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Abstract— Unlocking the potential of millimeter-wave
(mmWave) phased array systems demands robust nonlinear
transmitter modeling and digital pre-distortion (DPD) techniques.
In this article, we present a novel behavioral modeling approach
and the corresponding linearization solution for beamforming
antenna arrays comprising multiple and mutually interacting
nonlinear power amplifier (PA) units. Our non-recursive
transmitter model simplifies numerical evaluations across
diverse phased array/multiple-input multiple-output (MIMO)
configurations under crosstalk-induced load modulation.
We introduce a novel, nonlinear forward model parameter
identification algorithm tailored for crosstalk-prone array
systems and applicable in arbitrary MIMO transmitter
configurations, enabling precise modeling and characterization
using over-the-air (OTA) observations. Furthermore, we propose
an offline direct learning architecture based DPD method,
harnessing the estimated nonlinear array forward model and
specific beam-sweeping procedure, for linearizing phased arrays
under severe load modulation. Numerical assessments across
various scenarios demonstrate superior performance, while
physical validation on a measurement test bench reinforces
our methodology’s real-world applicability. Overall, this work
paves the way for advanced nonlinear array transmitter
optimization and linearization, vital for next-generation wireless
communication networks.

Index Terms— 5G, 6G, active array transmitters, antenna
crosstalk, digital predistortion, linearization, load modulation,
MIMO, phased array, power amplifier, power efficiency.

I. INTRODUCTION

IMPROVING the sustainability and energy-efficiency is
among the key criteria and targets, when wireless networks

are evolving towards the 6G era [1], [2], [3]. To this
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end, transmitter (TX) power amplifiers (PAs) constitute a
substantial share of the TX power consumption, hence
improving the power-efficiency of the PAs and the overall
transmitter system is of major importance [4], [5]. Another
decisive and related ingredient is to keep the transmit
signal passband quality and unwanted emissions within
their specified limits [6], [7]. Digital pre-distortion (DPD)
technology [8], [9], [10], [11], [12] is among the most
established approaches, especially in cellular base-stations
and other network transmission points, to mitigate the PA
induced nonlinear distortion. Adopting DPD allows pushing
the PA units towards their saturation and hence power-efficient
operating region, while controlling the antenna signal passband
quality and out-of-band and other unwanted emissions. The
primary focus of this article is on DPD-based linearization
of PA systems, with particular emphasis on modern active
antenna array transmitters, while building on our initial work
in [13].

Recent advancements in DPD solutions for beamforming
arrays [14], [15], [16], [17], [18], [19], [20] focus on tackling
the challenge of linearizing a bank of parallel PAs with a single
DPD path. A common approach is to consider the linearization
along the main-beam direction, allowing to establish an
effective single-input single-output (SISO) DPD task, despite
differences across the nonlinear characteristics in the involved
parallel PA samples [15]. Furthermore, two different principles
are commonly considered [14], [19], to provide direct or
indirect observations of the outputs of the PAs for DPD
parameter learning purposes. These include the conventional
conductive observation method, where the output signals of
individual PAs are measured using directional couplers, phase-
aligned in the so-called anti-beamformer, and combined to
create the observation signal [14]. As an alternative, over-
the-air (OTA) observation arrangements can be leveraged
and pursued [21]. As the direct conductive observation calls
for directional couplers at individual PA level, the research
focus is shifting gradually towards the alternative over-the-
air observation methods – particularly in millimeter-wave
networks where all possible extra insertion losses between the
PAs and the antenna units are known to be notably harmful.

Another significant challenge encountered in antenna array
based multiple-input multiple-output (MIMO) transmitters
stems from the physical crosstalk and other similar
interactions among the antennas. From the linearization
and digital predistortion point of view, induced by the
involved load modulation phenomenon, this makes the exact
nonlinear characteristics to be dependent on the applied
instantaneous beamforming weights [4]. As a result of such
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load modulation, multi-antenna systems can suffer from
additional nonlinear distortion due to mutual coupling between
the different signal paths, which has to be also compensated
for [22]. Moreover, within digital array/MIMO transmitter
setups, crosstalk can substantially impair the performance of
conventional single-input basis function based predistortion
methods. Consequently, various advanced multiple-input basis
function approaches and related DPD schemes have been
studied and assessed [23], [24], [25], [26], [27], [28], [29].
However, such multiple-input nonlinear processing models
infer also notable increase in the needed computations, per
linearized sample. Specifically, the involved processing and the
amount of computations increase significantly as a function
of the number of transmitter paths, making them practical
only for systems with a limited number of TX paths. Further
highlighting this complexity challenge, [30] showed that the
power consumption of the linearization system itself can
actually surpass that of the power amplifiers when multiple-
input DPD methods such as the cross-over DPD (CO-DPD)
is adopted. This is particularly so with large waveform
bandwidths and growing number of MIMO TX paths. Thus,
to address the challenge of incorporating the load modulation
effect while controlling the complexity, Hausmair et al.
[31] introduced a novel dual-input DPD linearization scheme
allowing to effectively capture also the crosstalk effects. This
approach enables efficient linearization of the TX with more
manageable processing complexity, however, only ordinary
per-PA conducted observations are considered in [31].

In this article, building on our early-stage work and
results in [13], we address the challenging problems of
nonlinear forward model estimation as well as DPD-based
linearization of active antenna arrays under crosstalk-induced
load modulation via over-the-air observations. We note that
the proposed nonlinear forward model identification method
is applicable in arbitrary active array or MIMO systems,
while the developed DPD approach is specifically tailored
for phased-array transmitters harnessing a dedicated beam-
sweeping procedure. Compared to the existing state-of-the-art
literature, the main contributions and novelty of the article can
be stated as follows:

• We present a comprehensive nonlinear array transmitter
model accounting for load modulation between the PA
units, applicable across diverse phased array and MIMO
transmitter configurations, enhancing the assessment of
nonlinear active arrays compared to existing models.

• We introduce a novel nonlinear forward model iden-
tification method applicable in arbitrary array/MIMO
transmitters operating under crosstalk, in order to char-
acterize the individual PA units and their nonlinearities
using OTA observations, while also accounting for the
potential memory effects.

• We propose different variants of linear minimum mean
squared error (LMMSE) estimators for forward PA model
estimation, along with a method to integrate memory
into the dual-input polynomial model, thereby enhancing
modeling accuracy.

• We introduce a novel strategy for selecting the most
optimal set of OTA observation antennas/receivers to
improve the efficiency and accuracy of the nonlinear array
forward model estimation algorithm.

• We detail and propose a direct learning DPD con-
cept specifically tailored for linearizing millimeter-wave

(mmWave) phased array transmitters, harnessing a
dedicated beam-sweeping procedure in the parameter
estimation stage. The proposed approach utilizes the
parameter identification method to obtain forward-path
nonlinear array model coefficients, followed by a closed-
loop adaptive algorithm for offline learning of the
single-input DPD model for phased array linearization.

• Through extensive simulations, we demonstrate the high
accuracy of our nonlinear forward model estimation
method and the corresponding phased array linearization
performance across various system parameters such as
the signal-to-noise ratio (SNR) and model identification
sample size while considering an 8 × 8 uniform
rectangular array (URA) based phased array TX as
a concrete example. Also the impacts of the OTA
observation antenna selection and the different LMMSE
parameter estimation variants are assessed and shown.

