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Abstract
Zeitlin’s model is a spatial discretisation for the 2D Euler equations on the flat
two-torus or the two-sphere. Contrary to other discretisations, it preserves
the underlying geometric structure, namely that the Euler equations describe
Riemannian geodesics on a Lie group. Here we show how to extend Zeitlin’s
approach to the axisymmetric Euler equations on the three-sphere. It is the first
discretisation of the 3DEuler equations that fully preserves the geometric struc-
ture, albeit restricted to axisymmetric solutions. Thus, this finite-dimensional
model admits Riemannian curvature and Jacobi equations, which are
discussed. We also provide numerical experiments to showcase the method.
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1. Introduction

Euler’s [8] equations for an ideal fluid are the second-oldest partial differential equations
ever written down4. They are widely studied, but many of their aspects remain abstruse. It
is therefore important to find finite-dimensional models that preserve as much of their struc-
ture as possible, both for theoretical purposes and for numerical simulation. In particular, the
equations describe geodesics in the group of volume preserving diffeomorphisms of a domain
under a right-invariant metric corresponding to kinetic energy (as described by Arnold [1]). A
candidate for modelling this structure is a finite-dimensional Lie group with a right-invariant
Riemannian metric. For the 2D Euler equations, an effective family of such models was given
by Zeitlin, first on the flat torus [26] and then on the sphere [27]. The latter uses spherical
harmonics and their relation to representation theory for SO(3), such that the approximating
groups are the special unitary groups SU(n) for positive integers n. In consequence, these
models respect the SO(3) symmetry of the sphere, which implies better convergence and less
Gibbs phenomena than the corresponding torus models (which fail to preserve the translational
symmetry). Zeitlin’s model has been exploited to study the long-time behaviour of spherical
solutions, by the first author and others (see, e.g. [9, 19] and references therein).

In this note we show how to extend Zeitlin’s model to axisymmetric solutions of the three-
dimensional (3D) Euler equations on the three-sphere. Indeed, on the three-sphere, the Hopf
vector field generates a family of isometries, and its flow lines are all circles of the same length.
The quotient by this flow is the well-known Hopf fibration onto the two-sphere. Solutions of
the 3D Euler equation that commute with this Hopf flow are called axisymmetric by analogy
with the rotation field in three-space, and the 3D axisymmetric Euler equation reduces to a
pair of equations on the two-sphere [14]. These equations can be approximated by the Zeitlin
model in the sameway as in the two-dimensional case, and we end up with a model for axisym-
metric 3D Euler equations on three-spheres in terms of a finite dimensional space su(n)× u(n)
equipped with a twisted Lie algebra product. We will describe this Lie algebra structure and
some aspects of its geometry, along with results of 3D numerical simulations obtained by the
same techniques as in the 2D case.

From a physics standpoint, Euler’s equations on the three-sphere can be seen as a model
for spin orientation waves, via the identification S3 ≃ SU(2). However, the key aspect of the
axisymmetric 3D Euler equations emanate from analysis. Indeed, whereas the 2D equations
are globally well-posed, the 3D Euler equations are likely not, and the obstacle in the ana-
lysis appears precisely in the restriction to axisymmetric solutions with swirl. In particular,
the mechanism for blow-up discovered by Luo and Hou [16] and developed by Elgindi [7]
builds on axisymmetric solutions, as does the more recent result by Chen and Hou [5].

The extended Zeitlin model developed here thus provides a geometrically consistent
approach for numerical studies of the qualitative differences in dynamical behaviour between
Euler’s equations in 2D and 3D. A first indication is given in section 5 below, where two
numerical experiments suggest a generic faster-than-exponential growth of vorticity, which
cannot occur in 2D. This conforms with the general expectation that axisymmetric ideal fluid
flow with nonzero swirl already captures all the worst possible behaviour of the equations in
the fully general case. The fact that breakdown mechanisms appear to be a local phenomenon
indicates that the distinction between S3 and e.g. T3 is unimportant at this level, and working
on S3 leads to simpler formulas.

4 Only the wave equation is older.
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2. Background

2.1. General aspects

For the material in this portion, we refer to the monograph by Arnold and Khesin [2]. Let M
be a compact simply connected Riemannian manifold without boundary, either S2 or S3 with
the usual round metric of constant curvature 1. Euler’s equations for the velocity field u(t,x)
of an ideal fluid on M take the form

u̇+∇uu=−∇p, divu= 0,

where u̇ denotes derivative with respect to time and the pressure p is determined implicitly
by the volume preserving constraint via ∆p=−div(∇uu). Eliminating the pressure by tak-
ing the curl gives two versions of the equation for the vorticity ω = curlu, depending on the
dimension:

ω̇+ u ·∇ω = 0, ω = curlu,a function in two dimensions; (1)

ω̇+ [u,ω] = 0, ω = curlu,a vector field in three dimensions. (2)

Since M is simply connected, the curl ω completely determines the divergence-free field
u via a Biot–Savart operator. In two dimensions we can write u=∇⊥ψ where ψ is a stream
function and u is defined in terms of the area two-formµ by the condition that ιuαµ=−α∧ dψ
for every one-form α onM; with this convention5 the vorticity becomes ω =∆ψ and we have
u ·∇ω = {ψ,ω} in terms of the Poisson bracket defined by dψ ∧ dω = {ψ,ω}µ, so the 2D
Euler equation becomes

ω̇+ {ψ,ω}= 0, ∆ψ = ω. (3)

The flow of the time-dependent velocity field is denoted by γ, satisfying

γ̇ (t,x) = u(t,γ (t,x)) , γ (0,x) = x,

and the volume preserving condition detDxγ ≡ 1. The group of such volume preserving dif-
feomorphisms is denoted Diffµ(M). In terms of the flow γ, the vorticity equations (1) and (2)
can be solved to give the vorticity transport laws

ω (t,γ (t,x)) = ω0 (x) (2-D), ω (t,γ (t,x)) = Dxγ (t,x)ω0 (x) (3-D).

