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Measurements of the difference between the squared charge radii of the helion (3He nucleus) and the α
particle (4He nucleus) have been characterized by longstanding tensions recently spotlighted in the 3.6σ
discrepancy of the extractions from ordinary atoms versus those from muonic atoms [Karsten Schuhmann
et al., arXiv:2305.11679]. Here, we present a novel analysis of uncertainties in nuclear structure corrections
that must be supplied by theory to enable the extraction of the difference in radii from spectroscopic
experiments. We use modern Bayesian inference techniques to quantify uncertainties stemming from the
truncation of the chiral effective field theory expansion of the nuclear force for both muonic and ordinary
atoms. With the new nuclear structure input, the helium isotope-shift puzzle cannot be explained, rather, it
is reinforced to a 4σ discrepancy.
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Introduction—Historically, atomic physics has played a
central role in shaping modern physics. Explaining the
gross features of the hydrogen-atom spectrum led to the
development of quantummechanics [1,2], studying its fine-
structure details inspired relativistic quantum mechanics
[3], and the discovery of the Lamb shift [4] gave rise to the
theory of quantum electrodynamics (QED) [5–7]. While
the hydrogen atom is still a protagonist [8–10], other simple
atomic systems, such as hydrogenlike ions [11] or two-
electron atoms [12,13], have entered the scenery of high-
precision laser spectroscopy. Today, atomic physics is
experiencing an exciting time, when not only fundamental
constants—such as the Rydberg constant [14]—are deter-
mined with better than ever precision, but the comparison
of results from multiple experiments on a variety of simple
and calculable systems allows for fruitful intersections with
particle, hadronic, and nuclear physics [15,16]. In fact,
high-precision laser spectroscopy can be used as a rigorous
test of the standard model and has the potential to constrain
sources of beyond the standard model physics. Further-
more, muonic atom spectroscopy allows for precise deter-
minations of the size of the nucleus [17–21] and nuclear

polarizability effect [19] because the mass of the muon,
approximately 200 times that of the electron, makes the
muon very sensitive to nuclear structure.
Recently, the difference between the squared charge

radius of the helion (3He nucleus) and the α particle
(4He nucleus) defined as δr2 ¼ r2chð3HeÞ − r2chð4HeÞ has
attracted significant attention [21–28]. This difference can
be extracted from the isotope shifts of the 23S → 21S
transition [22–24], the 23S → 23P transition [25–27], and
the 21S → 21D transition [28], but the obtained values vary
quite substantially; see Fig. 5 in Ref. [21] for a summary. In
particular, results from the same group in Refs. [22–24] are
in disagreement; however, a reanalysis confirmed that the
differences are understood and that the most recent experi-
ment [24] supersedes the older two [22,23]. The final value
inferred from Ref. [24] is δr2je ¼ 1.0757ð15Þ fm2.
The difference in the charge radii obtained from the iso-

tope shift in ordinary atoms can be compared to the results
obtained from muonic atoms. In the latter, the absolute
values of the individual radii can be extracted from Lamb-
shift measurements. The sizes of 3He [20] and 4He [21]
were recently measured by the CREMA Collabora-
tion resulting in δr2jμ ¼ 1.0636ð6Þexptð30Þtheo fm2 [21].
Comparing this value to the most recent measurement
based on the isotope shifts in ordinary atoms, in particular,
the measurement of Ref. [24], reveals a 3.6σ discrepancy.
The error bars in radii extractions from muonic atom
experiments are largely dominated by uncertainties coming
from theoretical calculations of nuclear structure correc-
tions. In this work, we use modern Bayesian inference to
solidly quantify uncertainties in such calculations.

*Contact author: simone.limuli@chalmers.se
†Contact author: richardt@uni-mainz.de
‡Contact author: s.bacca@uni-mainz.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by Bibsam.

