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Abstract
Obtaining labels for supervised learning is time-consuming, and practitioners seek to minimize manual labeling. Semi-
supervised learning allows practitioners to eliminate manual labeling by including unlabeled data in the training process.
With many deep semi-supervised algorithms and applications available, practitioners need guidelines to select the optimal
labeling algorithm for their problem. The performance of new algorithms is rarely compared against existing algorithms
on real-world data. This study empirically evaluates 16 deep semi-supervised learning algorithms to fill the research gap.
To investigate whether the algorithms perform differently in different scenarios, the algorithms are run on 15 commonly
known datasets of three datatypes (image, text and sound). Since manual data labeling is expensive, practitioners must know
how many manually labeled instances are needed to achieve the lowest error rates. Therefore, this study utilizes different
configurations for the number of available labels to study the manual effort required for optimal error rate. Additionally, to
study how different algorithms perform on real-world datasets, the researchers add noise to the datasets to mirror real-world
datasets. The study utilizes the Bradley–Terry model to rank the algorithms based on error rates and the Binomial model to
investigate the probability of achieving an error rate lower than 10%. The results demonstrate that utilizing unlabeled data
with semi-supervised learning may improve classification accuracy over supervised learning. Based on the results, the authors
recommend FreeMatch, SimMatch, and SoftMatch since they provide the lowest error rate and have a high probability of
achieving an error rate below 10% on noisy datasets.

Keywords Data labeling · Software engineering · Semi-supervised learning · Bayesian data analysis

1 Introduction

Many industries have recently started implementingmachine
learning algorithms for various tasks. Among these tasks,
practitioners utilize supervised learning algorithms to solve
classification tasks such as classifying images and text. For
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companies to utilize supervised classification, datasets need
to be fully labeled. However, datasets are rarely fully labeled
in industry, and it is difficult to obtain labels for many rea-
sons [1]. One reason is that the data needs to be manually
labeled, and companies need qualified in-house personnel
to obtain high-quality labels. Specialists such as data sci-
entists and software engineers are suitable labelers but are
busy with more specialized tasks and do not have time for
labeling. If specialized personnel are unable label, the other
personnel must undergo training to perform labeling. On
the other hand, training in-house personnel is expensive in
terms of time and resources. A solution to the problems asso-
ciated with in-house labeling is crowdsourced labeling [2,
3]. Crowdsourcing allows practitioners to obtain labels by
outsourcing manual labeling to a group of people through
crowdsourcingplatforms such asAmazonMechanicalTurk.1

A problem with crowdsourcing is that it is difficult to guar-
antee the quality of the labels since the labelers may lack the
required expertise and knowledge. In addition, crowdsourc-

1 https://www.mturk.com.
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ing is expensive, and companies with confidential data are
not allowed share such data through labeling services. These
two problems make manual labeling through crowdsourcing
unappealing, and companies prefer to implement automated
labeling approaches [3, 4].

According to [5], semi-supervised learning is a popular
tool to reduce manual labeling. Semi-supervised learning
applies to image, video, sound, text, and tabular datasets,
but industry practitioners rarely utilize it [5]. Theoretical and
empirical studies demonstrate that semi-supervised learn-
ing is not guaranteed to outperform supervised learning and
may even degrade performance [6–10]. Due to the suc-
cess of deep learning, the interest in deep semi-supervised
learning [11–16] has increased. Development and evalu-
ation of algorithms are time-consuming, so practitioners
rely on benchmark studies to choose algorithms [17]. There
are four dimensions to consider in semi-supervised learn-
ing. Performance: Which algorithms have the lowest error
rate? Datatype: How do the algorithms perform differently
depending on the datatype,Manual Effort: how many labels
are required for an algorithm to reach optimal error rate and,
Robustness: the capacity of a model to maintain its predic-
tive performance when the input data is subject to noise
and perturbations [18]. Recently, Microsoft made the Uni-
fied Semi-Supervised learning Benchmark (USB) 2 publicly
available for practitioners, which lets them experiment and
evaluate deep semi-supervised learning algorithms. At the
time of this study, USB contains 16 deep semi-supervised
learning algorithms evaluated on 15 datasets across three
datatypes: image, text and audio. Since the first evaluation of
USB [19], two more algorithms, FreeMatch [20] and Soft-
Match [21], have been added to USB. All 16 algorithms,
includingSoftMatch, FreeMatch and supervised learning, are
included in this study.

This study reports an empirical evaluation of deep semi-
supervised learning algorithms. The study aims to assess
the algorithms’ performance by measuring the error rate. To
access the datatype and manual effort dimensions, the error
rate is analyzed separately for different datatypes and differ-
ent amounts of data, respectively. Last, the study analyses the
robustness dimension by simulating how noise in the dataset
affects the error rate.