• Finally, as an actual measurement-based proof-of-
concept, we validate our proposed methods and concepts
on a 4 × 1 uniform linear array (ULA) test bench using
a coupling emulation-based measurement setup, showcas-
ing successful linearization on actual RF hardware, while
also addressing the impacts of the nonlinear model order
and memory depth.

The outline for the remaining sections of the article is the
following. First, Section II provides the fundamental system
model for characterizing nonlinear active antenna arrays under
load modulation, in terms of complex dual-input polynomials,
while also stating the OTA observation model. The proposed
nonlinear array forward model identification method is, in turn,
formulated in Section III, covering both the basic memoryless
nonlinearities as well as nonlinearities with memory. The
proposed nonlinear array forward model identification is
then applied to the important practical case of phased array
linearization in Section IV, in the spirit of direct learning DPD.
A wide collection of simulation-based numerical results are
next reported and analyzed in Section V, covering both the
nonlinear array forward model identification performance as
well as the DPD performance in linearizing phased arrays.
Complementing the simulation-based assessments, actual RF
measurement-based experimental results are then reported and
analyzed in Section VI. Finally, Section VII provides the
concluding remarks.

II. SYSTEM MODEL

The considered array transmitter system scenario is outlined
in Fig. 1. Subsequently, following the presentation in our
initial work in [13], all models are formulated using
complex-valued baseband equivalents in the discrete-time
domain. Furthermore, for presentation simplicity, explicit time
dependencies are omitted in the basic presentation that focuses
on memoryless models. Thus, for instance, the signal a1k(n)

is denoted as a1k . Extensions to systems with memory are
considered in Sections III and IV. No further assumptions
are made about the specific array configuration, and thus
the models are valid for all different MIMO/array transmitter
systems, such as phased-arrays, hybrid beamforming arrays,
and digital MIMO arrays.

A. Models for Nonlinear PA Array Under Crosstalk
1) Recursive Expression for PA Output Signals: Utilizing

the dual-input modeling framework from [31], [32], the
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Fig. 1. Illustration of the considered multi-antenna TX system model with K
active transmit antennas organized into Mh × Mv URA architecture, together
with L observing antennas. Each radiating path consists of one PA unit
connected to an antenna element. For visualization simplicity, coupling signals
are depicted only for one PA unit, along with the transmitted signals.

waveform at the power amplifier output in the antenna branch
k can be expressed as

b2k =

(P−1)/2∑
p=0

αkpa(p+1)

1k a∗

1k
p

+

(P−1)/2∑
p=0

βkpa p
1ka∗

1k
pa2k

+

(P−1)/2∑
p=1

γkpa(p+1)

1k a∗

1k
(p−1)a∗

2k, (1)

where αkp, βkp, and γkp represent the complex coefficients
of the power amplifier model, P denotes the maximum
nonlinearity order, while ()∗ signifies complex conjugation.
Referring to the coupling weights as λki , the crosstalk
waveforms can, in turn, be expressed as

a2k =

K∑
i=1,i ̸=k

λki b2i , (2)

where K refers to the total number of PAs and active
TX antennas. We note that in practical implementation, the
weights λki can be acquired, for example, through applicable
S-parameter measurements.

Interestingly, it is noteworthy that the expressions
in (1) and (2) possess a recursive nature. Hence, we next
proceed to derive and provide non-recursive expressions for
the PA outputs, which solely rely on the input waveforms.
By employing such non-recursive expressions, modeling
and characterizing active arrays and their nonlinearities,
for example in different simulation environments, can be
significantly simplified compared to the recursive expressions
in (1) and (2). This constitutes one of the contributions of the
article.

2) Non-Recursive Expression for PA Output Signals:
a) Two-antenna case: First, for the basic two-antenna

case, we can write individual expressions for b21 and b22
utilizing (1) and (2) as

b21 =

(P−1)/2∑
p=0

α1pa(p+1)

11 a∗

11
p

+

(P−1)/2∑
p=0

β1pa p
11a∗

11
pλ12b22

+

(P−1)/2∑
p=1

γ1pa(p+1)

11 a∗

11
(p−1)λ∗

12b∗

22, (3)

b22 =

(P−1)/2∑
p=0

α2pa(p+1)

12 a∗

12
p

+

(P−1)/2∑
p=0

β2pa p
12a∗

12
pλ21b21

+

(P−1)/2∑
p=1

γ2pa(p+1)

12 a∗

12
(p−1)λ∗

21b∗

21. (4)

The expressions in (3) and (4), along with their conjugates
can be next rewritten in an equivalent matrix form as 1 X12 0 Y12

X21 1 Y21 0
0 Y12

∗ 1 X12
∗

Y21
∗ 0 X21

∗ 1


 b21

b22
b21

∗

b22
∗

 =

 d1
d2
d1

∗

d2
∗

 . (5)

This, in turn, can be written in a compact manner as

1XYb = d, (6)

where b ∈ C(4×1) and d ∈ C(4×1) read as b =[
b21 b22 b∗

21 b∗

22
]T and d =

[
d1 d2 d∗

1 d∗

2
]T while 1XY ∈

C(4×4) is as shown along (5). Furthermore,

d1 =

(P−1)/2∑
p=0

α1pa(p+1)

11 a∗

11
p
, (7)

d2 =

(P−1)/2∑
p=0

α2pa(p+1)

12 a∗

12
p
, (8)

X12 =

(P−1)/2∑
p=0

β1pa p
11a∗

11
pλ12b22, (9)

X21 =

(P−1)/2∑
p=0

β2pa p
12a∗

12
pλ21, (10)

Y12 =

(P−1)/2∑
p=1

γ1pa(p+1)

11 a∗

11
(p−1)λ∗

12, (11)

Y21 =

(P−1)/2∑
p=1

γ2pa(p+1)

12 a∗

12
(p−1)λ∗

21. (12)

b) K-antenna case: To derive non-recursive models for
the output waveforms of the power amplifiers in the more
general K -antenna case, we harness the model augmentation
principle [33], conceptually similar to (5), in which b21
and b∗

22 are stacked together. Switching to vector-matrix
notations, we define b ∈ C(2K×1) and d ∈ C(2K×1)

as b =
[
b21 b22 · · · b2K b∗

21 b∗

22 · · · b∗

2K

]T and d =[
d1 d2 · · · dK d∗

1 d∗

2 · · · d∗

K
]T where dk is given by

dk =

(P−1)/2∑
p=0

αkpa(p+1)

1k a∗

1k
p
. (13)

Now, extending the same formulation as in (6) for the case of
K transmit antennas, we define

1XY ∈ C(2K×2K ) as

1XY =

[
X Y
Y∗ X∗

]
, (14)
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with X ∈ C(K×K ), Y ∈ C(K×K ), and

Xk j =


1, if k = j

−λk j

(P−1)/2∑
p=0

βkpa p
1ka∗

1k
p, if k ̸= j

(15)

and

Yk j =


0, if k = j

−λ∗

k j

(P−1)/2∑
p=1

γkpa(p+1)

1k a∗

1k
(p−1), if k ̸= j

(16)

To further illustrate the structure of 1XY, expanding (14)
yields

1XY =



1 X12 . . . X1K 0 Y12 . . . Y1K
X21 1 . . . X2K Y21 0 . . . Y2K
...

...
. . .

