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Products of commutators in matrix rings

Matej Brešar, Eusebio Gardella, and Hannes Thiel

Abstract. Let R be a ring and let n ≥ 2. We discuss the question of whether every element in the matrix
ring Mn(R) is a product of (additive) commutators [x , y] = x y − yx, for x , y ∈ Mn(R). An example
showing that this does not always hold, even when R is commutative, is provided. If, however, R has
Bass stable rank one, then under various additional conditions every element in Mn(R) is a product of
three commutators. Further, if R is a division ring with infinite center, then every element in Mn(R)
is a product of two commutators. If R is a field and a ∈ Mn(R), then every element in Mn(R) is a
sum of elements of the form [a, x][a, y] with x , y ∈ Mn(R) if and only if the degree of the minimal
polynomial of a is greater than 2.

1 Introduction

By the commutator of elements a and b in a ring we will always mean the additive
commutator [a, b] = ab − ba. The second and third named authors recently showed
that if a unital ring S is generated by its commutators as an ideal, then there exists
a natural number N such that every element a ∈ S is a sum of N products of pairs
of commutators, that is, a = ∑N

i=1[b i , c i][d i , e i] for some b i , c i , d i , e i ∈ S; see [GT23,
Theorem 3.4]. The minimal such N, denoted ξ(S), was computed or estimated for
various classes of rings and C∗-algebras. In particular, for any unital, possibly non-
commutative ring R, the ring Mn(R)of n-by-n matrices over R satisfies ξ(Mn(R)) ≤ 2
for every n ≥ 2; see [GT23, Theorem 5.4].

This paper is mainly concerned with the question of whether every matrix in
Mn(R) is actually the product of (two or more) commutators rather than a sum of
double products. The fundamental case where R = F is a field was treated quite a while
ago by Botha who proved that every matrix in Mn(F) is a product of two commutators
[Bot97, Theorem 4.1], that is to say, ξ(Mn(F)) = 1 for every field F and every n ≥ 2
(for fields of characteristic 0 this was proved earlier in [Wu89]). We will be interested
in more general rings.

Our problem can be placed in a more general context. Over the last years, there has
been a growing interest in images of noncommutative polynomials in matrix (and
other) algebras. Note that the condition that ξ(Mn(R)) = 1 can be reformulated as
that the image of the polynomial f = [X1 , X2][X3 , X4]on Mn(R) is the whole Mn(R).
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Products of commutators in matrix rings 513

This is in the spirit of the L’vov–Kaplansky conjecture which states that the image
of any multilinear polynomial on Mn(F), with F a field, is a vector subspace. The
aforementioned result by Botha thus shows that this is true for the polynomial f. There
are only very few results treating this conjecture for arbitrary multilinear polynomials.
The most well known one, obtained by Kanel–Below, Malev, and Rowen [KBMR12],
confirms the conjecture for the case where n = 2 and F is quadratically closed. The
majority of results, however, consider special polynomials and/or algebras different
from Mn(F). We refer the reader to [KBMRY20] for a survey on this topic. Since
there has been a lot of activity since its publication, we also mention a few most recent
papers [BV24, FK23, KS24, Vit23] where one can find further references. It is our
hope that the results and techniques in this paper, which obviously follows this line
of investigation, will stimulate further research.

Let us present the main results of this paper. In Section 2, we provide an example
showing the nontriviality of our problem. The following is a simplified version of
Theorem 2.2.

Example A There exist a commutative, unital ring R and a matrix a ∈ M2(R) that
cannot be written as a product of commutators.

Together with the aforementioned result from [GT23], Example A shows that there
exist rings R such that ξ(M2(R)) = 2. This answers [GT23, Question 5.7].

Section 3 is primarily devoted to matrix algebras over algebras having Bass stable
rank one. The following is a combination of Theorem 3.7 and Theorem 3.9.

Theorem B Let A be a unital algebra over an infinite field, and assume that A has
Bass stable rank one. Let n ≥ 3. Then, the following statements hold.
(1) Every matrix in GLn(A) is a product of three commutators.
(2) If A is right K-Hermite, then every matrix in Mn(A) is a product of three

commutators.

We also prove that if A is any unital algebra over an infinite field and n ≥ 3, then
every triangular matrix in Mn(A) is a product of two commutators (Theorem 3.3).
This is needed in the proof of Theorem B, but is of independent interest.

Matrix rings over division rings are the topic of Section 4. The following is
Theorem 4.4.

Theorem C Let D be a division ring with infinite center and let n ≥ 2. Then, every
matrix a ∈ Mn(D) is a product of two commutators.

The assumption that the center is infinite is unnecessary if either n = 2 (Propos-
tion 4.2) or if a is singular (Propostion 4.7). Its necessity in general is left open.

The final Section 5 studies a variation of the problem from the preceding sections:
We consider only commutators with a fixed element (that is, values of an inner
derivation), but allow for sums of their products rather than only products. The
following is Theorem 5.4.
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514 M. Brešar, E. Gardella, and H. Thiel

Theorem D Let F be a field, let n ≥ 2, and let a ∈ Mn(F). Then, every matrix in
Mn(F) is a sum of matrices of the form [a, x][a, y] with x , y ∈ Mn(F) if and only
if the degree of the minimal polynomial of a is greater than 2.

2 Matrices that are not products of commutators

In this section, we exhibit an example of a commutative, unital ring such that not
every 2-by-2 matrix over this ring is a product of (finitely many) commutators; see
Theorem 2.2.

Let C be a commutative algebra over a field F. We denote by sl2(C) ⊆ M2(C) the
space of trace zero matrices. Note that the commutator of any two matrices from
M2(C) belongs to sl2(C). For the case C = F, Albert and Muckenhoupt [AM57]
(extending earlier work of Shoda [Sho37, Satz 3] in characteristic 0) showed that the
converse also holds, that is, a matrix over a field is a commutator if and only if it has
trace zero.

In the following result, we consider the case where C = F.

Lemma 2.1 Let s1 , s2 , . . . , sn ∈ sl2(F) satisfy

s1s2 . . . sn = 0.