These correspond to the left action of γ(t) ∈ Diffµ(M) on the initial vorticity configuration ω0.
If G is a group (finite- or infinite-dimensional) with a right-invariant metric ⟨·, ·⟩, then the

equation for a geodesic γ(t) ∈ G starting at the identity can be written as the coupled system

γ̇ (t) = u(t)γ (t) , u̇(t)+ ad⋆u(t)u(t) = 0, γ (0) = id, u(0) = u0 ∈ g, (4)

where ad⋆ is the operator defined by

⟨ad⋆uv,w⟩= ⟨v,aduw⟩ ∀u,v,w ∈ g. (5)

The equation for γ is called the flow equation, while the equation for u is called the
Euler–Arnold equation. The Euler equations correspond to G= Diffµ(M), with g given

5 Many authors choose the opposite convention for the stream function, which will flip the sign in all equations but
otherwise does not matter.
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by the divergence-free vector fields, and the right-invariant metric given by the L2 kinetic
energy

⟨u,v⟩=
ˆ
M
g(u,v) µg.

The curvature tensor is given for vectors u and v by the formula

⟨R(u,v)v,u⟩= 1
4 |ad

⋆
uv+ ad⋆vu+ aduv|2 −⟨ad⋆uv+ aduv,aduv⟩− ⟨ad⋆uu,ad

⋆
v v⟩, (6)

which comes from completing the square in the Arnold formula.
The Jacobi equation is the linearisation of the Euler–Arnold equation (4), and splits in the

same way: a Jacobi field J(t) = y(t)γ(t) along a geodesic γ satisfies the equation

ẏ(t)− adu(t)y(t) = z(t) , ż(t)+ ad⋆u(t)z(t)+ ad⋆z(t)u(t) = 0. (7)

Conjugate points along geodesics occur when there is a solution of this equation with y(0) = 0
and y(T) = 0 for some T > 0. See [12] for a survey of results about curvatures and conjugate
points on Diffµ(M).

2.2. Zeitlin’s model on the two-sphere

Zeitlin’s model originates from quantisation theory developed by Hoppe [10]. The idea is
to replace the Poisson algebra of smooth functions on a symplectic manifold M with a Lie
algebra of skew-Hermitian operators in such a way that (i) the operator eigenvalues correspond
to the function values and (ii) the operator commutator corresponds to the Poisson bracket.
If the manifold M is compact and quantisable (see [4]), the operators can be taken as u(n)
matrices in such that the classical limit ℏ→ 0 corresponds to n→∞. The final ingredient is
a quantum version∆n : u(n)→ u(n) of the Laplacian∆: C∞(M)→ C∞(M). Zeitlin’s model
is then given by

Ẇ+
1
ℏ
[P,W] = 0, ∆nP=W, (8)

which yields a spatial discretisation of the vorticity equation (3).
Hoppe and Yau [11] constructed quantisation for M= S2 from representation theory

for so(3). Indeed, for integer n, let s= n−1
2 (the ‘spin’ number). Then construct three matrices

S1,S2,S3 ∈ u(n), with indices labelled from −s to s (instead of 1 to n), such that

• S1 is purely imaginary and symmetric, whose only nonzero entries above the diagonal are
aj,j+1 =

i
2

√
s(s+ 1)− j( j+ 1);

• S2 is purely real and antisymmetric, whose only nonzero entries above the diagonal are
bj,j+1 =

1
2

√
s(s+ 1)− j( j+ 1);

• S3 is purely imaginary and diagonal, with diagonal entries cjj = i j.

For example, when n= 3 we get s= 1 and

S1 =
1√
2

0 i 0
i 0 i
0 i 0

 S2 =
1√
2

 0 1 0
−1 0 1
0 −1 0

 , S3 =

−i 0 0
0 0 0
0 0 i

 .
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Meanwhile, for n= 4 we get s= 3
2 and

S1 =


0

√
3

2 i 0 0
√

3
2 i 0 i 0

0 i 0
√

3
2 i

0 0
√

3
2 i 0

 , S2 =


0

√
3

2 0 0

−
√

3
2 0 1 0

0 −1 0
√

3
2

0 0 −
√

3
2 0

 , S3 =


− 3i

2 0 0 0

0 − i
2 0 0

0 0 i
2 0

0 0 0 3i
2

 .

The matrices S1,S2,S3 provide an irreducible representation of the Lie algebra so(3) onCn,
so they fulfil the commutation relations

[S1,S2] = S3, [S2,S3] = S1, [S3,S1] = S2.

In turn, they induce a representation on u(n) via adS1 ,adS2 ,adS3 , which, via the Peter–Weyl
theorem, decomposes into odd-dimensional, irreducible so(3)-representations

u(n) = V0 ⊕V1 ⊕ ·· ·⊕Vn−1, dim(Vℓ) = 2ℓ+ 1.

By decomposing each Vℓ according to its weights m= 0, . . . , ℓ we then obtain a map between
spherical harmonics Ymℓ and a matrix basis Tmℓ ∈ Vℓ, which yields the quantisation as the rep-
resentation morphism Tn : C∞(S2)→ u(n). The scaled matrices Xα = ℏSα for ℏ= 2/

√
n2 − 1

correspond to the Cartesian coordinate functions xα ∈ S2, whereas the scaled commutator
1
ℏ [·, ·] converges in L

∞ to the Poisson bracket {·, ·} as n→∞ (see Charles and Polterovich [4]).
Furthermore, the Casimir element for the representation on u(n) is the Hoppe–Yau Laplacian
∆n : u(n)→ u(n) given by

∆n =
3∑

α=1

ad2Sα , i.e., ∆nP=
3∑

α=1

[Sα, [Sα,P]] . (9)

Since the quantisation operator Tn is a representation morphism it intertwines the Casimir
operators, i.e. Tn ◦∆=∆n ◦ Tn. Consequently, the Hoppe–Yau Laplacian has the right spec-
trum∆n

∣∣
Vℓ

=−ℓ(ℓ+ 1)id.We refer toModin and Viviani [20] and references therein for more

details on the S2 quantisation, its connection to representation theory, and the corresponding
Euler–Zeitlin equation (8) on u(n).

Contrary to all conventional discretisations, the Euler–Zeitlin equation (8) is itself an Euler–
Arnold equation, for G= SU(n), g= su(n), and the right-invariant metric defined at the iden-
tity by

⟨W,P⟩= tr(W∆nP) . (10)

Hence, there is a notion of curvature and Jacobi fields, and these notions in the finite-
dimensional case approximate the corresponding objects in the infinite-dimensional case [17].