The contribution of this study is multi-fold. First, the
study presents the top three highest ranking algorithms
with respect to the lowest error rate. Second, it provides
the highest-ranking algorithms for each individual datatype.
Third, it demonstrates to practitioners how much manual
effort is needed to receive sufficient labels for optimal error
rate. Fourth, the study presents which algorithms have a
high probability of achieving an error rate below 10%.
Fifth, it investigates whether noise in the datasets improve

2 https://github.com/microsoft/Semi-supervised-learning.

the performance of the algorithm and increase the algo-
rithm’s probability of reaching an error rate below 10%. The
abovementioned aspect is important since many datasets in
empirical evaluations are too easy for algorithms to learn.
Empirical evaluations that only utilize easy datasets are unre-
liable. Furthermore, studies [18, 22] demonstrate that adding
noise may improve the error rate of algorithms. Last, the
study recommends the optimal algorithms for each scenario
based on the lowest error rate and their ability to improve or
maintain optimal error rate in the presence of noise. The algo-
rithms are ranked with the Bayesian Bradley–Terry model.
USB was initially evaluated in [19] by ranking the algo-
rithms according to their Friedman Ranks [23]. Friedman
ranks only provide point estimates of the ranks, which may
lead to misleading conclusions regarding the performance of
algorithms. Running each algorithm on each dataset many
times utilizing different seeds lead to variations in perfor-
mance. The Bayesian Bradley–Terry model accounts for that
variation by modeling uncertainty [24, 25].

Thanks to the results of this study, practitioners in
academia and industry have concrete guidelines on what
algorithm is optimal for their labeling scenario. An optimal
algorithm is in the top three highest ranking algorithms with
respect to the error rate and have an increased probability of
achieving an error rate below 10% in the presence of noise.
According to the results FreeMatch, SimMatch and Soft-
Match are the top three algorithms. None of the algorithms
achieve an error rate below 10% without noise. FreeMatch
is optimal for all datatypes for small allocation of labels.
SimMatch is tied with FreeMatch and is optimal for image
datasets and small allocation of labels. Finally, SoftMatch is
optimal for text data for both small and large allocations of
labels.

The paper is organized in the following manner. Section2
describes the theory behind semi-supervised learning. Sec-
tion3 outlines the research method, how the simulations are
set up, what software packages are utilized and how the algo-
rithms are evaluated. Section4 presents the results, and Sect.
5 discusses the results. Finally, the paper is concluded in Sect.
7. A replication package together with an in-depth analysis
of the validity of the Bayesian Data Analysis are found at the
online repository.3

2 Background

This section discusses related work and presents a theoretical
overview of themachine learning and statistical tools utilized
in this study.

3 https://github.com/teodorf-bit/Bayesian-Data-Analysis-of-
Universal-Semi-Supervised-Benchmark.
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2.1 Labeling challenge in software engineering

Many machine learning tasks in the industry are concerned
with supervised learning which requires labeled data. Label-
ing may be time-consuming and 80% of the time spent in a
Machine Learning project is allocated to labeling [26]. Since
labeling is time-consuming, it is relevant that the right per-
sonnel within the company do the labeling. Data scientists
and software engineers might have to spend their time on
more specialized tasks such as utilizing different program-
ming languages to build machine learning models, perform
statistical analysis, and collect data from databases such as
SQL [1].

If the company does not have the resources to perform
in-house labeling, third-party services such as crowdsourc-
ing [27] are available. Examples of crowdsourcing platforms
are Amazon Mechanical Turk [28]4 and Lionbridge AI.5

Crowdsourcing encourages different labelers to label data
by rewarding them. By utilizing crowdsourcing, companies
do not need to develop their labeling infrastructure or hire
and train labelers. The issues with this approach are that it is
challenging to guarantee high-quality labels and that many
companies may not share sensitive data.

A tool that helps reduce the manual labeling is Active
Learning [29]. Active learning queries what instances to be
labeled according to aquery strategy that selects the instances
based on how informative they are. Query strategies ensure
that labelers do not waste time labeling random instances that
will not reduce the error rate. The training set is updated by
adding the newly labeled instances, and themodel is retrained
utilizing the updated training set. If themodel has not reached
the desired error rate, then the training set is updated, and
the model is retrained until the error rate of the model is
sufficient.

2.2 Semi-supervised learning

Machine learning and deep learning algorithms require large
amounts of data to achieve low error rate. In the industry
many datasets are missing labels either entirely or partially.
In order to achieve high-performance classification algo-
rithms without utilizing costly tools such as crowdsourcing
and active learning for manual labeling, companies uti-
lize semi-supervised learning [30]. Semi-supervised learning
algorithms have been designed to learn from unlabeled and
labeled data to improve the decision boundary acquired by
supervised learning. As unlabeled data is often abundant in
industrial settings, it is reasonable to utilize semi-supervised
learning to improve the error rate.

4 https://www.mturk.com.
5 https://www.lionbridge.com/machine-translation/.

