
Direct utilisation of impulse response data in reduction index assessment
without intermediate reverberation time estimation (L)

Downloaded from: https://research.chalmers.se, 2025-02-23 05:48 UTC

Citation for the original published paper (version of record):
Forssén, J. (2025). Direct utilisation of impulse response data in reduction index assessment without
intermediate
reverberation time estimation (L). Journal of the Acoustical Society of America, 157(1): 340-342.
http://dx.doi.org/10.1121/10.0034867

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)




View

Online


Export
Citation

JANUARY 17 2025

Direct utilisation of impulse response data in reduction
index assessment without intermediate reverberation time
estimation (L)
Jens Forssén 

J. Acoust. Soc. Am. 157, 340–342 (2025)
https://doi.org/10.1121/10.0034867

Articles You May Be Interested In

Verb, reverb, and re-reverb

J Acoust Soc Am (October 2011)

Impulse response reverb as a tool for voicing organs.

J Acoust Soc Am (April 2009)

Highly dynamic reverb—The recording studio always has what the performance hall sometimes wants

J Acoust Soc Am (October 2011)

 28 January 2025 06:13:08

https://pubs.aip.org/asa/jasa/article/157/1/340/3331743/Direct-utilisation-of-impulse-response-data-in
https://pubs.aip.org/asa/jasa/article/157/1/340/3331743/Direct-utilisation-of-impulse-response-data-in?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-7227-6001
https://crossmark.crossref.org/dialog/?doi=10.1121/10.0034867&domain=pdf&date_stamp=2025-01-17
https://doi.org/10.1121/10.0034867
https://pubs.aip.org/asa/jasa/article/130/4_Supplement/2352/707444/Verb-reverb-and-re-reverb
https://pubs.aip.org/asa/jasa/article/125/4_Supplement/2558/603197/Impulse-response-reverb-as-a-tool-for-voicing
https://pubs.aip.org/asa/jasa/article/130/4_Supplement/2352/707407/Highly-dynamic-reverb-The-recording-studio-always
https://e-11492.adzerk.net/r?e=&s=bmc4_Kyg72Cp2YdFIMZ0ICoNsw8


Direct utilisation of impulse response data in reduction index
assessment without intermediate reverberation time
estimation (L)

Jens Forss�ena)

Division of Applied Acoustics, Department of Architecture and Civil Engineering, Chalmers University of Technology,
SE-412 96 Gothenburg, Sweden

ABSTRACT:
An approach is proposed for reduction index measurement where impulse response data are utilised directly without

relying on intermediate reverberation time estimation. The theoretical framework is presented and the main result is

substantiated by shown equivalence to the conventional method for ideal exponential decay curves of acoustic

energy. Additionally, the study introduces a formula for estimating effective reverberation time in cases of non-

exponential decay curves. Further formulas for determining effective values of reverberation time and absorption

area for general decay curve shapes are also suggested.
VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0034867
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I. INTRODUCTION

The normally applied measurement methodology for

determining the sound reduction index, R, in dB, of building

elements (walls, doors, windows, air inlets, etc.) relies on a

reverberation time estimation as an intermediate step.1 For

the measurement, the building element to be investigated is

placed as a partition between two rooms with diffuse sound

fields: the sending room, with a noise source, and the receiv-

ing room. The reverberation time is normally estimated for

the receiving room to determine the room losses, which,

together with the diffuse-field sound pressure levels of the

two rooms, determine the reduction index, usually in one-

third octave bands within a prescribed frequency range. The

reverberation time estimate is conventionally made using

straight-line fits of sound pressure level decay curves, fol-

lowing a prescribed method using either interrupted noise or

impulse response measurements.1 The work presented here

suggests an approach where the data from the impulse

response measurements are used without estimating the

reverberation time from them, thereby avoiding one of the

error sources of the process.