PHYSICAL REVIEW LETTERS 134, 032502 (2025)

0031-9007=25=134(3)=032502(7) 032502-1 Published by the American Physical Society

https://orcid.org/0000-0002-8187-1769
https://orcid.org/0000-0001-6314-7518
https://orcid.org/0000-0002-9189-9458
https://ror.org/023b0x485
https://ror.org/040wg7k59
https://ror.org/024thra40
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.134.032502&domain=pdf&date_stamp=2025-01-23
https://arXiv.org/abs/2305.11679
https://doi.org/10.1103/PhysRevLett.134.032502
https://doi.org/10.1103/PhysRevLett.134.032502
https://doi.org/10.1103/PhysRevLett.134.032502
https://doi.org/10.1103/PhysRevLett.134.032502
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


Nuclear structure corrections—The observed energy
spectrum of an atom differs from that obtained via the
solution of the Schrödinger or Dirac equation in a static
Coulomb potential because of QED, nuclear recoil, and
nuclear structure effects. The difference of the two
energy levels in an atom containing a AHe nucleus is
parametrized as

ΔE ¼ δQED þ Cr2ch þ δNS: ð1Þ

In Eq. (1), δQED comprises purely QED and nuclear recoil
effects, and the second term is a nuclear finite-size effect
where C is a known constant for each of the transitions
considered. The last term δNS contains nuclear structure
corrections that begin with the exchange of two photons. At
the level of two-photon exchange, these corrections enter
through the nuclear matrix elements of the forward virtual
Compton tensor [29] and constitute the dominant source of
uncertainty in the extraction of rch from muonic atom
spectroscopy [30–32].
The δNS is expanded as

δNS ¼ δTPE þ δ3PE þ δEVP þ δMSEVP þ � � � ; ð2Þ

where the terms include two-photon exchange δTPE, three-
photon exchange δ3PE, electron vacuum polarization δEVP,
and muon self-energy and vacuum polarization δMSEVP
corrections. For muonic atoms, the last three terms have
been recently discussed in Ref. [30] (note that in [30], the
last two terms are labeled sightly differently, with eVP and
μSE, respectively). In this work, we focus on the two-
photon-exchange term, which can be written as [33,34]

δTPE ¼ δATPE þ δNTPE

¼ δAZem þ δApol þ δNZem þ δNpol; ð3Þ

where δAZem (δNZem) denotes nuclear (single-nucleon) elastic
or Zemach contributions, and δApol (δ

N
pol) denotes nuclear

(single-nucleon) inelastic or polarizability contributions. In
both muonic and ordinary atoms, the Zemach contribution
will be canceled by a piece of the polarizability correc-
tion [29,35,36]. In the remainder of this work, we denote
the two-photon-exchange contributions in muonic (ordi-
nary) atoms by δATPE;μ (δATPE;e).
In muonic atoms, the nuclear excitation energy is

generally much smaller than the muon mass. In the
so-called η-expansion formulation [29,33,34,37,38], where
η ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr=mp

p
and mr, mp are the reduced mass of the

muon-nucleus system and the proton mass, respectively, the
two-photon-exchange correction can be decomposed in
multipoles leading to a dipole contribution and higher-order
terms. Explicit expressions for these terms up to the second
power in the η expansion, as well as the Zemach term may
be found in Ref. [34] and are therefore not repeated here.

Using Bayesian inference, in Ref. [38] the value of η was
found to be 0.15 (0.35) for muonic 4He (3He), respectively.
For electronic atoms, the opposite scenario is realized

where the nuclear excitation energy ωN is generally much
larger than the electron mass m. In this case, the leading
contribution from nuclear structure effects is [39,40]

δATPE;e ¼ −
2

3
mðZαÞ2ϕ2

nS α̃pol;e; ð4Þ

where ϕnS is the electronic wave function at the origin, Z is
the proton number, α is the fine structure constant, and

α̃pol;e ¼
X

N≠0
jhNjDj0ij2

�
19

6ωN
þ 5 lnð2ωN=mÞ

ωN

�
; ð5Þ

where D is the electric-dipole operator. We neglect higher-
order terms as they are found to be small (1% in the
deuterium 1S-2S transition [39]), but we will later include
an uncertainty to account for this assumption.
We evaluate δATPE;μ and α̃pol;e by solving the few-nucleon

