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ABSTRACT
Stream Processing Engines (SPEs) extract value from data
streams in the Edge-to-Cloud continuum through graphs of
operators that progressively transform data.

State-of-the-art SPEs are bridged into shared models based
on their overlapping APIs. The overlap in their semantic ex-
pressiveness, though, goes beyond their APIs and can be for-
mally assessed by distilling the semantics they support into
minimal sets of operators, and by checking whether such sets
overlap. As we show, stream Aggregates suffice to enforce
the semantics of other common operators. Moreover, com-
positions of Aggregates can match the performance of other
operators in state-of-the-art SPEs, and micro-SPEs building
on a single Aggregate operator can even surpass other SPEs’
performancewhile holding the same semantic expressiveness
with a minimal code footprint.

Our approach lays down new analytical findings with prac-
tical implications in minimizing the operational effort to use
SPEs, especially at the edge, while seamlessly benefiting ex-
isting distribution/parallelization techniques.
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Theory of computation→ Streamingmodels.
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1 INTRODUCTION
Stream Processing Engines (SPEs) allow running queries that
distill information from data streams in the Edge-to-Cloud
continuum. SPEs define queries as graphs of operators with
parallel/distributed deployments in which multiple operator
instances analyze parts of their input stream(s) in parallel [1].

ManySPEs have beendeveloped over the years.While their
APIs, designs, and implementations differ, the operators they
offer overlap. Such an overlap led to unified models where
queries expressed in an SPE-agnostic language can be com-
piled in specific SPEs. In this context, the state-of-the-art [2]
bridges SPEs through the operators/APIs they share. The ex-
tent to which two SPEs overlap, though, goes beyond their
API/operators and can be assessed by distilling the semantics
supported by each SPE into minimal sets of operators. For-
mally, we ask: Given a set of operatorsO, is there a subsetO∗
such that compositions of operators inO∗ can support the same
semantics of compositions of operators inO, withO∗ ⊂O?

Example
Imagine 𝑆𝑃𝐸𝑖 offers operators𝑂1 and𝑂2 while 𝑆𝑃𝐸 𝑗 offers𝑂1,
𝑂2, and𝑂3. Existing unifiedmodels propose high-level languages
that compile queries using𝑂1,𝑂2, and𝑂3 to 𝑆𝑃𝐸 𝑗 , and queries
that only use 𝑂1 and 𝑂2 to either 𝑆𝑃𝐸𝑖 or 𝑆𝑃𝐸 𝑗 . For a general
approach, we ask: can𝑂1 and/or𝑂2 enforce𝑂3’s semantics? If so,
any portion of any composition fromO𝑖∪O𝑗 can be run on 𝑆𝑃𝐸𝑖
or 𝑆𝑃𝐸 𝑗 , which is stronger than implying both 𝑆𝑃𝐸𝑖 and 𝑆𝑃𝐸 𝑗 can
run whole compositions fromO𝑖∩O𝑗 .

Ourworkmakes several novel contributions, showing that:
• beingO the set of common SPEs’ operators, there exists at
least one non-emptyO∗ consisting of only the Aggregate
operator, sufficient to address the question at hand,
• if an SPE offers several Aggregate operators and thus leads
to possibly differentO∗s, our approach allows quantifying
their design, portability, and performance trade-offs,
• compositions ofAggregate operators can in fact enforce the
semantics of operators from a largerO′ (i.e.,O∗ ⊂O⊂O′).

Together with our theoretical contribution, we empirically
showwith real-world data, hardware setups representative
of the different ends of the Edge-to-Cloud continuum, state-
of-the-art SPEs (Apache Flink [3]/Spark [4]), and a novel SPE
called 𝜇SPE that builds on a single Aggregate operator and
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consists of ∼2000 lines of code, that (1) there exist queries for
which,within thesameSPE (Flink/Spark),Aggregate composi-
tions perform comparably to that of other operators, and that
(2) aminimal SPE (𝜇SPE) can hold the same semantical expres-
siveness and outperform state-of-the-art SPEs (Flink/Spark).
This is particularly important in edge scenarios inwhichusers
interested in stream processing struggle with the language,
communication, CPU, or memory requirements of SPEs that
are best fit for data centers. By building on the Dataflow
model [1],𝜇SPE isnotonlyasexpressiveasotherSPEs,butalso
allows for queries to run distributedly (different Aggregates
can run at different processes/nodes) and in parallel (multi-
ple instances of an Aggregate can process disjoint subsets
of the incoming data), both with shared-nothing and shared-
memory approaches [1, 3, 5, 6]. That is, its compactness does
not prevent the use ofwell-established performance-boosting
techniques in streamprocessing.Our code is available at [7, 8].

Note that, differently from other literature (e.g., [6, 9–13]),
O∗𝑖 ⊂ O𝑖 does not aim at defining new operators besides
the ones offered by 𝑆𝑃𝐸𝑖 . Also, we only consider common
Dataflow operators (Map, Filter, Aggregate, Join) and not
custom ones that, while supporting any semantics, build on
custom user-defined code not maintained by 𝑆𝑃𝐸𝑖 itself.

We believe ourwork can stimulate novel research: (a) show
that query𝑄 , supported by𝑆𝑃𝐸𝑖 throughO𝑖 , is also supported
by𝑆𝑃𝐸 𝑗 if∃O∗𝑖 ,O∗𝑗 |O∗𝑖 =O∗𝑗 , (b) showthat if acompositionofO∗𝑖
operatorsmeets thesemanticsofanoperator𝑂 ∉O𝑖 , then𝑆𝑃𝐸𝑖
can also run𝑂 , (c) study SPEs/queries design, portability, and
performance trade-offs for compositions from one (or more)
subsets O∗s able to enforce the semantics of compositions
fromO, (d) differentiate the semantics𝑆𝑃𝐸𝑖 supports (through
O∗𝑖 ) from 𝑆𝑃𝐸𝑖 ’s implementation choices (throughO𝑖 ).

Outline: § 2 coverspreliminaries; § 3 covers ourproblem for-
malization, § 4 discusses the existence ofO∗ (with |O∗ |=1) for
anOcomposedofcommonstreamingoperators; §5elaborates
further onO∗’s properties; § 6 evaluates twoO∗s andO in real-
world use cases; § 7/§ 8 cover related work and conclusions.

2 PRELIMINARIES
2.1 Stream processing basics
A stream 𝑆 is an unbounded sequence of tuples, each a list of
attribute-value pairs ⟨𝜏 :𝑣0,𝑎1:𝑣1,...,𝑎𝑛 :𝑣𝑛⟩ [1]. Within 𝑆 , every
tuple 𝑡 has the same attributes, called type and denoted as𝑇 (𝑡)
or𝑇 (𝑆). The timestamp attribute (𝜏 ) is always included in the
typeof a tuple.Weuse𝑡 [𝑖] todenote 𝑡 ’s attributeat index 𝑖 (e.g.,
𝑡 [0]=𝑡 .𝜏) and 𝑡 [𝑖: 𝑗] for the attributes from 𝑖 to 𝑗 (inclusive).

Queries are composed of ingresses, operators, and egresses.
Ingresses forward ingress tuples (e.g., events from sensors) to
operators that, connected in a directed graph, process and
forward/produce tuples. Eventually, egress tuples are fed to

egresses and delivered to end-users/other applications. Mul-
tiple copies of an operator can be deployed within the same
graph to analyze different portions of a given stream (e.g., the
portionsharing thesamekey,asdiscussednext). Foran ingress
tuple 𝑡 , 𝑡 .𝜏 denotes its event time. Operators set 𝑡𝑜 .𝜏 of an out-
put tuple 𝑡𝑜 according to their semantics, as explained next.
Event time is expressed in units from a given epoch and pro-
gresses in SPE-specific 𝛿 increments (e.g., milliseconds [3]).

The setO of common operators we consider contains both
stateless and stateful operators. Operators like Map and Filter
are stateless and process tuples one-by-one:
Map 𝑆𝑂 =𝑀 (𝑆𝐼 ,𝑓𝑀 ) processes 𝑆𝐼 ’s tuples with function 𝑓𝑀 to
produce stream 𝑆𝑂 . Function 𝑓𝑀 is invoked on each 𝑡𝑖 ∈𝑆𝐼 to
produce zero, one, or more 𝑡𝑜 output tuples. Note𝑇 (𝑆𝐼 ) and
𝑇 (𝑆𝑂 ) can differ and that 𝑡𝑜 .𝜏 =𝑖 .𝜏 for a 𝑡𝑜 produced from 𝑡𝑖 .
Filter 𝑆𝑂 =𝐹 (𝑆𝐼 ,𝑓𝐶 ) forwards each 𝑡𝑖 ∈𝑆𝐼 to 𝑆𝑂 if 𝑓𝐶 (𝑡𝑖 ) holds.
Note𝑇 (𝑆𝐼 )=𝑇 (𝑆𝑂 ) and 𝑡𝑖 =𝑡𝑜 for a 𝑡𝑜 output by processing 𝑡𝑖 .

Stateful operators produce results from a state, dependent
on one or more tuples. In this paper, we consider common [3,
14, 15] stateful operators defined over delimited groups of
tuples called time-based windows (or simply windows): Ag-
gregates and Joins. In § 5, we elaborate on how our analysis
can be extended to more general definitions of state.

We denote as Γ(WA,WS,𝑆𝐼 ,𝑓𝐾 ,𝐿) a window specified by:
WindowAdvance (WA), Size (WS) define the epochs cov-
ered by Γ: [ℓWA,ℓWA+WS), with ℓ ∈N. We refer to one such
epoch as window instance 𝛾 . IfWA<WS, consecutive𝛾s over-
lap, Γ is called sliding, and a tuple can fall intomany𝛾s. IfWA=

WS, Γ is called tumbling and each tuple falls in only one𝛾 .
Input stream 𝑺𝑰 is the input stream fed to Γ.
Key-by attribute 𝒇𝑲 specifies the𝑇 (𝑆𝐼 )’s subset (evenempty)
used to keep dedicated𝛾s for tuples with the same key. Note
𝑓𝐾 affects how the operator maintaining Γ is parallelized.
Allowed Lateness 𝑳 which is used to decide whether a tuple
𝑡 falling in𝛾 but received by the operator maintaining Γ after
such operator has produced a result for𝛾 should still be added
to𝛾 , potentially resulting in a new (or updated) output tuple1.