2.3. Axisymmetry on the three-sphere

The flow of a Killing vector field K on M generates isometries, whose action preserves solu-
tions of the Euler equation. Consequently, a solution which is initially symmetric will remain
so for all time (see Lichtenfelz et al [14] for details). At the diffeomorphism group level, the
symmetry corresponds to the flow γ commuting with the flow of K, while at the vector field
level, it corresponds to the vanishing commutator condition [K,u] = 0. On S2 every Killing
field is a rotation around some axis, and the condition [K,u] = 0 is very restrictive, implying
that u must be a steady solution of the Euler equation.

But in three dimensions there is more flexibility, and there is a large family of ‘axisymmet-
ric’ nonsteady solutions [14]. The restriction to such solutions is effectively a two-dimensional

5
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fluid, but with an additional source coming from the ‘swirl’ ⟨u,K⟩. Explicitly, on the 3-sphere
embedded in R4, we may choose a basis of vector fields6

E1 =
1
2 (−x∂w+w∂x− z∂y+ y∂z)

E2 =
1
2 (−y∂w+ z∂x+w∂y− x∂z)

E3 =
1
2 (−z∂w− y∂x+ x∂y+w∂z) ,

and define a Riemannian metric on S3 so that these are orthonormal (corresponding to working
on a three-sphere of radius 2). The field E1 is the well-known Hopf field, and the flows of each
Ei are 4π-periodic.

A direct calculation, using the Riemannian curl and divergence, shows that

[E1,E2] =−E3, [E2,E3] =−E1, [E3,E1] =−E2, curlEi = Ei ∀i. (11)

Expressing u=
∑3

i=1 uiEi, the divergence is given by

divu=
3∑

i=1

Ei ui,

whereEi acts on functions as a differential operator. If we takeK= E1, the conditions [K,u] = 0
and divu= 0 imply the existence of functions σ̃ and ψ̃ such that

u= σ̃E1 −
(
E3ψ̃

)
E2 +

(
E2ψ̃

)
E3, E1σ̃ ≡ 0, E1ψ̃ ≡ 0. (12)

Indeed, let π : S3 → S2 denote the Hopf fibration (see (15) below). The condition [K,u] = 0
then implies that u descends, i.e. there is a vector field v on S2 such that v ◦π = Dπ ◦ u.
Since u is divergence free, v must also be divergence free, which implies v=∇⊥ψ for some
streamfunction ψ on S2. The form (12) now follows by taking ψ̃ = ψ ◦π and observing that
[E1, σ̃E1] = 0 if and only if E1σ̃ = 0.

We then find that the curl is given by

ω = curlu=
(
σ̃+

(
E2
2 +E2

3

)
ψ̃
)
E1 +(E3σ̃)E2−(E2σ̃)E3.

The vorticity form (2) of the Euler equation on S3 then becomes the system

∂t
(
E2
2 +E2

3

)
ψ̃+B

(
ψ̃, σ̃+

(
E2
2 +E2

3

)
ψ̃
)
= 0, ∂tσ̃+B

(
ψ̃, σ̃

)
= 0 (13)

where

B
(
f̃, g̃

)
:=

(
E2 f̃

)
(E3g̃)− (E3g̃)

(
E2 f̃

)
(14)

descends to the Poisson bracket on S2. Indeed, if f̃ = f ◦π and g̃= g ◦π then direct calculations
yield {f,g} ◦π = B( f̃, g̃).

The map Π: R4 → R3 given by

Π(w,x,y,z) =
(
2(wy+ xz) ,2(wz− xy) ,w2 + x2 − y2 − z2

)
(15)

takes S3 into S2 and its restriction π : S3 → S2 is the Hopf fibration.We compute thatDπ(E1)≡
0, so the flow circles of K= E1 all map to points in the quotient S3/S1 ≃ S2. Thus, the condi-
tions from (12) that σ̃ and ψ̃ be K-invariant are precisely what one needs to have real-valued

6 These are the right-invariant vector fields of the quaternion group, and the scaling by 1
2
is a convenience to avoid

other factors of 2 later on, but neither of these things are important in the bigger picture.

6



Nonlinearity 38 (2025) 025008 K Modin and S C Preston

functions σ and ψ defined on S2 and satisfying σ ◦π = σ̃ and ψ ◦π = ψ̃. The equations (13)
then also descend to equations on S2, given by

∆ψ̇ + {ψ,∆ψ +σ}= 0, σ̇+ {ψ,σ}= 0, (16)

where our choices on S3 lead to exactly the standard Laplacian ∆ and the standard Poisson
bracket {·, ·} on S2. Comparing to (3), we see that the 3D axisymmetric equation reduces to
the 2D equation when the swirl σ is zero.

3. The product structure and its discretisation

If u and v are axisymmetric vector fields on S3 then [u,v] is again axisymmetric. Indeed, from
the Jacobi identity

[[u,v] ,K] =−[[K,u]︸ ︷︷ ︸
0

,v]− [[v,K]︸︷︷︸
0

,u] = 0.

Thus, the space of axisymmetric vector fields makes a Lie sub-algebra. Here we construct the
corresponding Lie algebra structure in terms of the components (ψ,σ) ∈ C∞(S2)×C∞(S2),
for which the axisymmetric 3D Euler equation (16) on S2 is the Euler-Arnold equation. Once
this structure is established, it becomes evident how to discretise it via Zeitlin’s approach.

The Lie algebra is modelled on the product TidDiffµ(S2)×C∞(S2), but with a more com-
plicated Lie algebra than the usual product structures, i.e. the direct product, the semidirect
product, or the central extension. Instead, it is a special case of the Abelian extension, described
in detail by Vizman [25].

Definition 1. Let g be a Lie algebra with a g-module Σ specified by an action map ρ : g→
End(Σ). An Abelian extension of g by Σ is determined by a bilinear skew-symmetric map
b : g× g→ Σ which satisfies the 2-cocycle condition∑

cyclic

b([v1,v2] ,v3) =
∑
cyclic

ρ(v1)b(v2,v3) , v1,v2,v3 ∈ g, (17)

where the cyclic sum is taken as in the Jacobi identity for the three vectors. The Lie bracket
on g×Σ is then defined by

[(v1,σ1) ,(v2,σ2)] = ([v1,v2] ,ρ(v1)σ2 − ρ(v2)σ1 + b(v1,v2)) . (18)

The bracket (18) indeed gives a Lie algebra: antisymmetry is obvious, while the Jacobi
identity follows from the usual Jacobi identity on g and the cocycle condition on b and ρ. Note
that semidirect products correspond to b= 0, while central extensions correspond to ρ= 0. In
what follows, both b and ρ are nonzero.

