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Abstract
Enhanced simulation capability for the cuttingprocess is crucial tomakingquick evaluations of cutting forces and temperatures,
which are significant for assessing the machinability of the workpiece material and predicting tool wear. In this paper, the
material flow in orthogonal cutting, including primary and secondary shear zones, is represented by a viscous/viscoplastic
model that includes the temperature-sensitive Johnson-Cook flow stressmodel. A stabilized staggered finite element procedure
is developed to handle incompressible Navier-Stokes material flow in combination with convection-dominated hardening and
thermomechanical interaction. To handle material flow at tool-workpiece contact, a mixed method is used to reduce spurious
oscillations in contact stresses along with simplified heat transfer in the tool-workpiece interface. A novel feature is that
the velocity field is resolved as a subscale field to the velocity field of the distributed primary zone deformation model. It
appears that the finite element solution to the subscale material flow model is significantly more cost-effective in contrast
to directly addressing the velocity field and compared to the chip-forming simulations (DEFORM 2D). The cutting forces,
temperature, and stress-strain state of the material in the critical deformation regions can be accurately estimated using the
subscale model. The results obtained show that the trend of the estimated forces and temperatures is consistent with our
experimental measurements, the DEFORM 2D simulations, and the experimental data from the literature.

Keywords Finite element method · Johnson-Cook · Material flow · Navier-Stokes · Orthogonal metal cutting

Introduction

In metal cutting processes, short tool life and longmachining
cycles are key challenges in increasing the quality of compo-
nents and reducing production costs. This problem becomes
particularly important when new material grades are intro-
duced to meet design goals, which require the determination
of suitable process parameters. To determine the parameters
that require the evaluation of the cutting forces, the temper-
ature, and the tool wear, it is well established to use finite
element (FE) simulations of the machining process [1–4].
However, due to the high computational cost of finite element
simulations in machining, it is a major incentive to improve
modeling and simulation capabilities to make faster assess-
ments of the machinability of the workpiece, by evaluation
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of the forces and temperature, and also for the inverse iden-
tification of the material model parameters.

Various representations of the workpiece material have
been used to model the cutting process, such as the Eulerian,
Lagrangian, arbitrary Lagrangian-Eulerian (ALE), and parti-
clemethod (PFEM). In the Eulerian formulation, thematerial
moves through a fixed mesh in a predefined space, whereas
in the Lagrangian and ALE formulations, the mesh and the
material move together with a reference configuration. The
PFEM representation considers theworkpiecematerial as the
motion of discrete particles in a Eulerian region governed
by the conservation of momentum, mass, and energy. The
Eulerian formulation is suitable for cutting simulations for a
fixed cutting process region, knownbefore cutting simulation
[5], while the Lagrangian formulation is suitable for detailed
simulation of chip formation in the cutting process [6].When
forces are evaluated in PFEM, the particles move indepen-
dently of the mesh combined with continuous mesh updates
[7, 8]. However, Lagrangian/ALE/PFEM formulations gen-
erally suffer from convergence problems and inaccuracy as a
result of distorted elements [9]. TheALE formulation [9] par-
tially eliminates the creation of highly distorted elements and
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reduces the computational time. However, highly distorted
elements can still be formed [10]. To address these issues,
remeshing and element deletion approaches are implemented
[11–13] to eliminate negative Jacobians present during large
deformations. Although these approaches solve some of the
issues with the Lagrangian formulation, they also increase
computational time.

Since the dominant deformation during metal cutting
occurs in the primary and secondary shear zones, we focus
in this article on the material flow resolved only in these
zones treated as a fixed Eulerian region. Material flow is con-
sidered pseudoplastic based on the Navier-Stokes equations
(NS) in combination with a semi-analytical model for mate-
rial flow in the primary shear zone (PSZ) [14, 15]. To obtain
a pure Computational Fluid Dynamics (CFD) approach that
avoids elasticity, we propose here to adopt a pseudoplas-
tic approach based on a Newtonian viscous/non-Newtonian
thermo-viscoplastic flow model, where the viscoplastic part
of the material is represented by the Johnson-Cook model
(JC) [16]. In addition, a unique mixed method is developed
for frictional contact of material flow at the tool-workpiece
interface. The method reduces spurious oscillations in con-
tact stresses associated with the conventional regularized
frictional/contact formulation [17]. In the literature, exam-
ples of the CFD approach can be found for slow processes
such as polymers, fresh concrete, sludge, mudflows, food
pastes [18, 19], and in some cases also for the silo flow of
granular material subjected to large deformations and high
strain rates [20]. Furthermore, pseudoplastic behavior can
be observed in metal injection molding [21]. In this context,
fluid mechanics-based approaches to analyze the machining
process at high speeds often assume analytical potential flow
modeling for the behavior of the material around the tooltip
[22, 23]. Similarly, the temperature distribution in the cut-
ting zone has been addressed using potential theory [24, 25].
However, pure CFD approaches are rarely used for machin-
ing simulations.

To further reduce computational cost, the total velocity in
this article is subdivided into a subscale velocity field and
a smooth long-range velocity field [26]. Long-range fluc-
tuation is synthesized based on the velocity and strain-rate
distribution in the PSZ of a semi-analytical model, whereas
the subscale velocity is calculated according to the NS
equations. The semi-analytical model, called the distributed
primary zone deformation (DPZD)model [14, 15], combines
machining experiments with the assumed shear zone kine-
matics in PSZ.Moreover, to address the coupling between the
material velocity field and the material evolution of the cou-
pled hardening and temperature, a stabilized staggered FE
solution procedure is developed. The results obtained from
the presented subscale model in terms of forces, stresses, and
temperatures are validated with orthogonal cutting experi-
ments. To evaluate the performance and time efficiency of

the subscale model, the results are compared with DEFORM
2D forming simulations and data from the literature.