We refer to the set of tuples falling in a𝛾 as𝛾 .𝜁 and to indi-
vidual tuples in𝛾 .𝜁 as if𝛾 .𝜁 is maintained as a list (i.e.,𝛾 .𝜁 [0]
is the tuple at index 0). We refer to the event time of 𝛾 ’s left
boundary (inclusive) as𝛾 .𝑙 . The rightboundaryof𝛾 (exclusive)
is computed as𝛾 .𝑙+WS. As common in relatedworks [2, 3, 14],
𝑡𝑜 .𝜏 for an output tuple 𝑡𝑜 created in connection to𝛾 is set to
𝛾 .𝑙+WS−𝛿 . Since𝛾 ’s right boundary is exclusive:

Observation 1. For any output tuple 𝑡𝑜 produced from a win-
dow instance𝛾 in which input tuple 𝑡𝑖 falls, 𝑡𝑜 .𝜏 ≥ 𝑡𝑖 .𝜏 .

We consider the following stateful operators:

1We discuss 𝐿 in § 2.3, after covering correctness conditions in § 2.2.
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Aggregate 𝑆𝑂=𝐴(Γ(WA,WS, 𝑆𝐼 , 𝑓𝐾 , 𝐿), 𝑓𝑂 ) defines 𝑓𝑂 (𝛾) to
compute the values of an output 𝑡𝑜 from𝛾 (except 𝜏 , set by𝐴
to𝛾 .𝑙+WS−𝛿) and forwards 𝑡𝑜 if 𝑓𝑂 does not return ∅.
Join 𝑆𝑂=𝐽 (Γ(WA,WS, 𝑆𝐼1 , 𝑓

1
𝐾
, 𝐿), Γ(WA,WS, 𝑆𝐼2 , 𝑓

2
𝐾
, 𝐿), 𝑓𝑃 ) de-

fines 𝑓𝑃 to match tuples 𝑡1 ∈𝑆𝐼1 and 𝑡2 ∈𝑆𝐼2 that fall in aligned
windows𝛾1 and𝛾2 according toWA andWS, so that 𝑓 1

𝐾
(𝑡1)=

𝑓 2
𝐾
(𝑡2), forwarding ⟨𝛾1.𝑙+WS−𝛿,𝑡1,𝑡2⟩ if 𝑓𝑃 (𝑡1,𝑡2) holds.
In the remainder, we use the following definition:

Definition 1. Tuple 𝑡 ′ is a successor of 𝑡 or belongs to the
finite set of 𝑡 ’s successors if 𝑡 ′ is output by an operator𝑂 upon
processing of 𝑡 or a successor of 𝑡 . We then write 𝑡 ′ ∈𝑠𝑢𝑐𝑐 (𝑡)
or 𝑡 ′ ∈𝑠𝑢𝑐𝑐 (T) when T is a set of tuples processed by𝑂 .

2.2 Correctness conditions
When deploying and running𝑀 , 𝐹 ,𝐴, and 𝐽 operators, SPEs
should enforce such operators’ semantics correctly. Since𝑀
and 𝐹 process tuples one-by-one, correct semantics are en-
forced processing each tuple exactly once. 𝐴 and 𝐽 require
greater care, though. Leaving aside late arrivals (see § 2.3),
their correct execution can be defined as follows.

Definition 2. 𝐴’s execution is correct if any subset of tu-
ples sharing the same key and falling in the same𝛾 is jointly
processedby 𝑓𝑂 exactlyonceandanyoutput is fed to𝐴’sdown-
stream peer(s). 𝐽 ’s execution is correct if any pair of tuples
𝑡1 ∈𝛾1, 𝑡2 ∈𝛾2 is processed by 𝑓𝑃 exactly once if𝛾1.𝑙 =𝛾2.𝑙 and
𝑓 1
𝐾
(𝑡1)= 𝑓 2𝐾 (𝑡2) and the output is fed to 𝐽 ’s downstreampeer(s).

Correct execution for𝐴/𝐽 in asynchronous systems can be
achieved with the support ofwatermarks [16]:

Definition 3. The watermark𝑊 𝜔
𝐴
/𝑊 𝜔

𝐽
of𝐴/𝐽 at wall-clock

time𝜔 is the earliest event time a tuple 𝑡𝑖 fed to𝐴/𝐽 can have
from time𝜔 on (i.e., 𝑡𝑖 .𝜏 ≥𝑊 𝜔

𝐴
/𝑊 𝜔

𝐽
,∀𝑡𝑖 processed from𝜔 on).

In the literature [3, 16], watermarks are commonly main-
tained assuming ingresses periodically output watermarks
as special tuples to notify how event time advances. Upon re-
ceiving a watermark,𝐴/𝐽 store the watermark’s time, update
𝑊 𝜔
𝐴
/𝑊 𝜔

𝐽
to the smallest of the latestwatermarks fromeach in-

put stream, and propagate𝑊 𝜔
𝐴
/𝑊 𝜔

𝐽
. Upon an increase of𝑊 𝜔

𝐴

and before forwarding𝑊 𝜔
𝐴

(given Observation 1),𝐴 invokes
𝑓𝑂 onany𝛾 |𝛾 .𝑙+WS≤𝑊 𝜔

𝐴
(in𝛾 .𝑙 order) and thendiscards such

a𝛾 since no more tuples will fall in it. Likewise, 𝐽 can use𝑊 𝜔
𝐽

to produce results and safely discard𝛾s that cannot produce
more results before forwarding𝑊 𝜔

𝐽
. Specifically, 𝐽 can safely

discard any pair of𝛾1,𝛾2 defined over 𝑆𝐼1 and 𝑆𝐼2 , respectively,
for which it holds that𝛾1 .𝑙 =𝛾2.𝑙 and𝛾1.𝑙+WS≤𝑊 𝜔

𝐽
.

2.3 Handling late arrivals
As introduced in § 2.1, Γ defines𝐿 to handle late arrivals.More
concretely, by delaying the purging of𝛾s by 𝐿. Tuple 𝑡 is a late

arrival for operator𝑂 if 𝑡 .𝜏 <𝑊 𝜔
𝑂
when, at time𝜔 ,𝑂 processes

𝑡 . According to the Dataflowmodel [1], 𝑡 is processed, added
to𝛾 , and can result in an output tuple (potentially an update of
a previous output tuple) if𝛾 .𝑙+WS≤𝑊 𝜔

𝑂
+𝐿 at𝜔 . Note that, if

𝐿>0 andwatermarks are forwarded by𝑂 as described in § 2.2,
results produced by 𝑂 could be late arrivals for 𝑂’s down-
stream peers. For compact notation, we omit 𝐿 for a Γ if 𝐿=0.
In the remainder, we alsomake use of the following definition:

Definition 4. We say 𝑡 is an output tuple triggered by the
growth of𝑂 ’s watermark to𝑊𝑂 and write 𝑡 ∈ 𝑡𝑟𝑖𝑔(𝑊𝑂 ) if 𝑡 is
produced/forwarded by𝑂 when𝑂 ’s watermark grows to𝑊𝑂 .

3 PROBLEM FORMALIZATION
We formally show that for the set of operatorsO= {𝑀,𝐹,𝐴,𝐽 },
there exists a semantically-equivalent subset O∗= {𝐴} whose
𝐴s’ compositions support the same semantics as composi-
tions fromO. To show the reasoning supported by our formal
approach, we also show (1) how differentO∗s with the same
cardinality can be defined by means of different𝐴 implemen-
tations to argue and assess their design, portability, and per-
formance trade-offs, and (2) how𝐴 compositions can enforce
the semantics of operators from an O′ so that O∗ ⊂ O ⊂ O′.
SinceO∗ contains a single𝐴 operator, we denote the imple-
mentations of𝑀,𝐹,𝐽 fromO as Dedicated, and those that rely
on compositions of𝐴 operators asAggBased.
We consider SPEs such as [3, 4] for which the following holds:

P1 Streams with the same type can feed the same𝐴 operator.
If streams 𝑆𝐼1 ,𝑆𝐼2 ,... are fed to𝐴, we write {𝑆𝐼1 ,𝑆𝐼2 ,...} to refer
to the merged stream and𝑇 (𝑆𝐼1 ) to refer to their shared type.
P2 A stream can feed one or more𝐴 operators, delivering the
same tuples/watermarks in the same order.
P3 𝐴 operators can iterate over their output streamwith loops.

ForP3, note an output 𝑡𝑜 from𝐴 fed to𝐴 via a loop is always
a late arrival since it holds that𝑊 𝜔

𝐴
> 𝑡𝑜 .𝜏 for 𝑡𝑜 to be output

(see § 2.2). Also, when processing 𝑡𝑜 , any further output is a
late arrival for𝐴’s downstream peers. While discussing the
handling of late arrivals caused by the loops our model relies
on, we do not discuss the handling of late arrivals forwarded
by Ingresses themselves, already covered in [3], and assume:

C1 Each stream 𝑆 delivers watermarks with a max event time
distance 𝑑 between𝑊 𝑖 and𝑊 𝑖+1. If the first tuple 𝑡0 ∈𝑆 pre-
cedes the first watermark𝑊 0, then𝑊 0−𝑡0.𝜏 ≤𝑑 .
C2 An SPE handles the watermarks fed to𝐴 so that any 𝑡 fed
through a loop is not discarded due to being a late arrival.
C3 An SPE handles/delays watermarks emitted by𝐴 so that
no output from𝐴 is a late arrival for𝐴’s downstream peers.

AboutC1 note if an𝐴 operator is fed a stream forwhichC1
holds, a distance 𝑑 exists for𝐴’s output too. By extension, if
an AggBased𝑀 , 𝐹 , or 𝐽 fed 𝑆 produces a stream for which a 𝑑
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Figure 1: Composition of Embed (𝐸) andUnfold (𝑋 ) that
can enforce𝑀 and 𝐽 semantics.

exists according toC1,C1extends to such𝑀 ,𝐹 , or 𝐽 anddown-
stream𝑀 , 𝐹 , or 𝐽 peers too. Also, note C2/C3 are here sim-
plified to ease exposition, see § 4.4 for a detailed formulation.

4 ENFORCINGCOMMONOPERATORS’
SEMANTICSWITH𝐴OPERATORS

To show that O∗ = {𝐴} is a semantically-equivalent subset
of O = {𝑀,𝐹,𝐴, 𝐽 }, we first note that {𝑀} is a semantically
equivalent subset of {𝑀,𝐹 } since𝑀 , like 𝐹 , can output 0 or 1
tuples per input tuplewithout altering the input type.We thus
show that {𝐴} is a semantically-equivalent subset of {𝑀,𝐽 }.
The key challenge is that𝑀 and 𝐽 can output multiple tu-

ples for each input tuple or window, respectively, while 𝐴
produces up to one tuple per window (see § 2.1). We address
this challenge with two auxiliary operators, expressible as
compositions of𝐴s: Embed (𝐸), to encapsulate the content of
several tupleswithin one, andUnfold (𝑋 ), to unfold themback
to individual tuples. These auxiliary operators serve as “scaf-
folding" abstractions to ease subsequent theorems and proofs.