Let t1k , t2k , t3k , t4k ∈ sl2(F), for k = 1, . . . , n, be any trace zero matrices, and set

r1 = t11s2 . . . sn + s1 t12s3 . . . sn + ⋅ ⋅ ⋅ + s1 . . . sn−1 t1n ,
r2 = t21s2 . . . sn + s1 t22s3 . . . sn + ⋅ ⋅ ⋅ + s1 . . . sn−1 t2n ,
r3 = t31s2 . . . sn + s1 t32s3 . . . sn + ⋅ ⋅ ⋅ + s1 . . . sn−1 t3n ,
r4 = t41s2 . . . sn + s1 t42s3 . . . sn + ⋅ ⋅ ⋅ + s1 . . . sn−1 t4n .

Then, {r1 , r2 , r3 , r4} ⊆ M2(F) is a linearly dependent set over F.

Proof Set R = {r1 , r2 , r3 , r4}. The proof is by induction on n. If n = 1, then
r i = t i1 for all i = 1, . . . , 4. Thus R ⊆ sl2(F) must be linearly dependent since
dimF(sl2(F)) = 3.

We may thus assume that the lemma is true for all positive integers less than n. If s1
is invertible, then s2 . . . sn = 0 and hence the induction hypothesis implies that s−1

1 R

is linearly dependent, so R is linearly dependent too. We may therefore assume that
s1 is not invertible, and, analogously, we may assume that sn is not invertible.

Being 2×2 matrices with trace zero with zero determinant, s1 and sn have square
zero, which implies that s1r i sn = 0 for all i = 1, . . . , 4. If R was linearly indepen-
dent, then it would follow that s1 M2(F)sn = {0}, which is possible only if s1 = 0 or
sn = 0. Assume that s1 = 0. Then, rk = tk1s2 . . . sn for k = 1, 2, 3, 4. Set x = s2 . . . sn .
Then, r1 , r2 , r3 , r4 ∈ sl2(F)x, which is at most three-dimensional. Thus R is linearly
dependent, which is a contradiction. The case sn = 0 is analogous, and in either case
we deduce that R is linearly dependent. ∎

Given a nonunital F-algebra B, recall that its (minimal) unitization is the F-algebra
C = B ⊕ F with product given by (a, λ)(b, μ) = (μa + λb + ab, λμ) for all a, b ∈ B
and all λ, μ ∈ F.

https://doi.org/10.4153/S0008439524000523 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000523


Products of commutators in matrix rings 515

Theorem 2.2 Let C0 be a four-dimensional F-algebra with zero multiplication, and
let {c1 , c2 , c3 , c4} be a basis for C0. Let C be the unitization of C0. Then, the matrix
a = [ c1 c2

c3 c4 ] ∈ M2(C) cannot be written as a product of elements in sl2(C). In particular,
a cannot be written as a product of commutators in M2(C).

Proof Arguing by contradiction, suppose that there exist t1 , t2 , . . . , tn ∈ sl2(C)
such that

a = t1 t2 . . . tn .

For each k = 1, . . . , n, there are t1k , . . . , t4k ∈ M2(F) and t0k ∈ F such that

tk = t0k + c1 t1k + c2 t2k + c3 t3k + c4 t4k .

Applying the trace τ of M2(C) to the identity above, and using that tk ∈ sl2(C) yields
the identity

0 = t0k + c1τ(t1k) + c2τ(t2k) + c3τ(t3k) + c4τ(t4k)

in C. Since {1, c1 , c2 , c3 , c4} is a linearly independent set in C, it follows that each t i k
belongs to sl2(F). Moreover, a = t1 t2 . . . tn implies that

t01 t02 . . . t0n = 0.

For i , j = 1, 2, let e i j ∈ M2(C) be the corresponding matrix unit. Writing each matrix
t j in the basis {1, c1 , c2 , c3 , c4} and using that c i c j = 0, the identity a = t1 t2 . . . tn can
be seen to imply

e11 =t11 t02 . . . t0n + t01 t12 t03 . . . t0n + ⋅ ⋅ ⋅ + t01 . . . t0 n−1 t1n ,
e12 =t21 t02 . . . t0n + t01 t22 t03 . . . t0n + ⋅ ⋅ ⋅ + t01 . . . t0 n−1 t2n ,
e21 =t31 t02 . . . t0n + t01 t32 t03 . . . t0n + ⋅ ⋅ ⋅ + t01 . . . t0 n−1 t3n ,
e22 =t41 t02 . . . t0n + t01 t42 t03 . . . t0n + ⋅ ⋅ ⋅ + t01 . . . t0 n−1 t4n .

As the set {e11 , e12 , e21 , e22} is linearly independent in M2(F), this contradicts
Lemma 2.1. Therefore the matrices t1 , . . . , tn do not exist, as desired. ∎

3 Matrices over algebras with Bass stable rank one

Given an algebra A over an infinite field and n ≥ 3, we show that every triangular n-
by-n matrix over A is a product of two matrices with zero diagonal (Propostion 3.1),
and hence a product of two commutators; see Theorem 3.3. As an application, we
show that every element in a von Neumann algebra of type In is a product of two
commutators; see Example 3.4.

If A has Bass stable rank one, we deduce that every invertible matrix over A is a
product of three commutators; see Theorem 3.7. If A is a right K-Hermite ring with
Bass stable rank one, then every matrix over A is a product of three commutators; see
Theorem 3.9.

Proposition 3.1 Let R be a unital ring, and let n ≥ 3. Then, every upper triangular
matrix in Mn(R) is the product of two matrices with zero diagonals. More precisely, if
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516 M. Brešar, E. Gardella, and H. Thiel

a = (a j,k) j,k ∈ Mn(R) is upper triangular, then a = bc for the matrices b = (b j,k) j,k ∈
Mn(R) and c = (c j,k) j,k ∈ Mn(R) given by

b j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a j,n , if j ≥ 2, k = 1
1, if j = 1, k = 2
a j,k−1 , if k ≥ 3
0, else

,

and all entries of c zero except

c2,1 = a1,1 , c2,n = a1,n , c1,n = c3,2 = c4,3 = . . . = cn ,n−1 = 1.

Similarly, every lower triangular matrix in Mn(R) is the product of two matrices
with zero diagonals.

Proof The result for upper triangular matrices is proved by executing a matrix
multiplication, and the result for lower triangular matrices is shown analogously. We
omit the details and instead indicate the factorizations for the cases n = 3 and n = 4.

In M3(R), we have:

⎛
⎜
⎝

a11 a12 a13
0 a22 a23
0 0 a33

⎞
⎟
⎠
=
⎛
⎜
⎝

0 1 a12
a23 0 a22
a33 0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 0 1
a11 0 a13
0 1 0

⎞
⎟
⎠

.