...
...

...
. . .

...

X K 1 X K 2 . . . 1 YK 1 YK 2 . . . 0
0 Y ∗

12 . . . Y ∗

1K 1 X∗

12 . . . X∗

1K
Y ∗

21 0 . . . Y ∗

2K X∗

21 1 . . . X∗

2K
...

...
. . .

...
...

...
. . .

...

Y ∗

K 1 Y ∗

K 2 . . . 0 X∗

K 1 X∗

K 2 . . . 1


. (17)

A non-recursive expression for b can then be eventually
obtained and formulated as

b = (1XY)−1d. (18)

We note that since b stacks both b2k and b∗

2k , only the first
K elements are ultimately deployed to obtain the transmitter
output. Furthermore, it is important to note that Xk j and
Yk j are functions of βkp and γkp, respectively. In the special
scenario where load modulation is absent (βkp = 0 and
γkp = 0), Xk j = 0 and Yk j = 0 for all k ̸= j . Consequently,
1XY becomes an identity matrix, and b = d in such simplified
cases. Therefore, when the influence of load modulation
decreases in the system, 1XY tends towards an identity matrix.

B. Model for Over-the-Air Measurements
The presumed model for the over-the-air observation at the

l-th observation RX, with l = 1, 2, . . . , L , can be formulated
as

rl =

K∑
k=1

ηlkb2k + vl (19)

where the additive noise vl is assumed circular complex
Gaussian distributed while ηlk refers to coupling or channel
coefficient from TX element k to observing RX element l. In
scenarios where certain elements of the antenna array itself
are utilized for observation via OTA coupling, as depicted
also later in Fig. 2 within the context of phased array
linearization, prior knowledge of the coupling parameters ηlk
can be presumed. This assumption stems from the fact that the
observation receiver antennas are positioned within the same
array as the transmitter antennas. In practical implementations,
these coefficients can also be acquired via measuring the
array’s S-parameters, akin to the process of obtaining the
coupling coefficients λki . We note that the availability and
accuracy of such prior knowledge can be a potential practical
limitation.

III. PROPOSED NONLINEAR ARRAY FORWARD MODEL
IDENTIFICATION METHOD

Harnessing the previous modeling results and our initial
work in [13], we next pursue computationally feasible forward
model identification methods to characterize an arbitrary
active antenna array under load modulation. Notably, the
initial results in [13] are extended to the important practical
cases of systems with memory, while estimation methods
beyond ordinary least-squares (LS) are also pursued and
described. Additionally, optimized selection of the observation
antenna positions is addressed, and the fundamental processing
complexity in terms of the number of floating point operations
is quantified.

A. Main Algorithm
Assuming sequences of length N and utilizing (1) as the

fundamental basis, we can represent the output of the power
amplifier at the k-th antenna branch in vector form as

b2k = [G(0)(a1k) G(1)(a1k, a2k) G(2)(a1k, a2k)]

× [αT
k βT

k γ T
k ]

T

= G(a1k, a2k)θk (20)

where a1k , a2k , and b2k all ∈ C(N×1) and stack N samples
of the signals a1k , a2k , and b2k , respectively. The vectors
αk ∈ C(Q×1), βk ∈ C(Q×1), γ k ∈ C((Q−1)×1), and θk ∈

C((3Q−1)×1), in turn, stack the parameters of the dual-input
model with Q = (P − 1)/2 + 1. Furthermore, the involved
matrices G(·) accommodate the respective nonlinear basis
functions, such that G(0)(a1k) ∈ C(N×Q), G(1)(a1k, a2k) ∈

C(N×Q), G(2)(a1k, a2k) ∈ C(N×(Q−1)), and G(a1k, a2k) ∈

C(N×(3Q−1)).
Next, by utilizing the model in (20) together with the

measurement model described in (19), we can derive a
complete system of equations encompassing two or more
observation antennas. This can be written in vector-matrix
form as

r = Fθ + v, (21)

in which

F =

η11G(a11, a21) . . . η1K G(a1K , a2K )
...

. . .
...

ηL1G(a11, a21) . . . ηL K G(a1K , a2K )

 (22)

while r = [r1
T . . . rL

T
]
T and v = [v1

T . . . vL
T
]
T with both

belonging to CL N×1). Furthermore, θ = [θT
1 . . . θT

K ]
T

∈

C(K (3Q−1)×1) and F ∈ CL N×(K (3Q−1)).
Ultimately, as the model in (21) is of linear-in-parameters

nature with respect to θ , least-squares based parameter
estimation can be pursued. Denoting the pseudo-inverse of F
with F†, this can be formulated as

θ̂ = F†r. (23)

It’s important to highlight that a collection of measurements
rl , l = 1, 2, . . . , L , is available through the OTA arrangements.
Additionally, samples of the waveforms a1k corresponding to
the power amplifier inputs are inherently known. On the other
hand, the waveform samples a2k remain unobservable directly.
Consequently, the estimation of the PA model coefficients
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Algorithm 1 Pseudocode for the Proposed Iterative Approach
for Identifying Nonlinear Array Forward Model With OTA
Observations. Quantities Associated With (̃) Refer to Local
Variables.

1: Input: a1k , ηlk , λki , rl , P and ND
2: Initialize the local model outputs as b̃2k(0) = 0
3: Set the target modeling accuracy NMSEdes
4: Set the initial modeling accuracy NMSE = ∞ and the

maximum number of allowed iterations IMAX
5: while NMSE > NMSEdes or i < IMAX do
6: i = i + 1
7: Use b̃2k(i − 1) in (2) and compute ã2k(i)
8: Use ã2k(i) to construct F′ in (28), to compute θ̂ ′(i)
9: Use ã2k(i) and θ̂ ′(i) in (25) to compute b̃2k(i) ∀ l

10: Use b̃2k(i) in (19) to compute all r̃l(i)
11: Compute NMSE = max(NMSE(rl , r̃l(i)))
12: end while
13: return Nonlinear array forward model θ̂ ′

= θ̂ ′(i)

necessitates a recursive approach, owing to the recursive nature
and behavior of the expression in (1) already.

Stemming from above, we propose an overall iterative
least-squares-based estimation procedure, stated in the form
of a pseudocode in Algorithm 1. The presentation in
Algorithm 1 covers already the general case of nonlinearities
with memory, addressed explicitly in Section III-B. In the
proposed approach, the local variables or estimates ã2k , θ ,
b̃2k , and r̃l are iteratively calculated, seeking to minimize the
normalized mean-squared error (NMSE) between the physical
observation and its local estimate. Such estimation NMSE,
utilized in Algorithm 1, is stated as

NMSE(rl , r̃l) =

∑N
n=1 |rl(n) − r̃l(n)|2∑N

n=1 |rl(n)|2
. (24)

In general, digital MIMO arrays feature mutually different
waveforms in the distinct PA branches. Hence, the system
matrix F is typically of full rank, ensuring a unique solution
with any reasonable modulated sequences. However, in the
context of phased arrays, addressed in Section IV, the antenna
signals stem from the same baseband signal. Consequently,
additional measures are necessary to address the resultant
rank-deficiency. This is addressed further in Section IV.
Furthermore, improved estimators beyond the LS approach are
described in Section III-D.