Subscale material flowmodel

In this section, the subscale material flow model is estab-
lished, which consists of the assumed shear rate distribution
based on the geometric characteristics of the primary shear
zone and the stabilized incompressible NS flow to describe
the fine-grained velocity field in the shear zones. The viscous
material rheology of the material model is formulated. For
the involved material hardening and temperature evolution,
separate stabilized weak forms are established to handle the
convection-dominated evolution of material hardening and
temperature. Concerning the contact boundary, the mechani-
cal and thermal response is formulated at the tool-workpiece
contact interface.

Coarse-grained shear rate distribution

The Eulerian region � occupies the most important part of
the material flow for cutting, as shown in Fig. 1. This region
consists of the primary shear zone �PSZ and the secondary
shear zone �SSZ , with stagnant shear flow. To facilitate a
cost-effective model for the severe shear flow region �PSZ ,
an assumed coarse-grained shear rate distribution v̄[x] ∈
�PSZ based on the DPZD model is incorporated [14, 15].
The total velocity of the material thus consists of the course-
grained (DPZD governed) part v̄ and a subscale velocity field
vs defined as

v = v̄ + vs ⇒ l = ∂v

∂x
= l̄ + ls (1)

where l is the spatial velocity gradient fieldwith a subdivision
analogous to the velocity field.

As to the coarse-grained field v̄, it is expressed in terms
of the normal and tangential basis vectors n and t in Fig. 1b
as

v̄ = vnn + vt [s]t ⇒ l̄ = γ̇ t ⊗ n with γ̇ = v′
t [s] (2)

where vt and vn are the shear and normal velocities related to
the DPZD-approximation [15]. It is assumed that the shear
strain rate γ̇ varies in the normal direction, with the coordi-
nate s as shown in Fig. 1, and that γ̇ [s] has the distribution
defined as

γ̇ = ˙̄γ f [s] , f [s] =
{(

1 + 2 s
b

)r − b
2 ≤ s ≤ 0(

1 − 2 s
b

)r 0 ≤ s ≤ b
2

(3)

Here, ˙̄γ is the shear rate of the shear line AB, f [s] is the distri-
bution function in terms of the primary shear zone thickness
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Fig. 1 (a) Modeled region in 2D orthogonal metal cutting that includes
primary and secondary shear zones with workpiece material that enters
with the cutting speed vc. (b) Boundaries of the modeled region and
detailed primary shear zone, where ϕ is the shear angle, b is the thick-

ness of the primary shear zone, and tu is the thickness of the uncut chip
(feed). The rake angle is β =0 in this study and the dotted line ∈ �PSZ
is the shear line

b and the exponent r . In order to calculate the shear velocity
vt [s], the shear strain rate in Eq. 3 is integrated for both sides
of the PSZ as

vt [s] =
{

vtCD + ˙̄γ ∫ s
− b

2
f [s]ds − b

2 ≤ s ≤ 0

vtEF + ˙̄γ ∫ s
0 f [s]ds 0 ≤ s ≤ b

2

(4)

where vtCD and vtEF are the shear velocities on the borders
CD and EF in Fig. 1. Following [14, 15], the corresponding
shear and normal velocities can be calculated using the shear
angle ϕ, the rake angle β and the cutting speed vc as

vnCD = vc sin[ϕ] = vnEF (5a)

vtCD = vc cos[ϕ], vtEF = −vc sin[ϕ] tan[ϕ − β] (5b)

Finally, the shear rate ˙̄γ of the shear line is obtained from
the distribution f [s] and the continuity of vt in s = 0. Upon
combining Eqs. 3, 4 and 5 we obtain

˙̄γ = −1 + r

b

vc cos[β]
cos[ϕ − β] (6a)

vt [s] = vc

(
cos[ϕ] − 1

2

cos[β]
cos[ϕ − β]g[s]

)
(6b)

vn = vc sin[ϕ] (6c)

where the function g[s] is the desired (integrated) distribution
of the shear velocity

g[s] =
{(

1 + 2s
b

)r+1 − b
2 ≤ s ≤ 0

2 − (
1 − 2s

b

)r+1
0 ≤ s ≤ b

2

(7)

The distribution functions f [s] and g[s] are visualized in
Fig. 2.

Furthermore, the primary shear zone thickness b and the
shear angle ϕ in Eqs. 3 and 5 are determined using [14] as

ϕ = tan−1
(
tu
tc

cosβ

1 − (tu/tc)sinβ

)
(8a)

b = (τ0 − τAB)(cosϕ + sinϕ)t2uw

(Fc − Ft )sin2ϕ(1 + 2(π/4 − ϕ))
(8b)

where τ0 is the shear strength of the material and τAB is the
shear stress at the shear line defined as

τAB = (−Fccosϕ + Ft sinϕ)sinϕ

tuw
(9)

Fig. 2 The distribution functions f [s] and g[s] (when r = 4) of the
DPZD assumption for the shear strain rate and the consequent shear
velocity in the PSZ
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It is important to note that the geometry of �PSZ is based
on the cutting parameters and measurements of the cutting
force Fc, the thrust force Ft , and the chip thickness tc. The
cutting parameters involved are the feed tu , the rake angle β,
and the width of the cut w.

Incompressible Navier-Stokes material flow

The principle of mass conservation for the incompressible
material with density ρ[x, t] states that

ρ̇︸︷︷︸
=0

+ρ∇ · v = 0 ⇒ ρ∇ · v = 0 ∀x ∈ � (10)

The total Cauchy (flow) stress σ is formulated in terms of
the deviatoric and hydrostatic stresses as

σ = σ d − p1 (11)

where σ d is the stress deviator and p is the pressure associ-
ated with the volumetric deformation constraint ∇ · v = 0
due to mass conservation. Neglecting the body forces, the
strong form of the momentum balance reads

σ d · ∇ − ∇ p − ρv̇ = 0 ∀x ∈ � (12)

where the inertia term includes the material time derivative
of the velocity

v̇ = v,t + l · v with v,t := ∂v

∂t
(13)