There are fourmain assumptions in semi-supervised learn-
ing. The main assumption is that few labeled instances and
many unlabeled instances are available. The three other
assumptions put constraints on the distribution. These are the
smoothness, cluster, and themanifold assumptions [31]. The
smoothness assumption says that if two features lie close to
each other in a high-density region, their output labels also
lie close. The cluster tells us that if two features lie in the
same cluster, they likely have the same class label. The man-
ifold assumption, often considered a generalization of the
two assumptions above, states that each datapoint lies on a
manifold [30].

2.3 Universal semi-supervised benchmark (USB)

USB is an open-source platform for evaluating semi-
supervised learning algorithms. It contains algorithms for
various Computer Vision (CV), Natural Language Process-
ing (NLP), and Audio-related tasks. The algorithms are
evaluated utilizing 15 datasets equally distributed among the
three tasks. Initially, the first evaluation of USB [19] uti-
lizes Friedman Ranks [23] to rank a subset of the algorithms
included in this study. Furthermore, this study ranks the algo-
rithms utilizing theBayesianBradley–Terrymodel. Bayesian
models are more interpretable, do not rely on p-values and
have methods to validate results. In addition, this study
provides more evidence to prove that the algorithms will
work better on real-world datasets. Other studies [32] utilize
Item Response Theory to illustrate that several datasets are
inappropriate for evaluating algorithms. Real-world datasets
contain noise and are more complex for algorithms to learn.
This study evaluates whether the algorithm will perform
well on real-world datasets by adding noise to the bench-
mark datasets to investigate if there is a change in the
algorithm’s performance. USB is an extension of its pre-
decessor, TorchSSL, and evaluates the algorithms utilizing
fewer labels. In addition, USB introduces pre-trained trans-
formers to speed up training time for several algorithms.
The supervised baselines utilized to evaluate USB in this
study are: WRN [33], WRN-Var, Resnet [34], ViT [35],
BERT [36], and Wave2vec-v2 [19]. The Semi-Supervised
vised algorithms are, Pseudo-Labeling [37], �-model [38],
Mean-Teacher [39], VAT [40],MixMatch [41], ReMixMatch
[42], UDA [43], FixMatch [44], Dash [45], CoMatch [46],
CRMatch [47], FlexMatch [20], AdaMatch [48], SimMatch
[49] and SoftMatch [21].

2.4 The Bradley–Terry model

The Bayesian version [50, 51] of the Bradley–Terry model
[52, 53] is utilized for ranking and comparison of objects.
Each outcome yi, j of the comparisons are binary variables,
either taking value 1 with probability pi, j if i beats j or value

123

https://www.mturk.com
https://www.lionbridge.com/machine-translation/


4130 International Journal of Data Science and Analytics (2025) 20:4127–4148

0with probability 1− pi, j otherwise. Therefore the outcomes
yi, j are Bernoulli distributed:

yi, j ∼ Bernoulli(pi, j ). (1)

Furthermore, the Bradley–Terry model assumes that the out-
comes are independent. To rank n objects, the first step is to
calculate the strength parameter μ ∈ R of each object and
then calculate the probability of object i beating object j :

pi, j := P(i over j) = logit−1(μi − μ j ). (2)

Next, the algorithms are ranked by strength parameter so that
the highest ranking algorithm have highest value of strength
parameter. The Bradley–Terry model’s ability to calculate
the probability of objects beating each other and access the
reliability of ranks through uncertainty estimation makes it
preferable to other models [50].

2.5 Logit generalized linear mix model for binomial
samples

This study utilizes a Generalized Linear Mixed Model
(GLMM) [54] to account for the random effect on each
dataset. The Generalized Linear Mixed Model for Binomial
samples [50, 54] calculates the probability of success (an
algorithm yields a specific error rate). Let yi be Bernoulli
distributed observations:

yi =
{
1 if success

0 if failure
, (3)

i.e., yi ∼ Bernoulli(p).
For n samples y1, y2, ..., yn , the sum of all outcomes will be
binomial distributed:

y =
n∑

i=1

yi ∼ Binomial(n, p). (4)

Hence, the binomial distribution is utilized as likelihood. The
probability of success will be modeled as:

p = logit(P(y = 1)) = a + bx + u, (5)

u ∼ Normal(0, σ 2). (6)

where a is the fixed effect, b is the log-odds ratio and u is the
random effect.

3 Researchmethod and data analysis

This section describes the datasets utilized, the data collec-
tion approach, and the tools utilized to analyze the results.