Schrödinger equation to obtain j0i and jNi via the effective
interaction hyperspherical harmonics (EIHH) method,
which is accurate at the subpercent level for three- and
four-body problems [41–44]. We use nuclear forces derived
from chiral effective field theory (χEFT) [45–48]. There
are many families of χEFT interactions available in the
literature. Given that the EIHH method can presently use
general two-nucleon forces, but only local three-nucleon
forces, following Refs. [44,49], for the first three orders we
use the local formulation of Refs. [50–52], with three-body
forces entering at next-to-next-to-leading order (N2LO),
and adopt the cutoffs r0 ¼ 1.0 fm and r0 ¼ 1.2 fm (see
Supplemental Material [53]). For the last order, we take the
nonlocal two-body force from Ref. [54] at next-to-next-to-
next-to-leading order (N3LO) supplemented by the local
N2LO three-body forces from Ref. [55]; this combination
has been used before in Refs. [33,34,56]. We point out that
with these choices we are exploring quite different inter-
action models. On the one hand, we use both local [50–52]
and nonlocal [54] two-body forces with different cutoffs.
On the other hand, we adopt two strategies for the fit of the
low-energy constants cD and cE entering the three-body
force at N2LO: For [50–52], they are constrained to
reproduce the 4He binding energy and the n − α P-wave
phase shifts, while for [55], cE is kept natural and cD is fit
on the 3H binding energy. While other choices are possible
(see, e.g., [57]), we believe that this combination of forces
captures most of the potential model dependences.
Bayesian uncertainty quantification—The truncation

error of the χEFT expansion is quantified by calculating
nuclear structure corrections at different orders. Bayesian
inference can be used to analyze the convergence pattern of
any observable with respect to a reference Oref ,
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O ¼ Oref

X∞

n¼0

cnQn; ð6Þ

where the expansion parameter Q is related to the natural
energy scale of the process and Λ, the breakdown scale of
χEFT, as Q ¼ maxfmπ; pg=Λ, with mπ being the pion
mass and p the average involved low-energy momentum.
Here, we choose Λ ∼ 500 MeV, which is consistent with
Refs. [50–52], Q ¼ mπ=Λ for 3He, and Q ¼ p=Λ for 4He,
where we take p ∼ 180 MeV as the average nucleon
momentum in the nucleus [58]. The expansion coefficients
cn are obtained by calculating the observable at each fixed
chiral order. For Oref, we take results obtained with the
phenomenological AV18þ UIX potential [we obtain sim-
ilar results if we instead use the leading-order (LO) chiral
result as Oref ].
We assume that all of the expansion coefficients cn are of

natural size set by the same scale parameter c̄. These
assumptions are encoded in the use of Jeffrey’s prior [59]
for c̄ and Gaussian priors for each cn. Explicitly, the prior
probability density functions are

Probðc̄Þ ¼ 1

lnðc̄>=c̄<Þc̄
θðc̄ − c̄<Þθðc̄> − c̄Þ;

Probðcnjc̄Þ ¼
1
ffiffiffiffiffiffi
2π

p
c̄
exp

�
−

c2n
2c̄2

�
; ð7Þ

where c̄> ¼ 103, c̄< ¼ 10−3, and the two theta functions
constrain c̄< < c̄ < c̄>, so that the probability distribution
Probðc̄Þ is normalizable. With these prior choices, the
truncation error follows a Gaussian G distribution,
ProbðOrefΔkjc̄; QÞ ¼ Gð0; σ2Þ, where k is the order of
the χEFT expansion, and the standard deviation is σ2 ¼
O2

ref c̄
2Q2kþ2=ð1 −Q2Þ [60]. By marginalizing over c̄ and

by applying Bayes theorem, the posterior probability
distribution for the truncation error becomes [38,61]

ProbðΔkjc; QÞ

¼
R
dc̄ProbðΔkjc̄; QÞ�Qk

n¼0 Probðcnjc̄Þ
�
Probðc̄Þ

R
dc̄

�Q
k
n¼0 Probðcnjc̄Þ

�
Probðc̄Þ ; ð8Þ

where the coefficients c ¼ fc0;…; ckg are known from our
order-by-order calculation of the observable in χEFT.
Results—In Fig. 1, we show probability density func-

tions (PDFs) obtained via a Bayesian analysis for values of
δATPE;μ representing our best estimates for the truncation
uncertainties of the χEFT expansion. The first row shows
the uncertainty from truncating the χEFT expansion at LO,
the second row at NLO, the third row at N2LO, and the last
row at N3LO. The dark shaded areas are 68% confidence
intervals while the light shaded areas are 95% confidence
intervals. The vertical black lines are the predictions for
δATPE;μ obtained with the AV18þ UIX interaction. We note
that our LO results are very different from the other orders.
This is due to the fact that the expansion coefficient c0 is
much smaller than the other coefficients; see Supplemental
Material [53].
In Refs. [33,34], the uncertainty quantification was