It is clear that the relations (10) and (12) represent the
strong form of the incompressible NS equations for the flow
of the workpiece material during cutting. In the present con-
text, contact tractions along the contact boundary 
c are
considered in a weak form to incorporate contact condi-
tions of the material flow. The corresponding weak forms of
momentum and mass conservation are formulated by intro-
ducing the set V × P × Q of kinematically admissible
velocities, pressures, and boundary tractions with sufficient
regularity. This may be formulated as: find {vs, p, ṽ ∈
V × P × Q} so that for all w, q, δṽ ∈ V × P × Q the
following stabilized NS-equations are satisfied

(
w, v,t

)+ c(w, v, v)+ a(v,w)− b(w, p)− b(v, q)+ s(v, p,w)

= f (w, ṽ) + fc(ṽ − v, δṽ) ∀w, q, δ t ∈ V × P × Q (14)

where the involved bi- and tri-linear forms are defined as

a(v,w) =
∫

�

σ d [v] : l[w] dV (15a)

b(v, q) =
∫

�

q 1 : l[v] dV (15b)

c(w, u, v) =
∫

�

w · (l[u] · v) (ρdV ) (15c)

(
w, v,t

) =
∫

�

w · v,t (ρdV ) (15d)

s(v, p,w) =
∫

�

τ l[w] : (r ⊗ v) dV

=
NEL∑
e=1

τe

∫
�e

l[w] : (r ⊗ v) dV (15e)

The relations in Eqs. 14-15 constitute the coupled pressure-
velocity problem of thematerial flow. As indicated in Fig. 1b,
the Dirichlet boundaries are considered along 
v , the stress-
free boundaries are considered along 
t , and the contact
boundary is
c. A special approach is used to reduce spurious
oscillations in contact stresses as a result of a conventional
regularized frictional/contact formulation, where contact
velocities and stresses are of the same order of approxima-
tion. In the spirit of the developments in [17] to alleviate the
violation of the inf-sup (LBB) condition for cohesive zone
interfaces, amixedweak formulation of the contact boundary
is adopted to specify the stick/slip/separation along
c for the
flowproblem.To this end,we introduced inEq. 14 the coarse-
grained contact velocity ṽ ∈ C , with C = {v̄ ∈ L2[
c]}, as

f (w, ṽ) = −
∫


c

w · t[ṽ] dS (16)

where the traction vector is completely determined by the
coarse-grained velocity at the contact boundary. In addition,
condition ṽ → v is formulated in the weak sense so that

fc(w, ṽ − v) =
∫


c

μc (ṽ − v) · δṽdS = 0 ∀δṽ ∈ C (17)

where μc is a regularization parameter of highly irreg-
ular contact conditions along 
c. Further details of the
stick/slip/separation formulation are given in “Tool-work-
piece contact boundary” section.

In addition, standard SUPG stabilization s(v, p,w) is
included in Eq. 14 in terms of the upwind weighting in the
FE-discretized region and the residual of Eq. 12 written as

r[v, p] = ρ
(
v,t + l · v

) − (σ d · ∇ − ∇ p) (18)

SUPG stabilization becomes active in the convection-
dominatedNS avoiding numerical oscillations in the velocity
field. In the present context, this may occur for high cutting
speeds in conjunction with thermal softening that induces a
reduced viscosity in the material. The details of the parame-
ters involved are explained in “Details of the FE simulations”
section.
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Rheology of workpiecematerial

The deviatoric stress response in the modeled region is
assumed to be non-Newtonian, where the pseudoplastic (or
viscoplastic) part of the material response is based on the
JC model. The rate of deformation tensor d = lsym is then
divided into a viscoelastic part dv and a viscoplastic part d p

so that d = dv + d p, where the viscoelastic part defines the
stress response through the viscous relation as

σ d = 2μ Id : dv = 2μ Id : (d − d p) (19)

where μ is the Newtonian shear viscosity parameter and Id
is the 4th order deviatoric projection operator. As for the
viscoplastic part, we postulate

d p = λ f with f = ∇φ = 3

2

σ d

σe
and σe =

√
3

2
|σ d | (20)

where φ := σe − g[θ ] (A + κ) is the yield function, σe is the
vonMises effective stress, A is the initial yield stress, and κ is
the microstress due to isotropic hardening. Furthermore, λ ≥
0 is the plastic multiplier determined by the JC-overstress
function defined as

λ := ε̇0 exp

[ 〈φ〉
Cg[θ ] (A + κ)

]
if

λ

ε̇0
≥ 1 (21)

where 〈φ〉 denotes the positive part of φ. When λ
ε̇0

< 1, the
rate-independent plastic response is controlled by loading
conditions φ ≤ 0, λ ≥ 0, φλ = 0. The parameters C and
ε̇0 control the rate sensitivity. These are degraded by thermal
softening via the degradation function g[θ ] defined as

g[θ ] =

⎧⎪⎪⎨
⎪⎪⎩
1 θ ≤ θt

1 −
(

θ−θt
θm−θt

)m
θt < θ < θm

0 θ ≥ θm

(22)

For the JC model, the microhardening stress is κ = Bkn

(B is the hardening parameter and n is the hardening expo-
nent) in terms of the material hardening variable k, whose
evolution is governed by the material time derivative as

(∇k) · v + k,t︸ ︷︷ ︸
k̇

= λ (23)

Moreover, the evolution of temperature θ̇ is controlled by
the energy equation

cv

(
(∇θ) · v + θ,t

)
︸ ︷︷ ︸

θ̇

+∇ · q = w p −
(

κ + θ
∂κ

∂θ

)
λ = σyλ

(24)

where q is the heat flux vector, the plastic work rate is w p =
σeλ and σy := σe − κ(g[θ ] + θg′[θ ]).