This simulation study is an empirical evaluation of
deep semi-supervised learning algorithms for classification.
Benchmark experiments were run as described in [17],
but Bayesian data analysis (BDA) was utilized instead of
frequentist statistics. BDA is recommended for empirical
software engineering [55] and has been utilized for bench-
mark experiments in similar contexts [50]. In benchmark
experiments, a contrived environment is set up to analyze and
measure the differences in various techniques. Two common
goals of benchmarking studies include algorithm compari-
son and characterizing algorithms’ performance by problem
features. The first goal is to compare the performance of
many algorithms to understand the strengths and weaknesses
of different algorithms for different types of problems. In the
context of this study, the goal is to determinewhat algorithms
achieve the lowest error rate. The second goal is to link fea-
tures of the problem with the algorithms’ performance. In
this study, the features are the datatypes, and the objective is
to investigate whether some algorithms perform better on a
particular dataset and datatype. Lastly, the study investigates
howmuch manual effort is required to achieve a certain error
rate. To accomplish these goals, the following research ques-
tions were studied.

• RQ1: What are the top-3 highest ranking algorithms in
terms of lowest error rate.

• RQ2: How do the algorithms rank differently according
to a specific datatype?

• RQ3: How do the algorithms rank differently depending
on the number of labeled instances in the dataset?

• RQ4-a: What algorithms have high probability of yield-
ing an error rate ε ≤ 0.1

• RQ4-b:What is the impact of noise in the probability of
success of each algorithm’s error rate ε ≤ 0.1

RQ1 and RQ2 have previously been answered in [19], but
in this study, more algorithms were studied, and Bayesian
Bradley–Terry ranks were utilized. Due to the Bayesian
nature of Bradley–Terry ranks, they provide a more fair and
accurate data analysis [24, 25] than frequentistic Friedman
ranks [23].

3.1 Descriptive statistics

The collected data is assumed to be a sample of instances
x1, . . . , xn , independent and identically distributed (i.i.d)
from a random variable (r.v) X . The following descriptive
statistics were utilized to describe the data collected from
the simulations. The sample mean is defined as:

x = 1

n

n∑
i=1

xi . (7)
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The sample variance is defined as:

s2 = 1

n − 1

n∑
i=1

(xi − x)2, (8)

Furthermore, the mean represents the average value of the
sample. For α ∈ (0, 1), a real number qα is called the α-
quantile if:

P(X ≤ qα) ≥ α. (9)

If qα is the α-quantile of a sample, then α% of the instances
in the sample distribution are greater than qα . For α = 0.5,
the quantile q0.50 splits the sample dataset into two equal
sizes and is called the median. The difference between the
95% quantile and the 5% quantile is called the interquantile
range:

Range = q0.95 − q0.05, (10)

Moreover, the interquantile range measures the spread of the
data.

3.2 Bayesian data analysis

In this study, Bayesian Data Analysis (BDA) was utilized
due to the many disadvantages of frequentistic statistics that
have been reported [24, 25]. BDA is recommended for empir-
ical software engineering due to its ability to mitigate the
shortcomings of the frequentistic approach [55], and has pre-
viously been utilized to analyze other benchmarks [50, 56].

The classical view of statistics expresses probability in
terms of random repeatable events. However, many events
are not repeatable, so the classical view of viewing prob-
ability becomes useless. The existence of non-repeatable
events motivates the Bayesian viewpoint to express prob-
ability as a measurement of uncertainty. This uncertainty is
updated through new evidence. Suppose prior information
of the parameter θ is available before observing evidence
x . This prior information is expressed in a prior probability
distribution p(θ). After observing evidence x , the updated
information is expressed through the posterior probability
p(x |θ) and is calculated with Bayes formula [57]:

p(θ |x) = p(x |θ)p(θ)

p(x)
, (11)

where p(x) is the marginal distribution. Utilizing Bayesian
methods for modeling θ is advantageous because posterior
distributions consider all values of θ compared to frequen-
tistic statistics where θ is treated as a scalar. Prior predictive
checks and posterior predictive checks are utilized to evaluate
the suitability of the prior distribution and the quality of the

resulting posterior distribution. Predictive checks are intu-
itivemethods for evaluating results compared to test statistics
and p-values [24, 25, 55].

3.3 Algorithms

The deep semi-supervised learning algorithms in USB are
inductive. Inductive algorithmswork just as supervised learn-
ing because the algorithms are trained with training and
testing sets. However, semi-supervised learning utilizes both
labeled and unlabeled data in the training set. The deep
semi-supervised learning algorithms in USB were chosen
for evaluation due to their popularity [58]. Fourteen differ-
ent deep semi-supervised learning algorithms were evalu-
ated in this study: �-Model [38] (pimodel), Mean-Teacher
[39](meanteacher), Pseudo-Label [37](pseudolabel), VAT
[40](vat), MixMatch [41](mixmatch), ReMixMatch [42]
(remixmatch), UDA [43](uda), FixMatch [44](fixmatch),
FlexMatch [20](flexmatch), Dash [45](dash), AdaMatch
[48](adamatch), CRMatch [47](crmatch), CoMatch [46]
(comatch), SimMatch [49](simmatch), SoftMatch
[21](softmatch) and FreeMatch [59](freematch). Supervised
learning (supervised)was included in the evaluation to inves-
tigate when unlabeled data reduces the error rate.