4.1 The Embed (𝐸) and Unfold (𝑋 ) Operators
Figure 1 illustrates how 𝐸/𝑋 enforce𝑀/𝐽 semantics. 𝐸 takes
one input stream 𝑆𝐼1 and an optional 𝑆𝐼2 (since 𝐽 has two input
streams), possibly with different types, and outputs a stream
𝑆𝐸 in which 𝑡𝐸 tuples carry a set of tuples {𝑡1𝑜 ,...,𝑡𝑛𝑜 } and value
−1 to specify 𝑡𝐸 comes from𝐸 (see§4.4 formoredetails). For𝑀 ,
𝑡𝐸 carries all the results produced by processing an input tuple.
For 𝐽 , 𝑡𝐸 carries all thematching pairs from two aligned𝛾s (see
§ 2.1).𝑋 unwraps 𝑡𝐸 with a loop (see § 4.4) and outputs all tu-
ples {𝑡1𝑜 ,...,𝑡𝑛𝑜 } in 𝑡𝐸 . Sample executions are shown in Figure 2.

To enforce𝑀’s semantics, we note that:

Claim 1. 𝐸 and𝑋 enforce the semantics of 𝑆𝑂 =𝑀 (𝑆𝐼1 ,𝑓𝑀 ) if
for each 𝑡 ∈ 𝑆𝐼1 , there is a 𝑡𝐸 such that 𝑡𝐸 .𝜏 = 𝑡 .𝜏 and 𝑓𝑀 (𝑡) is
carried in 𝑡𝐸 ’s second attribute (i.e., 𝑡𝐸 [1]).

For𝐸/𝑋 to enforce 𝐽 ’s semantics,𝐸 should embed allmatch-
ing tuples fromapair of aligned𝛾1,𝛾2 in a 𝑡𝐸 |𝑡𝐸 .𝜏 =𝛾1 .𝑙+𝑊𝑆−𝛿 :

Claim 2. 𝐸 and 𝑋 enforce the semantics of
𝑆𝑂=𝐽 (Γ(WA, WS, 𝑆𝐼1 , 𝑓

1
𝐾
), Γ(WA, WS, 𝑆𝐼2 , 𝑓

2
𝐾
), 𝑓𝑃 ) if, for

each pair of tuples 𝑡1 ∈𝑆𝐼1 and 𝑡2 ∈𝑆𝐼2 such that 𝑓 1𝐾 (𝑡1)= 𝑓 2𝐾 (𝑡2)
and 𝑓𝑃 (𝑡1, 𝑡2), and for each pair 𝛾1,𝛾2 such that 𝑡1 ∈ 𝛾1,
𝑡2 ∈ 𝛾2, and 𝛾1.𝑙 = 𝛾2.𝑙 , 𝐸 produces an output tuple
𝑡𝐸 =

〈
𝛾1.𝑙+𝑊𝑆−𝛿,{𝑡1𝑜 ,...,𝑡𝑛𝑜 },−1

〉
carrying 𝑡1,𝑡2 in 𝑡𝐸 [1].

Example
Map, turning

to lower case
and tokenizing

sentences
Join matching

sentences starting
with the same char,

over a tumbling
window of 10 secs.

Figure 2: Sample input/output tuples of 𝐸𝑀 /𝑋 and 𝐸 𝐽 /𝑋 .
Event time is expressed in seconds and 𝛿 =1 sec.

In the remainder, we write 𝐸𝑀 (𝑆𝐼1 ,𝑓𝑀 ) to refer to the 𝐸 en-
capsulating 𝑀’s semantics, 𝐸 𝐽 (WA,WS,𝑆𝐼1 ,𝑆𝐼2 , 𝑓

1
𝐾
, 𝑓 2
𝐾
, 𝑓𝑃 ) for

the 𝐸 encapsulating 𝐽 ’s semantics, and𝑋 (𝑆𝐸) for𝑋 .

4.2 Using an𝐴 to Enforce 𝐸𝑀 ’s Semantics
Our intuition for𝐴’s behavior to resemble that of a stateless
operator is that if a tuple 𝑡𝑖 is keyed using all its attributes then
𝑡𝑖 is not jointly processed with other different tuples within
a𝛾 . Also, if𝛾 is a tumbling window of 𝛿 time units,𝛾 ’s output
tuples share the same timestamp of input tuples. That is:

Lemma 1. If𝐴 defines a tumbling Γ withWA=WS=𝛿 , then
any 𝑡𝑖 falls in exactly one window instance𝛾 |𝛾 .𝑙 =𝑡𝑖 .𝜏 . Also, if
𝑡𝑖 ∈𝛾 and 𝑡𝑜 is producedupon invocationof 𝑓𝑂 (𝛾), then 𝑡𝑜 .𝜏 =𝑡𝑖 .𝜏 .

Based on Lemma 12, we can therefore state that:

Theorem 1. The semantics of 𝑆𝐸 =𝐸𝑀 (𝑆𝐼1 ,𝑓𝑀 ) – Claim 1 – are
enforced with the𝐴 operator in List. 1.

Listing 1:𝐴 operator implementing 𝐸𝑀 ’s semantics
𝑆𝐸 =𝐸𝑀 (𝑆𝐼 ,𝑓𝑀 ) =𝐴(Γ (𝛿,𝛿,𝑆𝐼 ,𝑇 (𝑆𝐼 ) ),𝑓𝑂 ) , where:

1 Function 𝑓𝑂 (𝛾 )
2 T←− {} // Create empty set T

3 for 𝑡 ′ ∈𝛾 .𝜁 do T←−T∪ 𝑓𝑀 (𝑡 ′ ) // Add 𝑓𝑀 (𝑡 ′ ) to T,∀𝑡 ′ ∈𝛾
4 if T≠ {} then return T,−1 // 1+ tuples from 𝑓𝑀
5 else return {}// No tuple from 𝑓𝑀

Figure 3’s extends Figure 2 showing the tuples and state of
an𝐴 enforcing 𝐸𝑀 ’s semantics. Note that, since 𝑓𝑂 is invoked
on the𝛾s of an𝐴 in order, output tupleswill be sorted on event
time. This, though, does not break𝑀 ’s correctness (see § 2.2).

4.3 Using𝐴s to enforce 𝐸 𝐽 ’s Semantics
Our intuition is that if matching tuples have the same type,
then they can be fed to the same𝐴 operator (P1), contribute
to the same𝛾 , and be matched when invoking 𝑓𝑂 on𝛾 :

Theorem2. The semantics of𝑆𝐸 =𝐸 𝐽 (WA,WS,𝑆𝐼1 ,𝑆𝐼2 ,𝑓
1
𝐾
,𝑓 2
𝐾
,𝑓𝑃 )

– Claim 2 – are enforced by composing𝐴s as in Figure 4/List. 2.
2To ease exposition, all proofs are found in Appendix A.
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Example

Figure 3: Tuples/states for the𝐴s of 𝐸𝑀 from Figure 2.

Figure 4:𝐴 operators implementing 𝐽 ’s semantics.

Listing 2:𝐴 operators implementing 𝐸 𝐽 ’s semantics .

𝑆 ′
𝐼1
=𝐴(Γ (𝛿,𝛿,𝑆𝐼1 ,𝑇 (𝑆𝐼1 ) ),𝑓𝑂 ) , where: // 𝐴1 - Figure 4

1 Function 𝑓𝑂 (𝛾 )
2 T←− {} // Create empty set T

3 for 𝑡 ′ ∈𝛾 .𝜁 do T←−T∪𝑡 ′ // Add 𝑡 ′ to T, ∀𝑡 ′ ∈𝛾
4 return T,{}

𝑆 ′
𝐼2
=𝐴(Γ (𝛿,𝛿,𝑆𝐼2 ,𝑇 (𝑆𝐼2 ) ),𝑓𝑂 ) , where: // 𝐴2 - Figure 4

5 Function 𝑓𝑂 (𝛾 )
6 T←− {} // Create empty set T

7 for 𝑡 ′ ∈𝛾 .𝜁 do T←−T∪𝑡 ′ // Add 𝑡 ′ to T, ∀𝑡 ′ ∈𝛾
8 return {},T

𝑆𝐸 =𝐴(Γ (WA,WS,{𝑆 ′
𝐼1
,𝑆 ′
𝐼2
},𝑓 ′
𝐾
),𝑓𝑂 ) , where: // 𝐴3 - Figure 4

9 Function 𝑓 ′
𝐾
(𝑡 )

10 if 𝑡 [2]= {} then return 𝑓 1
𝐾
(𝑡 [1] [0] ) // 𝑡 is from 𝑆𝐼1

11 else return 𝑓 2
𝐾
(𝑡 [2] [0] ) // 𝑡 is from 𝑆𝐼2

12 Function 𝑓𝑂 (𝛾 )
13 𝑤𝑖𝑛1←− {},𝑤𝑖𝑛2←− {},T←− {} // Lists for in/out tuples

14 for 𝑡 ∈𝛾 .𝜁 do
15 if 𝑡 [2]= {} then // 𝑡 is from 𝑆𝐼1
16 for 𝑡 ′ ∈ 𝑡 [1] do // Join 𝑡 ′s with 𝑤𝑖𝑛2 and store
17 for 𝑡 ′′ ∈𝑤𝑖𝑛2 | 𝑓𝑃 (𝑡 ′,𝑡 ′′ ) do T←−T∪𝑡 ′,𝑡 ′′
18 𝑤𝑖𝑛1←−𝑤𝑖𝑛1∪𝑡 ′ // Store 𝑡 ′

19 else // ... Symmetric if 𝑡 is from 𝑆𝐼2
20 if T≠ {} then return T,−1// Return results

21 else return {}// There are no results to return

While referring to Appendix A for a formal proof, we note
that since𝐴1/𝐴2 output streamswith the same type (List.2,L1-
8), both streams can be fed to 𝐴3 (P1). 𝐴3, who matches 𝑆𝐼1
and 𝑆𝐼2 tuples, defines an 𝑓 ′𝐾 that runs 𝑓 1

𝐾
if 𝑡 ∈𝑆𝐼1 or 𝑓 2𝐾 if 𝑡 ∈𝑆𝐼2

(List.2,L9-11), thus computing the correct key for 𝑡 based on
𝑡 ’s original stream. Since𝐴1/𝐴2 use all input tuples’ attributes
as key-by, if multiple input tuples are added to a set carried by
an output tuple 𝑡𝑜 , then all such tuples are identical and run-
ning 𝑓 1

𝐾
/𝑓 2
𝐾
on the first tuple carried in 𝑡𝑜 [1]/𝑡𝑜 [2] consistently

assigns tuples to𝛾s based on their key-by value.
𝐴3’s 𝑓𝑂 runs a Cartesian product of all the tuples sharing

the same key from 𝑆𝐼1 and 𝑆𝐼2 . All matching pairs are stored
in T, which𝐴3 forwards if not empty (List.2,L14-21).
Figure 5’s extends Figure 2 showing the tuples and states

of the𝐴s enforcing 𝐸 𝐽 ’s semantics.