The deviatoric stress response appears to be explicitly
obtained in terms of the viscous (elastic) stress defined as
σ v
d := 2μ Id : d. For viscoplastic loading φ[σ v

e ] > 0, one
obtains

σ d = 2μId : (
d − d p) = σ v

d − 3μλ
σ d

σe

⇒ σ d

(
1 + λ

3μ

σe

)
= σ v

d (25)

The plastic multiplier can then be solved based on the
sequel

σ d

σe
(σe + λ3μ) = σ v

e
σ v
d

σ v
e

⇒ σe = σ v
e − λ3μ ⇒ λ

ε̇0

= exp

[
σ v
e − λ3μ − (A + κ)

C (A + κ)

]
(26)

Hence, when the plastic multiplier is determined, σe =
σ v
e − λ3μ is calculated, and the deviatoric stress tensor is

evaluated as

σ d = σ v
d

{
1 φ < 0
σe
σ v
e

φ ≥ 0
(27)

The linearized viscous response is considered for fixed
microhardening κ and temperature θ as

δσ d = σe

σ v
e

δσ v
d + 2

3

(
δσe − σe

σ v
e

δσ v
e

)
f v with f v = 3

2

σ v
d

σv
e

(28)

where δσ v
d = 2μId : δd and δσ v

e = 2μ f v : δd. It also
follows that δσe = δσ v

e − 3μδλ and

log

[
λ

ε̇0

]
= σ v

e − λ3μ − (A + κ)

C (A + κ)
� δλ = a δσ v

e (29)

with

a = λ

3μλ + C (A + κ)
(30)

Then δσe = (1 − 3μa)δσ v
e = (1 − 3μa)2μ f v : δd is

obtained in viscoplastic loading. Hence, it is obtained that
δσ d = D : δd where the viscous modulus tensor of the
stress response is

D = 2μ

{
Id φ < 0
σe
σ v
e
Id + 2

3

(
1 − 3μa − σe

σ v
e

)
f v ⊗ f v φ ≥ 0

(31)
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Weak forms of hardening and temperature
evolution

In the Eulerian formulation, the evolution of the material
hardening variable k = k[x, t] ≥ 0 is governed by the con-
vection problem of Eq. 23 as

rk = (∇k) · v + k,t − λ = 0 ∀x ∈ � (32)

Here, λ is given from the momentum balance and the con-
stitutive problem in the sequel (20)-(23). A stabilized weak
form of Eq. 23 is written as

((∇k)·v, γ )+(
k,t , γ

)+s(k, γ )+rp(〈k〉−, γ )=(λ, γ )∀γ ∈ S

(33)

where no boundary conditions for k−values are needed. Sim-
ilarly to the momentum and mass conservation of the NS
equations, upwind stabilization is used in terms of the resid-
ual rk defined as

s(v; k, γ ) =
NEL∑
e=1

τe (rk[k, t], (∇γ ) · v)�e
(34)

where the elemental stabilization time is τe = he/|v| [27].
Furthermore, to avoid solutions k < 0, the penalty term
rp〈k〉− is introduced in Eq. 33 in terms of the negative part
function 〈•〉−. In the present application, we have found that
the penalty parameter rp = 1000−2000 is a suitable numer-
ical choice.

As to the energy equation (24), it is restated in residual
form as

rθ = cv

(
(∇θ) · v + θ,t

) + ∇ · q − σyλ = 0 ∀x ∈ � (35)

The weak form including stabilization and Fouriers law
q = −kc∇θ , where kc is the thermal conductivity, is

c(v; χ, θ) + (χ, θ,t ) + a(χ, θ) + s(v; χ, θ) − f (χ, θ)=0 ∀χ ∈ S

(36)

where

c(v;χ, θ) =
∫

�

χ (∇θ) · v (cvdV ) (37a)

(
χ, θ,t

) =
∫

�

χ θ,t (cvdV ) (37b)

a(χ, θ) =
∫

�

(∇χ) · (∇θ) (kcdV ) (37c)

s(v;χ, θ) =
∫

�

τ rθ (∇χ) · v dV

=
NEL∑
e=1

τe

∫
�e

r (∇χ) · v dV (37d)

f (χ, θ) =
∫

�

χ σy[θ ]λ dV −
∫




χ qnc dS (37e)

Tool-workpiece contact boundary

Regarding mechanical boundary conditions, stress-free bou-
ndaries are defined along 
t , while the Dirichlet boundary
is applied along 
v for the subscale field vs . Since vs = 0
along 
v , the workpiece is subjected to the cutting speed vc
due to the DPZD approximation. To express the mechani-
cal response of the tool-workpiece contact boundary 
c, the
mechanical contact interface is considered in Fig. 3 showing
the response of the contact interface to material flow. Hence,
the normal stress (or contact pressure p = −σn = −nc · t)
is tnc = σnnc and the contact shear is τ , which defines the
contact traction vector as t = tnc +τ . A non-Newtonian con-
tact response is also introduced in terms of the regularization
parameter μc and the regularized normal slip v − vs → 0
for μc → ∞. This is defined as

t = μc(v − vs) (38)

where vs is the slip velocity. Here, the regularization param-
eter is related to a geometric measure of the cutting zone
through the bulk viscosity and the relation μc = μ/δ, where
the geometric measure δ is typically chosen as a small value
δ = 10−6mm. Note that in this section we use the notation
v for the contact velocity for brevity, while in the weak form
(16) we adopt the coarse-grained velocity ṽ when calculating
the traction vector.