performed by comparing the prediction of the N3LO chiral
interaction to that of the phenomenological AV18þ UIX.
Here, the Bayesian analysis leads to an improved error
estimate established on solid statistical ground. The most
precise values are obtained at N3LO, where we find
δATPE;μ ¼ −14.868ð364Þ meV in μ3Heþ and δATPE;μ ¼
−8.751ð322Þ meV in μ4Heþ. The uncertainties are ob-
tained as quadrature sums of the Bayesians χEFT expan-
sion error and the remaining sources of uncertainty; see
Supplemental Material [53]. Our results can be compared
to the previous calculations, δATPE;μ ¼ −14.72ð31Þ meV
in μ3Heþ [34,56] and δATPE;μ ¼ −8.49ð39Þ meV in μ4Heþ

[33,34], from which it is evident that our estimation based
on Bayesian inference increases the uncertainty in δATPE;μ of

Prob Prob Prob

FIG. 1. Bayesian analysis of the χEFT expansion in muonic helium (vertical lines are the AV18þ UIX results [34]).
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μ3Heþ by 17%, but reduces the uncertainty in μ4Heþ by
17%. The increased uncertainty in μ3Heþ is mostly due to
an update of the uncertainty associated with the η expan-
sion [38]. These results for δATPE;μ may be combined with
remaining terms in Eq. (2) to produce δNS;μ. The charge
radii of 3He and 4He can be found by solving Eq. (1) for rch
using the measured Lamb shift [20,21]. A summary of
these results can be found in Table I. For 4He, this
constitutes the most precise extraction of the nuclear charge
radius to date.
In Fig. 2, we show the PDFs for α̃pol representing the

evolution of this observable, and of the associated uncer-
tainty, as we increase the order of the χEFT expansion of
the nuclear Hamiltonian. The expansion shows identical
features to those of Fig. 1. At N3LO, we obtain α̃pol ¼
3.514ð68Þ and 1.909ð96Þ fm3 for 3He and 4He, respectively.
Within uncertainties, our results are compatible with the
values of 3.56(36) and 2.07ð20Þ fm3 estimated in Ref. [40]
for 3He and 4He, respectively.
Revisiting the helium isotope shift—Starting from our

new calculations of nuclear structure effects in atomic
spectra, we update the extraction of δr2 [21,24], consid-
ering the Lamb-shift 2S → 2P transition for muonic atoms
and the 23S → 21S isotope shift for ordinary atoms. First,
we invert Eq. (1) to obtain the squared charge radius of the
individual nuclei, and then we take the difference between
4He and 3He,

δr2 ¼
�
ΔEð3HeÞ
Cð3HeÞ −

ΔEð4HeÞ
Cð4HeÞ

�
þ
�
δQEDð4HeÞ
Cð4HeÞ −

δQEDð3HeÞ
Cð3HeÞ

�

þ
�
δNSð4HeÞ
Cð4HeÞ −

δNSð3HeÞ
Cð3HeÞ

�
: ð9Þ

The last term in Eq. (9) contains the difference of δNS
between 4He and 3He. For δNTPE in Eq. (3) and δ3PE, δEVP,
and δMSEVP in Eq. (2), we use the values from Ref. [30] and
analyze the part which we newly calculated, namely,

δμ ¼
�
δATPE;μð4HeÞ
Cð4HeÞ −

δATPE;μð3HeÞ
Cð3HeÞ

�
; ð10Þ

δe ¼
�
α̃pol;eð4HeÞ − α̃pol;eð3HeÞ

�
1

C
; ð11Þ

for muonic atoms and ordinary atoms, respectively (note
that the constant C is the same for 3;4He [62] for the isotope
shift of this transition in ordinary atoms). We perform a
Bayesian analysis of this difference, which will naturally
take correlations between 3He and 4He into account.
The results of the statistical analysis of δμ and δe for

each chiral order are shown in Figs. 1 and 2, respectively.
At N3LO, we obtain δμ ¼ 0.0614ð16Þð20Þ fm2, where the
first uncertainty comes from the Bayesian analysis of the
χEFT expansion, while the second includes all the rest,
explained in Supplemental Material [53]. To estimate the
latter, from our Bayesian analysis we extracted the corre-
lation coefficient between the two terms in Eq. (10),
amounting to 0.84, and used it to propagate the uncertain-
ties to δμ. Compared to δμ ¼ 0.0624ð42Þ fm2 obtained in
Ref. [34], the new result constitutes a significant reduction
of the uncertainties due to the inclusion of correlations
between 3He and 4He. Using values for ΔE, δQED, and C
reported in Table III of Supplemental Material [53], and

TABLE I. Nuclear structure effects in muonic helium at N3LO
and extracted charge radii.