In M4(R), we have

⎛
⎜⎜⎜
⎝

a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0 1 a12 a13
a24 0 a22 a23
a34 0 0 a33
a44 0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0 1
a11 0 0 a14
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

.

∎

The next result is well known, but we could not locate a precise reference.

Lemma 3.2 Let n ≥ 2, and let R be a unital ring containing central elements
a1 , . . . , an ∈ R such that the pairwise differences a j − ak for j ≠ k are invertible in
R. Then every n-by-n matrix with zero diagonal is a commutator in Mn(R).

Proof Consider the diagonal matrix a with diagonal entries a1 , . . . , an . Given
a matrix b = (b jk) j,k ∈ Mn(R), the commutator [a, b] is the matrix (c jk) j,k with
entries c jk = (a j − ak)b jk for j, k = 1, . . . , n. We illustrate the case n = 3:

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

a1 0 0
0 a2 0
0 0 a3

⎞
⎟
⎠

,
⎛
⎜
⎝

b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

=
⎛
⎜
⎝

0 (a1 − a2)b12 (a1 − a3)b13
(a2 − a1)b21 0 (a2 − a3)b23
(a3 − a1)b31 (a3 − a2)b32 0

⎞
⎟
⎠

.
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Now, given a matrix c = (c jk) j,k ∈ Mn(R) with zero diagonal, consider the matrix
b with entries b j j = 0 for j = 1, . . . , n and b jk ∶= (a j − ak)−1c jk for j ≠ k. Then c =
[a, b]. ∎

Theorem 3.3 Let A be a unital algebra over an infinite field, and let n ≥ 3. Then every
upper (lower) triangular matrix in Mn(A) is the product of two commutators.

Proof By Propostion 3.1, every triangular matrix is the product of two matrices
with zero diagonal. Since A is an algebra over an infinite field, the assumptions of
Lemma 3.2 are satisfied and it follows that every matrix over A with zero diagonal is
a commutator. ∎

For a topological space X, we write C(X) for the algebra of all continuous functions
X → C endowed with pointwise operations. Recall that a space X is said to be
extremally disconnected (also called a Stonean space), if the closure of every open set
in X is open (and hence clopen).

Example 3.4 Let n ≥ 3, and let A be an AW∗-algebra of type In in the sense of
[Ber72, Definition 18.2]. (This includes all von Neumann algebras of type In , that is,
von Neumann algebras such that every irreducible representation acts on a Hilbert
space of dimension n.) We will argue that every element in A is a product of two
commutators.

It is a standard fact in C∗-algebra theory that there is an extrem disconnected
compact Hausdorff space X such that A ≅ Mn(C(X)). Given a ∈ Mn(C(X)), by a
result of Deckard and Pearcy [DP63, Theorem 2] there exists a unitary u ∈ Mn(C(X))
such that uau∗ is upper triangular. (A more conceptual proof of this result was given
in [Azo74, Corollary 6].) If n ≥ 3, then it follows from Theorem 3.3 that uau∗ is a
product of two commutators, and consequently so is a itself.

The result also holds for n = 2, and in fact for arbitrary von Neumann algebras of
type I, but the proof is more complicated since one needs to control the norm of the
elements going into the commutators. This will appear in forthcoming work of the
second and third named authors; see [GT24].

We say that a matrix (a jk) j,k ∈ Mn(R) has zero trace if a11 + . . . + ann = 0. The
following result is well known; see, for example, [KP14, Theorem 4].

Theorem 3.5 Let R be a unital ring, and n ≥ 2. Then every triangular matrix in
Mn(R) with zero trace is a commutator.

A unital ring R is said to have Bass stable rank one if for all a, b ∈ R such that R =
Ra + Rb, there exists c ∈ R such that R = R(a + cb). In other words, whenever a and
b generate R as a left ideal, then there exists an element c ∈ R such that a + cb is left
invertible. For more details and an overview on the theory of Bass stable rank, we refer
to [Che11, Vas84].

Two matrices a, b ∈ Mn(R) over a unital ring R are said to be similar if a =
vbv−1 for some v ∈ GLn(R). In [VW90], Vaserstein and Wheland showed that every
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invertible matrix over a ring with Bass stable rank one is a product of three triangular
matrices, and similar to a product of two triangular matrices. Combined with Theo-
rem 3.3, one can immediately deduce that invertible matrices over suitable rings are
products of four commutators. Using a more refined argument, we show that products
of three commutators suffice; see Theorem 3.7.

Lemma 3.6 Let R be a unital ring of Bass stable rank one, let n ≥ 2, and let a ∈
GLn(R). Then there exist b, c ∈ GLn(R) such that b is lower triangular, c is upper
triangular with all diagonal entries equal to 1, and a is similar to bc.

Proof By [VW90, Theorem 1], there exist x , y, z ∈ GLn(R) such that a = x yz, and
such that x and z are lower triangular, and y is upper triangular. From the proof of
[VW90, Theorem 1] we see that we can arrange that y and z have all diagonal entries
equal to 1. Set b ∶= zx and c ∶= y. Then b is lower triangular, and c is upper triangular
with all diagonal entries equal to 1. Further, a is similar to the matrix zaz−1 = (zx)
y = bc. ∎

Theorem 3.7 Let A be a unital algebra over an infinite field, and assume that A has
Bass stable rank one. Then, for n ≥ 3, every matrix in GLn(A) is a product of three
commutators.

Proof Let a ∈ GLn(A). Use Lemma 3.6 to find b, c ∈ GLn(A) such that b is lower
triangular, c is upper triangular with all diagonal entries equal to 1, and a is similar to
bc. It suffices to show that bc is a product of three commutators, since then so is a.

Since A is an algebra over an infinite field, we can find invertible elements
λ1 , . . . , λn ∈ A such that λ1 + . . . + λn = 0. Let e ∈ Mn(A) denote the diagonal matrix
with diagonal entries λ1 , . . . , λn . Then, ec is upper triangular with diagonal λ1 , . . . , λn .
Thus, ec has trace zero, and is therefore a commutator by Theorem 3.5. Further,
be−1 is lower triangular (not necessarily with trace zero), and therefore is a product
of two commutators by Theorem 3.3. Thus, bc = (be−1)(ec) is a product of three
commutators. ∎

There are different notions of a “left (right) Hermite ring” in the literature, some
meaning that every finitely generated, stably free left (right) R-module is free (see,
for example, [Lam06, Definition I.4.6]), and some referring to the notion studied
by Kaplansky in [Kap49]. Following Lam, [Lam06, Definition I.4.23], we say that
a (not necessarily commutative) ring R is right K-Hermite (the “K” standing for
Kaplansky) if for every 1-by-2 matrix (x y) ∈ M1,2(R) there exists Q ∈ GL2(R) such
that (x y)Q = (z 0) for some z ∈ R. Equivalently, for every rectangular matrix a ∈
Mm ,n(R) there exists an invertible matrix v ∈ Mn(R) such that av is lower triangular;
see [Kap49, Theorem 3.5]. Similarly, a ring R is left K-Hermite if for every rectangular
matrix a ∈ Mm ,n(R) there exists an invertible matrix w ∈ Mm(R) such that wa is
upper triangular.