Proposition 1. With g= TidDiffµ(S2) and Σ= C∞(S2,R), define the action

ρ : g→ End(Σ) , ρ(v)σ = {ψ,σ} for v=∇⊥ψ,

and the 2-cocycle

b : g× g→ Σ, b(v1,v2) =−{ψ1,ψ2} for vi =∇⊥ψi.

Then the Abelian extension in definition 1 reproduces the Lie algebra of axisymmetric volume
preserving diffeomorphisms on S3.

7
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Proof. By formula (12), we can write arbitrary elements u1,u2 in the Lie algebra of axisym-
metric volume preserving diffeomorphisms of S3 in the form

ui = σ̃iE1 + ∇̃⊥ψ̃i, ∇̃⊥f :=−E3 ( f)E2 +E2 ( f)E3,

where ψ̃i and σ̃i are both E1-invariant functions on S3.
From the bracket relations (11), we get [σ̃1E1, σ̃2E1] = 0,[

∇̃⊥ψ̃, σ̃E1

]
= B

(
ψ̃, σ̃

)
E1,

and [
∇̃⊥ψ̃1,∇̃⊥ψ̃2

]
= ∇̃⊥B

(
ψ̃1, ψ̃2

)
−B

(
ψ̃1, ψ̃2

)
E1,

with B defined as in (14). Hence, we obtain

[u1,u2] =
(
B
(
ψ̃1, σ̃2

)
+B

(
σ̃1, ψ̃2

)
−B

(
ψ̃1, ψ̃2

))
E1 + ∇̃⊥B

(
ψ̃1, ψ̃2

)
.

Identifying each ui with an ordered pair of functions (ψ̃i, σ̃i), this formula tells us that[(
ψ̃1, σ̃1

)
,
(
ψ̃2, σ̃2

)]
=
(
B
(
ψ̃1, ψ̃2

)
,B

(
ψ̃1, σ̃2

)
+B

(
σ̃1, ψ̃2

)
−B

(
ψ̃1, ψ̃2

))
.

Under identifications via the Hopf projection π : S3 → S2 as in section 2.3, we have deduced
the Lie algebra structure on g×Σ

[(ψ1,σ1) ,(ψ2,σ2)] = ({ψ1,ψ2} ,{ψ1,σ2}+ {σ1,ψ2}−{ψ1,ψ2}) , (19)

and this is precisely the Lie algebra (18) with the given choices of ρ and b.

The L2 kinetic energy metric on divergence-free velocity fields u,v ∈ TidDiffµ(M) of a
Riemannian manifold (M, g) is given by

⟨u,v⟩=
ˆ
M
g(u,v) µ.

For axisymmetric divergence-free fields u on S3 represented by (12) this yields

⟨u,u⟩=
ˆ
S3
σ̃2 +

(
E2ψ̃

)2
+
(
E3ψ̃

)2
. (20)

We can compute that for E1-invariant functions ψ̃,

E2
2

(
ψ̃
)
+E2

3

(
ψ̃
)
=∆ψ,

in terms of the usual Laplacian on S2, and thus the metric (20) reduces to

⟨u,u⟩= 4π
ˆ
S2
σ2 + |∇ψ|2 . (21)

The following proposition is essentially the statement that axisymmetric volume preserving
diffeomorphisms constitute a totally geodesic subgroup of all volume preserving diffeomorph-
isms. We provide an explicit derivation, since it also applies to the corresponding Zeitlin
product.

Proposition 2. The Euler–Arnold equation for the Lie algebra TidDiffµ(S2)×C∞(S2), with
bracket (19) and right-invariant metric (21), is given by the equations (16). They describe
axisymmetric solutions to the Euler equations on S3.

8
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Proof. Using (19) and the fact that the adjoint operator is the negative of the Lie bracket of the
right-invariant vector fields, we have for any functions g and σ, and any mean-zero functions
f and ψ, that

ad(ψ,σ) ( f,g) = (−{ψ, f} ,−{ψ,g}−{σ, f}+ {ψ, f}) . (22)

The Euler–Arnold equation is given by

∂t (ψ,σ)+ ad⋆(ψ,σ) (ψ,σ) = 0.

Consequently, (ψ,σ) satisfies the Euler–Arnold equation if and only if for every pair of func-
tions ( f, g) we have

EA := ⟨∂t (ψ,σ) ,( f,g)⟩+ ⟨(ψ,σ) ,ad(ψ,σ) ( f,g)⟩= 0. (23)

From (21) we then obtain

EA=

ˆ
S2
gσ̇− f∆ψ̇ +σ (−{ψ,g}−{σ, f}+ {ψ, f})+∆ψ {ψ, f} .

Now using the formula
´
S2( f{g,h}+ h{g, f}) = 0, which is essentially an integration by parts

using Stokes’ Theorem, we obtain

EA=

ˆ
S2
g(σ̇+ {ψ,σ})− f

(
∆ψ̇ + {ψ,σ}+ {ψ,∆ψ}

)
,

and this is zero for every f and g if and only if ψ and σ satisfy the equations (16).

3.1. Casimir functions

In addition to the Hamiltonian, Euler–Arnold equations conserve the Casimir functions associ-
ated with the Lie–Poisson structure. For the axisymmetric Euler equation (16) there are infin-
itely many Casimir functions, corresponding to the magnetic swirls and cross-helicity in 2D
incompressible magneto-hydrodynamics [21, 23]. Thus, the situation for axisymmetric Euler
equations is quite different from the full 3D case, where there are only finitely many independ-
ent Casimirs.

Proposition 3. Consider the Lie algebra g×Σ in Proposition 1. For an arbitrary f ∈ C∞(R),
the functionals on (g×Σ)⋆ ≃ g×Σ given by

Cf =
ˆ
S2
f ◦σ, If =

ˆ
S2
(∆ψ) f ◦σ,

are Casimir functions for the corresponding Lie–Poisson structure on (g×Σ)⋆.

