given by
ρ̂S = TrB [ρ̂SB ] = ρ̂00+λ

2ρ̂11 up to second-order in λ. To this end, we assume ||Â|| = O(1)
in λ. Following the derivation that can be found in Refs. [62, 244], the time evolution of
the different ρ̂mn are given by

1

κB

d

dt
ρ̂00 =− i

g

κB
(Â†ρ̂10 − ρ̂01Â) +

κS
κB

D[â]ρ̂00 + ρ̂11 + . . . , (4.27)

1

κB

d

dt
ρ̂10 =− i

g

κB
Âρ̂00 −

1

2
ρ̂10 + . . . , (4.28)

1

κB

d

dt
ρ̂11 =− i

g

κB
(Âρ̂01 − ρ̂10Â

†)− ρ̂11 + . . . (4.29)

To solve this system of equations, we can make the adiabatic approximation, assuming
that ρ̂10 is continuously in its steady state, that is, ∂tρ̂10 = 0 and similarly ∂tρ̂11 = 0.
Within this approximation, ρ̂10 and ρ̂11 are determined solely by ρ̂00 (and Â), and we
arrive at the desired result

d

dt
ρ̂S = κAD[Â]ρ̂S + κSD[â]ρ̂S , (4.30)

with κA = 4g2/κB . We note that another possible approach, which is much more general
than this example, is based upon the effective operator formalism for open quantum
systems by Reiter and Sørensen [245].
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4.3 Extracting Effective Models

As the prospect of fault-tolerant quantum computing relies critically on the quality
of quantum-gate operations, access to coherent gates with low error rates is crucial.
While the qualitative approach described above is typically a good starting point for
engineering proof-of-concept effective interactions, engineering high-fidelity operations
routinely requires going beyond the rotation wave approximation, and, for qubit systems,
going beyond the two-level approximation.

4.3.1 The Schrieffer-Wolff transformation

The Schrieffer-Wolff transformation [246, 247] is an analytical tool that allows one to accu-
rately and systematically capture effects that go beyond the rotation wave approximation
and many other approximations.

The traditional perturbative approach due to Rayleigh and Schrödinger provides
corrections to the energy levels and eigenstates of the Hamiltonian Ĥ = Ĥ0 + V̂ with
respect to the unperturbed properties of eigenstates and eigenvalues of Ĥ0 due to a
perturbation V̂ . However, one might argue that the modern view of quantum mechanics is
less concerned with states and energies, but that one rather becomes more used to thinking
in terms of Hermitian operators, that is, elementary Hamiltonians, and how combining
them affects properties of the system. Fortunately, Schrieffer-Wolff perturbation theory is
formulated on the level of operators and can therefore be viewed as a modern approach
to perturbation theory in quantum mechanics.

In a nutshell, Schrieffer-Wolff perturbation theory is concerned with finding an anti-
Hermitian generator Ŝ = −Ŝ† of a unitary transformation Ĥeff = exp(Ŝ)Ĥ exp(Ŝ†) which
transforms Ĥ = Ĥ0+ V̂ to a basis in which it is more diagonal. Here, more diagonal refers
to a transformation that suppresses the high-energy contributions of the perturbation V̂
up to a desired order, while retaining its influence within the low-energy subspace. To be
explicit, by choosing the generator Ŝ to satisfy the operator equation [Ĥ0, Ŝ] = V , one
obtains an effective Hamiltonian

Ĥeff = Ĥ0 +
1

2

[
Ŝ, V̂

]
+O(V̂ 3), (4.31)

for which the perturbation V̂ is removed to first order. In principle, one can remove the
off-diagonal part of the perturbation up to arbitrary order by an appropriate choice of Ŝ.

However, historically, the difficulty of the Schrieffer-Wolff transformation was to apply
it to higher orders, as no constructive methods to solve the respective operator equations
existed beyond the first order [248].
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4.4 Conclusion and Outlook

In this chapter, the fundamental building blocks of superconducting circuits have been
outlined as a means to engineer complex quantum systems. The focus has been placed
on how these systems can realize controllable nonlinear interactions between quantum
degrees of freedom, enabling the realization of protected quantum memories, quantum
gates, and tailored dissipative dynamics.

At the heart of circuit quantum electrodynamics (cQED) lies the principle that, by
combining Josephson junctions with linear circuit elements, effective Hamiltonians of
remarkable complexity can be “printed” directly onto a substrate. However, deriving
the desired dynamics from the set of available circuit components requires accurate
perturbative techniques for extracting effective low-energy models that faithfully capture
the essential physics. To this end, Paper II introduces an iterative procedure for
constructing the generators of the Schrieffer-Wolff transformation to arbitrary perturbative
order4. This provides a systematic method to eliminate high-energy contributions while
computing effective models directly at the operator level. Crucially, it allows one to obtain
an approximately linear effective Hamiltonian from an inherently nonlinear quantum
system by judiciously tuning the coefficients of low-degree nonlinearities such that they
cancel in the effective model.