II. THEORY

The diffuse sound field in the source room, ~p1, has a

diffuse-field intensity, ID1 [e.g., Ref. 2, Eq. (4.26), and Ref. 3],

ID1 ¼
~p2

1

4qc
; (1)

which gives rise to a power-input, Win, to the receiving

room [e.g., Eq. (8.68) in Ref. 4],

Win ¼ ID1 S s; (2)

where S is the area of the separating element and s its (dif-

fuse-field) transmission coefficient. Here, the density and

the sound speed of the medium (air) are denoted by q and c,

respectively. Figure 1 shows the problem setup with a sepa-

rating wall as the test specimen. In the receiving room, the

diffuse sound field, ~p2, has a total energy, E2, which can be

formulated as [e.g., Eq. (7.11) in Ref. 2]

E2 ¼
~p2

2V2

qc2
; (3)

where V2 is the volume of the receiving room. The lost

power of the receiving room due to dissipation is denoted by

Wd in Fig. 1.

The modelling formulated above, in Eqs. (1)–(3),

which can be found in many textbooks on building acous-

tics (e.g., Refs. 2, 5, and 6), is here to be combined with a

result from Schroeder7 for a sound field within a room

[Eq. (6)],

N

ð1
t

r2ðxÞdx ¼ hs2ðtÞi; (4)

where N is the input power of stationary noise to a room

within a certain frequency band, r is the impulse response of

the sound field within the room [normalised such that

r2ð0Þ ¼ 1], and s is a received signal where the brackets

denote an ensemble average. The noise source is assumed toa)Email: jens.forssen@chalmers.se
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have provided the constant power over a time such that

steady state has been reached, whereafter the source is

turned off at time t ¼ 0. With the notation used in Eqs.

(1)–(3), N equals Win and hs2ðtÞi can be identified as the

total energy of the receiving room, E2, as in Eq. (3).

At t ¼ 0 there is steady state, where the room-average

of ~p2
2 (and hence also E2) is not increasing or decreasing

over time, and N equals the lost power, Wd (i.e.,

Wd ¼ hs2ðtÞi=
Ð1

0
r2ðxÞdx). Setting t ¼ 0 in Eq. (4), replac-

ing N by Win, using Eqs. (1)–(2), and replacing hs2ðtÞi by

E2 ¼ ~p2
2V2=ðqc2Þ, from Eq. (3), gives

~p2
1

4qc
S s
ð1

0

r2ðxÞdx ¼ ~p2
2V2

qc2
: (5)

Simplifying and rearranging Eq. (5), solving for the reduc-

tion index, R ¼ �10 log ðsÞ, results in

R ¼ 10 log
~p2

1

~p2
2

 !
þ 10 log

cS

4V2

ð1
0

r2ðxÞdx

� �
; (6)

where the term 10 log ð~p2
1=~p2

2Þ equals the sound pressure

level difference between the rooms, D ¼ Lp1 � Lp2.

Equation (6) is the main result of the paper.

When applying Eq. (6) in real cases, background noise

will be added to the decay curve of the impulse response. To

estimate the value of the integral in Eq. (6) in the presence

of background noise, a possible procedure may be to use the

first 20 dB of the decay.8 Another possibility may be to esti-

mate the noise floor and use the last 10 dB of the decay

above the noise floor as input to estimating the reminder of

the decay.9 Numerically, the integral can be calculated using

a reverse-time integration, as suggested in the standard1 and

as also suggested by Schroeder.7 A more complete decay

curve analysis can be made using model-based nonlinear

regression and Bayesian inference.10

III. EXEMPLIFYING RESULTS

The main result of the paper, Eq. (6), can be used to

study some examples of interest, as shown in the

following.

A. Confirming the result for an idealised decay
process

The loss factor, g, may be defined as

g ¼ Ed

2pE0

; (7)

where Ed is the dissipated energy over one cycle and E0 is

the initial energy [e.g., Eq. (3.122) in Ref. 2]. This relates

with an exponential decay of energy, EðtÞ, which may be

written as

EðtÞ ¼ E0e�gxt; (8)

where x is the angular frequency such that the time of one

cycle is Tc ¼ 2p=x, or Tc ¼ 1=f , where f is the frequency in

hertz.