The next result is analogous to Lemma 3.6, with the only difference that we obtain
a result for all matrices (not only invertible matrices), and the lower triangular matrix
b may thus not be invertible.
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Products of commutators in matrix rings 519

Lemma 3.8 Let R be a unital, right K-Hermite ring of Bass stable rank one, let n ≥ 2,
and let a ∈ Mn(R). Then there exist b, c ∈ Mn(R) such that b is lower triangular, c is
upper triangular with all diagonal entries equal to 1, and a is similar to bc.

Proof By [Kap49, Theorem 3.5], there exist a lower triangular matrix x ∈ Mn(R)
and y ∈ GLn(R) such that a = x y. We now apply [VW90, Theorem 1] for y and obtain
u, v , w ∈ GLn(R) such that y = uvw, and such that u and w are lower triangular, and v
is upper triangular. From the proof of [VW90, Theorem 1] we see that we can arrange
that v and w have all diagonal entries equal to 1.

Set b ∶= wxu and c ∶= v. Then, b is lower triangular, and c is upper triangular
with all diagonal entries equal to 1. Further, a is similar to the matrix waw−1 =
w(xuvw)w−1 = (wxu)v = bc. ∎

Theorem 3.9 Let A be a unital algebra over an infinite field, and assume that A is
right K-Hermite and has Bass stable rank one. Then for n ≥ 3, every matrix in Mn(A)
is a product of three commutators.

Proof This is analogous to the proof of Theorem 3.7. ∎

Question 3.10 Can the assumption that A is an algebra over an infinite field be
removed in Theorem 3.7 or Theorem 3.9? Do these results hold for n = 2?

Remark 3.11 Chen and Chen showed in [CC04, Theorem 2.2] that a unital ring R is
right K-Hermite and has Bass stable rank one if and only if every matrix a ∈ Mn(R)
admits a factorization a = bcd in Mn(R) with b and d lower triangular, c upper
triangular and all diagonal entries of c and d equal to 1.

Let us point out a few instances to which the above results are applicable. The first
one is extremely easy, but we will need it in the next section.

Example 3.12 Every division ring D is right K-Hermite and has Bass stable rank one.
The latter is obvious since D has no proper nonzero left ideals. To prove the former,
take x , y ∈ D. We want to find an invertible matrix Q ∈ M2(D) such that (x y)Q =
(z 0) for some z ∈ D. If x ≠ 0, one may take Q = ( 1 −x−1 y

0 1 ). If x = 0, one may take
Q = ( 0 1

1 0 ). It follows that D is right K-Hermite.

The next example is more general.

Example 3.13 A unital ring is said to be (von Neumann) regular if for every x ∈ R
there exists y ∈ R such that x = x yx. If one can always arrange y to be invertible, then
R is said to be unit-regular. We refer to [Goo79] for more details.

A regular ring has Bass stable rank one if and only if it is unit-regular; see [Goo79,
Proposition 4.12]. Further, every unit-regular ring is right K-Hermite; this follows
from [MM82, Theorem 9] as noted in the introduction of [AGOP97].

Thus, if R is a unit-regular ring that is an algebra over an infinite field, and n ≥ 3,
then every matrix in Mn(R) is a product of three commutators by Theorem 3.9.

https://doi.org/10.4153/S0008439524000523 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000523
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Example 3.14 A unital C∗-algebra A is said to have stable rank one if GL(A) is norm-
dense in A; see [Rie83]. By [HV84], A has stable rank one if and only if A has Bass
stable rank one (as a ring). Further, every C∗-algebra is an algebra over the infinite
field of complex numbers. Therefore, Theorem 3.7 applies to invertible matrices of
size at least 3-by-3 over C∗-algebras of stable rank one. In some cases, one has A ≅
Mn(B) for some n ≥ 3 and some other C∗-algebra B (which then automatically has
stable rank one as well) and then Theorem 3.7 applies to invertible elements in A
itself. For example, every invertible element in a UHF-algebra is a product of three
commutators.

Many naturally occurring simple, unital C∗-algebras have stable rank one. This
includes all finite, nuclear, classifiable C∗-algebras [Rør04]; many finite, nuclear, non-
classifiable C∗-algebras [EHT09, Tom08, Vil98]; reduced group C∗-algebras of free
products [DHR97]; and crossed products of minimal homeomorphisms on infinite,
compact, and metric spaces [AL22].

The comparison theory of positive elements and Hilbert modules is particularly
well-developed for C∗-algebras of stable rank one [APRT22, Thi20].

4 Matrices over division rings

In this section, we show that every matrix over a division ring with infinite center
is a product of two commutators; see Theorem 4.4. We also show that every sin-
gular matrix over an arbitrary division ring is a product of two commutators; see
Propostion 4.7.

Lemma 4.1 Let D be a division ring, and let r, s, t ∈ D. Then, the matrix a = ( r s
t −r ) ∈

M2(D) is a commutator in M2(D). More precisely, there exist b ∈ GL2(D) and c ∈
M2(D) such that a = [b, c].

Proof Case 1: We have r = 0 and s, t ≠ 0. Then,

(0 s
t 0) = [(0 −s

t 0 ) ,(1 0
0 0)]

and the matrix ( 0 −s
t 0 ) is invertible.

Case 2: We have s = 0. Then,

(r 0
t −r) = [(1 0

1 1) ,(0 −r
0 −t)]

and the matrix ( 1 0
1 1 ) is invertible.