Moreover, upon introducing the normal and shear pro-
jection operators 1nc = nc ⊗ nc and 1s = 1 − nc ⊗ nc,
respectively, the contact traction vector in the normal and
shear components is formulated as

t = tnc + τ with tnc = μc1nc · v ,

τ = τ v − μcvs and τ v = μc1s · v (39)

where τ v is the Newtonian contact shear stress in stick load-
ing. For the slip velocity, the friction function φs of the
Mohr-Coulomb type is introduced as

φs = |τ | + f [σn] ≤ 0 (40)

where f [σn] represents the crucial stick/slip friction behav-
ior of the tool-workpiece contact interface. We consider the
classical Mohr-Coulomb friction law in the friction parame-
ter γc defined as

f [σn] = γcσn with f ′[σn] = γc (41)
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Fig. 3 Mechanical contact
interface to manage regularized
stick/slip/separation contact
using the regularization
parameter δ. Note that the
contact traction vector t
represents the reactive contact
stresses on the workpiece
material

The material slip is defined by

vs = λ
∂φs

∂τ
= λg = λ

τ

|τ | with φs ≤ 0 , λ ≥ 0 , φsλ = 0

(42)

From the constitutive interface relation, in slip loadingλ > 0,
τ is obtained as

τ = μc (1s · v − vs) = gv|τ v| − λμcg (43)

which yields

g (|τ | + λμ) = gv |τ v| ⇒ g = gv and |τ | = |τ v| − λμc

(44)

From the slip loading, the friction function is derived as

φs = |τ | + f [σn] = |τ v| + f [σn]︸ ︷︷ ︸
φv
s

−λμc

= 0 ⇒ λ = φv
s

μc
≥ 0 (45)

where φv
s is the Newtonian interface loading function. For

the interface law, separation and stick/slip are distinguished
as

σn = μcvn ≥ 0 ⇒ t = tnc = τ = 0 (separation) (46)

The stick/slip condition is indicated whenever σn =
μcvn < 0. In this condition, the different cases are obtained

depending on the sign of the loading function φv
s as

φv
s

μc
≤ 0 , vs = 0⇒ t= tnc + τ v = μcv (stick) (47a)

λ = φv
s

μc
> 0 , vs = φv

s

μc
gv

⇒ t = tnc + τ v − φv
s g

v = μcv − φv
s g

v (slip)

(47b)

Linearization in stick/slip loading is obtained as δ t = Dc ·
δv, leading to

Dc = μc

⎧⎪⎨
⎪⎩
1 φv

s ≤ 0

1 − gv ⊗ gv − f ′gv ⊗ m

− φv
s|τ v | (1s − gv ⊗ gv) φv

s > 0

(48)

where Dc is the second-order contact interface stiffness.
For the thermal part of the contact boundary, the initial

temperature is set to θi = 25◦C throughout the region �.
In the stick/slip contact region of 
c, with contact length lc,
heat generation is responsible for both deformation in � and
contact friction along
c. Firstly, the heat partition to the tool
RT is calculated byusingBerliner andKrajnov’s relation [28]
as

RT = 0.45(kT /kW )
√

παW /(vchlc)

1 + 0.45(kT /kW )
√

παW /(vchlc)
(49)

where kT /kW denotes the ratio of the thermal conductivi-
ties between the tool and the workpiece materials, αW is the
thermal diffusivity of the workpiece material, and vch is the
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chip velocity. The thermal diffusivity is calculated as

αW = kc
ρcp

with ρcp = cv (50)

where kc is the thermal conductivity, ρ is the density and cp
is the specific heat capacity of the workpiece material. The
chip velocity can be calculated from the cutting speed vc and
the shear angle ϕ as

vch = vc tan ϕ (51)

The heat partition RT represents the amount of total heat
that is transferred to the tool, which consequently exits the
system through the contact region 
c. Thus, the RT -portion
of the total heat generation from the deformation qde f and
friction q f ric is later applied to 
c as heat loss. Moreover,
the (1 − RT ) portion of q f ric remains in the system, which
is applied as a heat source along 
c. Thus, the heat flux qnc
in the nc direction (see Fig. 1b) along 
c can be stated as

qnc = RT (q f ric + qdef ) − (1 − RT )q f ric (52)

Solution procedure

To handle the solution in terms of momentum/mass bal-
ance (14), the DPZD solution (2), the convective hardening
problem (33) and the temperature evolution problem (36), a
staggered solution procedure is adopted. At first, the geom-
etry is created according to the DPZD assumptions. DPZD
model uses experimental measurements and cutting condi-
tion parameters to determine the PSZ region that is created
based on the uncut chip thickness (feed) tu , the shear angle
ϕ, and the thickness b of the PSZ. The parameters b and ϕ

are calculated fromEq. 8. It is important to mention that even
though the DPZD model requires experimental data, estima-
tion tools, which are based on empirical and/or analytical
models, may also be used to supply the required input data
for the geometry of the PSZ region. Furthermore, to model
the cutting process and obtain a stable solution procedure, the
cutting speed increases linearly in the simulations with the
number of time steps mtim in time, leading to vc[t] = t

T vc
where T is the total time and vc is the given cutting speed.
The procedure is described as follows:

1. For all time steps, itim=1:mtim

2. Given the thickness of the shear zone b, the shear angle
ϕ, the rake angle β and the cutting velocity vc[t], cal-
culate the long-range velocity field v̄[x] from the DPZD
approximation (2) with r =4.

3. Given the hardening and temperature fields k[x] and
θ [x], calculate the subscale velocity vs[x], the pressure
field p[x] and the (Lagrange) traction field t[x] from
the FE-discretization in the stabilized momentum and
mass balance relations contained in Eq. 14. Compute and
deliver at the Gauss point level the plastic multiplier λ,
effective stress σe, and microhardening stress κ .

4. Given the plastic multipliers λ from Step 3, calculate
the material hardening field k[x] from the weakly stabi-
lized formof the hardening evolution (33).At the element
level, the mean value λe =< λ > of the Gauss points is
used.

5. Given the plastic multipliers at the element level λe, the
effective von Mises stresses σe and the microhardening
κe from Step 3, calculate the temperature field θ [x] from
the weak form of the thermal evolution problem (36).

6. Go to Step 1

Machining experiments and FE simulations

In this section, the specifics of the machining experiment
considered for orthogonal cutting and details of the FE sim-
ulations, based on the Eulerian subscale model and the com-
mercial software DEFORM 2D employing the Lagrangian
approach, are described. The parameter identification con-
sidered for the subscalemodel is also included in this section.