B. Extension to Memory Polynomial Model
We next pursue generalization to systems with memory,

through memory polynomials. Notation-wise, we thus bring
back the time dependencies that were omitted in Section II,
to be able to explicitly characterize the memory effects through
sample delays. Thus, for instance, the signal a1k is denoted as
a1k(n). We also introduce memory depth, ND , as a parameter
that controls the extent to which the system exhibits memory.

To this end, while now working under the assumption of
memory and using the expression in (20) as the starting point,
the output of the PA model can now be written in the matrix
equivalent form as

b2k = G′(a1k, a2k)θ
′
k, (25)

where

G′(a1k, a2k) = [G(a1k(n), a2k(n)),

G(a1k(n − 1), a2k(n − 1)), . . . ,

G(a1k(n − ND + 1), a2k(n − ND + 1))], (26)

θ ′
k = [θk(0)T , θk(1)T , . . . , θk(ND − 1)T

]
T . (27)

In the above formulation, a1k(n − k) refers to a1k(n) delayed
by k samples. The MP model allows for versatile memory
modeling, while the memory depth and model complexity is
controlled through ND . We then build the matrix F′ similarly
as in (22), but using G′(a1k, a2k) instead of G(a1k, a2k).
Finally, the complete parameter vector θ ′

= [θ ′T
1 . . . θ ′T

K ]
T

can be estimated with least-squares, as

ˆθ ′
= F′†r, (28)

in which F′† denotes the pseudo-inverse of F′.

C. Optimized Selection of Observation Antenna Positions
To perform forward model identification, a certain number

of antenna elements from a given TX array can be selected
to act as OTA observation receivers. This section introduces
a novel and efficient selection algorithm, aiming at choosing
those antenna elements that provide the most reliable
observations and thus the highest estimation accuracy.

In general, the choice of the observation antennas/receivers
is crucial, especially when dealing with a large number of
antenna elements and/or a system with high mutual coupling.
For instance, if we aim to select L = 2 observation receivers
out of a 16 × 1 ULA, there are

(16
2

)
possible combinations.

It is noteworthy that in such systems, the antenna paths close
to elements 7 or 8 would experience coupling significantly
differently from those at the extreme ends, such as elements
1 or 16. This problem can be further substantiated also for a
more generic URA geometry. To this end, consider a scenario
where we aim to perform the forward PA model identification
of a general phased array system with T antennas, where K
elements are transmitting while L elements are acting as OTA
observation receivers. The total number of possible placements
is given by Ctot =

(T
L

)
, while we denote the corresponding set

of the index combinations by �tot. Now, inspired by above,
the given optimization problem is formulated as a max-min
problem, written as

�sel = arg max
�tot

[
min

t=1,...,K

L∑
n=1

|ηnt |

]
(29)

where �sel refers to the chosen antenna indices. The algorithm
follows the ‘best of the worst’ philosophy, where we determine
the placement (observation antenna index combination) by
selecting the maximum of the smallest summed coupling from
K transmitting antenna elements to a given combination of
L observing elements. In Section V, along with the other
numerical results, we evaluate and highlight the efficacy of
this approach using an 8 × 8 patch antenna array model, with
S-parameters obtained through realistic EM-simulations.

D. Improved Model Identification Through LMMSE
Estimation

The least-squares solutions described in (23) and (28) can be
improved and generalized to more robust LMMSE estimators.
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Depending on the amount of the available side-information,
different LMMSE estimator variants are described next. For
presentation simplicity, we focus here on the basic case of
memoryless nonlinearities while extensions to nonlinearities
with memory are straighforward.

1) Full LMMSE Solution: Consider the observation model
described in (21). The generalized LMMSE estimator solution
for such an observation model can be written as

θ̂ = (FH 6−1
v F + 6−1

θ )
−1

FH 6v
−1r, (30)

where 6v denotes the covariance matrix of noise, and 6θ

denotes the covariance matrix of PA coefficients. This serves as
the full-performance reference or benchmark estimator, while
more practical LMMSE variants are described below.

2) LMMSE I (1st Approximation of Full LMMSE):
Assuming first that the noise variables are uncorrelated and of
equal variance, i.e., 6v = σ 2

v I, where σ 2
v is a scalar quantity

denoting the variance of noise and I is an identity matrix of
size L N × L N , (30) can be re-expressed as

θ̂ = (FH F + σ 2
v 6−1

θ )
−1

FH r. (31)

For practical purposes, 6θ can then be further assumed or
approximated to be a diagonal matrix containing the powers
of α, β, and γ across the diagonal.

3) LMMSE II (2nd Approximation of Full LMMSE): Finally,
assuming that the PA model coefficients are all of equal
variance, i.e., 6θ = σ 2

θ I, where σ 2
θ is a scalar denoting the

variance of PA model coefficients and I is an identity matrix of
size K (3Q−1)×K (3Q−1), (31) can be further approximated
as

θ̂ = (FH F +
σ 2

v

σ 2
θ

I)
−1

FH r. (32)

This represents or requires the least amount of side-
information in the parameter estimation process, in terms of
the second-order statistics of the parameters. The accuracy of
the different variants are assessed along the numerical results
in Section V.

E. Forward Model Estimation Complexity
In this section, we provide a complexity analysis of

Algorithm 1, with particular focus on Steps 7–10 where the
actual computations take place. We consider the number of
floating point operations (FLOPs) as the main complexity met-
ric, while build directly on the notations that are defined and
explained in Sections II and III earlier. Furthermore, in order
to derive explicit complexity expressions, a complex multi-
plication is assumed to cost 6 FLOPs (4 real multiplications
and 2 additions) – similar to many other published works [15]
seeking to quantify complexity. We also harness the facts that
the nonlinear basis functions can be calculated recursively and
that delaying basis function samples do not infer any actual
FLOPs but can be obtained by simply delaying the samples.
Furthermore, the final part of Step 8 involves least-squares
estimation, for which the FLOPs count is as described in [34].

Now, assuming the algorithm runs for I est
PA iterations, the

FLOPs count for Algorithm 1 can be derived and expressed
as

N model
FLOPs = I est

PA

(
N

(
2K · L · ND(3P + 1)2

+ 3K · L · ND(3P + 1) + 8K + 2L(4K − 1)

Fig. 2. Conceptual visualization of a uniform linear array with phased-array
beamforming where two antenna elements are harnessed for OTA observation
purposes in order to identify the involved nonlinearities of the active transmit
paths. ULA is considered here only for presentation simplicity while the
proposed estimation and linearization concepts are applicable for arbitrary
array geometries. Modified and adapted from [13].

+ 2ND(6P + 1) + 6P + 14
)
−

K
3

(3P + 1)3
)
(33)

As a concrete numerical example, assuming P = 9,
ND = 5, L = 2, K = 4, I est

PA = 10, and N = 10 000,
similar to the actual RF measurements in Section VI, the
resulting model estimation complexity over the entire learning
period is approximately 6.68 GFLOPs. Such computing counts
are generally speaking feasible for modern digital computing
platforms, though the more specific further conclusions are
subject to the available digital hardware.

IV. APPLICATION TO PHASED ARRAY LINEARIZATION

In the subsequent analysis, we direct our attention
specifically to millimeter-wave phased arrays and linearizing
them using a single DPD path. This involves adopting the
proposed forward model estimation, as one element of the
overall proposed linearization scheme. Furthermore, we’ll
assume that some of the antenna elements in the overall
antenna array can be deployed for facilitating the over-the-air
observations, as shown in Fig. 2.