Case 3: We have t = 0. This is analogous to case 2.
Case 4: We have r, s, t ≠ 0. Then,

(r s
t −r) = [(0 −srt−1

r 0 ) ,(0 −1
0 −tr−1)]

and the matrix ( 0 −sr t−1

r 0 ) is invertible. ∎

Next, we consider arbitrary 2-by-2 matrices over a division ring.
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Proposition 4.2 Let D be a division ring, and let a ∈ M2(D). Then, there exist
b, c, d , e ∈ M2(D) such that a = [b, c][d , e], and such that [b, c] and d are invertible.
In particular, every matrix in M2(D) is a product of two commutators.

Proof Let a = ( r s
t u ) ∈ M2(D).

Case 1: We have s, t ≠ 0. Then,

a = (r s
t u) = (0 −st−1

1 0 )( t u
−ts−1r −t)

and the first matrix is invertible. By Lemma 4.1, both matrices appearing in the
factorization above are commutators of a matrix in GL2(D) and a matrix in M2(D).

Case 2: We have s = 0 and t ≠ 0. Then,

a = (r 0
t u) = (1 −(u − r)t−1

0 −1 )( u (u − r)t−1u
−t −u )

and the first matrix is invertible. Again by Lemma 4.1, both matrices are commutators
of a matrix in GL2(D) and a matrix in M2(D).

Case 3: We have s ≠ 0 and t = 0. This is analogous to case 2.
Case 4: We have s = t = 0. Then,

a = (r 0
0 u) = (0 1

1 0)(0 u
r 0)

and the first matrix is invertible. Once again by Lemma 4.1, both matrices are
commutators of a matrix in GL2(D) and a matrix in M2(D). ∎

Lemma 4.3 Let D be a division ring containing at least three elements, let n ≥ 2, and
let 1n ∈ Mn(D) denote the identity matrix. Then, there exist b, c, d , e ∈ Mn(D) such
that 1n = [b, c][d , e], and such that [b, c] and d are invertible.

Proof For n = 2 this follows from Propostion 4.2, so we consider the case n = 3.
Since D contains at least three elements, we can choose x ∈ D ∖ {0, 1}. Then, y ∶=

x − 1 is not zero. We have
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 0 −x
1 0 0
0 y 0

⎞
⎟
⎠

,
⎛
⎜
⎝

0 0 1
0 0 0
0 −1 0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
=
⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

and the matrix (
0 0 −x
1 0 0
0 y 0

) is invertible. Similarly, we see that ( 0 0 1
1 0 0
0 1 0

) is an (invertible)

commutator in M3(D). Since 13 = ( 0 1 0
0 0 1
1 0 0

)( 0 0 1
1 0 0
0 1 0

), this establishes the case n = 3.
In preparation for the general case, let us fix matrices b2 , c2 , d2 , e2 ∈ M2(D) and

b3 , c3 , d3 , e3 ∈ M3(D) satisfying

12 = [b2 , c2][d2 , e2] and 13 = [b3 , c3][d3 , e3],
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and such that [b2 , c2], [b3 , c3], d2 and d3 are invertible. Given n ≥ 4, find k, l ≥ 0 with
n = 2k + 3l . Let b ∈ Mn(D) be the block-diagonal matrix with k blocks b2 and l blocks
b3. Define c, d , e ∈ Mn(D) similarly. It is then easy to check that 1n = [b, c][d , e], and
that [b, c] and d are invertible, thus finishing the proof. ∎

Theorem 4.4 Let D be a division ring with infinite center. Then every matrix in
Mn(D) for n ≥ 2 is a product of two commutators.

Proof For every (not necessarily infinite) field F, every matrix in Mn(F) for n ≥ 2
is a product of two commutators; see [Bot97, Theorem 4.1]. Thus, we may assume that
D is noncommutative.

We verify the following stronger result by induction over n: For all a ∈ Mn(D),
there exist b, c, d , e ∈ Mn(D) such that a = [b, c][d , e], and such that [b, c] and d are
invertible.

The case n = 2 follows from Propostion 4.2. Assume that the result holds for some
n ≥ 2, and let us verify it for n + 1.

Let a ∈ Mn+1(D). If a is central, then the result follows from Lemma 4.3. Thus,
we may assume that a is noncentral. Then, by [AR94, Proposition 1.8], a is similar
to a matrix whose (1, 1)-entry is zero. (Note that the global assumption of [AR94]
that division rings are finite-dimensional over their centers is not used in the proof of
[AR94, Proposition 1.8].) Since the desired conclusion is invariant under similarity,
we may assume, without loss of generality, that a11 = 0. Let b ∈ M1,n(D), c ∈ Mn ,1(D)
and x ∈ Mn(D) satisfy

a = (0 b
c x) .

Since D is noncommutative, there exist a nonzero commutator d ∈ D. By the inductive
assumption, we have x = y[v , w] for an invertible commutator y ∈ Mn(D) and v ∈
GLn(D) and w ∈ Mn(D). Then,

a = (0 b
c x) = (d 0

0 y)( 0 d−1b
y−1c [v , w]) .

The matrix ( d 0
0 y ) is an invertible commutator in Mn+1(D). It remains to verify that

( 0 d−1 b
y−1 c [v ,w]) is the commutator of some matrix in GLn+1(D) and a matrix in Mn+1(D).

For this, we will need a result of [Coh73], and we first recall some of its terminology.
An element λ ∈ D is called a left eigenvalue of v if there exists a nonzero ξ ∈

Mn ,1(D) such that vξ = ξλ, and λ is called a right eigenvalue if there exists a nonzero
η ∈ M1,n(D) such that ηv = λη. The set of all left and right eigenvalues is called the
spectrum of v; see [Coh73]. By [Coh73, Proposition 2.5], an element λ in the center
Z(D) of D belongs to the spectrum of v if and only if v − λ is singular (λ is called
a ‘singular eigenvalue’ of z). Further, by [Coh73, Theorem 2.4], the spectrum of v
contains at most finitely many conjugacy classes. Consequently, there are at most
finitely many λ ∈ Z(D) such that v − λ is singular.

Using that Z(D) is infinite, we obtain a nonzero λ ∈ Z(D) such that v − λ is
invertible. We then have
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( 0 d−1b
y−1c [v , w]) = [(λ 0

0 v) ,( 0 d−1b(λ − v)−1

(v − λ)−1 y−1c w )]

and ( λ 0
0 v ) is invertible. This proves the inductive step and finishes the proof. ∎

Recall that a division ring that is finite-dimensional over its center is called a central
division algebra. Since every finite division ring is a field, Theorem 4.4 along with
[Bot97, Theorem 4.1] yields the following result.