Experimental details

In orthogonal cutting, the effect of the depth of cut (i.e. out-
of-plane direction) is very small, and the passive force is
close to zero. Therefore, orthogonal cutting experiments are
suitable validation cases to observe the performance of the
presented 2D subscale model. Detailed information on the
experimental procedure and the measured values is given
in a previous publication [29]. As stated in the reference,
orthogonal cutting experiments are performed for C38 steel
under dry cutting conditions. The C38 steel workpiece mate-
rial, whose chemical composition is given in Table 1, is taken
directly from a crankshaft component.

Table 1 The chemical
composition of C38 steel C% Si% Mn% P% S%

0.35 − 0.40 0.45 − 0.65 1.30 − 1.50 < 0.025 0.018 − 0.033

Cr% V% Al% Cu% N%

0.20 − 0.30 0.08 − 0.12 0.005 − 0.030 <0.35 0.0090 − 0.0200
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Fig. 4 Representation of the
experimental setup for
orthogonal cutting

To ensure orthogonal conditions, several flanges (approx-
imately 2mm thick) are fabricated and then machined in
the radial direction on the workpiece. The cutting opera-
tion is performed on an EMCO 365 CNC lathe connected
to a Kistler 9275A three-component dynamometer for force
measurements. The tools used in the experiments are Sandvik
Coromant H13A uncoated cemented carbide TCMW16T304
inserts without a chip breaker. The tools are mounted in the
tool holder with 0◦ rake angles and 7◦ clearance angles. A
representation of the experimental setup can be seen in Fig. 4.

Based on the experimental data given in [29], three cut-
ting conditions are selected to evaluate the performance of
the subscale model, where the cutting speed vc and feed tu
change, while the depth of cut ap is constant. These three
cutting conditions are selected to reflect the effect of varying
the cutting speed and feed in the simulations and to observe
the performance of the simulations toward these changes.
The cutting conditions are given in Table 2, including the
measured cutting force Fc and the feed force Ff .

Details of the FE simulations

After the geometry for the subscale flowmodel is defined, FE
discretization is performed. Approximately 2000 six-noded

triangular Taylor-Hood elements (with a quadratic velocity
and linear pressure approximation) are used in the subscale
flowmodel to avoid spurious oscillations in the pressure field.
Here, the element-wise streamline diffusion time (or stabi-
lization) parameter τe in Eq. 15e is defined [27, 30] as

τe = he

(
|v|2 + 2

(
he
�t

)2

+ 60

(
ν

he

)2
)− 1

2

(53)

where�t is the time step size, he is the element diameter and
ν = μ/ρ is the kinematic viscosity. In terms of time steps,
the cutting speed increases linearly with v̄c[t] = t/T vc.
We choose T = 0.1s to arrive using 3000 time steps in a
steady state of the flow conditions for all cutting conditions.
The viscoplastic flow parameters of the workpiece mate-
rial are identified from the calibration procedure discussed
in “Parameter calibration” section. In this development, the
Newtonian shear viscosity parameter is μ = 1Ns/mm2. In
order to resolve the stick/slip/separation conditions of the
contact boundary, smaller elements are used in the vicinity
of 
c. In particular, it is necessary to properly resolve the
stick region close to the tool tip. For interpolation of fine-
grained contact velocity v ∈ 
c, the associated quadratic
FE interpolation of Taylor-Hood elements is used, while for

Table 2 Cutting Conditions of
Orthogonal Cutting Experiments

Experiment vc (m/min) tu (mm/rev) ap (mm) Fc (N/mm) Ff (N/mm)

O1 180 0.075 1.95 230 188

O2 240 0.050 1.95 166 139

O3 240 0.075 1.95 224 186
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Fig. 5 DEFORM 2D simulation setup for orthogonal cutting

the course-grained velocity ṽ ∈ 
c, only the corner nodes of
Taylor-Hood elements are enabled using linear interpolation.

In addition to the experimental validation, the perfor-
mance of the subscale model is further evaluated by com-
paring it with FE chip formation simulations performed in
DEFORM 2D. For comparison, a Lagrangian simulation
employing the FE software SFTC DEFORM 2DT M is con-
sidered. For this case, quadrilateral elements are used for both
the workpiece and the tool with a minimum element size of
0.005mm. The simulation setup with applied boundary con-
ditions is shown in Fig. 5. In the setup, the tool is fixed, while
the cutting speed is applied in the x direction at the bottom
of the workpiece material according to Table 2.

For the mechanical part, the workpiece material is elastic-
viscoplastic, where the viscoplasticity is represented by the
identical JCmodel outlined herein. The JCparameters,which
were calibrated in a previous study [29], are shown inTable 3.
For the tool-workpiece contact, a pressure-dependent shear
friction model from [31] is used as

τ = (1 − exp[−0.0045 p]) A√
3

(54)

where τ is the shear stress at the contact interface, A/
√
3

represents the shear strength of the workpiece and p is the
contact pressure at the interface. To reduce computational
effort, the tool is assumed to be rigid in the simulation.

For the thermal part, heat exchange in the environment
is defined by the heat transfer coefficient of 0.2kW/m2◦C,
which refers to forced air heat convection, while the ambi-
ent temperature is set to 25◦C. The heat transfer coefficient
between the tool and the workpiece is 105kW/m2◦C, a com-
monly used parameter for machining simulations [31–33].
The thermal conductivity and heat capacity for theworkpiece
material for both models are shown in Table 4.