To this end, for notational clarity, the PA input signals of a
beamforming mmWave array with K antenna elements read

a1k(n) = wka(n), k = 1, 2, . . . , K , (34)

where wk’s are the deployed beamforming coefficients, and
a(n) denotes the input signal. In what follows, we describe
the complete linearization solution harnessing a phased-
array beam-sweeping procedure for nonlinear forward model
identification, followed by per-beam DPD learning. We build
on the initial presentation in [13] while extending to the
important case of nonlinearities with memory. Also the
linearization processing complexity is quantified through
FLOPs.

A. Phased Array Forward Model Identification via
Beam-Sweeping

With the PA input signals defined as in (34), the observation
model in (21) is not uniquely identifiable due to the rank-
deficiency of the involved F. To allow for sufficient rank
for model identifiability, we harness a dedicated beamforming
procedure over time covering Mbeam ≥ K discrete angles and
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mutually independent waveforms. The resulting observations
and the corresponding regressor matrices can be then stacked
to form aggregated vectors and matrices, respectively, with
sufficient rank. The corresponding total sample size is denoted
as Ntot. The nonlinear forward model identification can then
be executed and pursed, via the proposed Algorithm 1.

In practice, such beamformed observations can be acquired
during any existing or standardized procedure where the
base-station is sweeping its beams over time. One concrete
example in 5G context is the transmission of the downlink
synchronization signal burst (SSB) [5]. An alternative
opportunity is to collect such beamformed observations
gradually over time when adjusting the beams between
different time slots or subframes for transmitting the actual
user data.

B. Forward-Model Empowered Offline Direct Learning for
DPD Weights

The overall proposed scheme to determine the DPD
weights, empowered by the nonlinear array forward model,
is summarized and illustrated in Fig. 3. To this end, we first
identify the non-linear model in the forward path, as outlined
earlier, utilizing Algorithm 1 while considering the memory
polynomial extension described in Section III-B. Then, for
the given beam index m, we proceed to learn the actual DPD
weights harnessing offline direct learning. This is presented
in exact terms next. In general, a single-input DPD is known
to allow for efficient linearization of phased arrays, despite
antenna coupling and PA load modulation [18]. Therefore, for
the main-path DPD processing system, we adopt a single-input
memory polynomial model in this work. To this end, we let
a(n) to denote the input waveform of the DPD system, while
the resulting predistorted waveform can then be expressed as

ā(n) =

(MD−1)∑
s=0

(Pdpd−1)/2∑
p=0

βm
dpd,p,sa(p+1)(n − s)a∗ p

(n − s).

(35)

In above, βm
dpd,p,s reflect the DPD weights, while the subscripts

s and p correspond to memory index and nonlinearity order
index, respectively. Furthermore, MD and Pdpd denote the
memory depth and maximum nonlinearity order of the DPD
model, respectively.

In the DPD learning path, the coefficients of the DPD
system are calculated and adapted in order to minimize the
prevailing error between the linear input a(n) and the locally
generated copy of the beamformed far-end signal. For the
beam index m, this far-end replica can be expressed as

ȳm(n) = wH
m b̄2,m(n), (36)

where b̄2,m(n) = [b̄21,m(n) b̄22,m(n) . . . b̄2K ,m(n)]T while
wH

m = [w∗

1,m w∗

2,m . . . w∗

K ,m] denotes the local replica of the
LOS channel towards beam direction m. As illustrated also in
Fig. 3, the forward models of the involved PA units, identified
using the methods described in Section III, are utilized to
create the signals b̄2k,m(n). The corresponding error signal,
in turn, reads

em(n) =
ȳm(n)

Gm
− a(n), (37)

Fig. 3. Block diagram depicting the various processing elements or stages
involved in the proposed offline direct learning architecture for phased
array linearization. The nonlinear forward model with memory is separately
estimated, using Algorithm 1, and is utilized in the learning path to create a
local replica of the beamformed signal at intended user direction.

where Gm represents the effective complex linear gain
prevailing in the beamformed far-end signal. Following the LS
estimation principle, this can be directly estimated through

Gm =
āH ȳm

āH ā
, (38)

where ā = [ā(n) ā(n + 1) . . . ā(n + NG − 1)]T , ȳm =

[ȳm(n) ȳm(n + 1) . . . ȳm(n + NG − 1)]T , and NG refers to
the sample size in the linear gain estimation process.

The error measure in (37) encapsulates information related
to the prevailing nonlinear distortion in the beamformed far-
end signal which can be iteratively reduced and minimized
using least mean squares (LMS) learning. In this work, we har-
ness block-based learning, combined with orthogonalization
for faster and more stable convergence. Defining first the DPD
coefficient vector as

βm
dpd = [βm

dpd,0,0 βm
dpd,1,0 . . . βm

dpd,(Pdpd−1)/2,MD−1]
T , (39)

the corresponding iterative parameter update reads

βm
dpd

∗
(i + 1) = βm

dpd
∗
(i) − µR−1AT (i)e∗

m(i), (40)

where R = E[a(n)aH (n)] with a(n) stacking the prevailing
instantaneous basis function samples as

a(n) = [a(n) a2(n)a∗(n) . . .

a(Pdpd−1)/2+1(n−MD +1)a∗(Pdpd−1)/2(n−MD +1)]T .

(41)

Furthermore, the regression matrix A(i) collects Ndpd
consecutive instances of a(n), expressed as

A(i) =
[
a(ni ) a(ni + 1) · · · a(ni + Ndpd − 1)

]T
, (42)

with ni referring to the time index of the first sample in
processing iteration i , while the error vector for beam index m
is given as em(i)=[em(ni ) em(ni +1) . . . em(ni + Ndpd −1)]T .

C. DPD Processing Complexity
Following a similar methodology and assumptions used for

analyzing the complexity of the forward model estimation,
we next compute the FLOPs for various stages of the
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DPD system shown in Fig. 3. For notational convenience,
we introduce the total number of DPD basis functions, NBF,
expressed as

NBF = MD

(
Pdpd − 1

2
+ 1

)
. (43)

We then separately analyze the complexity of the DPD main
path and the DPD learning path.

1) DPD Main Path: For the DPD forward path or the
main path, there are primarily two parts: (1) the generation of
the DPD basis functions, and (2) the multiplication of these
generated basis functions with the existing DPD coefficients.