Corollary 4.5 Let D be a central division algebra. Then, every matrix in Mn(D) for
n ≥ 2 is a product of two commutators.

The comparison of Propostion 4.2 and Theorem 4.4 raises the following question:

Question 4.6 Can the assumption that D has infinite center be removed in Theo-
rem 4.4?

For n = 2, the answer is “yes” by Propostion 4.2. The next proposition provides
another such instance.

Proposition 4.7 Every singular matrix over a division ring is a product of two
commutators.

Proof Let D be a division ring, let n ≥ 2, and let a ∈ Mn(D) be non-invertible. By
Propostion 4.2, we may assume that n ≥ 3. We may also assume that D contains at
least three elements, since otherwise D is a field and then every matrix over D is a
product of two commutators by [Bot97, Theorem 4.1].

Since D is a right K-Hermite ring and has Bass stable rank one by Example 3.12,
we can apply Lemma 3.8 and deduce that a is similar to the product bc for a lower
triangular matrix b and an upper triangular matrix c with all diagonal entries equal
to 1. Since the statement is invariant under similarity, we may assume that a = bc.
Further, since a = bc is not invertible, using that D is a division ring it follows that at
least one of the diagonal entries of b is zero. Without loss of generality, upon taking a
similar matrix we may assume that bnn = 0.

Using that D contains at least three elements and n ≥ 3, we can choose nonzero
e1 , . . . , en−1 ∈ D such that e1 + . . . + en−1 = 0. Let e ∈ Mn(D) be the diagonal matrix
with diagonal entries e1 , . . . , en−1 , 1. Then a = bc = (be−1)(ec), and the matrix be−1

is lower diagonal with diagonal entries b1,1e−1
1 , . . . , bn−1,n−1e−1

n−1 , bnn . Similarly, ec is
upper diagonal with diagonal entries e1 , . . . , en−1 , 1.

Let b′ be equal to the matrix be−1, except with the (n, n)-entry replaced by
−∑n−1

j=1 b j, j e−1
j ; and let c′ be equal to the matrix ec, except with the (n, n)-entry

replaced by 0. Then a = b′c′, and b′ and c′ are triangular matrices with zero trace,
therefore commutators by Theorem 3.5. The factorization is:

a =

⎛
⎜⎜⎜⎜⎜
⎝

b11 0 0 . . . 0
b21 b22 0 ⋮
⋮ ⋱

bn−1,1 . . . bn−1,n−1 0
bn ,1 . . . bn ,n−1 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 c1,2 c1,3 . . . c1,n
0 1 c2,3 . . . c2,n
⋮ ⋱ ⋮
0 . . . 1 cn−1,n
0 . . . 0 1

⎞
⎟⎟⎟⎟⎟
⎠
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=

⎛
⎜⎜⎜⎜⎜
⎝

b11e−1
1 0 0 . . . 0

∗ b22e−1
2 0 ⋮

⋮ ⋱
∗ . . . bn−1,n−1e−1

n−1 0
∗ . . . ∗ 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

e1 ∗ ∗ . . . ∗
0 e2 ∗ . . . ∗
⋮ ⋱ ⋮
0 . . . en−1 ∗
0 . . . 0 1

⎞
⎟⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

b11e−1
1 0 . . . 0

⋮ ⋱ ⋮
∗ . . . bn−1,n−1e−1

n−1 0
∗ . . . ∗ −∑n−1

j=1 b j j e−1
j

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

e1 ∗ . . . ∗
⋮ ⋱ ⋮
0 . . . en−1 ∗
0 . . . 0 0

⎞
⎟⎟⎟
⎠

.

∎

5 Commutators with a fixed element

In this section, we consider the more general problem of presenting elements in
matrix algebras by commutators with a fixed matrix a. This is obviously considerably
more demanding than allowing arbitrary commutators, so we will restrict ourselves
to matrices over a field F. Our goal is to prove Theorem D from the introduction.

We remark that, if a matrix a ∈ Mn(F) has rank k, then any commutator [a, x],
with x ∈ Mn(F), has rank at most 2k. The same is therefore true for any product
[a, x1] . . . [a, xm], with x i ∈ Mn(F). In order to represent every matrix in Mn(F) by
commutators [a, x], their products are thus insufficient and we are forced to involve
sums of products. Motivated by the invariant ξ from [GT23, Definition 5.1] (see the
introduction), we are particularly interested in sums of products of two commutators.
Another motivation is the result by Mesyan [Mes06, Theorem 15] which states that
every trace zero matrix can be written as a sum of two commutators with fixed
matrices.

Our approach is based on the concept of a derivation. Recall that a linear map D
from an algebra A to itself is called a derivation if D(x y) = D(x)y + xD(y) for all
x , y ∈ A. For any a ∈ A, the map x ↦ [a, x] is a derivation. Such derivations are called
inner. The problem that we address can obviously be formulated in terms of inner
derivations.

Let us start with an observation which is implicit in Herstein’s paper [Her78]. Let A
be any algebra and let D∶ A → A be a derivation. A straightforward verification shows
that for all x , y, z ∈ A, we have

xD3(y)z = D (xD2(y)z) − D(x)D (D(y)z) − D (xD(y))D(z) + 2D(x)D(y)D(z).

Accordingly, if D3 ≠ 0, then the subalgebra D(A) generated by the image of D contains
a nonzero ideal of A. In particular, D(A) is equal to the whole algebra A if A is simple.
More precisely, the above formula shows that every element in A is a sum of products
of at most three elements from the image of D.

It should be remarked that the assumption that D3 ≠ 0 is necessary. Indeed, every
element a ∈ A such that a2 = 0 gives rise to the inner derivation D(x) = [a, x] which,
as can be easily checked, satisfies D3 = 0 and aD(A)a = {0}. The latter implies that
D(A) cannot be equal to A if a ≠ 0 and A is simple.
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The above observation, however, does not help us if we wish to present every
element in A as a sum of products of exactly two elements from the image of an
(inner) derivation D. A slightly more sophisticated approach is necessary to tackle
this problem. We start with the following result.

Lemma 5.1 Let D be a derivation of an algebra A, and let b, c ∈ A satisfy D(b)c = 0.
Then,

xD(b)D(c)z = D(xb)D(cz) − D(x)D(bcz)

for all x , z ∈ A. Therefore, if D(b)D(c) ≠ 0 and A is simple, then every element in A is
a sum of elements of the form D(x)D(y) with x , y ∈ A.