Proof. From the governing equations (16) we obtain, first for Cf that

d
dt
Cf = ⟨ f ′ ◦σ, σ̇⟩L2 = ⟨ f ′ ◦σ,−{ψ,σ}⟩L2 = ⟨{f ′ ◦σ,σ}︸ ︷︷ ︸

0

,ψ ⟩L2 = 0,

9
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and then for If that

d
dt
If = ⟨∆ψ, d

dt
f ◦σ)⟩L2 + ⟨∆ψ̇, f ◦σ⟩L2 =

⟨∆ψ, d
dt
f ◦σ⟩L2 −⟨{ψ,σ+∆ψ} , f ◦σ⟩L2 =

−⟨∆ψ,{ψ, f ◦σ}⟩L2 −⟨{ψ,∆ψ} , f ◦σ⟩L2 = 0.

3.2. Spatial discretisation via Zeitlin’s approach

We now turn to our main point: a Zeitlin discretisation for the Euler–Arnold structure in pro-
position 2.

Theorem 1. Let g= su(n) equipped with the scaled commutator bracket 1
ℏ [·, ·]. With Σ=

u(n), define the action ρ of g on Σ by ρ(P)B= 1
ℏ [P,B], and define a 2-cocycle b : g× g→ Σ

by b(P1,P2) =− 1
ℏ [P1,P2]. Consider then the Abelian extension in definition 1 with the Lie

bracket (18). Define an inner product on su(n)× u(n) by

⟨(P1,B1) ,(P2,B2)⟩= tr(P1∆nP2)− tr(B1B2) , (24)

where∆n is the Hoppe-Yau Laplacian (9). Then the corresponding Euler-Arnold equation is

∆nṖ+
1
ℏ
[P,∆nP+B] = 0, Ḃ+

1
ℏ
[P,B] = 0. (25)

Proof. The ad operator is the negative of the Lie bracket

ad(P,B) (U,V) =

(
−1
ℏ
[P,U] ,−1

ℏ
[P,V] +

1
ℏ
[U,B] +

1
ℏ
[P,U]

)
.

We compute the analogue of (23) by the same method as in the proof of proposition 2, using
bi-invariance of the trace metric:

EAn : = ⟨
(
Ṗ, Ḃ

)
,(U,V)⟩+ ⟨(P,B) ,ad(P,B) (U,V)⟩

= tr
(
Ṗ∆nU

)
− tr

(
ḂV

)
− tr

(
(∆nP)

1
ℏ [P,U]

)
+ tr

(
B

(
1
ℏ [P,V]− 1

ℏ [U,B]− 1
ℏ [P,U]

))
= tr

(
∆nṖU

)
− tr

(
ḂV

)
+ tr

(
1
ℏ [P,∆nP]U

)
− tr

(
1
ℏ [P,B]V

)
+ tr

(
1
ℏ [P,B]U

)
= tr

((
∆nṖ+

1
ℏ [P,∆nP] +

1
ℏ [P,B]

)
U

)
− tr

((
Ḃ+

1
ℏ [P,B]

)
V

)
.

This is zero for all (V,U) ∈ u(N)× su(n) if and only if equations (25) are satisfied.

From quantisation theory we know that if P1,P2 ∈ su(n) are related to ψ1,ψ2 ∈ C∞(S2)
via the quantisation Tn described in section 2.2, then 1

ℏ [P1,P2]→Tn{ψ1,ψ2} as n→∞ in the
spectral norm on su(n) (see [4] for details). Thus, the equation (25) provide a spatial discret-
isation of the S3 axisymmetric Euler equation (16).

Due to the Euler–Arnold structure, the discretised equations (25) preserve analogues of the
Casimir functions in proposition 3.

10
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Proposition 4. With g×Σ as in theorem 1, the Casimir functions are

Cnf = tr( f(iB)) , Inf = i tr( f(iB)∆nP)

where f is an arbitrary real analytic function. These functions are thus conserved by the Euler–
Arnold equations (25) on g×Σ.

4. The Jacobi equation

Now we consider some geometric aspects of the 3D Zeitlin model (25). Recall that the Jacobi
equation along geodesics is given by equation (7). It describes stable perturbations, which
lead to conjugate points, but also possible instabilities. We can linearise the equations (25) for
perturbations B+ ϵZ1 and P+ ϵZ2 to obtain

Ż1 (t)+
1
ℏ [P(t) ,Z1 (t)]+

1
ℏ [Z2 (t) ,B(t)] = 0

∆nŻ2 (t)+
1
ℏ [Z2 (t) ,∆nP(t)]+

1
ℏ [P(t) ,∆nZ2 (t)]+

1
ℏ [P(t) ,Z1 (t)]+

1
ℏ [Z2 (t) ,B(t)] = 0.

(26)

Similarly, using the formula (19) for the Lie bracket, the linearised flow equation (7) for a
Jacobi field J with right translated generators Y1 and Y2 takes the form

Ẏ1 (t)+
1
ℏ
([B(t) ,Y2 (t)]+ [P(t) ,Y1 (t)]− [P(t) ,Y2 (t)]) = Z1 (t)

Ẏ2 (t)+
1
ℏ
[P(t) ,Y2 (t)] = Z2 (t) .

(27)

Our goal in this section is to illustrate how to solve this system of equations in a simple case.
Steady solutions of the Euler-Arnold equation (25) are given by matrices (B,P) satisfying

[P,B] = 0, [P,∆nP] = 0.

A simple way to satisfy these equations is to take P= ℏS3 as in section 2.2, since in that case
we have ∆nP=−2P, and we also take B= ℏS3. This corresponds to taking σ = ψ =−cosθ
on the two-sphere in the equations (16), so that the underlying 2D flow on the 2D sphere is
the rigid rotation by ∇⊥ψ = ∂ϕ in the usual spherical coordinates (θ,ϕ). The reason taking
B=P is the simplest choice is that it reduces the first equation in (27) to the same form as the
second, as we will see.

Theorem 2. For the Euler velocity field in su(n)× u(n) given by P(t) = ℏS3 and B(t) = ℏS3,
let γ(t) with γ(0) = e be the corresponding geodesic curve in the Lie group. For each positive
integers m, ℓ, k with m⩽ ℓ⩽ (n− 1)/2, there are conjugate points γ(t) to the identity at times
t= 4π kℓ

m and t= 4kπ(ℓ+1)
m . Each of these occurs with multiplicity 2 for each distinct pair (ℓ,m)

of positive integers.