Parameter calibration

To calibrate the material behavior for the subscale model,
simulation-based parameter identification is performed. 20
sets of parameters A, B, n,C , andm were randomly selected
to perform subscale model simulations for each set for cut-
ting condition O1 in Table 3. To reduce total computational
time, the simulations were performed with a coarser mesh
(with 300 triangular elements) using the same number of time
steps (mtim = 3000). Moreover, for the contact behavior,
the classical Mohr-Coulomb friction law uses a high friction
coefficient to ensure that only sticking occurs and there is no
sliding. To avoid overestimation of the cutting forces, the JC
parameters are identified for the case with the highest cutting
force, since the cutting force increases with increasing fric-
tion coefficient [34]. In parameter identification, the cutting
force Fc and the feed force Ff are collected from the sim-
ulations. The sets of JC parameters and forces are used in a

Table 3 Johnson-Cook
parameters for C38 steel for the
1) the Lagrangian approach [29]
and 2) the calibrated parameters
for the Eulerian subscale flow
model

Type A (MPa) B (MPa) C n m ε̇0 (1/s) θm (◦C)

DEFORM 2D 589 145 0.25 0.069 1.1 1 1460

Subscale model 745 328 0.095 0.058 1.08 1 1460
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Table 4 Thermal parameters for
the models; DEFORM 2D
(temperature dependent) and
subscale (constant)

Property DEFORM 2D [29] Subscale model

kc (W/m◦C) (1.645×10−5)θ2− (0.0321)θ + 45.1088 39.6

cp (J/g◦C) (1.707×10−9)θ3− (3.653×10−6)θ2 + (0.0025)θ + 0.2306 0.456

minimization algorithm that reduces the difference between
the estimated and experimental measured forces in Table 2.
The identified JC parameters with minimum deviation are
given in Table 3.

Model validation

In this section, the subscalemodel is validated by comparison
with experimental data and DEFORM 2D simulations. The
robustness and efficiency aspects of the subscale model are
emphasized in comparison to the commonly used chip forma-
tion simulations. Verification of the stability of the response
at the contact boundary is also performed using the mixed
method. The validations focus on the cutting and feed forces,
as well as the distributions of stress and temperature. Forces
offer insight into the overall performanceof themodels,while
stress and temperature distributions provide a detailed view,
reflecting the accuracy of the model in the shear zones. In
addition, the behavior of contact within the model and the
influence of the cutting speed on the results are examined. In
the subscale model simulations, the calibrated JC parameters
(see Table 3) are used. For the contact boundary, the classical
Mohr-Coulomb friction with friction coefficient γc = 0.5 is
considered.

Stress oscillations at the contact boundary

To verify the mixed method for the tool-workpiece con-
tact interface, the proposed quadratic/linear approximation of
v, ṽ ∈ 
c is compared with the quadratic/quadratic approxi-
mation, which is similar to the standard displacement-based
approach employed for standard regularized contact ele-
ments. Figure 6 shows the resulting normal and tangent
components of contact stress at the final load step for cutting
condition O3. Severe unwanted stress oscillation is obtained
for both stress components when using the quadratic approx-
imation of the coarse-grained contact velocity ṽ. When using
the linear approximation for ṽ and the quadratic approxima-
tion for v, the stress oscillation is significantly diminished,
as observed in Fig. 6.

Cutting forces

In Fig. 7, the measured cutting and feed forces are compared
with the predictions of both the DEFORM 2D simulations
and the subscale model. In terms of cutting force, both mod-
els slightly overestimate the experimental measurements for
all cutting conditions. The subscale model has the smallest
deviation. For the feed force, bothmodels significantly under-
estimate the experiments. The largest deviation in feed force

Fig. 6 Behavior of contact stresses following the classical Mohr-
Coulomb friction model at integration points along the contact length
of 
c for the cutting condition O3. (left) Unstable oscillating behavior

for the quadratic approximation for ṽ and v. (right) Stabilized behavior
when using the linear approximation for ṽ and the quadratic approxi-
mation for v
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Fig. 7 Cutting and feed forces
obtained from orthogonal
cutting experiments (O1-O3)
[29], DEFORM 2D simulations
[29] and the subscale model

is 56% for the subscale model in the O3 condition. Likewise,
the DEFORM 2D simulation underestimates the feed forces
with the 32% largest deviation under the O3 condition.

It should be noted that an increase in the feed from O2
to O3 (that is, from 0.050 to 0.075mm/rev) is expected to
increase both the cutting and the feed forces. Although the
magnitude varies, the trend of increasing cutting and feed
forces is consistently obtained in both the DEFORM 2D and
subscale models. Furthermore, an increase in cutting speed
from O1 to O3 (that is, 180 to 240 m / min) exhibits a slight
reduction in both cutting and feed forces. The DEFORM 2D
simulation successfully captures this trend for both forces.
When comparing the O1 to O3 conditions for the subscale
model, there is a slight increase in the cutting force, while
the feed force is decreasing slightly. This may be attributed
to the DPZD assumptions used in defining the discretized
region. Incorporating a friction model that accounts for pres-
sure or velocity dependence could also potentially produce
more accurate results and better reflect these observed trends
[35].

Stress and temperature distributions

Toevaluate the predictive performance of the subscalemodel,
the stress and temperature distributions obtained from this
model are compared with those obtained from DEFORM
2D and DPZD, as shown in Figs. 8 and 9. It is important to
note that the DPZD model exclusively considers the central
region of the PSZ and does not account for variations along
the shear line depicted in Fig. 1b. When examining the stress
distributions in Fig. 8, differences are observed in the loca-
tion of the maximum stress between the models. The DPZD
model assumes that the maximum stress occurs along the
shear line, whereas the DEFORM 2D simulation indicates
that it is slightly below the shear line. This difference may
be attributed to the assumption of a perfectly sharp tool in
the DPZD model. However, the subscale model, which also
assumes a perfectly sharp tool (similar to the DPZD model),
exhibits the maximum stress occurring below the shear line.
This suggests that an additional factor may be influencing
the results, hypothetically the stagnation region near the tip

Fig. 8 Effective stress distribution from (a) the DPZD model, (b) the subscale model, and (c) DEFORM 2D for the cutting condition O3
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Fig. 9 Temperature distribution of (a) the DPZD model, (b) the subscale model, and (c) DEFORM 2D for the cutting condition O3

of the tool, where material movement is minimal and stress
levels are lower compared to the high-deformation response
along the shear line. When comparing the subscale model
to DEFORM 2D, the stress distribution within the PSZ is
consistent with the location of the maximum stress region,
the distribution around the contact area, the stress increase
from the material side to the shear line and the subsequent
decrease towards the chip side of the primary zone. It should
be noted that themaximum stresses predicted by the subscale
model are higher (approximately 1450MPa) compared to the
DEFORM 2D simulation (approximately 1230MPa). This
difference is likely due to differences in material parameters
between the models, leading to variations in the hardening
behavior of the material. Furthermore, effective stress distri-
butions remain very similar under different cutting conditions
(fromO1 to O3), with only a slight variation of 1-2% inmax-
imum values.