Proof Note that D(b)c = 0 implies

D(xb)D(cz) = D(x)bcD(z) + xD(b)D(c)z + D(x)bD(c)z

and

D(bcz) = bD(c)z + bcD(z),

from which the formula from the statement of the lemma follows. If D(b)D(c) ≠ 0,
then this formula implies that the ideal of A generated by D(b)D(c) is contained in
the set of sums of elements of the form D(x)D(y) with x , y ∈ A. Therefore, this set is
equal to A if A is simple. ∎

Lemma 5.1 raises the question of when do there exist elements b, c ∈ A such that
D(b)c = 0 and D(b)D(c) ≠ 0. In light of our goal, we are interested in the case where
D is an inner derivation and A = Mn(F). We will consider a somewhat more general
situation in Lemma 5.3. To this end, we need a result of general interest which is almost
certainly known. However, we were unable to find a reference that would cover vector
spaces over arbitrary fields. We, therefore, provide a proof which was shown to us by
Clément de Seguins Pazzis, who kindly allowed us to include it here.

Recall that an endomorphism a of an F-vector space V is said to be algebraic if
there exists a nonzero polynomial p ∈ F[X] with coefficients in F such that p(a) = 0.
Moreover, the degree of a is the smallest degree of such a polynomial.

Lemma 5.2 Let n be a natural number. An endomorphism a of a vector space V (over
any field) is algebraic of degree at most n if and only if the set {v , av , . . . , anv} is linearly
dependent for every v ∈ V.

Proof It suffices to prove the “if ” part. Thus, assume that the set {v , av , . . . , anv}
is linearly dependent for each v ∈ V . Denote by Vv the linear span of this set, and by
pv the minimal polynomial of the restriction of a to Vv . Pick v0 ∈ V such that pv0 has
maximal degree. Our goal is to show that pv0(a) = 0. Since the dimension of Vv0 is at
most n by our assumption, this will prove the result.

Fix v ∈ V and let us show that pv0(a)v = 0. Let ã denote the restriction of a to
Vv0 + Vv , and let p̃ be the minimal polynomial of ã. Since Vv0 ⊆ Vv0 + Vv , pv0 divides p̃.

https://doi.org/10.4153/S0008439524000523 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000523
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If p̃ was equal to pw for some w ∈ V , then it would follow, in view of the choice of v0,
that pv0 = p̃ and hence pv0(a)v = 0, as desired.

The fact that p̃ is really equal to pw for some w ∈ V follows by examining the
Frobenius canonical form of ã. Indeed, ã can be represented in some basis as a block-
diagonal matrix with blocks being companion matrices whose associated polynomials
form a sequence that is nonincreasing with respect to the divisibility relation. The first
polynomial in the sequence is the minimal polynomial p̃, and, denoting the degree of
p̃ by d, the first d vectors in the basis are w , aw , . . . , ad−1w for some w ∈ Ṽ . Since these
vectors are linearly independent, the degree of pw is at least d. On the other hand, pw
divides p̃ since w ∈ Ṽ . Therefore, p̃ = pw . ∎

Lemma 5.3 Let A be the algebra of all endomorphisms of the vector space V. Let a ∈ A
and let D be the inner derivation given by D(x) = [a, x]. If a is not algebraic of degree
at most 2, then there exists an element b ∈ A such that D(b)b = 0 and D(b)2 ≠ 0.

Proof In light of our assumption, Lemma 5.2 shows that there exists v ∈ V such
that a2v does not lie in the linear span of {v , av}. Therefore, there is a linear
functional f on V such that f (v) = f (av) = 0 and f (a2v) = 1. Let b be the rank one
endomorphism defined by bu = f (u)v for all u ∈ V . Observe that b2 = bab = 0 and
ba2b = b. Consequently, D(b)b = ab2 − bab = 0 and D(b)2 = (ab − ba)2 = −ba2b =
−b ≠ 0. ∎

We are now ready to prove the main result of the section. We note that the number
of summands needed in statement (2) is at most n2, since this is the linear dimension
of Mn(F). It is conceivable that the smallest number of summands needed may be
related to the degree of the minimal polynomial of the matrix a, but we have not
explored this any further.

Theorem 5.4 Let F be a field, let n ≥ 2, and let a ∈ Mn(F). The following two
conditions are equivalent.
(1) The degree of the minimal polynomial of a is greater than 2.
(2) Every element in Mn(F) can be written as a sum of elements of the form

[a, x][a, y] with x , y ∈ Mn(F).

Proof Let us show that (1) implies (2). Condition (1) can be read as saying that a
is not algebraic of degree at most 2. If we denote by D the inner derivation given by
D(c) = [a, c] for c ∈ Mn(F), then by Lemma 5.3 there exists an element b ∈ A such
that D(b)b = 0 and D(b)2 ≠ 0.

Since D(b)2 ≠ 0, and since the algebra Mn(F) is simple, we find a natural number
M and elements r j , s j ∈ Mn(F) for j = 1, . . . , M such that

1 =
M
∑
j=1

r j D(b)2s j .
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Given x ∈ Mn(F), it follows from Lemma 5.1 that

x =
M
∑
j=1

xr j D(b)2s j =
M
∑
j=1

(D(xr jb)D(bs j) − D(x)D(b2s j))

=
M
∑
j=1

([a, xr jb][a, bs j] + [a, x][a,−b2s j]).

This proves (2).
In order to show the converse, assume that (1) does not hold and let us show that

(2) does not hold either. The case where the degree of the minimal polynomial of a is
1 is trivial, so we may assume that it is equal to 2. Let F̄ denote the algebraic closure
of F and let λ, μ ∈ F̄ satisfy (a − λ1n)(a − μ1n) = 0. Using at the first step that λ1n and
μ1n commute with all the elements of Mn(F), for all x , y ∈ Mn(F) we get

[a, x][a, y] = [(a − λ1n), x][(a − μ1n), y]
= (a − λ1n)x(a − μ1n)y − (a − λ1n)x y(a − μ1n) + x(a − λ1n)y(a − μ1n).

This implies that

(a − μ1n)[a, x][a, y](a − λ1n) = 0.

Denoting by S the set of sums of elements of the form [a, x][a, y], we thus have

(a − μ1n)S(a − λ1n) = {0}.