Proof. Using P(t) = ℏS3 and B(t) = ℏS3, and writing

C := adS3 ,

the linearised Euler equation (26) becomes

Ż1 = C (Z2 −Z1) , ∆nŻ2 =−C (Z1 +Z2 +∆nZ2) . (28)

Meanwhile, the linearised flow equation (27) is given by

Ẏ1 +CY1 = Z1, Ẏ2 +CY2 = Z2. (29)

11
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To solve equations (28) and (29), it is convenient to define an operator

D :=
√
−∆n+

1
4 I−

1
2 I, D (Tℓ,m) = ℓTℓ,m ∀ 0⩽ ℓ⩽ s, |m|⩽ ℓ. (30)

Note that ∆n =−D(I+D). Since ∆n commutes with C, so does D.
We define the new variables

Z3 = Z1 −DZ2, Z4 = Z1 +(D+ I)Z2, Y3 = Y1 −DY2, Y4 = Y2 +(D+ I)Y1 (31)

and observe that the equations (28) can be rewritten in the form

(D+ I) d
dt (Z1 −DZ2) = (D+ I)(C(Z2 −Z1)−C(Z1 +Z2 − (D+ 1)DZ2)

=−(D+ 2I)C(Z1 −DZ2)

which implies that

(D+ I) d
dtZ3 =−(D+ 2I)CZ3. (32)

Similarly, we obtain

D d
dtZ4 =−(D− I)CZ4. (33)

We also see that (29) takes the form

d
dtY3 +CY3 = Z3,

d
dtY4 +CY4 = Z4. (34)

We conclude from (32) that if Z3(0) = 0 then Z3(t) = 0 for all t⩾ 0, and thus by (34) that
Y3(t) = 0 for all t since Y3(0) = 0. Similarly, if Z4(0) = 0, then Y4(t) = 0 for all t. Furthermore,
since both C and D are block-diagonal in the basis Tℓ,m, with

CTℓ,m = mTℓ,−m, DTℓ,m = ℓTℓ,m, −ℓ⩽ m⩽ ℓ,

we can write equation (32) in block diagonal form. That is, writing

Z3 (t) =
s∑
ℓ=0

ℓ∑
m=−ℓ

aℓ,m (t)Tℓ,m, Y3 (t) =
s∑
ℓ=0

ℓ∑
m=−ℓ

cℓ,m (t)Tℓ,m,

we obtain the system

a ′
ℓ,m (t) =

(ℓ+ 2)m
ℓ+ 1

aℓ,−m (t) , c ′ℓ,m (t)−mcℓ,−m (t) = aℓ,m (t) , −ℓ⩽ m⩽ ℓ.

If m ̸= 0, the solutions with cℓ,m(0) = 0 are easily found to be

cℓ,m (t) =
2(ℓ+ 1)

m
sin

(
mt

2(ℓ+ 1)

)[
aℓ,m (0)cos

(
(2ℓ+ 3)mt
2(ℓ+ 1)

)
+ aℓ,−m (0)sin

(
(2ℓ+ 3)mt
2(ℓ+ 1)

)]
.

Hence we get conjugate points occurring at times t= 4kπ(ℓ+1)
m , with multiplicity two in each

block. Obviously if m= 0 we simply get cℓ,m(t) = aℓ,m(0)t, and there are no conjugate points
arising from such initial conditions.

Similarly solving the system (33) and (34) for Z4(t) =
∑
bℓ,mTℓ,m and Y4(t) =∑

dℓ,m(t)Tℓ,m gives

dℓ,m (t) =
2ℓ
m

sin
(mt
2ℓ

)[
bℓ,m (0)cos

(
(2ℓ− 1)mt

2ℓ

)
+ bℓ,−m (0)sin

(
(2ℓ− 1)mt

2ℓ

)]
,

and we obtain conjugate points at t= 4kπℓ
m for every positive integer k, in each block.

12
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The reason the analysis is particularly simple in this case is that the corresponding vector
field on the three-sphere is a Killing field, and the combinations Z1 +(D+ I)Z2 and Z1 −DZ2

occur naturally when one is computing curl eigenfields. See [22] for details, where the con-
jugate points are worked out explicitly along a similar geodesic (however we note that in that
paper one considers the full volume preserving diffeomorphism group, not the axisymmetric
subgroup, so there are fewer conjugate points in the present case).

5. Numerical experiments

Here we give two numerical experiments for the 3D axisymmetric Zeitlin model (25)7.
To retain the structural benefits of the Zeitlin based spatial discretisation, it is essential to

use a temporal discretisation that preserves the underlying Lie–Poisson structure, which in
turn implies conservation of Casimir functions. Since the Casimirs for the S3 axisymmetric
Euler equations (16) coincide with those for the 2D incompressible magnetohydrodynamic
(MHD) equations, we use the Casimir-preserving numerical integration scheme for the Zeitlin
discretisation ofMHD, developed byModin and Roop [18]. Thereby, the benefits of the spatial
discretisation remain in the fully discretised system of equations.

In addition to visualisations of the fields ∆ψ and σ, we demonstrate the growth of the
supremum norm of the vorticity vector

∥ω∥∞ = sup
x̃∈S3

|ω (x̃)|= sup
x∈S2

√
(∆ψ +σ)

2
+ |∇σ|2.

The analogous formula for Zeitlin’s model is

∥(∆nP,B)∥∞ =

√√√√∥−(∆nP+B)2 −
3∑

α=1

[Sα,B]2∥, (35)

where ∥·∥ denotes the spectral norm and Sα as in section 2.2.
See [6] for details on how to efficiently compute Tnψ, the corresponding pseudo-inverse

T −1
n P (to obtain visualisations), and solution to the quantised Poisson equation ∆nP=W.

5.1. First simulation: smooth, symmetric data

Let Yℓ,m ∈ C∞(S2) denote the real spherical harmonics. The initial data are

∆ψ
∣∣
t=0

= Y2,1, σ
∣∣
t=0

= Y1,0.

These data are antisymmetric under reflection in the equatorial plane. Consequently, the geo-
metry corresponds to a hemisphere with no-slip boundary conditions along the equator.