3.4 Datasets

The 15 datasets utilized in this study are found in the list
below. There are five datasets for each datatype: image, text
and audio.

• Image data:

– Cifar-100: [60]. The dataset contains 32 × 32 color
images divided into 100 classes. Each class contains
600 images each.

– STL-10: [61] The dataset contains 96 × 96 pixel
images divided into ten classes: airplane, bird, car,
cat, deer, dog, horse, monkey, ship, truck. Each class
contains 1300 instances each. The images were col-
lected from ImageNet.

– EuroSat: [62, 63] The dataset contains 64 × 64
pixel images divided into ten classes, AnnualCrop,
Forest, HerbaceousVegetation, Highway, Industrial,
Pasture, PermanentCrop, Residental, River and Seal-
Lake. All classes contain 3000 instances each, except
Permanent Crop and River which contain 2500
instances each.

– TissueMNIST: [64, 65] The dataset contains 32×32×
7 gray-scale images of kidney cortex cells. There are
eight classes and a total of 236,386 instances.

– Semi-Aves: [66] The dataset contains images of birds
divided into 1000 classes of different Aves bird
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species. The images are sampled from the iNat-2018
dataset. There are 12,220 images and each class con-
tains 23–250 instances.

• Text data:

– IMDB: [67] The dataset contains movie reviews
labeled as positive or negative. The dataset is uti-
lized for binary sentiment classification and contains
50,000 instances.

– AGNews: [68] The dataset contains news articles col-
lected from 2000 online web sources. There are four
classes: world, sports, business, and sci-tech. Each
class contains 31,900 instances for a total of 127,600
instances.

– Amazon Review: [69] This dataset contains reviews
fromAmazon. It contains 233.1million instances dis-
tributed across 5 classes.

– Yahoo! Answers: [70] The dataset is a sample from
the original corpus provided by the Yahoo! Research
Alliance Webscope Program. The dataset is a text
classification benchmark and contains the ten largest
classes from the original dataset: Security & Culture,
Science & Mathematics, Health, Education & Ref-
erence, Computers & Internet, Sports, Business &
Finance, Entertainment & Music, Family & Rela-
tions, andPolitics&Government. Each class contains
14,600 instances for a total of 146,000 instances.

– Yelp Review: [71] The dataset contains reviews from
Yelp and is divided into five classes: 1,2,3,4,5. There
is a total of 10,000 instances [72].

• Audio

– GTZAN: The dataset contains 30-second-long audio
files. The dataset is divided into ten classes: blue,
classical, country, disco, hip-hop, jazz, metal, pop,
reggae, and rock. Each class contains 100 instances
for each class.

– UrbanSound8K: [71] The dataset contains 4-second-
long audio files in.wav format. There are ten classes:
air conditioner, car horn, children playing, dog bark,
drilling, engine idling, gunshot, jackhammer, siren,
and street music. The dataset contains a total of 8732
instances.

– FZDnoisy18K: [73] The dataset contains 42.5h of
audio from Freesound. There are 16,860 instances in
total, distributed across 20 classes: Acoustic guitar,
Bass guitar, Clapping, Coin, Crash cymbal, Dishes
pots and pans, Engine, Fart, Fire, Fireworks, Class,
Hi-hat, Piano, Rain, Slam, Sueak, Tearing,Walk foot-
steps, Wind, and Writing.

– Keyword Spotting: [74] The dataset contains audio
files of people saying one-word commands. The

dataset contains more than 60,000 audio files dis-
tributed across 30 classes.

– Esc50: [75]. The dataset contains 5-second-long
environmental audio recordings divided into 50
semantic classes. Each class contains 40 instances.

3.5 Data collection

This study utilized the results from evaluations previously
performed by Microsoft. The simulation results are found at
the USBGitHub repository3. All choices of hyperparameters
for the simulations are found in the supplementarymaterial of
the original paper [19].TheUSBrepository contains intervals
around themean error rate for each algorithmon each dataset.
The intervals are on the form (x ± m), where x is the error
rate. Assuming that (x ± m) is a (1 − α)% CI and that x ∼
Normal(μ, σ ) the (1− α)% CI for μ was derived. Data was
simulated from the (1 − α)% interval of μ is given by:

x − λα/2
s√
n

≤ μ ≤ x + λα/2
s√
n
. (12)

If m = λα/2
s√
n
, then s = mλα/2

√
n where λα/2 is

the α/2-quantile. Therefore the true distribution of μ is
Normal(x,mλα/2). For this study, the parameters were cho-
sen as n = 1000 and α = 0.05.

3.6 Experimental setup

The number of available labels was varied to answer ques-
tions regarding manual effort. This paper considers the two
cases where the training contains a "small" number of labels
and a "large" number of available labels. For "small" the
number of labels varies depending on the dataset and for
"large", there are between 2 and 5 times the "small" number
of labels see Table 1. The simulations were computed for ten
iterations utilizing different random seeds, and results were
saved in a.csv file called themaster dataset. The pseudocode
for creating the master dataset is found in algorithm 1, and a
sample of the master dataset is illustrated in Table 2.