Assuming that S = Mn(F), it follows that (a − μ1n)e i j(a − λ1n) = 0 for every matrix
unit e i j in Mn(F), which in turn implies that

(a − μ1n)z i j e i j(a − λ1n) = 0

for every z i j ∈ F̄. Thus, we deduce that (a − μ1n)Mn(F̄)(a − λ1n) = {0}. However,
this is impossible since a − μ1n and a − λ1n are nonzero matrices of Mn(F̄). Therefore,
S ≠ Mn(F). ∎
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[BV24] M. Brešar and J. Volčič, Matrix evaluations of noncommutative rational functions and
waring problems. Preprint, 2024. arXiv:2401.11564 [math.RA].

[Che11] H. Chen, Rings related to stable range conditions, Series in Algebra, 11, World Scientific
Publishing, Hackensack, NJ, 2011.

[CC04] H. Chen and M. Chen, On products of three triangular matrices over associative rings.
Linear Algebra Appl. 387(2004), 297–311.

[Coh73] P. M. Cohn, The similarity reduction of matrices over a skew field. Math. Z. 132(1973),
151–163.

[DP63] D. Deckard and C. Pearcy, On matrices over the ring of continuous complex valued
functions on a Stonian space. Proc. Amer. Math. Soc. 14(1963), 322–328.

[DHR97] K. Dykema, U. Haagerup, and M. Rèrdam, The stable rank of some free product
C∗-algebras. Duke Math. J. 90(1997), 95–121.

[EHT09] G. A. Elliott, T. M. Ho, and A. S. Toms, A class of simple C∗-algebras with stable rank one.
J. Funct. Anal. 256(2009), 307–322.

[FK23] P. Fagundes and P. Koshlukov, Images of multilinear graded polynomials on upper
triangular matrix algebras. Canad. J. Math. 75(2023), 1540–1565.

[GT23] E. Gardella and H. Thiel, Rings and C∗-algebras generated by commutators. J. Algebra 662
(2025), 214–241.

[GT24] E. Gardella and H. Thiel, Products of additive commutators in von Neumann algebras. In
preparation, 2024.

[Goo79] K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, 4,
Pitman (Advanced Publishing Program), Boston, MA and London, 1979.

[HV84] R. H. Herman and L. N. Vaserstein, The stable range of C∗-algebras. Invent. Math.
77(1984), 553–555.

[Her78] I. N. Herstein, A note on derivations. Canad. Math. Bull. 21(1978), 369–370.
[KBMRY20] A. Kanel-Belov, S. Malev, L. Rowen, and R. Yavich, Evaluations of noncommutative

polynomials on algebras: methods and problems, and the L’vov–Kaplansky conjecture.
SIGMA Symmetry Integrability Geom. Methods Appl. 16(2020), Paper No. 071, 61 pp.

[KBMR12] A. Kanel-Belov, S. Malev, and L. Rowen, The images of non-commutative polynomials
evaluated on 2 × 2 matrices. Proc. Amer. Math. Soc. 140(2012), 465–478.

[Kap49] I. Kaplansky, Elementary divisors and modules. Trans. Amer. Math. Soc. 66(1949),
464–491.

[KP14] M. Kaufman and L. Pasley, On commutators of matrices over unital rings. Involve 7(2014),
769–772.

[KS24] R. Kaushik and A. Singh, Waring problem for triangular matrix algebra. Linear Algebra
Appl. 692(2024), 135–159.

[Lam06] T. Y. Lam, Serre’s problem on projective modules, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2006.

[MM82] P. Menal and J. Moncasi, On regular rings with stable range 2. J. Pure Appl. Algebra
24(1982), 25–40.

[Mes06] Z. Mesyan, Commutator rings. Bull. Austral. Math. Soc. 74(2006), 279–288.
[Rie83] M. A. Rieffel, Dimension and stable rank in the K-theory of C∗-algebras. Proc. London

Math. Soc. (3) 46(1983), 301–333.
[Rør04] M. Rèrdam, The stable and the real rank of Z-absorbing C∗-algebras. Int. J. Math.

15(2004), 1065–1084.
[Sho37] K. Shoda, Einige Sätze über Matrizen. Jpn. J. Math. 13 (1937), 361–365.
[Thi20] H. Thiel, Ranks of operators in simple C∗-algebras with stable rank one. Comm. Math.

Phys. 377(2020), 37–76.
[Tom08] A. S. Toms, On the classification problem for nuclear C∗-algebras. Ann. of Math. (2)

167(2008), 1029–1044.
[Vas84] L. N. Vaserstein, Bass’s first stable range condition. J. Pure Appl. Algebra 34, 1984, pp.

319–330.
[VW90] L. N. Vaserstein and E. Wheland, Commutators and companion matrices over rings of

stable rank 1. Linear Algebra Appl. 142(1990), 263–277.
[Vil98] J. Villadsen, Simple C∗-algebras with perforation. J. Funct. Anal. 154(1998), 110–116.
[Vit23] D. Z. Vitas, The L’vov-Kaplansky conjecture for polynomials of degree three. Preprint, 2023.

arXiv:2310.15600 [math.RA].
[Wu89] P. Y. Wu, The operator factorization problems. Linear Algebra Appl. 117(1989), 35–63.

https://doi.org/10.4153/S0008439524000523 Published online by Cambridge University Press

https://arxiv.org/abs/2401.11564
https://arxiv.org/abs/2310.15600
https://doi.org/10.4153/S0008439524000523


Products of commutators in matrix rings 529

Faculty of Mathematics and Physics, University of Ljubljana, Faculty of Natural Sciences and Mathematics,
University of Maribor, and Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
e-mail: matej.bresar@fmf.uni-lj.si
URL: www.fmf.uni-lj.si/en/directory/21/bresar-matej

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg,
Gothenburg SE-412 96, Sweden
e-mail: gardella@chalmers.se
URL: www.math.chalmers.se/~gardella

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg,
Gothenburg SE-412 96, Sweden
e-mail: hannes.thiel@chalmers.se
URL: www.hannesthiel.org

https://doi.org/10.4153/S0008439524000523 Published online by Cambridge University Press

mailto:matej.bresar@fmf.uni-lj.si
http://www.fmf.uni-lj.si/en/directory/21/bresar-matej
mailto:gardella@chalmers.se
http://www.math.chalmers.se/~gardella
mailto:hannes.thiel@chalmers.se
http://www.hannesthiel.org
https://doi.org/10.4153/S0008439524000523

	1 Introduction
	2 Matrices that are not products of commutators
	3 Matrices over algebras with Bass stable rank one
	4 Matrices over division rings
	5 Commutators with a fixed element