Adding together the FLOP counts for these two underlying
parts, leads to the following expression for the total FLOPs
per linearized sample of the DPD main path, given as

N dpd,main
FLOPs = Pdpd + 8NBF. (44)

2) DPD Learning: The DPD learning path entails the
functionalities shown in the lower part of Fig. 3. The learning
algorithm makes IDPD iterations, processing Ndpd samples
per iteration. The first step, the DPD block, incurs the same
FLOPs per sample per iteration as the DPD block in the main
path. In the beamforming step (Phase shifters), there are K
complex multiplications, resulting in 6K FLOPs per sample
per iteration. Running the estimated nonlinear forward model
entails basis function generation, followed by multiplication of
the basis functions with the PA coefficients. The complexity of
these steps was already established in the FLOP calculations
for Algorithm 1. We assume recursive calculation of the
forward model output with I run

PA iterations, following (1)-(2).
In the anti-beamformer step, there are K complex

multiplications along with K − 1 complex additions. The
FLOPs for gain estimation and removal are straightforward,
the former including one inner product and one squared norm
calculation, and the latter entailing one complex multiplication
per sample. Finally, the total FLOP count for the block-
LMS based adaptive algorithm follows the description in [18].
Overall, the total FLOPs for the entire DPD learning path,
over Ndpd samples and IDPD learning iterations, can then be
expressed as

N dpd,learn
FLOPs = IDPD

(
I run
PA · Ndpd (8K +2ND(6P+1)+3P+2)

+6K · Ndpd+8N 2
BF+2Ndpd(4K − 1)

+8Ndpd(NBF+6)+Ndpd(8NBF+Pdpd)

+3(4NG +2Ndpd − 1)
)
+4Ndpd (45)

Considering similar parametrization to our RF measure-
ments in Section VI, i.e., P = 9, ND = 5, K = 4,
Pdpd = 9, MD = 5, Ndpd = NG = 10, 000, and IDPD = 10,
I run
PA = 10 the resulting complexity numbers are 209 FLOPs

per sample in the DPD main path and 664 MFLOPs for the
DPD learning over the whole learning period. Such computing
effort can be concluded very reasonable for any contemporary
digital processing system.

V. NUMERICAL SIMULATION RESULTS

A. Evaluation Tools and Assumptions
To evaluate the performance of the proposed methods,

we leverage the dataset of measured PA coefficients available
in [18], acquired from Anokiwave PAs operating at 28 GHz,

covering both memoryless models as well as models with
memory. These measured models correspond to the α

coefficients of the more evolved dual-input model in (1), or its
variant with memory described in (25)–(27). Subsequently, the
synthesis of the remaining dual-input model coefficients, β’s
and γ ’s, is achieved by introducing controlled perturbations
to α’s. More specifically, these coefficients are set at 40 %
in strength compared to α’s, emulating a severe but realistic
load modulation scenario at mmWaves. For presentation
simplicity, we consider memoryless models and estimators
in this simulations-based section, while the memory-based
models and DPD solutions are then deployed in the actual RF
measurements-based experiments in Section VI. Furthermore,
for notational clarity, we denote the order of the measurement
inspired models from [18] by Ptrue, utilized to generate PA
output signals in our simulations, while P denotes the order
of the estimated model.

For transmit waveform generation, we adopt a 5G NR
standard-compatible OFDM waveform featuring a 200 MHz
channel bandwidth (BW) and 60 kHz sub-carrier spacing
(SCS), corresponding to basic FFT size of NFFT = 4096 [6].
Furthermore, an oversampling factor (OSF) of Nos = 4 is
utilized to facilitate both PA model identification and DPD
processing, alongside the parameter learning. Additionally,
we apply additional windowing on top of the baseline OFDM
processing to enhance the band-limitation of the ideal digital
waveform.

Furthermore, the considered array transmitter setup entails
a two-dimensional phased array comprising a total of T =

64 antennas with an 8 × 8 URA geometry and half the
wavelength spacing in both horizontal and vertical directions.
Among these, K = 61 antennas are allocated for transmission,
while L = 3 antennas are designated for OTA observation
purposes. During forward model identification, we consider
Mbeam = T = 64 beams, and assess the performance with
Nsym = {1, 8, 64} OFDM symbols, as a whole, split equally
in time to different considered beams. For generality, the
assumed angular range in the beam-sweeping procedure is
from −60◦ to −60◦, in both horizontal and vertical directions,
with uniform angular spacing, and two-dimensional matched
filter approach is considered for calculating the beamforming
weights. While the value of Nsym = 64 implies one full
OFDM symbol per beam, we deliberately consider also lower
values of Nsym = 1, 8, to assess the forward model estimation
performance with relatively low sample sizes. To this end,
the number of samples in one OFDM symbol period, Nsamp,
reads, in general, Nsamp = NFFT × Nos, and thus the total
number of samples, Ntot, introduced in Section IV reads
Ntot = NFFT × Nos × Nsym.

Finally, for coupling modeling in the simulator environment,
a realistic patch antenna array was electromagnetically
simulated to obtain the accurate coupling model of the
considered URA, as analytical coupling models are often
inaccurate. Specifically, an 8×8 rectangular linearly polarized
patch array was simulated in CST Studio Suite to obtain the
S-parameter matrix of the array and thus the coupling matrix
between the elements. The element spacing was half of the
free-space wavelength, and the patches were simulated on a
realistic Rogers RT/duroid 5880 substrate with coaxial feeds
to the patches [35].

We next proceed to presenting and analyzing the actual
numerical results. For clarity, and importantly, it is highlighted
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Fig. 4. PA array forward model identification performance with
P = Ptrue = 9 and L = 3 for varying observation SNR values and for
three different signal lengths in the beam-sweeping procedure in terms of the
total number of OFDM symbols, Nsym.

that since the prior-art literature does not contain any existing
reference methods that would allow for obtaining forward
models for phased arrays under load modulation while
observing only through OTA coupling, we focus on assessing
the performance of the proposed methods only without explicit
further comparisons. The same applies to the actual DPD-
based linearization experiments and the corresponding results.

B. Forward Model Identification Performance
1) Performance of the Proposed Algorithm 1 With Least-

Squares: Fig. 4 shows the NMSE performance of the proposed
PA model identification algorithm (Algorithm 1) for different
observation SNR levels, while considering Ptrue = P = 9.
Algorithm 1 is here executed for 20 iterations, even though
convergence is typically established in fewer iterations already.
Furthermore, in these results, the L = 3 observation antenna
indices are chosen by the proposed selection algorithm in (29).
The NMSEs are calculated by averaging over 100 independent
Monte Carlo realizations, while also averaging across all
the K = 61 PAs in the considered array. We can observe
from Fig. 4, that we can achieve a better NMSE at a
certain SNR by increasing the number of samples of the
input training data. Furthermore, increased observation SNR
improves the estimation accuracy – however, and importantly,
model estimation accuracies in the order of –30 to –40 dB
can be reached even when operating at fairly low SNRs in
the order of 10 dB. This is an important finding since OTA
observations through physical coupling are naturally subject
to fairly low or medium SNRs.

Additionally, we study and show the NMSE performance for
different PA model orders, P , for fixed Ptrue = 11, while also
considering a small sample size with Nsym = 1. Otherwise,
the assumptions are the same as above. The results shown in
Fig. 5 depict the saturating behavior of the modeling accuracy,
especially for low model orders P , despite the increasing
SNR values. This is understandable since the underlying true
nonlinearity is of higher order. On the other hand, if pursuing
forward model accuracies in the order of –30 to −35 dB, the
results in Fig. 5 also show that such accuracies can be achieved
also with relatively low model orders, say P = 7, in our setup,
assuming SNR values in the range of 15 to 20 dB.

Fig. 5. PA array forward model identification performance with Nsym = 1,
L = 3 and Ptrue = 11 for varying observation SNR values and for five
different PA model orders P .