Algorithm 1 Creating the dataset
Require: n
1: for d ∈ dataset do
2: for a ∈ algorithm do
3: for � ∈ available labels do
4: Draw (x1, · · · , xn) from Normal(x,mλα/2).
5: end for
6: end for
7: end for
8: Concatenate into a data frame εd with n rows.
9: Concatenate all ε1, · · · , εd into one data frame see Table

2.
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Table 1 Summary table for the
datasets

Datatype Dataset Labels (Small/Large) Training data Test data Classes

Image Cifar-100 2/4 50,000 10,000 100

STL-10 2/4 50,000 10,000 100

EuroSat 4/10 5000/10,000 8000 10

TissueMNIST 10/50 165,466 47,280 8

Semi-Aves 15/53 5959/26,640 4000 200

Text IMDB 10/50 23,000 25,000 2

Amazon Review 50/200 250,000 65,000 5

Yelp Review 50/200 250,000 50,000 5

AG News 10/50 100,000 7600 4

Yahoo! Answers 50/200 500,000 60000 10

Sound Keyword Spotting 5/20 18538 2567 10

ESC-50 5/10 1200 400 50

UrbanSound8K 10/40 7079 837 10

FZDnoisy 52/171 1772/15813 947 20

GTZAN 10//40 7000 1500 10

From left to right, the columns contain the datatype, the name of the dataset, the number of labels utilized
for each class, the size of the training dataset, the size of the testing dataset and the number of classes in the
dataset

Table 2 Sample of the
generated dataset

error_rate Dataset Algorithm Iteration number Manual effort Datatype

35.788 fsdnoisy pimodel 5 Small Audio

61.232 yahoo_answers Pimodel 5 Small Text

37.741 semi_aves vat 6 Large Image

34.721 yahoo_answers vat 5 Large Text

60.018 amazon_review fixmatch 4 Small Text

31.095 yahoo_answers adamatch 1 Large Text

48.716 gtzan vat 8 Large Audio

31.154 fsdnoisy freematch 7 Small Audio

60.009 urbansound8k dash 9 Small Audio

22.335 stl Softmatch 2 Small Image

3.7 Data analysis

3.7.1 Bradley–Terry model

The Bradley–Terry model described in Sect. 2.4 was utilized
withμ = aalg+abm.Here,aalg andabm are thefixed effects of
the algorithms and the benchmarks, respectively. The priors
were chosen to have the following distributions.

aalg,i ∼ Normal(0, 2), (13)

abm,i, j ∼ Normal(0, s), (14)

s ∼ Exponential(0.1). (15)

for all scenarios.

3.7.2 Generalized linear mixedmodel (GLMM)

The model in Sect. 2.5 was utilized with a = aalg + abm and
b = bnoise. Here, aalg is the fixed effect of the algorithm, and
abm is the fixed effect of each benchmark. The priors were
chosen to have the following distributions:

aalg,i ∼ Normal(0, d), (16)

bnoise,i ∼ Normal(0, d), (17)

abm, j ∼ Normal(0, s), (18)

s ∼ Exponential(z). (19)

where the variables d, z were chosen so that all the MCMC
chains converge for each of the scenarios. For aggregated
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data d = 5, z = 0.1, for audio d = 8.5, s = 1.9, for
images, text, small allocation, and large allocation of labels
d = 8.5, z = 2.2.

Table 3 Summary statistics for the error rate (aggregated)

Algorithm Median 5% 95% Range

adamatch 26.113 3.275 52.843 49.568

crmatch 28.846 2.467 57.829 55.362

Comatch 29.818 4.458 56.191 51.733

Dash 31.050 3.482 56.297 52.816

Fixmatch 28.684 2.522 56.985 54.463

Flexmatch 29.995 2.674 68.091 65.417

Freematch 26.429 2.874 54.844 51.970

Meanteacher 32.472 5.437 63.772 58.335

mixmatch 44.701 10.334 74.372 64.038

pimodel 41.073 11.866 81.752 69.886

Pseudolabel 34.859 5.084 60.871 55.786

Remixmatch 80.000 8.180 98.000 89.820

Simmatch 27.347 2.658 52.637 49.979

Softmatch 27.924 2.260 59.830 57.569

Supervised 33.863 4.854 59.981 55.127

uda 33.643 7.380 93.393 86.013

vat 33.638 2.853 64.891 62.038

Table 4 Summary statistics for the error rate (image data)