Example

......
... ...

Figure 5: Tuples/states for the𝐴s of 𝐸 𝐽 from Figure 2.

Figure 6:Compositionof𝐴 operators for the𝑋 operator.

4.4 Using𝐴s to enforce𝑋 ’s Semantics
For an𝐴 to handle looping tuples (P3), we stated in § 3 three
assumptions about the max distance of consecutive water-
marks (C1), and (in a simplified formulation) about how 𝐴

handles input watermarks (C2) and how𝐴 emits watermarks
(C3). We first expressC2/C3more precisely:
C2 𝑊 𝜔

𝐴
is updated only once𝑊 𝜔

𝐴
does not prevent any 𝑡0, pro-

duced by𝐴 and fed to𝐴 via a looping stream 𝑆 , from being
processed on the basis of being a late arrival. That is, if∀𝑡𝑜 ∈𝑆 ,
𝑡𝑜 is still tobeprocessedby𝐴 at𝜔 , andbeing𝛾 at𝐴 awindowin-
stance such that 𝑡𝑜 ∈𝛾 , then it holds that𝛾 .𝑙+WS≤𝑊 𝜔

𝐴
+𝐿, and

C3 𝐴 feeds𝑊 𝜔
𝐴

to downstream peers after 𝑠𝑢𝑐𝑐 (𝑡𝑟𝑖𝑔(𝑊 𝜔
𝐴
)).

Given such refined formulations, we can state the following:

Theorem 3. The semantics of an 𝑆𝑂 =𝑋 (𝑆𝐸) can be imple-
mented by composing operators𝐴1 and𝐴2 as in Figure 6 and
List. 3, whereC1holds for𝑆𝐸 ,C2 andC3hold for𝐴1, and𝐿′ ≥𝑑 .

Listing 3:𝐴 operators implementing𝑋 ’s semantics.
𝑆𝐴2 =𝐴(Γ (𝛿,𝛿,{𝑆𝐸 ,𝑆𝐴2 },𝑇 (𝑆𝐸 ),𝐿′ ),𝑓𝑂 ) ,

where: // 𝐴1 - Figure 6

1 Function 𝑓𝑂 (𝛾 )
2 𝑡←−𝛾 .𝜁 [0]
3 if 𝑡 [2]=−1 then // If 𝑡 from 𝐸
4 T←− {} // Create empty set

5 for 𝑡 ′ ∈𝛾 .𝜁 do T←−T∪𝑡 ′ [1] // Fill T with outputs

6 return T,0 // Forward T and index 0
7 else if 𝑡 [2]< |𝑡 [1] | then // If 𝑡 should loop more
8 return 𝑡 [1],(𝑡 [2]+1) // Increase index

9 else return ∅ // Else, done looping

𝑆𝑂 =𝐴(Γ (𝛿,𝛿,𝑆𝐴2 ,𝑇 (𝑆𝐴2 ) ),𝑓𝑂 ) , where: // 𝐴2 - Figure 6

10 Function 𝑓𝑂 (𝛾 )
11 𝑡←−𝛾 .𝜁 [0]
12 return 𝑡 [1] [𝑡 [2] ] ] // Forward tuple at given index

Note that𝐴1 has a tumbling Γ of size 𝛿 and Allowed Late-
ness𝐿′ (see § 2.2), and that𝑆𝐴2 feeds both𝐴1 and𝐴2, according

12
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Figure 7: Tuples/states for the𝐴s of𝑋 from Figure 2.

to P2. If a 𝑡 from 𝐸 carries −1 as the last value (List.3,L3),𝐴1
forwards a tuple 𝑡𝑜 carrying all the output tuples carried by
𝑡 and value 0, indicating the next tuple to be produced by𝐴2
is that at index 0. If 𝑡 comes from𝐴1 itself,𝐴1 forwards a 𝑡𝑜
increasing the counter at the last attribute by 1 (List.3,L8).
Since𝐴1’s 𝑓𝐾 selects all tuples’ attributes, identical tuples fed
to𝐴1 from 𝐸 will fall in the same𝛾 and all the 𝑡𝑜 tuples carried
by themwill be added to the output produced from𝛾 . Hence:

Lemma 2. 𝑋 ’s𝐴1 (Figure 6) cannot produce duplicates.

For the elements carried by an input tuple 𝑡 in its second
attribute,𝐴2 forwards theoneat the indexspecifiedby𝑡 ’s third
attribute (List.3,L12). Since each tuple fed to𝐴1 carries a finite
set of 𝑡𝑜 tuples, a 𝑡 output from𝐴1 carries afinite set of 𝑡𝑜 tuples
too.Hence, the index at 𝑡 [2]will eventually growgreater than
|𝑡 [1] |, ending the looping of 𝑡 through𝐴1 and its feeding to𝐴2.
Figure 7’s example extends Figure 2 showing the input/out-

put tuples and states of the𝐴s enforcing𝑋 ’s semantics.

4.5 HandlingWatermarks in cyclic graphs
Observing not all SPEs support loops [4], we introduce two
algorithms to enforceC2/C3. For Figure 6, we assume SPEs
run four non-concurrent operations to handle a tuple 𝑡/a wa-
termark𝑊 of streams𝑆𝐸 and𝑆𝐴2 :𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 (𝑡), when 𝑡 is fed to
𝑆𝐸 , 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑊 (𝑊 ), when𝑊 is fed to 𝑆𝐸 , 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑇 (𝑡), when
𝑡 is fed to𝐴2, and 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑊 (𝑊 ), when𝑊 is fed to𝐴2.

Thealgorithmsuse (FIFO)𝑄𝑢𝑒𝑢𝑒𝑠 ,withassociatedmethods
𝑒𝑛𝑞 and𝑑𝑒𝑞 –wewrite𝑄 [𝑖] to refer to the element at𝑄 ’s index
𝑖 – and𝑇𝑟𝑒𝑒𝑀𝑎𝑝𝑠 , maps with sorted traversal of its keys. We
write𝑚[𝑘] to refer to the key𝑘’s value in𝑚.Method 𝑓 𝑖𝑟𝑠𝑡𝐾𝑒𝑦
returns thefirst key’s value (without removing𝑘 nor its value).
Method 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑘) removes key 𝑘 and its associated value.

List. 4 covers 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 and 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑊 to enforceC2 for 𝑆𝐸 .
Simply put, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 and 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑊 keep track of the number
of tuples 𝐴1 will send on the feedback loop for each 𝛾 . 𝐴1’s
watermark is updated when there are no more tuples to wait
for 𝛾s sharing a given right boundary. More concretely, 𝑆𝐸
maintains four variables:𝐵, a boundon thehighestwatermark
that can be forwarded by𝑆𝐸 , 𝑠𝑢𝑐𝑐Γ, a𝑇𝑟𝑒𝑒𝑀𝑎𝑝 that associates
the left boundary of each 𝛾 at𝐴1 with its number of succes-
sor tuples, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑊 , a 𝑄𝑢𝑒𝑢𝑒 of watermarks that can be
forwarded by 𝑆𝐸 , and 𝐿′,𝐴1’s Allowed Lateness (List.4,L1-4).

𝑆𝐸 forwards 𝑡 upon its reception (List.4,L5-6) and updates
𝑠𝑢𝑐𝑐Γ, increasing the entry for a windowwith left boundary
𝑡 .𝜏 (see Lemma 1) with the number of 𝑡 ’s successors if 𝑡 comes
from the 𝐸 operator (i.e., if 𝑡 [2]=−1, List.4,L7), or decreasing
the entry at 𝑡 .𝜏 if 𝑡 is a successor of a previous tuple from 𝐸

(List.4,L10). An entry in 𝑠𝑢𝑐𝑐Γ is removed if it decreases to 0
(List.4,L11-12).𝑆𝐸 proceeds setting𝐵 to∞ if all entries in𝑠𝑢𝑐𝑐Γ
have been cleared, or to the left window boundary of the ear-
liest successor yet to be received by 𝑆𝐸 plus 𝐿′ (List.4,L13-14).
Finally, 𝑆𝐸 tries to forward the latest watermark in 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑊
that is smaller than or equal to 𝐵, discarding any other earlier
watermark (List.4,L15-18).
𝑆𝐸 immediately forwards a watermark𝑊 upon receiving

it if𝑊 ≤𝐵 or stores it in 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑊 , to try to forward𝑊 at a
subsequent invocation of 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 (List.4,L19-21).

Based on List. 4, we note that:

Lemma 3. IfC1 holds for 𝑆𝐸 , then List. 4 enforcesC2 for𝐴1.