This idea lies at the heart of Paper I, which proposes an explicit construction of a
universal gate set for continuous-variable quantum computation with superconducting
circuits based on the superconducting nonlinear inductive element (SNAIL) [250]. The
proposed architecture enables the implementation of both Gaussian and non-Gaussian
gates, such as the cubic phase gate, by selectively activating interactions through para-
metric modulation. At the same time, the static, i.e., undriven, effective dynamics
remain (approximately) linear. This separation of static and driven dynamics allows for
high-fidelity gate operations while suppressing spurious nonlinear effects.

The theoretical proposal of Paper I is successfully demonstrated experimentally in
Paper III, showcasing the transition from theoretical design to practical realization. The
techniques developed and employed in this chapter provide a foundation for bridging
theoretical constructions with experimental implementations, a central theme that runs
throughout this thesis.

4Around the same time, Ref. [249] introduced a similar method.
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Conclusion and Perspective

This thesis has explored quantum low-density parity-check (qLDPC) codes and bosonic
codes based on quantum continuous variables as foundational elements for scalable fault-
tolerant quantum computing. Throughout, a central aim has been to bridge the gap
between abstract theoretical advances and the realities of physical hardware, developing
abstractions that shift experimental challenges toward more achievable targets. By examin-
ing the interplay between code design, decoding complexity, and physical implementation
constraints, this work offers insights into advancing quantum error correction strategies
for near-term devices while developing conceptual foundations for scalable architectures
beyond the limitations of current technology.

To this end, on the near-term level, we provide both a theoretical proposal and an
experimental demonstration of a universal gate set for continuous-variable quantum
computing, leveraging the hardware-native nonlinearities of the superconducting nonlinear
asymmetric inductive element (SNAIL). This showcases the theoretically proposed versa-
tility of the SNAIL, enabling access to both charge-driven and flux-driven interactions
while remaining approximately Kerr-free.

Additionally, the dissipatively stabilized squeezed cat qubit, a noise-biased bosonic
encoding, is introduced. Compared to the ordinary cat qubit, squeezed cat qubits offer
significantly improved error protection against bit-flips with very limited effect on the
protection against phase-flips. These advantages are retained under a concrete noise model
derived from the proposed dissipative stabilization mechanism. Recently, Rousseau et
al. [80] experimentally demonstrated the enhanced protection, with exceptional agreement
to the theoretical proposal.

Going beyond near-term devices, this thesis proposes quantum radial codes as a
high-threshold, low-overhead, and single-shot quantum memory. While these codes
cannot achieve asymptotic optimality in encoding rate and distance, the emphasis lies on
realistic scenarios involving circuit-level noise and finite, practically relevant code sizes.
In this regime, their performance is competitive with bivariate bicycle codes [25, 251].
However, they offer an alternative geometric perspective that may prove advantageous for

73



CHAPTER 5. CONCLUSION AND PERSPECTIVE

constructing fault-tolerant operations or tailored decoders.

Furthermore, as a step towards solving the problem of accurate real-time decoding
of qLDPC codes, the localized statistics decoding algorithm is introduced as the first
parallel decoding algorithm that matches the performance of the current state-of-the-art
ordered statistics decoding algorithm for general quantum error correction protocols.
Most abstractly, the thesis introduces the concept of fault complexes, which broadens the
homological framework of quantum error correction from static CSS codes to dynamic,
time-evolving fault-tolerant protocols. Fault complexes open the door to applying the full
machinery of homology theory to the analysis and design of quantum error correction
protocols in space-time.

However, building a fault-tolerant quantum computer remains a daunting challenge,
where theoretical ideas can shape experiments by pushing the boundaries of what is
necessary and what is possible, and experimental realities reshape theoretical imagination.
A timely and prominent example is a class of bivariate bicycle codes investigated by
Bravyi et al. [25], which, with their high encoding rate and threshold, compete with
the surface code, which has remained unchallenged in terms of its high error threshold
for almost 20 years. While the investigated codes require some long-range connectivity
in addition to the otherwise nearest-neighbor connectivity in the plane, the significant
reduction in overhead motivates the additional effort of engineering long-range couplers
within a superconducting architecture.