Algorithm Median 5% 95% Range

adamatch 21.804 3.626 59.667 56.041

crmatch 24.985 10.170 62.449 52.279

comatch 28.231 3.629 65.146 61.517

Dash 27.005 5.325 58.286 52.960

Fixmatch 29.135 4.584 61.240 56.655

Flexmatch 27.413 4.810 81.700 76.890

Freematch 23.442 3.323 60.397 57.074

Meanteacher 30.730 3.505 60.562 57.057

mixmatch 40.268 21.788 65.746 43.958

pimodel 36.693 10.415 76.959 66.544

Pseudolabel 30.067 3.817 65.154 61.338

Remixmatch 25.862 2.387 63.580 61.194

Simmatch 21.037 4.686 57.470 52.784

Softmatch 23.329 2.976 74.020 71.043

Supervised 33.287 6.411 60.125 53.714

uda 25.866 6.332 62.387 56.054

vat 27.406 8.467 58.261 49.795

4 Results

This section presents the results from the data analysis and
summarises the results into guidelines for practitioners. The
measurements utilized to describe the results are discussed
in section 3.1.

Tables 3, 4, 5, 6, 7, 8, illustrate descriptive statistics for the
error rates for each scenario. From left to right, the columns

Table 5 Summary statistics for the error rate (text data)

Algorithm Median 5% 95% Range

adamatch 30.827 6.236 52.806 46.570

crmatch 32.674 4.806 56.839 52.033

Comatch 33.274 4.459 54.208 49.749

Dash 35.263 3.627 57.921 54.294

Fixmatch 32.528 3.055 59.410 56.355

Flexmatch 33.466 3.598 53.348 49.751

Freematch 29.669 5.889 52.176 46.286

Meanteacher 38.513 8.153 63.545 55.391

Mixmatch 44.317 8.236 78.126 69.889

Pimodel 50.667 15.160 86.742 71.581

Pseudolabel 42.917 7.708 58.447 50.740

Remixmatch 80.000 50.000 90.000 40.000

Simmatch 32.439 5.377 52.301 46.924

Softmatch 33.866 4.226 51.319 47.092

Supervised 37.000 8.431 63.814 55.384

uda 57.691 21.537 115.187 93.651

vat 38.485 4.520 83.389 78.869

Table 6 Summary statistics for the error rate (audio data)

Algorithm Median 5% 95% Range

adamatch 25.213 2.491 39.255 36.764

crmatch 25.369 1.325 54.504 53.180

comatch 25.677 9.192 47.807 38.615

Dash 31.802 1.852 48.570 46.718

Fixmatch 23.316 1.854 49.496 47.641

Flexmatch 29.551 2.222 49.338 47.116

Freematch 26.333 2.368 57.522 55.155

Meanteacher 29.383 5.494 63.724 58.230

Mixmatch 50.611 9.969 75.715 65.746

Pimodel 39.693 19.141 64.029 44.887

Pseudolabel 30.908 4.929 59.690 54.761

Remixmatch 93.246 75.096 105.270 30.173

Simmatch 22.890 2.157 46.629 44.472

Softmatch 26.346 1.366 44.198 42.832

Supervised 32.137 1.828 53.046 51.219

uda 27.960 5.619 52.383 46.764

vat 34.829 2.296 51.224 48.929
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Table 7 Summary statistics for the error rate (small allocation of labels)

Algorithm Median 5% 95% Range

adamatch 27.062 2.652 54.640 51.988

crmatch 31.654 2.834 60.215 57.381

Comatch 33.542 5.231 62.719 57.488

dash 34.553 4.164 58.762 54.598

Fixmatch 31.501 2.617 55.869 53.252

Flexmatch 31.694 2.659 60.062 57.404

Freematch 29.162 2.935 58.859 55.925

Meanteacher 36.885 5.817 65.507 59.691

Mixmatch 46.660 10.088 74.324 64.235

Pimodel 49.472 20.681 85.018 64.337

Pseudolabel 39.232 6.954 67.484 60.530

Remixmatch 80.000 8.451 98.000 89.549

Simmatch 29.969 2.401 54.586 52.185

Softmatch 29.811 2.692 67.251 64.559

Supervised 38.428 5.384 65.532 60.148

uda 40.277 9.917 86.941 77.025

vat 36.938 2.847 81.862 79.014

Table 8 Summary statistics for the error rate (large allocation of labels)

Algorithm Median 5% 95% Range

adamatch 25.202 4.501 49.681 45.180

crmatch 28.056 1.813 47.874 46.061

Comatch 25.651 4.135 48.926 44.791

Dash 28.555 2.470 50.240 47.771

Fixmatch 22.285 2.500 59.410 56.910

Flexmatch 27.987 3.188 84.791 81.602

Freematch 24.992 4.049 48.096 44.046

Meanteacher 30.143 5.206 54.357 49.151

Mixmatch 38.777 11.146 74.636 63.489

Pimodel 35.722 8.892 61.902 53.011

Pseudolabel 30.195 3.895 52.304 48.409

Remixmatch 80.000 9.777 98.000 88.223

Simmatch 24.682 3.272 50.560 47.288

Softmatch 25.487 1.989 44.927 42.938

Supervised 30.293 4.768 50.468 45.700

uda 31.854 5.662 98.290 92.628

vat 29.984 2.987 52.603 49.616

in the tables illustrate the name of the algorithm, the median,
5% quantile, 95% quantile, and the interquantile range.