Visualisations of ∆nP and B at various output times are given in figure 1 for n= 1024.
We see the formation of a shock wave in ∆nP, growing in magnitude, and a corresponding
sharp gradient front in B. This formation indicates fast growth of the sup-norm (35). Indeed,

7 A Python-based code for the simulations is available at github.com/klasmodin/quflow.
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Figure 1. First simulation with n= 1024. Visualisation of the evolution of ∆nP(t) and
B(t). Notice the formation of a shock-wave in ∆nP and a corresponding sharp gradient
of B, which implies rapid growth of the supremum norm of the vorticity vector ω.

in figure 2 the growth is slightly faster than exponential until the resolution allowed by n is
unable to resolve the increasingly steep shock wave front.

5.2. Second simulation: smooth, random data

Here, the initial data are of the form

∆ψ
∣∣
t=0

=
10∑
ℓ=0

ℓ∑
m=−ℓ

aℓ,mYℓ,m, σ
∣∣
t=0

=
10∑
ℓ=0

ℓ∑
m=−ℓ

bℓ,mYℓ,m,

14
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Figure 2. First simulation. The supremum norm of the 3D vorticity ω for different
choices of n. While the exact dynamics is accurately resolved, the growth is somewhat
faster than exponential (the dotted line). However, eventually the curve flattens out when
the model at level n ceases to resolve the sharpness of the shock wave seen in figure 1.
Indeed, this flattening eventually occurs for any n, as all norms are equivalent in finite
dimension and the energy norm is bounded. The time when this flattening begins is thus
an indication that the sharpness of the shock wave is no longer accurately resolved.

where the coefficients aℓ,m and bℓ,m are drawn as independent samples from the standard
Gaussian distribution. This setup represents generic, smooth initial configurations.

Visualisations of ∆nP and B at various output times are given in figure 3 for n= 1024. For
2D Euler on S2, generic initial conditions give rise interacting coherent blob structures [19,
20]. For the axisymmetric 3D Euler on S3 the situation is different. Indeed, all the large scale
structure of ∆nP and B disperse into higher frequency components, as captured in figure 3 at
t= 20. Eventually, depending on n, the dispersion cannot continue further, due to the finite
dimensionality of the model, so the sup-norm of ω flattens out, as seen in figure 4. Initially it
grows exponentially or faster.

6. Outlook

The numerical experiments in section 5 showcase how the extended Zeitlin model developed in
this paper can be used to yield insights and suggestions on qualitative behaviour, by varying the
matrix size n and observing the generic trend. For example, figures 2 and 4 suggest that the L∞-
norm of the vorticity grows exponentially, or slightly faster, in generic solutions. This might
give insights on whether the theoretical bound of double exponential growth is attainable on a
compact domain without boundary. (On a disk, it is attainable [13].) Of course, the numerical
simulations do not bring us closer to proving such a thesis, but they do guide our intuition, and
they could point out which directions are worthwhile to pursue. More detailed and systematic
numerical experiments, for example to find possible blow-up mechanisms, remain to be done.

It is also natural to further investigate the geometric properties of the model. For example,
how does the curvature change as n increases? Is it always more negative than in the two-
dimensional case? Can one see lack of Fredholmness (see [14]) gradually appearing as n goes
to infinity? Are curvature bounds visible in the growth of vorticity, as they should be (since

15
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Figure 3. Second simulation with n= 1024. Visualisation of the evolution of ∆nP(t)
and B(t). Contrary to the 2D Euler equations, there is no inverse energy cascade. In
particular, the large scale structure of ∆nP disperse into small scales.

vorticity is a Jacobi field)? These are deep geometrical questions that shed light on the qualit-
ative dynamics and might be approachable in finite dimensions.

In summary, our general aim is that the extended Zeitlin model presented here should
provide a useful tool to guide our understanding of the 3D Euler equations.

16
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Figure 4. Second simulation. The supremum norm of the 3D vorticity ω for different
choices of n. Initially it grows exponentially, or faster. But eventually, due to the finite
n, it flattens out.
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Appendix. Curvature and exact solutions when n= 2

A.1. Ricci curvature

Here we will compute the sectional curvature and the Ricci curvature for the Zeitlin model on
su(n)× u(n). Already in the simplest possible case where n= 2, this is surprisingly nontrivial.
For Zeitlin’s model on S2, the metric (10) reduces to a multiple of the bi-invariant metric on
su(2), and the sectional curvature ends up being a positive constant (corresponding to the
well-known identification between SU(2) and the round 3-sphere). However, even though our
metric (24) on su(2)× u(2) restricts to multiples of the bi-invariant metric on each factor, the
curvature takes on both signs due to the nontrivial twisting involved in the product structure
given by theorem 1.

Theorem 3. If Z= (X,cI+Y) ∈ su(2)× u(2) for X,Y ∈ su(2) and c ∈ R, then the Ricci
curvature for the metric (24) is

Ric(Z,Z) =
1
4
|Y+ 2X|2 − 11

8
|X|2. (36)

In particular the Ricci curvature takes on both signs.

17
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Proof. Wefirst note that the Ricci curvature along the centre cI of u(n) vanishes as it commutes
with everything else. We therefore can assume c= 0.

On su(2), the Lie bracket in the basis S1,S2,S3 can be identified with the usual cross product
in R3, treating (S1,S2,S3) as an oriented orthonormal basis. Hence we have adXY=−X×Y
for X,Y ∈ su(2). Since S1, S2, and S3 are all eigenvectors of the Hoppe-Yau Laplacian (9) with
eigenvalue−2, we can simply replace∆2 =−2I, which simplifies things greatly. In particular
the metric (24) on the product su(2)× su(2) becomes

⟨(Y1,X1) ,(Y2,X2)⟩= Q(Y1,Y2)+ 2Q(X1,X2) ,

in terms of the bi-invariant metric Q(X1,X2) =− tr(X1X2) on su(2).
We first compute ad⋆. Recalling from (19) that

ad(Y1,X1) (Y3,X3) = (−X1 ×Y3 −Y1 ×X3 +X1 ×X3,−X1 ×X3) , (37)

we find that〈
ad⋆(Y1,X1) (Y2,X2) ,(Y3,X3)

〉
=
〈
(Y2,X2) ,ad(Y1,X1) (Y3,X3)

〉
= ⟨(Y2,X2) ,(−X1 ×Y3 −Y1 ×X3 +X1 ×X3,−X1 ×X3)⟩
= ⟨Y2,−X1 ×Y3 −Y1 ×X3 +X1 ×X3⟩− 2⟨X2,X1 ×X3⟩
= ⟨Y3,X1 ×Y2⟩+ ⟨X3,Y1 ×Y2 −X1 ×Y2 + 2X1 ×X2⟩.