Studies such as the one by Bravyi et al. [25] and the work presented on quantum radial
codes in this thesis show that to build a high-threshold, low-overhead quantum computer,
it is crucial to simulate potential constructions within the sheer endless design space. The
reason is that currently, the only method to accurately estimate the error threshold of a
quantum error-correcting code is by direct simulation with a realistic circuit-level noise
model. However, an additional complication with these realistic noise models is that the
ordering of operations during the syndrome extraction cycle becomes relevant and can
significantly impact the fault distance of the code. However, no general, efficient tools
exist to determine the circuit distance of a code in the presence of noise.

A promising avenue to approach this problem is rooted within the formalism of fault
complexes extended to circuit-level noise. Intuitively, there should exist a mapping from
the phenomenological noise case to the circuit-level noise case, potentially described by
a chain map, that is, a homomorphism of chain complexes. Given such a mapping, one
might uncover (simple) conditions under which the fault distance is preserved, enabling
more precise predictions of code performance.

Furthermore, it might be worthwhile to consider an approach to quantum error
correction inspired by classical error correction. In classical coding theory, decoder
performance often dictates the direction of code development. One might argue that such
an approach has been partially followed by rephrasing the decoding problem of various
topological codes such that it becomes matchable, see e.g., [252–254]. However, this
approach has been limited and only considered minimum-weight error decoders.

The performance gap between (classical) minimum-weight error and (quantum)
maximum-likelihood decoders for circuit-level noise is largely unexplored with a few
exceptions, e.g., [255], due to the complexity and associated overhead of the decoder.
While certain code families [130, 140] have efficient maximum-likelihood decoders in
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the static, i.e., code capacity, case, to the best of our knowledge, no efficient maximum-
likelihood decoding algorithms exist for codes in space-time. Developing such decoders is
a crucial open problem that will require further theoretical insights on the structure of
the decoding problem in space-time. This represents an exciting area of future research,
with the potential to significantly enhance the performance of quantum error correction
on near-term devices and beyond.

Even though gate fidelities and coherence times for discrete-variable qubits are steadily
increasing, bosonic encodings potentially offer a shortcut to lower effective physical error
rates. A major challenge ahead is the development of scalable architectures involving
multiple bosonic modes, along with the validation of corresponding theoretical error
models. For stabilized cat qubits, the implementation of high-fidelity two-qubit gates
remains a key obstacle. While a fully bosonic two-qubit gate between two cat qubits
has not yet been demonstrated, experimental progress suggests that such a realization
is within reach. In the meantime, two-qubit operations between hybrid cat-transmon
architectures have been successfully demonstrated, enabling operation of the repetition
code near the memory threshold [42]. Although the current memory lifetime is not limited
by the two-qubit gate fidelity, improving these operations will be critical for future scaling.
One possible avenue is to replace stabilized cat qubits with stabilized squeezed cat qubits,
which may reduce control errors related to the narrower peak structure of the squeezed
cat qubit wavefunction compared to the ordinary cat qubit. Overall, the sheer vastness
of the superconducting qubit design space offers enormous potential to further enhance
bosonic qubit performance — potentially beyond what currently seems imaginable.

Fault-tolerant quantum computing stands at an extraordinary moment. Theoretical
ideas, once thought too abstract or futuristic, can now find their way into laboratory
demonstrations within years, if not months. This rapid interplay between theory and
experiment creates a momentum that is both exhilarating and unprecedented. In many
ways, the current pace and scope of progress evoke the intellectual thrill that must have
accompanied the discovery of quantum mechanics a century ago — when a new formalism
redefined our understanding of nature. Likewise, the rapid development today demands
that we reconsider the mathematical formalism to describe quantum error-correcting
codes. While the language of chain complexes has been tremendously fruitful for the
discovery of error-correcting codes, we must ask ourselves whether thinking about codes
limits our imagination. Recent discoveries [27, 138, 256–259] point toward a broader
perspective, that there must exist a more fundamental structure than codes. This is
what makes this field so exciting right now. It’s this push beyond traditional frameworks,
toward something fundamentally new, that makes this a truly exciting moment for the
field.
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[29] K. R. Ott, B. Hetényi, and M. E. Beverland, Decision-tree decoders for general
quantum LDPC codes, Feb. 2025, arXiv:2502.16408 [quant-ph].

[30] L. A. Beni, O. Higgott, and N. Shutty, Tesseract: A Search-Based Decoder for
Quantum Error Correction, Mar. 2025, arXiv:2503.10988 [quant-ph].

[31] K. Yin, X. Fang, J. Ruan, H. Zhang, D. Tullsen, A. Sornborger, C. Liu, A. Li,
T. Humble, and Y. Ding, SymBreak: Mitigating Quantum Degeneracy Issues in
QLDPC Code Decoders by Breaking Symmetry, Dec. 2024, arXiv:2412.02885
[quant-ph].