Listing 4: EnforcingC2 for Stream 𝑆𝐸

1 𝐵=∞ // Bound on 𝑊 that 𝑆𝐸 can forward

2 𝑠𝑢𝑐𝑐Γ // 𝑇𝑟𝑒𝑒𝑀𝑎𝑝 of 𝛾’s right bound-#successors

3 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑊 // 𝑄𝑢𝑒𝑢𝑒 of 𝑊

4 𝐿′ // 𝐴1’s Allowed Lateness

5 Function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 (𝑡 )
6 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑇 (𝑡 ) // Forward 𝑡

7 if 𝑡 [2]=−1 then
8 𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ]←−𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ]+ |𝑡 [1] | // Keep

track of succ. for 𝛾 with left boundary 𝑡 .𝜏

9 else
10 𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ]←−𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ] −1

// Decrease succ. for 𝛾 with left boundary 𝑡 .𝜏

11 if 𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ]=0 then // Got all succ. for 𝑡 .𝜏
12 𝑠𝑢𝑐𝑐Γ.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡 .𝜏 )
13 if |𝑠𝑢𝑐𝑐Γ |>0 then 𝐵←−𝑠𝑢𝑐𝑐Γ.𝑓 𝑖𝑠𝑡𝐾𝑒𝑦 ( ) +𝐿′// Update 𝐵

14 else 𝐵←−∞
15 𝑛𝑒𝑥𝑡𝑊←−−1 // Forward latest 𝑊 |𝑊 ≤𝐵
16 while |𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑊 |>0∧𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑊 [0] ≤𝐵 do
17 𝑛𝑒𝑥𝑡𝑊←−𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑊 .𝑑𝑒𝑞 ( )
18 if 𝑛𝑒𝑥𝑡𝑊 ≠−1 then 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑊 (𝑛𝑒𝑥𝑡𝑊 )
19 Function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑊 (𝑊 )
20 if𝑊 ≤𝐵 then 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑊 (𝑊 )// If𝑊 within 𝐵, send𝑊

21 else 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑊 .𝑒𝑛𝑞 (𝑊 )// Else, store 𝑊

List. 5 shows how 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 and 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑊 can enforceC3
for 𝑆𝐴2 . Simply put, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 and 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑊 keep track of the
tuples 𝐴1 sends on the loop and handle the forwarding of
watermarks from𝐴1 (by postponing them or emitting extra
ones) according to looping tuples that can result in more out-
put tuples from𝐴1. More concretely, 𝑆𝐴2 forwards 𝑡 upon its
reception and updates variable 𝑠𝑢𝑐𝑐Γ (List.5,L4-10). Since 𝑆𝐴2

sees only the successors of a tuple 𝑡 ′ forwarded by 𝑆𝐸 to𝐴1,
𝑆𝐴2 increases the corresponding entry for a tuple 𝑡 in 𝑠𝑢𝑐𝑐Γ
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to |𝑡 [1] |−1 (because 𝑡 itself is a successor of 𝑡 ′ [1]). Then, 𝑆𝐴2

forwards 𝑡 .𝜏 as a watermark if 𝑠𝑢𝑐𝑐Γ is empty, or the value
preceding the earliest left boundary of a𝛾 of a successor yet
to be seen by 𝑆𝐴2 , if such a value is greater than the latest
watermark forwarded by 𝑆𝐴2 (List.5,L11-16).

Note that, beingT=𝑠𝑢𝑐𝑐 (𝑡),T[0] is fed to𝑆𝐴2 beforeawater-
mark𝑊 ≥T[0] .𝜏 (since𝐴1 needs𝑊 to output T[0] and feeds
𝑊 to𝑆𝐴2 afterT[0], see § 2.2)while all other tuples inT are fed
to𝑆𝐴2 after𝑊 . Thus, all tuples increasinganentryof𝑠𝑢𝑐𝑐Γ pre-
cede those decreasing an entry and, if the earliest key’s value
in 𝑠𝑢𝑐𝑐Γ decreases to 0 by processing T[0], the processing of
other tuples inT can only decrease later keys’ entries in 𝑠𝑢𝑐𝑐Γ.
Upon invocation of 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑊 , 𝑆𝐴2 forwards𝑊 if 𝑠𝑢𝑐𝑐Γ is

empty, or the timestamp of the earliest left boundary of a
window−1 of a successor yet to be seen by 𝑆𝐴2 , if such a value
is greater than the latest𝑊 forwarded by 𝑆𝐴2 (List.5,L17-23).

Based on List. 5, we note that:

Lemma 4. IfC1 andC2 hold for 𝑆𝐸 and𝐴1, respectively, then
List. 5 enforcesC3 for𝐴1.

Listing 5: EnforcingC3 for Stream 𝑆𝐴2

1 𝑠𝑢𝑐𝑐Γ // 𝑇𝑟𝑒𝑒𝑀𝑎𝑝 of 𝛾’s right bound-#successors

2 𝑙𝑎𝑠𝑡𝑊 // Last 𝑊 forwarded by 𝑆𝐴2
3 Function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 (𝑡 )
4 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑇 (𝑡 ) // Forward 𝑡

5 if 𝑡 [2]=−1 then
6 𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ]←−𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ]+ |𝑡 [1] | −1 // Record # of

successors for 𝛾s starting at 𝑡 .𝜏 (𝑡 excluded)

7 else
8 𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ]←−𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ] −1

// Decrease successors for 𝛾 starting at 𝑡 .𝜏

9 if 𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏 ]=0 then // Got all succ. for 𝑡 .𝜏
10 𝑠𝑢𝑐𝑐Γ.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡 .𝜏 )
11 if |𝑠𝑢𝑐𝑐Γ | =0 then // Forward 𝑡 .𝜏 as watermark
12 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑊 (𝑡 .𝜏 )
13 𝑙𝑎𝑠𝑡𝑊←− 𝑡 .𝜏
14 else if 𝑠𝑢𝑐𝑐Γ.𝑓 𝑖𝑟𝑠𝑡𝐾𝑒𝑦 ( ) −1>𝑙𝑎𝑠𝑡𝑊 then // Forward

watermark based on earliest pending succ.
15 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑊 (𝑠𝑢𝑐𝑐Γ.𝑓 𝑖𝑟𝑠𝑡𝐾𝑒𝑦 ( ) −1)
16 𝑙𝑎𝑠𝑡𝑊←−𝑠𝑢𝑐𝑐Γ.𝑓 𝑖𝑟𝑠𝑡𝐾𝑒𝑦 ( ) −1
17 Function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑊 (𝑊 )
18 if |𝑠𝑢𝑐𝑐Γ | =0 then // All pending succ. cleared
19 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑊 (𝑊 )
20 𝑙𝑎𝑠𝑡𝑊←−𝑊
21 else if 𝑠𝑢𝑐𝑐Γ.𝑓 𝑖𝑟𝑠𝑡𝐾𝑒𝑦 ( ) −1>𝑙𝑎𝑠𝑡𝑊 then // Forward

watermark based on earliest pending succ.
22 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑊 (𝑠𝑢𝑐𝑐Γ.𝑓 𝑖𝑟𝑠𝑡𝐾𝑒𝑦 ( ) −1)
23 𝑙𝑎𝑠𝑡𝑊←−𝑠𝑢𝑐𝑐Γ.𝑓 𝑖𝑟𝑠𝑡𝐾𝑒𝑦 ( ) −1

After showing {𝐴} is a semantically equivalent subset of
{𝑀,𝐹,𝐴, 𝐽 } by discussing how 𝐴 compositions can enforce
𝐸/𝑋 operators, we now discuss other semantically equivalent
subsets and other semantics enforceable by composing𝐴s.

Figure 8:𝐴 operators implementing𝐴∞’s semantics.

5 REASONINGONO∗ EXTRA PROPERTIES
5.1 On the trade-offs of differentO∗s
In § 1, we say two subsets that are semantically equivalent
to an SPE’s set of operators can quantify their model/perfor-
mance trade-offs. After showing {𝐴} is semantically equiva-
lent to {𝑀,𝐹,𝐴,𝐽 }, we can state this holds also for {𝐴+}, being
𝐴+ an Aggregate producing an arbitrary number of tuples
from a single 𝛾 (e.g., as in Flink [3]), since it suffices to limit
its outputs to one per𝛾 . We can thus ask:What model/perfor-
mance benefits are given by the possibility for an Aggregate to
emit an arbitrary number of tuples from a single𝛾?

From amodel perspective,𝐴+ can immediately forward the
tuples that𝐴would instead embed in 𝑡𝐸 [1] (see § 4.1), elim-
inating the need for𝑋 and, subsequently, for P3 andC1-C3.
We can thus conclude that compositions of𝐴+s (rather than
𝐴s) can enforce the semantics of compositions of O opera-
tors without needing (1) a maximum distance 𝑑 between the
watermarks within each stream nor (2) the support for loops
and their watermarks’ handling. We empirically compare the
performance improvements of𝐴+ over𝐴 in § 6.

5.2 On the extended semanticsO∗ supports
So far, we focused onO= {𝑀,𝐹,𝐴,𝐽 }. We can nonetheless ask:
is there a largerO′ so thatO⊂O′ and so thatO∗ is a semanti-
cally equivalent subset ofO′? We believe such a question can
stimulate novel research, beyond the scope of this work. As
we show next,O′ exists and contains, for example, an oper-
ator that can aggregate arbitrarily long-living states across
windows without dedicated state backend/external storage.

Let us denote such an operator as𝐴∞. We want each tuple
𝑡 fed to𝐴∞ to be processed exactly once and used to update a
state based on all previously processed tuples. We note𝐴∞’s
state is unbounded in terms of the event time it spans but
should not have ever-growing space complexity.𝐴∞’s seman-
tics can be enforced by relying on an𝐴with a sliding Γ and a
loop to transfer𝛾𝑙 ’s state into𝛾𝑙+1.𝐴∞’s state can be defined in
terms of a state tuple (with a type possibly different from that
of input tuples). If we define 𝑆𝑂 =𝐴∞ (𝑓𝑐 ,𝑓𝑎,𝑓𝑚,𝑓𝑜 ,𝑃,𝑓𝑘 ,𝑆𝐼 ) as a
stateful operator for which 𝒇𝒄 creates a state tuple 𝑡𝑠 from an
input tuple 𝑡𝑖 ,𝒇𝒂 adds 𝑡𝑖 to an existing state tuple 𝑡𝑠 ,𝒇𝒎 merges
two state tuples 𝑡𝑠1 and 𝑡𝑠2 ,𝒇𝒐 produces an output tuple from 𝑡𝑠
every 𝑃 units of time, 𝒇𝒌 is a key-by function (same as𝐴), and
𝑺𝑰 is𝐴∞’s input stream, we can state the following lemma:

Lemma 5. The semantics of 𝑆𝑂 =𝐴∞ (𝑓𝑐 ,𝑓𝑎,𝑓𝑚,𝑓𝑜 ,𝑃,𝑓𝑘 ,𝑆𝐼 ) can
be enforced by composing𝐴s as shown in Figure 8 and List. 6
whereC1 holds for 𝑆𝑀 ,C2,andC3 hold for𝐴1, and𝐴1’s 𝐿>𝑑 .
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Listing 6:𝐴 operators implementing𝐴∞’s semantics.