First, by assuming an idealised sound field decay,

hs2ðtÞi ¼ E0e�gxt, such that rðtÞ fulfills r2ðtÞ ¼ e�gxt, one

gets ð1
0

r2ðtÞdt ¼ 1

gx
: (9)

Then, theory linked with deriving Sabine’s or Eyring’s

formula (e.g., Ref. 2, Chap. 4.5.1]) is used to relate the loss

factor, g, with the absorption area, A. Using the decay for-

mulation EðtÞ ¼ E0e�ðAc=4VÞt, where V is the room volume

[Ref. 2, Eq. (4.33)], and comparing with Eq. (8), one can

identify

4V

Ac
¼ 1

gx
: (10)

Finally, by using Eqs. (9) and (10) (with V ¼ V2) in

Eq. (6), one arrives at

R ¼ Lp1 � Lp2 þ 10 log
S

A
; (11)

which is a commonly used equation for the reduction index

as function of the sound pressure level difference and of the

term 10 log ðS=AÞ, where the absorption area, A, is usually

found from Sabine’s formula using the estimated reverbera-

tion time, T, as A ¼ 0:16V=T (e.g., Ref. 1) Hence, it is

shown that Eq. (6) gives the expected result known from lit-

erature when applied to the ideal exponential decay.

B. Identifying an effective loss factor for a broken
decay curve

A decay process containing multiple modes, e.g., stand-

ing waves along horizontal and vertical room axes, may

show a decay curve with a break, where the curve of sound

pressure level versus time can be well fitted by one straight

line in its early part and by a straight line with a different

slope at a later part. Such a curve may be exemplified as

r2ðtÞ ¼ a1e�g1xt þ a2e�g2xt; (12)

FIG. 1. Two rooms and separating wall with area S and transmission coeffi-

cient s. The sending room (room 1) is to the left, and the receiving room

(room 2) is to the right.
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where the two terms on the right-hand side describe two

decays with different loss factors, g1 and g2; with strengths

a1 and a2, respectively, where a1 þ a2 ¼ 1 [such that

r2ð0Þ ¼ 1]. Performing the integration from zero to infinity

givesð1
0

r2ðtÞdt ¼ a1

g1x
þ a2

g2x
: (13)

By comparison with Eq. (9) a combined effective value for

the loss factor, geff ; may be defined from

1

geff

¼ a1

g1

þ a2

g2

(14)

and analogously for cases of more terms.

A similar analysis can be made also for the reverbera-

tion time, T (defined as the time it takes for the sound field

to decay by 60 dB). Since the reverberation time is inversely

proportional to the loss factor ðT ¼ 6 lnð10Þ=ðxgÞÞ; an

effective reverberation time, Teff ; for a broken curve may be

defined as

Teff ¼ a1 T1 þ a2 T2: (15)

As an example, if a1 ¼ 0:9; a2 ¼ 0:1; and T2 ¼ 10 T1; one

would get Teff ¼ 1:9 T1; i.e., a large difference from using

only T1 (resulting in a 2.8 dB error) or only T2 (resulting in a

7.2 dB error).

These kinds of decays are sometimes called non-

exponential (or nonlinear) and for a more general case of M
terms,

r2ðtÞ ¼
XM

m¼1

ame�gmxt; (16)

normalised such that
PM

m¼0 am ¼ 1; one can formulate an

effective reverberation time as

Teff ¼
XM

m¼1

amTm: (17)

For the fully general case of an arbitrarily shaped decay

curve, an effective value of the reverberation time may be

formulated as

Teff ¼ 6 lnð10Þ
ð1

0

r2ðtÞdt (18)

and a corresponding formulation for an effective value of

the absorption area may be written as

Aeff ¼
4 V

c �
ð1

0

r2ðtÞdt

: (19)

To fit the model to measured data, an approach sug-

gested by Xiang et al.11 may be used, for which it should be

noted that two more terms need to be included for a com-

plete modelling, linked with the noise contribution and with

the finite time-length of the measured impulse response.

IV. CONCLUSION

An approach is presented for estimating room losses with-

out an intermediate reverberation time estimate, with aimed

applicability to reduction index measurements of building ele-

ments. The theory is presented, and the main result is substanti-

ated by showed equivalence for the case of an ideal exponential

decay curve of the acoustic energy. In addition, a formula is

suggested for estimating an effective reverberation time in cases

of non-exponential decay curves, i.e., when individual influen-

tial modes have different loss factors. Also, suggested formulas

for effective values of reverberation time and of absorption area

are presented for general shapes of decay curves.
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