TABLE I
PERFORMANCE COMPARISON OF VARIOUS ESTIMATION ALGORITHMS

IN TERMS OF FORWARD MODEL NMSE

2) Performance Comparison of Proposed LMMSE
Approaches Against Least-Squares: We next assess the
performance of the more elaborate LMMSE-based parameter
estimators, proposed in Section III-D, while benchmarking
against the baseline least-squares estimation. For presentation
simplicity, we consider again the small sample-size case of
Nsym = 1 and Ptrue = P = 7, with the corresponding results
being shown in Table I. We can observe that the different
LMMSE variants exhibit notably superior performance
compared to the least-squares approach, particularly at low
and medium SNR levels – that are of importance when
observing through OTA coupling. As a practical concrete
example, at an SNR of 15 dB, the difference in the forward
modeling accuracy between least-squares and full LMMSE is
around 5 dB. In general, we can observe that a given forward
modeling accuracy can be obtained at a lower observation
SNR when deploying LMMSE estimators, compared to
least-squares.

3) Highlighting the Impact of Optimal Observation Antenna
Positions: While all the previous results are already building
on the proposed observation antenna selection approach
in (29), we next concretely showcase and highlight its impact
and benefits compared to manually selecting the antenna
indices. To this end, Figs. 6 and 7 present visualizations of
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Fig. 6. A colored heatmap visualizing the S-parameters in the considered
URA for an example manual selection of observation antennas/receivers as
�man = {1, 28, 63}.

the S-parameters for a specific antenna element within the
considered 8 × 8 URA, here numbered from 1 to 64. These
figures offer a comparison between two scenarios: one where
observation antennas are manually selected and another where
they are chosen by the algorithm outlined in Section III,
Equation (29). Notably, the algorithmically selected set of
L = 3 observation antennas out of T = 64 demonstrates
enhanced coverage over all antenna elements of the URA.
These improvements are further corroborated by the results
in Fig. 8, which showcases the NMSE performance for
forward PA model identification across various placements of
OTA observation antennas, over different estimation iterations
in Algorithm 1, in the example case of Nsym = 1 and
Ptrue = P = 5. Furthermore, for visualization purposes,
we deliberately set the SNR to a high value of 40 dB.
Importantly, these results clearly confirm the advantage of
using the observation antenna set selected by the algorithm as
to reach desired NMSE level in the least number of iterations.

C. DPD Linearization Performance
We next proceed to evaluate the actual linearization

performance of the proposed DPD approach, harnessing the
overall proposed offline direct learning approach shown in

Fig. 7. A colored heatmap visualizing the S-parameters in the considered
URA for the set of observation antennas/receivers, �sel = {20, 32, 59},
selected by the proposed algorithm in (29).

Fig. 3. As a concrete example case study, we consider
Nsym = 1 and Ptrue = P = 5 in the forward model
estimation phase while the actual DPD stage considers a
DPD model of order Pdpd = 9, maintaining consistency with
the previously described array transmitter scenario. Within
the closed-loop learning system with gradient-descent DPD
learning algorithm, we consider a step-size of µ = 0.0003.
Furthermore, to study the impact of the forward model
accuracy on the actual linearization performance, we allow
varying observation SNRs such that different forward model
accuracies can be assessed as part of the overall DPD system.

Firstly, Fig. 9 demonstrates the linearization effectiveness
of the proposed DPD system by comparing the normalized
power spectral densities (PSDs) of the received signal at
the far-end user, both with and without DPD. This example
illustration is calculated for an example transmit beam pointing
towards 0◦ (horizontal angle), –30◦ (vertical angle), while
also allowing for and illustrating the impacts of different
forward model identification NMSEs. Table II then gathers
and illustrates the actual EVM and the adjacent channel power
ratio (ACPR) figures of merit of the DPD system across
various levels of forward model identification NMSEs, here
being also averaged across all different beamforming angles.
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Fig. 8. Forward model NMSE performance over the Algorithm 1
iteration counts, comparing different possible placements for OTA observation
antennas. Here, �sel is as obtained through the algorithm in (29) while �man
refers to the set of observation receivers selected manually as shown in the
legend.

We can clearly observe the good linearization performance
already at forward modeling NMSEs of –35 dB to –40 dB,
while further enhanced linearity can be achieved when the
forward model accuracy is higher.

VI. EXPERIMENTAL RF MEASUREMENT RESULTS

A. Measurement Setup
Due to the lack of actual array hardware with embedded

OTA observation capabilities, measurements were performed
using the RF WebLab platform [36], which is an online system
for power amplifier testing with active load pull capabilities.
The system includes two Vector Signal Transceivers (VST)
NI PXIe-5646R and NI PXIe-5645R operating at 2.14 GHz,
one of which is limited to a bandwidth of 100 MHz.
The transmitters of the VSTs create the input signal and
the load pull signal at the output of the device under
test (DUT). Additional components include custom driver
amplifiers protected by isolators and directional couplers at
input and output to measure the required calibrated power
waves using the receivers of the VSTs. The system is
calibrated using short, open, and load standards as well as
a power meter at reference planes at the DUT’s connectors.
The device under test was a 6W GaN power amplifier
(CGH40006TB) on a testing and evaluation board.

Furthermore, employing the coupling emulation technique
presented in [37], we are iteratively able to introduce
controlled coupling corresponding to any given PA array
configuration. For these experimental validations, we focus
on a simple 6 × 1 ULA as an elementary proof-of-concept,
with K = 4 active antennas, L = 2 observing antennas, and
half the wavelength spacing between the neighboring elements.
For simplicity, the antennas #1 and #6 are used for observing
while the others for transmitting and radiating. Despite the
fairly simple or straightforward ULA arrangements, this setup
captures and supports the fundamentals of the work and
the proposed methods – and the overall underlying problem
setting: linearizing an effective array of PAs subject to load
modulation, while observing through OTA coupling.

Finally, as the digital baseband waveform, we utilize a
5G NR standard-compliant OFDM waveform corresponding

Fig. 9. DPD linearization example showing the beamformed spectra at
far-end user without and with DPD, for various PA model estimation NMSEs.
Ptrue = P = 5 and Pdpd = 9.

TABLE II
LINEARIZATION PERFORMANCE OF THE PROPOSED DPD APPROACH FOR

DIFFERENT NMSES IN PA ARRAY FORWARD MODEL ESTIMATION,
PTRUE = P = 5 AND PDPD = 9

Fig. 10. AM-AM plots depicting the fitting of the response of the estimated
forward model to the measured response for a single example PA entity of
the considered array arrangement under load modulation. Here, P = 9 and
ND = 5.

to 30 MHz channel bandwidth and 30 kHz sub-carrier
spacing (natural FFT size of 1024) [6], alongside an
oversampling factor of 8, Nsym = 10, and time-domain
windowing for sidelobe suppression. The reduced channel
bandwidth, compared to the previous simulations-based
results, is primarily due to the bandwidth limitations of the
available hardware and test bench.
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B. Measured Forward Modeling Accuracy
In this subsection, we first assess the forward modeling

accuracy of the Algorithm 1 presented in Section III
through the actual measurements. Different from the previous
simulations, here the actual memory-based models are utilized
– in general for both forward modeling as well as for actual
DPD processing. To this end, Fig. 10 first shows and illustrates
the AM-AM plot of one of the PAs in the considered ULA
arrangement, comparing the response of the measurement
as well as the estimated forward model when considering
the forward model order of P = 9 and memory depth of
ND = 5. Furthermore, Fig. 11 shows and quantifies the
measured NMSE performance of forward model estimation
while varying the considered polynomial order (P) and
memory depth (ND). We can observe that for this experimental
measurement setup, the NMSE converges after P = 5 and
ND = 4. Furthermore, we can observe that forward modeling
accuracies up to −40 . . . − 41 dB can be achieved in these
measurements, via the proposed methods. These identified
forward model coefficients will be next utilized, as part of the
overall proposed DPD framework, for linearization purposes.