The temperature distributions depicted in Fig. 9 appear
similar, except the DPZD distribution, which focuses solely
on the central region of the PSZ and disregards the effect
of the contact area, where the maximum temperature is

reached due to friction. When comparing the subscale model
to DEFORM 2D, notable differences are observed in the
temperature distributions near the contact region. These dif-
ferences arise because a simplified heat flux based on the heat
partition approach is applied in the subscale model, while the
heat flux from the chip to the tool exhibits a more complex
distribution [36, 37].

The maximum temperatures predicted by the subscale
model and the DEFORM 2D model are approximately
1050°C and 750°C, respectively. According to a study con-
ducted under similar material and cutting conditions (i.e.,
200m/min cutting speed and 0.1mm feed) [38], the maxi-
mum temperature was measured in the range between 770°C
and 940°C. The subscalemodel presented here overestimates
the maximum temperature compared to this reference range.
However, it is important to note that the thermal interface
and heat transfer to the tool within the subscalemodel require
improvement to improve the accuracy of the temperature pre-
dictions. Taking into account the other cutting conditions (O1
and O2), the temperature distribution remains similar to that

Fig. 10 Stress distribution over
the contact length obtained from
the subscale model with cutting
condition O3
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Fig. 11 Forces and maximum
temperature response based on
linear increase in cutting speed.
Data are collected from the
simulation of the cutting
condition O3

shown in Fig. 9(b), with differences in maximum tempera-
tures of 1000°C and 1020°C, respectively.

Contact behavior

The tool-workpiece contact behavior, where the material
undergoesmaximumdeformation andheat generation, is cru-
cial for accurately estimating cutting forces. To validate this
behavior, the normal and tangential stresses distributed along
the contact length are derived from the traction field on the
contact length 
c, assuming both stick and slip conditions.
These stress distributions are presented in Fig. 10. As illus-
trated, the normal stress decreases along the contact length,
while the tangential component remains relatively the same
on most of the contact. The oscillations observed near the
start of the contact length are attributed to the material flow
from the corner elements and can be ignored.

The normal stress distribution illustrated in Fig. 10 allows
the identification of the stick, slip, and separation regions. A
sudden change in normal stress from a decrease to an increase
signals a shift from the stick state to the slip state within
the elements. Further along the contact length, the normal
stress decreases to zero, indicating the point at which the
chip separates from the tool. The contact behavior predicted
by the subscale model aligns with the findings in the existing
literature. For instance, Malakizadi et al. [39] report a similar
pattern for the pressure-dependent shear friction model.

Cutting speed-dependent forces and temperature

As mentioned in the simulation of the cutting process using
the subscale model, the cutting velocity is linearly increased
until the material flow stabilizes in the desired steady-state
condition when the total analysis time has been reached.
Based on the data collected at each time step during the
loading process, it is instructive to consider the continuous
development of the cutting forces and themaximum tempera-
ture versus the increase in the cutting speed. This is illustrated
in Fig. 11 for the cutting condition O3. For instance, the

nonlinear increase in maximum temperature within �PSZ ,
shown in Fig. 11 (right), is obtained without the need for
simulations atmultiple cutting speeds. In addition, a decrease
in the feed force is observed with increasing cutting speed,
while the cutting force initially decreases and then slowly
increases. These trends are consistent through the subscale
model.

Conclusion

In this study, a subscale model for material flow is developed
in the primary and secondary shear zones to estimate the
forces, stresses, and temperatures for the orthogonal cutting
process. The model combines the coarse-grained kinematics
of the DPZD model with the fine-grained subscale material
flow governed by the NS equations. SUPG stabilization is
included for all involved convection-dominated problems to
gain control of possible oscillating solutions. In this context,
a novel viscous/viscoplastic material flow model is devel-
oped on the JC constitutive model for orthogonal cutting
simulation. In addition, a unique mixed method is devel-
oped for frictional contact ofmaterial flow to reduce spurious
oscillations in contact stresses, typically associated with the
conventional regularized frictional/contact formulation. The
solutions to material flow and contact stresses are expressed
explicitly, which contributes to a cost-effective solution pro-
cedure. It appears that when the DPZD approximation is
included, the NS flow problem of the subscale velocity is
more cost-effective (approx. 60% faster) than resolving the
total velocity using the NS formulation of the problem. Com-
pared to the DEFORM 2D simulations, the subscale model
is also more robust and significantly less computationally
demanding, since there is no requirement for remeshing. For
the cases presented, it takes around 1.5 hours to run the sub-
scale simulation, while this value is around 7 hours for the
DEFORM 2D simulation. The trend of estimated forces and
temperatures is consistent with the DEFORM 2D simula-
tions and experimental data from the literature. However,
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the feed forces are significantly underestimated compared
to the measured values while the maximum temperature is
approximately 100°C above the expected temperature range.
Three different effects may be considered as the reason for
the underestimation of feed forces: lack of tertiary shear
zone, perfectly sharp tool assumption, and lack of plowing.
The tertiary shear zone, and therefore the friction behavior
in this contact region, would contribute to the increase in
feed forces. Secondly, considering the rounded tool, an addi-
tional contact area would create forces in both the cutting and
the feed directions. Finally, plowing causes the material to
deformwithout cutting it because of the roundness of the tool
edge, which affects the effective uncut chip thickness and the
forces. In terms of temperature estimation, the model should
be enhanced by including more realistic heat transfer from
the system. Including these effectsmay increase the accuracy
of the subscale model.
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