𝑆𝑀 =𝑀 (𝑆𝐼 ,𝑓𝑀 ) , where 𝑓𝑀 (𝑡 ) returns {𝑡 },{} // 𝑀1 - Figure 8

𝑆𝐴 =𝐴(Γ (𝑃,𝑃+𝛿,𝑆𝑀 ,𝑓𝑘 ,𝐿),𝑓𝑜 ) , where: // 𝐴1 - Figure 8

1 Function 𝑓𝑜 (𝛾 )
2 𝑓 𝑖𝑟𝑠𝑡_𝑡𝑠←−𝑇𝑟𝑢𝑒
3 for 𝑡 ∈𝛾 .𝜁 do // For each 𝑡 ∈𝛾
4 if 𝑡 .𝜏 ≠𝛾 .𝑙+𝑃 −𝛿 then // 𝑡 falls only in 𝛾
5 if 𝑡 [1]≠ ∅ then // 𝑡 from 𝑀1
6 if 𝑓 𝑖𝑟𝑠𝑡_𝑡𝑠 then // state not created
7 𝑡𝑠←− 𝑓𝑐 (𝑡 [1] )
8 𝑓 𝑖𝑟𝑠𝑡_𝑡𝑠←− 𝐹𝑎𝑙𝑠𝑒
9 else 𝑡𝑠←− 𝑓𝑎 (𝑡𝑠 ,𝑡 [1] ) // state created

10 else // 𝑡 from 𝐴1
11 if 𝑓 𝑖𝑟𝑠𝑡_𝑡𝑠 then // state not created
12 𝑡𝑠←− 𝑡 [2]
13 𝑓 𝑖𝑟𝑠𝑡_𝑡𝑠←− 𝐹𝑎𝑙𝑠𝑒
14 else 𝑡𝑠←− 𝑓𝑚 (𝑡𝑠 ,𝑡 [2] ) // state created

15 return {},{𝑡𝑠 }

𝑆𝑂 =𝑀 (𝑆𝐴,𝑓𝑀 ) , where 𝑓𝑀 (𝑡 ) returns 𝑓𝑜 (𝑡 [2] ) // 𝑀2 - Figure 8

Note that, since𝐴1’s𝛾s are processed upon expiration,𝛾 ’s
tuples canbe sortedon their type toorder calls to 𝑓𝑐 , 𝑓𝑎 , and 𝑓𝑚 .

6 EVALUATION
Our evaluation has two parts referred to as intra- and in-
ter-SPE. The first studies how the performance of a query
changes, within the same SPE (Flink), for AggBased and Ded-
icated operators. The second compares the performance of
state-of-the-art SPEs (Flink and Spark) to an SPE that only
builds on AggBased operators. We define a total of 24 differ-
ent queries and evaluate them using 3 different SPEs and 2
hardware setups representing the different ends of the Edge-
to-Cloud continuum.𝐷 refers to Dedicated implementations
of {𝑀,𝐽 } while 𝐴/𝐴+ refer to AggBased-compositions of 𝐴
(see § 4)/𝐴+ (see § 5.1) operators, respectively (weuse the same
notation for operators/implementations to ease exposition).
Datasets. Besides synthetic data, we use (1) a portion of the
Wikipedia edits from [17] and (2) 2D scans from a laser scan
sensor [18, 19]. For (1), tuples carry 𝜏 (long) and Strings 𝑜𝑟𝑖𝑔,
the original entry, 𝑐ℎ𝑎𝑛𝑔𝑒 , the text being added, and𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ,
the modified entry; for (2), they carry 𝜏 (long), 𝑖𝑑 (int), the
tuple id, and 𝑑𝑖𝑠𝑡 (array of double), the distance readings.
Hardware. We use a High-end server (Intel Xeon E5-2637
v4@3.50GHz, 4 cores, 8 threads, 64 GB RAM) to process
Wikipedia data, and an Odroid (Samsung Exynos5422 Cortex-
A15 2Ghz, Cortex-A7 Octa core, 2 GB RAM) for 2D scans.
Software. For the intra-SPE part, we use Flink 1.15.2 [3]. Due
to an open issue that can deadlock loops [20], we define our
loop-handling mechanism. For𝐷 , we rely on Flink’s𝑀 and 𝐽
operators. For𝐴/𝐴+, we only compose Flink’s own𝐴 operator

and process function –whichmatches 𝑓𝑂 , see § 2.1 – limiting
the outputs to 1 for𝐴 or an arbitrary number for𝐴+.
For the inter-SPE part, together with Flink, we use Spark

3.5.0 (both are usedwithout alterations) and 𝜇SPE [8], a proof-
of-concept SPE for distributed and parallel execution with
exactly-once semantics of streaming applications whose API
only offers to compose𝐴+ operators. While holding the same
semantic expressiveness of SPEs like Flink/Spark for arbi-
trary compositions of common operators, it trades features
of state-of-the-art SPEs (e.g., custommemory management,
integration of batched and streaming-based mode) with a
minimal codebase and a resource footprint that can ease its
adoption in resource-constrained edge devices.
Methodology. Table 1 lists our experiments. Performance is
measured as maximum sustainable throughput, in tuples/sec-
ond (t/s) for𝑀 and comparisons/second (c/s) for 𝐽 , and associ-
ated average per-second latency. Latency, for𝑀 and 𝐽 , refers
to the delay in outputting 𝑡𝑜 after all the inputs that jointly
result in 𝑡𝑜 have been fed to the operator producing 𝑡𝑜 . We
consider as maximum sustainable throughput the one an SPE
with the query in focus sustains for 10 minutes without ex-
ceeding a latency of 15 seconds more than 3 times, excluding
warm-up/cool-down phases, and average results over 3 runs.

We study various selectivity/per-tuple processing costs.
Selectivity for𝑀 and 𝐽 is the average number of outputs per
input tuple and comparison, respectively. For𝑀 , we consider
a selectivity smaller than one, to resemble an 𝐹 , and equal to/-
greater than1. Since 𝐽 ’s comparisonsarequadratic in the input
rate [21], selectivity values are smaller than 1 as in [13, 21].

6.1 Intra-SPE performance evaluation
Since𝐴/𝐴+ output extra intermediate tuples compared to𝐷
implementations, we expect 𝐴/𝐴+’s performance degrada-
tion to be proportional to the selectivity of a given𝐷 operator.
Moreover, we expect such degradation to be higher when per-
tuple data movement costs dominate per-tuple processing
costs. Acknowledging selectivity and processing costs are
query-specific, we first validate our hypothesis by studying,
with Flink and on the High-end server, the performance over-
heads for a synthetic𝑀 operator with selectivity of 0.1, 1, and
3, and per-tuple processing costs ranging from 0.6 to 46 𝜇s.

Results are shown in Figure 9. Each line shows the through-
put/percentage % achieved by𝐴/𝐴+with respect to𝐷 for𝑀
and a given selectivity (i.e., the𝐴/3 throughput line shows the
percentage of throughput of an𝐴-based𝑀 for selectivity 3).
As we can see, the lowest throughput percentage, 3−28% for
𝐴 and 30−38% for𝐴+, is observedwhen the processing cost is
small and is lower for higher selectivity. We can also observe
that, independently of the per-tuple processing cost, a higher
latency is always observable, noting𝐴’s latency is greater and
grows faster than 𝐴+’s. This is because 𝐷 does not require
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Table 1: List of experiments.

High-end server (upper-case ID) Odroid device (lower-case ID)

Cost Op. ID Selectivity Notes ID Selectivity Notes

Low 𝑀 LLM Low (∼5𝑒−3) Find most frequent word in𝑜𝑟𝑖𝑔. Forward if length > 10 chars llm Low (0.2) Convert coordinates from polar to Cartesian.
Forward if avg dist. > 3m

Low 𝑀 ALM Avg (1) Find the most frequent word in𝑜𝑟𝑖𝑔 and forward it alm Avg (1) Convert coordinates from polar to Cartesian
Low 𝑀 HLM High (3) Find top-3 frequent words in𝑜𝑟𝑖𝑔. Forward as separate tuples hlm High (3) Convert coordinates from polar to Cartesian, and

split/forward in 3 parts
High 𝑀 LHM Low (∼3𝑒−4) Findmost frequentword in𝑜𝑟𝑖𝑔,𝑐ℎ𝑎𝑛𝑔𝑒 , and𝑢𝑝𝑑𝑎𝑡𝑒 . Forward

them in a single tuple if all their lengths are > 10 chars
lhm Low (∼0.7) Convert coordinates from polar to Cartesian from

reference point. Forward if avg dist. > 3m
High 𝑀 AHM Avg (1) Findmost frequentword in𝑜𝑟𝑖𝑔,𝑐ℎ𝑎𝑛𝑔𝑒 , and𝑢𝑝𝑑𝑎𝑡𝑒 . Forward

them in a single tuple
ahm Avg (1) Convert coordinates from polar to Cartesian from

reference point
High 𝑀 HHM High (∼2.3) Find top-3 frequent words in 𝑜𝑟𝑖𝑔, 𝑐ℎ𝑎𝑛𝑔𝑒 , and 𝑢𝑝𝑑𝑎𝑡𝑒 .

Forward as separate triplets
hhm High (3) Convert coordinates from polar to Cartesian from

reference point, and split/forward in 3 parts
Low 𝐽 LLJ Low (∼1𝑒−4) Match distinct (case insens.) 𝑜𝑟𝑖𝑔 with the same length and

|𝑜𝑟𝑖𝑔 |> 210 chars. Key-by # ofwords in𝑐ℎ𝑎𝑛𝑔𝑒 ,WA=1s,WS=3s
llj Low (∼8𝑒−5) Match two distinct scans if the sum diffs in𝑑𝑖𝑠𝑡

is < 0.5m.WA=0.5s andWS=1s
Low 𝐽 ALJ Avg (∼1𝑒−3) As LLJ, but |𝑜𝑟𝑖𝑔 |>150 alj Avg (∼8𝑒−4) As llj but sum diffs < 0.6m
Low 𝐽 HLJ High (∼3𝑒−3) As LLJ, but |𝑜𝑟𝑖𝑔 |>100 hlj High (∼5𝑒−3) As llj, but sum diffs < 0.7m
High 𝐽 LHJ Low (∼1𝑒−4) As LLJ, butWS=10s lhj Low (∼6𝑒−5) As llj, butWS=2s
High 𝐽 AHJ Avg (∼1𝑒−3) As LLJ, but |𝑜𝑟𝑖𝑔 |>150 andWS=10s ahj Avg (∼7𝑒−4) As llj, but sum diffs < 0.6m andWS=2s
High 𝐽 HHJ High (∼3𝑒−3) As LLJ, but |𝑜𝑟𝑖𝑔 |>100 andWS=10s hhj High (∼3𝑒−3) As llj, but sum diffs < 0.7m andWS=2s

Figure 9: Throughput/latency percentage (𝐴/𝐴+ vs.𝐷).

watermarks to trigger the production of results (since𝑀 is
stateless)while𝐴/𝐴+ do,making their latencya functionof the
periodicity of ingresses’ watermarks. Also, for𝐴, the latency
increase is due to the delay in the forwarding of watermarks
paid to enforceC2 andC3 (see § 4.4). Finally, notice all our
AggBased implementations undergo the additional overhead
of key-by routing, since Flink extracts the key of each tuple be-
fore feeding such tuple to the corresponding𝐴 instance,while
Dedicated𝑀 operators do not require such extra operation.
𝐴+’s higher throughput and lower latency (compared to𝐴) are
due to𝐴+ not relying on the𝑋 operator and loops (see § 5.1).
As shown, though, the throughput percentage drop becomes
negligible for𝐴+ for increasing loads independently of the se-
lectivity, 98−100%, and even for𝐴 for low selectivity, 90−96%
(i.e., when𝑋 ’s processing overheads areminimized). These re-
sults thus hint that, for a given SPE, cost-heavy operators can
performwellwhenrelyingon𝐴/𝐴+ implementations.Wenow
validate this with real-world queries for the𝑀/𝐽 operators.
𝑴 operator Figure 10 shows how throughput and latency
evolve for an increasing injection rate (t/s) in the AHM exper-
iment (see Table 1). Other experiments behave similarly.