C. Simulated DPD Performance With Measured Forward
Model

We proceed next towards assessing the linearization
performance of the proposed DPD approach, with the
measured forward model. Specifically, we utilize a forward
model of order P = 9 and of memory depth ND = 5 while
the DPD model is of order Pdpd = 13, consistent with the
array transmitter scenario described earlier. Furthermore, the
memory depth for the DPD model is MD = 3. A back-
off of −3 dB is applied with respect to the input signal
to facilitate the linearization process. Within the closed-loop
system, we set the step-size of the gradient-descent learning
algorithm to µ = 0.0002.

Initially, before the final assessment of truly measured
DPD performance, we demonstrate the effectiveness of the
proposed DPD system in linearizing the measured PA model
in the simulator environment. That is, the measured forward
model is ported into the previous simulation environment, for
initial linearization testing and assessments. To this end, the
normalized PSDs, both with and without DPD, are depicted
and shown in Fig. 12, calculated at the far-end user while
considering an example beamforming angle of –30◦. We can
observe that the linearization of the measured PA array
forward model works well, with the ACPR tending towards –
50 dB range. Corresponding quantitative results, covering also
different beamforming angles, are available and shown in
Table III.

D. Measured DPD Performance
Finally, using the same setup consisting of a forward model

of order P = 9 and memory depth of ND = 5, and a DPD
model of order Pdpd = 13 and memory depth of MD =

3, we test and demonstrate the experimental linearization
performance of the proposed DPD scheme. To this end,
Fig. 13 depicts the measured linearization performance by
showing and comparing the normalized PSDs of the received
signal at the far-end user, both with and without DPD, for
an example beamforming angle of –30◦. The corresponding

Fig. 11. Filled 2-D contour plot showing the measured forward model
estimation performance for the considered experimental PA array arrangement
under load modulation, in terms of NMSE, for varying polynomial order and
memory depth.

Fig. 12. PSD plot depicting the linearization performance of the proposed
DPD approach in linearizing the measured PA model array under load
modulation in the simulator environment.

quantitative results, in terms of EVM and ACPR, are gathered
and shown along Table III, covering also different alternative
beamforming angles. We can observe that the measured
linearization performance is systematically in the order of
−47 dB to −50 dB, independent of the beamforming angle,
evidencing high-quality linearization despite the strong load
modulation effects in the experimental system.

Finally, we assess the impact of the considered backoff
level utilized in DPD learning and linearization experiments.
The obtained results with backoff ranging from 3 dB down to
0.5 dB are shown in Table IV, highlighting that ACPR gains in
the order of 10 dB can still be obtained even if a small backoff
value of 1 dB is utilized. However, to reach ACPRs in the order
of –45 dB, appropriate backoff region can be observed to be
1.5 dB and above. One of the future research topics thus covers
developing DPD learning and processing models that allow for
reduced backoff values, further improving the system power
efficiency.
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TABLE III
PERFORMANCE OF THE PROPOSED DPD METHODS IN LINEARIZING A 4 × 1 PA ARRAY AT 3 DB BACKOFF FOR DIFFERENT BEAMFORMING ANGLES.

COMPARING LINEARIZATION OF A MEASURED ARRAY MODEL IN A SIMULATION ENVIRONMENT AND ACTUAL
MEASURED LINEARIZATION RESULTS

Fig. 13. PSD plot depicting the linearization performance of the proposed
DPD approach in linearizing PA array under load modulation in the actual
experimental environment.

E. Discussion and Potential Practical Limitations

Like already noted, one potential practical limitation in
the proposed methods is the availability and accuracy of
the assumed S-parameter characteristics for the involved
active array. Additionally, several factors beyond the potential
modeling and parameter learning limitations may contribute
to practical limitations, including the following aspects.

1) Dynamic Range: The linearization performance
observed through the measured model in a simulator
environment may not translate completely to the actual
measured linearization capability due to differences in
dynamic range. The model may operate under some
assumptions or constraints that do not accurately define the
operating conditions of a real-world PA system. This can lead
to differences in performance, especially in situations where
the PA operates in or near its saturation region.

2) Environmental Factors: Different physical environment
related factors such as temperature variations [38], power
supply variations and load imbalances can affect the behavior
of PA systems over time. These factors may not be adequately
considered in the model, leading to a potential performance
reduction. However, these can be remedied through updating
the nonlinear forward model sufficiently often, while then also
adapting the actual DPD weights correspondingly.

3) Implementation Challenges: Effective use of DPD
algorithms through actual real-time digital hardware introduces
additional challenges that cannot be fully captured in the
model. This includes factors such as quantization effects, finite

TABLE IV
MEASURED LINEARIZATION PERFORMANCE OF THE PROPOSED

DPD SOLUTION AT DIFFERENT BACK-OFF LEVELS

precision arithmetic, processing delay, and synchronization,
which can all affect the efficiency of linearization methods
when implemented on real hardware. In our case, however,
the DPD algorithms are computed and executed in floating
point arithmetic, hence only the possible residual errors in
time and/or frequency synchronization between the transmit
path and observation receiver paths may have contributed to
the measured linearization performance.

VII. CONCLUSION

In this article, we have addressed the challenging problems
of forward modeling and DPD-based linearization of nonlinear
array transmitter systems under load modulation while
observing only in over-the-air manner through physical
coupling. First, a novel forward modeling and parameter
identification approach was proposed, building on dual-input
behavioral models and iterative least-squares-based estimation
processing while also accommodating memory in the system.
Different variants of more elaborate LMMSE estimators were
also described, beyond ordinary least-squares, while also an
efficient max-min optimized problem was formulated for
obtaining optimum observation antenna locations within the
overall considered array. All the developed nonlinear forward
modeling and model identification methods are applicable in
arbitrary array transmitters, independent of the applied MIMO
or beamforming scheme. Secondly, DPD-based linearization
of phased arrays under load modulation was pursued,
while operating under OTA observations only. A direct-
learning based architecture utilizing the dual-input nonlinear
forward model, estimated using the proposed methods, was
described, together with computationally efficient gradient-
descent parameter learning methods for obtaining the DPD
coefficients. The DPD method is specifically tailored for
and thus primarily applicable in phased-array transmitters,
harnessing a specific beam-sweeping procedure. Through
extensive simulations as well as physical validation on an
RF measurement test-bench, the capabilities and performance
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advantages of the various proposed methods were assessed
and demonstrated, shown to facilitate highly accurate forward
modeling as well as DPD-based linearization across various
scenarios.

Our future work will focus on extending the actual DPD-
based linearization solutions to digital MIMO transmitters
while also improving the current methods to operate efficiently
under lower input backoff values. Additionally, as the current
proposed methods rely on S-parameter measurements for
the array coupling coefficients – which can be seen as one
practical limitation – our future work will also consider
developing machine learning aided linearization solutions
agnostic to the knowledge of the underlying coupling
phenomenon.
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