δATPE;μ (meV) δNS;μ (meV) rch (fm)

3He −14.868ð364Þ −15.644ð427Þ 1.9704(11)
4He −8.751ð322Þ −9.541ð368Þ 1.6793(10)

Prob Prob Prob

FIG. 2. Same as Fig. 1 for α̃pol in ordinary helium atoms.
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assuming that δ3PE, δEVP, and δMSEVP in 3He and 4He are
correlated in the same way as δATPE, we obtain

δr2jμ ¼ 1.0626ð29Þ fm2 ð12Þ

for muonic atoms. This improves the uncertainty of the
previous determination, δr2jμ ¼ 1.0636ð31Þ fm2 [21] by
about 6%.
For ordinary atoms, we obtain δe ¼

0.00748ð21Þ fm5 kHz−1 at N3LO, which can be compared
with δe ¼ 0.0069ð19Þ fm5 kHz−1 from Ref. [40]. The
uncertainty in Ref. [40] is attributed to higher-order terms
in Eqs. (4) and (5) that were neglected. This uncertainty
was estimated to be of the order of 10% [40]; however,
there was no attempt to estimate the uncertainties asso-
ciated with the model dependence of the dipole polar-
izabity. In this work, we rigorously quantify the latter,
while we assume 10% uncertainty to account for the
former, resulting in δe ¼ 0.00748ð96Þ fm5 kHz−1. Using
values for ΔE, δQED, and C reported in Table III of
Supplemental Material [53], at N3LO we find

δr2je ¼ 1.0758ð15Þ fm2: ð13Þ

We only find a weak modification of the central value
compared to the result in Ref. [24] δr2je ¼ 1.0757ð15Þ,
which used Refs. [40,63]. This highlights the weak sensi-
tivity of ordinary helium atoms to nuclear polarizabilities.
In Fig. 3, we present our values of δr2 (red) at N3LO in

comparison to previous extractions by Schumann et al. [21]
and van der Werf et al. [24], along with other experimental
results, also shown in Fig. 5 of Ref. [21]. While the van der
Werf et al. datum remains mostly unchanged due to the

insignificance of nuclear structure corrections in ordinary
atoms, our updated analysis moves the muonic atom datum
the left, enhancing the discrepancy to a 4σ level.
Conclusions—We have calculated nuclear structure

corrections in muonic and ordinary helium atoms using
accurate few-body methods and χEFT interactions at
various orders. With respect to muonic atoms, while
various chiral orders were previously explored for muonic
deuterium [65,66], this is accomplished here for three- and
four-body nuclei. Ordinary helium atoms are analyzed here
from a consistent theoretical point of view for the first time.
We applied Bayesian inference techniques to quantify

uncertainties stemming from the χEFT truncation. For
muonic atoms, this allows us to improve previous simple
estimates [34] based on comparing the N3LO chiral and the
AV18þ UIX phenomenological interactions. At N3LO,
the obtained Bayesian uncertainty is comparable to the
previous ones, but is now founded on solid statistical
ground. To bring the muonic-atom extraction of δr2 in
agreement with that from ordinary atoms, δμ would have to
change by 0.00875 fm2. This change is excluded by our
Bayesian analysis at the 95% confidence level. Conversely,
to bring ordinary atom measurements in agreement with the
results from muonic atoms, δe would have to be 8 times
larger as well as the opposite sign. This is excluded by our
Bayesian analysis, as well as from the evidence that 4He is
more strongly bound than 3He, and therefore a change of
sign is not expected.
Overall, the helium isotope-shift puzzle (see Fig. 3) is

not resolved, but rather enhanced to a 4σ level. Therefore,
our theoretical analysis suggests that most likely the
explanation of the puzzle is related to underestimated
systematic errors in the experiment or neglected correction
terms.
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