0

50

Th
ro

ug
hp

ut
(1

03  t
/s

)

D
A

A +

0 20 40 60 80 100
Injection rate (103 t/s)

0

10

La
te

nc
y

(s
)

Figure 10: AHM-Throughput/latency vs. injection rate

The throughput initially increases linearly with the injec-
tion rate in all implementations but plateaus once the maxi-
mum sustainable throughput is reached, with the correspond-
ing increase in latency. In line with the experiments with
synthetic data,𝐷’s maximum throughput is higher than that
of𝐴/𝐴+, with a degradation of ∼50% for𝐴 and ∼16% for𝐴+.

Figure 11 compares throughput and latency across experi-
ments.𝐷’s throughput is not significantly affected by selectiv-
ity as it is by cost. In this case too, as for previous experiments,
this does not hold for𝐴: when𝑀’s selectivity is close to 0,𝑋
only processes a few tuples. Hence,while𝐸𝑀 is not as efficient
as𝑀 , their performance is in the sameorderofmagnitude (e.g.,
34% less throughput for𝐴 in LLM). When𝑋 ’s rate grows, the
throughput drops, down to e.g., a 90% for HLM. This does not
happen to𝐴+, for which selectivity does not affect through-
put (as for 𝐷) and thus results in a maximum sustainable
throughput similar to that of𝐷 in Odroid-based experiments.

For the latency, we note that both𝐴 and𝐴+ consistently ex-
hibit higher latency than𝐷 , with smaller differences between
𝐴 and𝐷 on the Odroid device.We also note that𝐴 exhibits an
increase in latency as selectivity increases, because of the loop
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within the𝑋 operator. The growing trend in latency is also
present for𝐷 and𝐴+ when executed on the High-end server,
where𝐷’s latency is orders of magnitude lower than that of
𝐴/𝐴+, as expected since𝐷 is a stateless operator. Note, though,
that𝐴+’s latency remains in the sub-second range (acceptable
for many real-world queries) even on the High-end server.
𝑱 operatorFigure12 shows the throughput and latency for ex-
periment ahj (as for𝑀 , other experiments behave similarly).
Based on the results with synthetic data, conducted on a state-
less𝑀 , we expect a smaller performance gap between𝐴/𝐴+
and𝐷 , since 𝐽 is usually heavier in per-tuple processing cost
than𝑀 and relies on watermarks too, as an Aggregate does,
for output production.𝐷’s and𝐴+’s behaviors are close, while
𝐴’s latency grows faster as the rate increases. For𝐴 and𝐴+, all
the comparisons for a given𝛾 are done at once, once𝛾 ’s right
boundary falls before 𝐴’s watermark, while for 𝐷 they are
done as tuples are being fed. Since𝐴 also requires the subse-
quent unfolding from𝑋 ,𝐴 carries out higher amounts ofwork
on𝛾s expiration, leading to lower throughput/higher latency.
Figure 13 compares all experiments’ throughput/latency.

𝐴+ and 𝐽 show negligible differences. We also note minor
differences between𝐴 and𝐷 running on the Odroid, as in ex-
periment llj. We also note that the growing trend of latency
is mainly observed for the𝐴 operator, while in this case that
𝐴+ and𝐷 exhibit comparable latency across all experiments.

6.2 Inter-SPE performance evaluation
After showing there exist queries for which, within an SPE,
𝐴/𝐴+ and 𝐷 behave similarly, we now compare 𝑀/𝐽 per-
formance between Flink, Spark, and 𝜇SPE. Our initial ex-
periments highlighted that Spark, which relies on micro-
batching favoring throughput over latency [22], could not run
on Odroid devices and resulted in high latency even on the
High-end server. We thus changed the maximum latency to
distinguish successful/unsuccessful experiments from 15s to
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Figure11:𝑀-Avg. throughput/latency (all experiments).
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Figure 13: 𝐽 -Avg. throughput/latency (all experiments).

60s for Spark, ran only experiments for the High-end server,
and changed all windows to tumbling (based on their size).

Figure 14 shows the throughput and latency figures for𝑀
and 𝐽 , respectively.Wecanobserve that, in this case, 𝜇SPE is al-
ways able to provide better performance than Flink and Spark.
For𝑀 , 𝜇SPE shows an average +43% throughput and compa-
rable latency to Flink and +21% throughput and−90% latency
than Spark. For 𝐽 , it shows an average 2.6𝑋 higher throughput
and comparable latency to Flink and 20𝑋 high throughput and
−72% latency than Spark. These results highlight the trade-
offs between features offered by state-of-the-art SPEs (e.g., in-
tegration of batched and streaming-based modes [3]) and the
performanceof amicro-SPE that, buildingonlyonAggregates,
holds the same semantic expressiveness while being easy to
maintain, tune, and port across different languages/hardware.

7 RELATEDWORK
We build on the Dataflow model [1], the de-facto standard
in modern SPEs [23–28]. We are unaware of previous work
formally or empirically covering the concept of semantically
equivalent subsets in stream processing (see § 3).
Related studies that may complement future research in-

clude [29], which defines a calculus for streaming queries
showing how to port higher-level languages like CQL [30]
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Figure 14:𝑀/𝐽 performance forDedicated (Flink, Spark)
vs. AggBased (𝜇SPE) implementations.

to it but by encapsulating semantics in orthogonal opaque
functions, rather than basic Dataflow concepts as we do.

Someworks focus on the semantics of individual aspects of
SPEs. For instance, the SECRETmodel provides a minimum
set of parameters to precisely definewindows [31], which can
be applied to identify possible differences across systems [32].
Akidau et al. [33] study the semantics of watermarks and the
differences between the two system implementations. Gévay
et al. [34] survey and analyze different approaches to handle
iterations in Dataflow systems. Other works focus on higher-
level abstractions on top of Dataflow-based SPEs e.g., through
abstractions for relational data processing, exploiting the du-
ality of data streams and relational tables [35]. Fernandez
et al. [36] propose an object-oriented programming model
that can be automatically translated to a Dataflow graph.
Yet other works study how to extend the expressiveness of
Dataflow-based SPEs [37]. Naiad [38] offers an extended pro-
gramming model to control how stream elements traverse
nested loops through explicit vector timestamps. CIEL [39]
provides primitives to dynamically instantiate new operators,
thus allowing for runtime definition of the graph of computa-
tions, for instance, based on the value of data. Various propos-
alsalsoexist toenrich theDataflowmodelwithamutable state:
TSpoon [40] provides primitives to access operators’ state and
it lets users specify portions of the graph of computations that
need to be accessed/updated with transactional semantics,
while S-Store [41] implements an SPEwithin a relational data-
base core with transactional semantics for stateful operators.

Alternative programmingmodels for stream processing ex-
ist [42]. In particular, Complex Event Recognition (CER) [43]
considers stream elements as occurrences of events and aims
to recognize patterns of such events. Interestingly, the seman-
tics of CER operators have been studied in detail [44]: our

paper aims to provide a similar contribution to the Dataflow
model. InCER,operators’ equivalencehasbeenusedtorewrite
queries to equivalent forms that optimize execution [45]. We
believe that a deeper understanding of the semantic rela-
tions between operators may enable similar strategies for the
Dataflowmodel, complementing existing optimization strate-
gies [46], exploiting higher-level definitions of queries [47],
and streamlining SPE’s design and optimization [48].

8 CONCLUSIONS AND FUTUREWORK
Inspiredbyrelatedwork towardsunifiedmodels for streaming
queries, we propose a novel formal approach to reason on the
semantics SPEs support (beyond their APIs) by distilling such
semantics into minimal sets of operators that allow assessing
the effective overlap in the semantic expressiveness of SPEs
and their the design, portability, and performance trade-offs.
We show that a single Aggregate operator not only suf-

fices to enforce the semantics of common stateless/stateful
Dataflow operators, implying any portion of a query using
such operators within an SPE can be ported to other SPEs
that support such an Aggregate, but can also support richer
analysis (e.g., maintaining arbitrarily long-living state across
windowswithout a dedicated state backend/external storage).
Since the Dataflowmodel [1], which we build on, allows for
Aggregates to be run both distributedly and in parallel, our
findings can seamlessly relyonexisting scale-upand scale-out
performance-boosting techniques [1, 3, 5, 6].
We combine analytical insights with an empirical assess-

ment, usingdiversehardware setups and state-of-the-art SPEs
(Flink/Spark).Ourfindings show that,withinFlink, there exist
queries for which compositions of Aggregate operators can
perform similarly to other operators, and that our novel 𝜇SPE,
a micro-SPE with builds on a single Aggregate operator and
consists of∼2000 lines of code,maintains equivalent semantic
expressiveness outperforming other state-of-the-art SPEs.

Besides extensions studying distributed/parallel composi-
tions of Aggregate operators, we believe our work sets down
foundations to show compositions of Aggregate operators
can enforce even richer semantics (see § 5.2). Also, the use
of a concise abstraction – an operator that encapsulates the
semantics of various established operators – can streamline
the process for multi-target compilers, enabling them to gen-
erate streaming applications suitable for diverse hardware
architectures and programming languages, addressing the
heterogeneous demands of the edge-to-cloud continuum.