[32] A. deMarti iOlius, I. E. Martinez, J. Roffe, and J. E. Martinez, An almost-linear
time decoding algorithm for quantum LDPC codes under circuit-level noise, Sept.
2024, arXiv:2409.01440 [quant-ph].

77

https://doi.org/10.1103/PhysRevLett.79.321
https://doi.org/10.1103/PhysRevLett.79.321
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
http://arxiv.org/abs/quant-ph/9811052
https://arxiv.org/abs/quant-ph/9811052
https://doi.org/10.1007/s102080010013
https://doi.org/10.1103/PRXQuantum.2.040101
https://doi.org/10.1145/3519935.3520017
https://arxiv.org/abs/2206.07750
https://doi.org/10.1109/FOCS54457.2022.00117
https://doi.org/10.1109/FOCS54457.2022.00117
https://arxiv.org/abs/2202.13641
https://doi.org/10.1038/s41586-024-07107-7
https://doi.org/10.1038/s41586-024-07107-7
https://arxiv.org/abs/2402.09606
https://doi.org/10.1103/PhysRevLett.134.090602
https://arxiv.org/abs/2407.16336
https://doi.org/10.1109/QCE60285.2024.10326
https://doi.org/10.1109/QCE60285.2024.10326
https://arxiv.org/abs/2406.14527
https://arxiv.org/abs/2502.16408
https://arxiv.org/abs/2503.10988
https://arxiv.org/abs/2412.02885
https://arxiv.org/abs/2412.02885
https://arxiv.org/abs/2409.01440


[33] A. Gong, S. Cammerer, and J. M. Renes, Toward Low-latency Iterative Decod-
ing of QLDPC Codes Under Circuit-Level Noise, Mar. 2024, arXiv:2403.18901
[quant-ph].

[34] A. Cowtan, SSIP: automated surgery with quantum LDPC codes, July 2024,
arXiv:2407.09423 [quant-ph].

[35] A. Cowtan, Z. He, D. J. Williamson, and T. J. Yoder, Parallel Logical Measurements
via Quantum Code Surgery, Mar. 2025, arXiv:2503.05003 [quant-ph].

[36] Z. He, A. Cowtan, D. J. Williamson, and T. J. Yoder, Extractors: QLDPC Ar-
chitectures for Efficient Pauli-Based Computation, Mar. 2025, arXiv:2503.10390
[quant-ph].

[37] B. Ide, M. G. Gowda, P. J. Nadkarni, and G. Dauphinais, Fault-tolerant logi-
cal measurements via homological measurement, Oct. 2024, arXiv:2410.02753
[quant-ph].

[38] E. Swaroop, T. Jochym-O’Connor, and T. J. Yoder, Universal adapters between
quantum LDPC codes, Oct. 2024, arXiv:2410.03628 [quant-ph].

[39] A. Cross, Z. He, P. Rall, and T. Yoder, Linear-Size Ancilla Systems for Logical
Measurements in QLDPC Codes, July 2024, arXiv:2407.18393 [quant-ph].

[40] D. J. Williamson and T. J. Yoder, Low-overhead fault-tolerant quantum com-
putation by gauging logical operators, Oct. 2024, arXiv:2410.02213 [cond-mat,

physics:quant-ph].
[41] R. Acharya et al., Quantum error correction below the surface code threshold,

Nature 638, 920–926 (2025).
[42] H. Putterman et al., Hardware-efficient quantum error correction via concatenated

bosonic qubits, Nature 638, 927–934 (2025), arXiv:2409.13025 [quant-ph].
[43] V. V. Sivak et al., Real-time quantum error correction beyond break-even, Nature

616, 50–55 (2023), arXiv:2211.09116 [quant-ph].
[44] S. Krinner et al., Realizing Repeated Quantum Error Correction in a Distance-Three

Surface Code, ArXiv211203708 Cond-Mat Physicsquant-Ph (2021), arXiv:2112.
03708 [cond-mat, physics:quant-ph].

[45] I. Besedin et al., Realizing Lattice Surgery on Two Distance-Three Repetition Codes
with Superconducting Qubits, Jan. 2025, arXiv:2501.04612 [quant-ph].

[46] R. S. Gupta et al., Encoding a magic state with beyond break-even fidelity, Nature
625, 259–263 (2024).

[47] N. Sundaresan, T. J. Yoder, Y. Kim, M. Li, E. H. Chen, G. Harper, T. Thorbeck,
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