Since this equation is valid for every (Y3,X3), we have

ad⋆(Y1,X1) (Y2,X2) =
(
X1 ×Y2,

1
2 (Y1 ×Y2 −X1 ×Y2)+X1 ×X2

)
. (38)

The terms in the curvature tensor (6) then take the form, with V= (Y2,X2) and
U= (Y1,X1):

adUV= (−X1 ×Y2 −Y1 ×X2 +X1 ×X2,−X1 ×X2)

ad⋆UV+ adUV=
(
X1 ×X2 −Y1 ×X2,

1
2 (Y1 ×Y2 −X1 ×Y2)

)
ad⋆UV+ adUV+ ad⋆VU=

(
X1 ×X2 − 2Y1 ×X2,

1
2 (Y1 ×X2 −X1 ×Y2)−X1 ×X2

)
ad⋆UU=

(
X1 ×Y1,− 1

2X1 ×Y1
)
, ad⋆VV=

(
X2 ×Y2,− 1

2X2 ×Y2
)
.

Plugging in and simplifying, we obtain

⟨R(U,V)V,U⟩= 1
4

∣∣(X1 − 2Y1)×X2

∣∣2 + 1
8

∣∣Y1 ×X2 −X1 ×Y2 − 2X1 ×X2

∣∣2
−⟨(X1 −Y1)×X2,(X1 −Y1)×X2 −X1 ×Y2⟩+ ⟨(Y1 −X1)×Y2,X1 ×X2⟩
− 3

2 ⟨X1 ×Y1,X2 ×Y2⟩. (39)

Now we consider an orthogonal basis for su(2)× su(2), given by

F1 = (S1,0) , F2 = (S2,0) , F3 = (S3,0) , F4 = (0,S1) , F5 = (0,S2) , F6 = (0,S3) .

Note that ⟨Fi,Fj⟩= δij and ⟨Fi+3,Fj+3⟩= 2δij for 1⩽ i, j⩽ 3. The formula (39) simplifies in
the case U= Fi = (Si,0) (with X1 = Si and Y1 = 0) to

⟨R(Fi,V)V,Fi⟩= 1
4 |X1 ×X2|2 + 1

8

∣∣X1 × (Y2 + 2X2)
∣∣2

−⟨X1 ×X2,X1 × (X2 −Y2)⟩− ⟨X1 ×Y2,X1 ×X2⟩

=− 3
4 |Si×X2|2 + 1

8

∣∣Si× (Y2 + 2X2)
∣∣2. (40)
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Meanwhile if U= Fi+3 (with X1 = 0 and Y1 = Si), formula (39) simplifies to

⟨R(Fi+3,V)V,Fi+3⟩= 1
4

∣∣2Y1 ×X2

∣∣2 + 1
8 |Y1 ×X2|2 −⟨Y1 ×X2,Y1 ×X2⟩

= 1
8 |Si×X2|2.

(41)

To get the Ricci curvature, we sum the expressions in (40) and (41) over Si for 1⩽ i⩽ 3,
taking half the sum of (41) because ⟨Fi+3,Fj+3⟩= 2δij for 1⩽ i⩽ 3. Thus we have that

Ric(Z,Z) =− 3
2 |X|

2 + 1
4 |Y+ 2X|2 + 1

8 |X|
2.

Here we used the formula

3∑
i=1

|ei×X|2 = 2|X|2

for the ordinary cross product in three dimensions, and replaced (Y2,X2)with (Y,X) to simplify
notation. This reduces to (36).

As a consequence, we quickly find both signs of sectional curvature in the three-dimensional
model, even in the simplest case. Meanwhile, in the 2D Zeitlin model, small values of n lead to
strictly positive sectional curvature, and only higher values yield the negative curvature which
is fairly common in Diffµ(S2).

In finite dimensions the Ricci curvature makes sense and often leads to much simpler for-
mulas than the full Riemann curvature tensor, since it distils information into fewer dimen-
sions. In infinite dimensions (on the full groups Diffµ(S2) or Diffµ(S3)) the Ricci curvature
does not make sense, except perhaps in an averaged sense (Lukatskii computed a version of
Ricci curvature for Diffµ(T2) for example by taking averages of sectional curvatures in simple
directions [15]). It would be interesting to see, for each n, how much positive versus negative
Ricci curvature we have, e.g. to find the index of the Ricci bilinear form in general. Here, when
n= 2, we have a 7-dimensional configuration space, and we found that the index is 0 (three
positive eigenvalues of the Ricci tensor, three negative, and one zero in the cI direction on
u(2)). Is this also true for general n?

A.2. Exact solutions

Using the formula for ad⋆ in (38), we can write down the Euler-Arnold equation on su(2)×
u(2) and solve it explicitly. Obviously, one should not expect such a solution formula for
arbitrary n, but for n= 2 there are a number of cancellations.

Theorem 4. For n= 2, with the Lie bracket identified with the cross product, the Euler
equation (25) for (P, B) takes the form

Ḃ(t)+
1
ℏ
[P,B] = 0, P ′ (t)− 1

2ℏ
[P,B] = 0, (42)

and all solutions take the form

B(t) = e−tadLB(0) , P(t) = e−2tadLP(0) ,

where L= 1
ℏP(0)+

1
2ℏB(0).
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Proof. The first equation is the same, and the second comes from the fact that on su(2) we
have ∆2 =−2I. Thus, for any solution, we must have that P(t)+ 1

2B(t) is constant. Call this
constant matrix ℏL; then we have

[P(t) ,B(t)] =
[
ℏL− 1

2B(t) ,B(t)
]
= ℏ [L,B(t)]

and similarly [P(t),B(t)] =−2ℏ[L,P(t)]. Equations (42) become

B ′ (t) =−adLB(t) , P ′ (t) = 2adLP(t) ,

and the solution is immediate.

It would be interesting to see if these simple time-dependent solutions have analogues as
exact, nonsteady solutions of the full axisymmetric Euler equations, along the lines of 2D
Rossby-Haurwitz waves [3], which also survives in the Zeitlin model [24].
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