A PROOFS OF THEOREMSAND LEMMAS
Lemma 1 The left boundary 𝛾 .𝑙 of the window instance to
which 𝑡 contributes to can be computed as ⌊𝑡 .𝜏/WA⌋WA for a
tumbling window. IfWA=𝛿 , then ⌊𝑡 .𝜏/WA⌋ = 𝑡 .𝜏/WA and thus
𝛾 .𝑙 =𝑡 .𝜏 . Moreover, 𝑡𝑜 .𝜏 is set to𝛾 .𝑙+WS−𝛿 =𝑡𝑖 .𝜏 .
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Theorem 1 Each tuple 𝑡 falls in one𝛾 only (Lemma 1). Since
all tuples in 𝛾 are identical, each tuple 𝑡 ′ ∈ 𝛾 results in the
same set of tuples once fed to 𝑓𝑀 , and T contains the tuples
of all such sets or is empty if 𝑓𝑀 does not return any tuple. If
a 𝛾 contains multiple tuples, then such tuples are identical,
because𝐴 uses all attributes𝑇 (𝑆𝐼1 ) as key-by. If an output 𝑡𝑜
is produced, then 𝑡𝑜 .𝜏 for a 𝛾 is the same as those contained
in𝛾 .𝜁 (Lemma 1). Hence,𝐴 enforces the semantics of 𝐸𝑀 .
Theorem 2 By contradiction; if 𝐸 𝐽 does not enforce the re-
quired semantics, then there exists a pair of tuples 𝑡1,𝑡2 falling
in 𝛾1,𝛾2, respectively, so that 𝑓𝑃 (𝑡1, 𝑡2) holds and 𝛾1.𝑙 = 𝛾2.𝑙
but 𝑡1,𝑡2 is not added to T by𝐴3’s 𝑓𝑂 . According to the 𝑓𝑂 in
List.2,L12-21 this can only hold if 𝑡1 or 𝑡2 do not fall in𝛾1 or𝛾2,
respectively, or if one or both tuples are not fed to𝐴3 in the
first place, which contradicts the initial assumption.
Lemma 2 By contradiction; let us assume 𝑡𝑙𝑜 ,𝑡𝑚𝑜 |𝑡𝑙𝑜 = 𝑡𝑚𝑜 are
produced by𝐴1. Noting that any tuple produced by𝐴1 for a
window instance𝛾 shares the same timestamp of the tuples
that fall in𝛾 (see Lemma 1), and noting𝐴1 does not alter 𝑡𝑜 [1]
if 𝑡𝑜 [2]≠−1 (List.3,L7-8), the existence of 𝑡𝑙𝑜 and 𝑡𝑚𝑜 implies the
existenceof𝑡𝑙 ′𝑜 and𝑡𝑚′𝑜 producedby𝐴1 so that𝑡𝑙

′
𝑜 [0:1]=𝑡𝑙𝑜 [0:1],

𝑡𝑙
′
𝑜 [2] = 0, 𝑡𝑚

′
𝑜 [0:1] = 𝑡𝑚𝑜 [0:1], and 𝑡𝑚

′
𝑜 [2] = 0 (List.3,L3-6). As-

suming𝑡𝑙 ′𝑜 and𝑡𝑚′𝑜 areproducedby𝐴1 processing two identical
tuples 𝑡𝑙𝑖 and 𝑡

𝑚
𝑖 from𝑆𝐸 leads to a contradiction, because if 𝑡𝑙𝑖 =

𝑡𝑚𝑖 then both fall in the same window instance𝛾 and𝛾 results
only inoneoutput tuple.Assuming 𝑡𝑙 ′𝑜 and 𝑡𝑚′𝑜 are producedby
𝐴1 processing two ormore input tuples 𝑡𝑙1

𝑖
,𝑡
𝑙2
𝑖
,... and 𝑡𝑚1

𝑖
,𝑡
𝑚2
𝑖
,...

so that 𝑡𝑙 𝑗
𝑖
≠ 𝑡

𝑚 𝑗

𝑖
,∀𝑙 𝑗 ,𝑚 𝑗 leads also to a contradiction because

𝑡
𝑙 𝑗
𝑖
≠ 𝑡

𝑚 𝑗

𝑖
implies that the concatenations 𝑡𝑙1

𝑖
[1],𝑡𝑙2

𝑖
[1],... and

𝑡
𝑚1
𝑖
[1],𝑡𝑚2

𝑖
[1],... differ too, and thus that 𝑡𝑙 ′𝑜 ≠𝑡𝑚

′
𝑜 .

Theorem3Bycontradiction; 𝑡𝑙 =
〈
𝜏𝑙 ,T,−1

〉
withT= {...,𝑡 𝑗𝑜 ,...}

is fed to𝐴1 but𝐴2 does not output 𝑡 𝑗𝑜 . This implies𝐴2 did not
receive 𝑡∗=

〈
𝜏𝑙 ,T, 𝑗

〉
(1), or received 𝑡∗ but as a late arrival that

was not processed (2), or received 𝑡∗ but 𝑡∗ was not in𝛾 .𝜁 [0],
since𝛾 .𝜁 [0] is the only tuple considered by𝐴2’s 𝑓𝑂 (List.3,L10-
12) (3). (1) implies the sequence ⟨𝜏,T,−1⟩, ..., ⟨𝜏,T, 𝑗−1⟩ was
not delivered entirely to𝐴1. ⟨𝜏,T,−1⟩ being not delivered con-
tradicts the initial assumption. If ⟨𝜏,T,−1⟩ is processed, due to
C1 andC2 and given that all the tuples in the sequence share
the same timestamp, (1) results in a contradiction.
(2) implies 𝑡𝑙 was fed to𝐴1. Being𝛾𝑙 the window instance

to which 𝑡𝑙 falls in. If 𝑡∗ was produced by𝐴1, then𝐴1 received
a watermark𝑊𝑚 |𝑊𝑚 ≥ 𝑡∗ .𝜏+𝛿 (𝛾𝑙 .𝜏 =𝑡∗ .𝜏 , see Lemma 1). Let
𝑊𝑚 be the earliest watermark greater than or equal to 𝑡∗ .𝜏+𝛿 ,
i.e.,𝑊𝑚−1< 𝑡∗ .𝜏+𝛿 .C3 ensures𝑊𝑚−1 is the latest watermark
fed to𝐴2, because 𝑡∗ ∈𝑠𝑢𝑐𝑐 (𝑡𝑟𝑖𝑔(𝑊𝑚)). To be a late arrival for
𝐴2, though, 𝑡∗ .𝜏 <𝑊𝑚−1, which leads to a contradiction.

(3) implies there exist identical tuples fed to 𝐴2, because
𝐴2 uses all their attributes as key-by, contradicting Lemma 2.

Lemma 3 A watermark𝑊 is always forwarded if𝑊 ≤ 𝐵
(List.4,L15-18,L20-20). If 𝐵=∞, then𝑊 is received before any
tuple 𝑡 since 𝐵 is initialized at ∞, or 𝑠𝑢𝑐𝑐Γ is empty. In the
first case, no pending tuple from 𝑆𝐴2 is yet to be processed. In
the latter, any tuple 𝑡 from 𝐸 that increased 𝑠𝑢𝑐𝑐Γ [𝑡 .𝜏] when
invoking 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 (𝑡) has been followed by all 𝑡 ′ ∈ 𝑠𝑢𝑐𝑐 (𝑡)
that, when invoking 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 (𝑡 ′), decreased 𝑠𝑢𝑐𝑐Γ [𝑡 ′ .𝜏] to 0.
Hence, there is no tuple yet to be processed by𝐴1.
If 𝐵 ≠ ∞, then the distance between𝑊 and the earliest

tuple 𝑡 ′ from𝐴1 yet to be processed by𝐴1 is smaller than or
equal to 𝐿′. When 𝑡 ′ is received at𝐴1 after𝑊 , the condition
𝑡 ′ .𝜏+𝛿 >𝑊 𝜔

𝐴1
+𝐿′ will be met (note that based on Lemma 1 𝑡 ′

falls in awindow instancewhose left boundary is equal to 𝑡 ′ .𝜏 ),
since it implies𝑊 𝜔

𝐴1
< 𝑡 ′ .𝜏+𝛿+𝐿′, and the latest watermark𝑊

fed to𝐴1 by 𝑆𝐸 is so that𝑊 ≤ 𝑡 ′ .𝜏+𝐿′.
Lemma 4 If𝑊 is forwarded upon its reception (List.5,L19),
then |𝑠𝑢𝑐𝑐Γ | = 0. Hence, ∀𝑡 ∈ 𝑠𝑢𝑐𝑐 (𝑡𝑟𝑖𝑔(𝑊 ′)) for𝑊 ′ <𝑊 , 𝑡
was fed to𝐴2 before𝑊 . All other invocations of 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑊
feed 𝐴2 a watermark equal to (List.5,L12) or smaller than
(List.5,L15,L22) the 𝜏 of an entry in 𝑠𝑢𝑐𝑐Γ that is not preceded
by entrieswith a count greater than 0. Hence,𝜏 is fed aswater-
mark to𝐴2 only after any 𝑡 ∈𝑠𝑢𝑐𝑐 (𝑡𝑟𝑖𝑔(𝑊 ′)) so that𝑊 ′ ≤𝜏 .
Lemma 5 In Figure 8, the stateless 𝑀1 defines a common
set of attributes for the tuples fed to𝐴1, be they tuples from
𝑆𝐼 or 𝑆𝐴. The core functionality is then run by𝐴1. Based on
the Γ defined by𝐴1 only two consecutive window instances
𝛾𝑙 = [𝑙𝑃,𝑙𝑃 +𝑃 +𝛿) and 𝛾𝑙+1 = [(𝑙 +1)𝑃,(𝑙 +1)𝑃 +𝑃 +𝛿) overlap
on [(𝑙+1)𝑃,(𝑙+1)𝑃+𝛿). Nonetheless, tuples falling in the lat-
ter interval are only processed when in𝛾𝑙+1 (List.6,L4). Hence,
𝐴1 processes every tuple exactly once. We also note that, as
soon as the very first tuple 𝑡 fed to 𝐴1 is processed, a state
tuple 𝑡𝑠 is created invoking 𝑓𝑐 (List.6,L7). Let 𝛾𝑙 be the first
window in which 𝑡 is processed. The resulting 𝑡𝑠 will have
𝑡𝑠 .𝜏 = (𝑙+1)𝑃 and will be then processed within the window
instance𝛾𝑙+1, sinceC1,C2, andC3 prevent 𝑡𝑠 from not being
processed on the basis of being a late arrival. Iteratively, 𝑡𝑠
carries a state based on all processed tuples (not only within
an individual window instance) from𝛾𝑙 to all the subsequent
windows. Finally𝑀2 runs 𝑓𝑜 on a state tuple with periodicity
𝑃 , since 𝑃 is𝐴1’sWA, thus enforcing𝐴∞’s semantics.
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