Table 3 illustrates the descriptive statistics of the error rate
of the aggregated data. The descriptive statistics demonstrate
that AdaMatch is the algorithm with the lowest error rate.
Tables 4, 5 and 6 demonstrate that the algorithmwith the low-
est error rate differswhen investigating datatype individually.
The algorithms with the lowest error rates for image, text and

Table 9 Ranking of the algorithms (aggregated data)

Models Median rank Variance of the rank

adamatch 2 3.644

simmatch 3 4.649

Freematch 4 4.565

Softmatch 4 4.972

crmatch 5 4.918

Fixmatch 5 5.054

Flexmatch 5 5.080

Dash 8 3.452

comatch 9 3.587

Meanteacher 11 2.763

Supervised 11 2.583

vat 11 2.497

uda 12 2.366

Pseudolabel 14 1.610

pimodel 15 1.140

Mixmatch 16 0.771

Remixmatch 17 0.005

Table 10 Ranking of the algorithms (image data)

Models Median rank Variance of the rank

Freematch 3 7.323

Simmatch 3 7.169

adamatch 4 8.649

Remixmatch 4 8.201

Flexmatch 6 10.034

uda 6 10.349

crmatch 7 11.142

Dash 7 10.471

Fixmatch 8 11.620

Softmatch 8 10.730

Comatch 12 9.570

Supervised 12 8.426

Mixmatch 14 6.564

Pimodel 14 6.689

Vat 14 7.911

Pseudolabel 15 5.983

Meanteacher 16 3.951

audio areSimMatch, FreeMatch andSimMatch, respectively.
Similarly, tables 7 and 8 demonstrate that the algorithm with
the lowest error rate is different for small and large allocations
of labels. For small allocation of labels, the algorithm with
the lowest error rate is AdaMatch, and for large allocation of
labels, the algorithm with the lowest error rate is SimMatch.
In addition, the error rate decreases as the number of labels
increases.
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Table 11 Ranking of the algorithms (text data)

Models Median rank Variance of the rank

adamatch 3 5.406

crmatch 4 5.990

Softmatch 4 6.509

comatch 5 6.632

Fixmatch 5 6.670

Freematch 5 6.802

Simmatch 5 6.665

Dash 7 6.330

Flexmatch 7 5.657

Meanteacher 10 2.270

Supervised 11 1.719

vat 12 1.795

Mixmatch 14 1.585

Pimodel 14 1.581

Pseudolabel 14 1.490

uda 16 0.220

Remixmatch 17 0.003

Table 12 Ranking of the algorithms (audio data)

Models Median rank Variance of the rank

Fixmatch 3 6.201

Softmatch 3 5.346

adamatch 4 6.839

Simmatch 4 6.404

Freematch 6 8.865

uda 6 9.413

crmatch 7 8.640

Flexmatch 7 8.571

Comatch 10 8.254

Dash 11 7.286

Meanteacher 11 8.005

vat 11 7.784

Supervised 12 6.196

Pseudolabel 13 4.673

Pimodel 15 0.729

Mixmatch 16 0.195

Remixmatch 17 0.000

4.1 Analysis of the ranks

The master dataset was altered differently to answer each
research question before applying the models. To obtain the
aggregated results, the column that contains manual effort
and datatype was dropped from the master dataset. The man-
ual effort column was ignored to obtain the results based on

Table 13 Ranking of the algorithms (small allocation of labeled data)

Models Median rank Variance of the rank

adamatch 2 3.071

simmatch 3 3.671

Flexmatch 4 4.233

Freematch 4 4.108

Softmatch 4 4.277

crmatch 5 4.484

Fixmatch 6 4.405

Dash 8 3.996

Comatch 9 3.278

Meanteacher 11 2.945

vat 11 3.007

Supervised 12 2.661

uda 13 2.376

Mixmatch 14 1.972

Pseudolabel 15 1.383

Pimodel 16 0.480

Remixmatch 17 0.070

Table 14 Ranking of the algorithms (large allocation of labeled data)

Models Median rank Variance of the rank

Fixmatch 2.5 4.899

adamatch 3.0 5.053

Freematch 4.0 7.280

Simmatch 4.0 5.209

Softmatch 5.0 7.281

crmatch 6.0 7.472

Comatch 6.0 8.069

Flexmatch 7.0 8.249

Dash 9.0 7.606

Supervised 11.0 6.400

uda 11.0 7.358

Meanteacher 13.0 4.504

Pimodel 13.0 4.629

vat 13.0 5.253

Pseudolabel 14.0 3.375

Mixmatch 16.0 0.157

Remixmatch 17.0 0.089

the datatype. Finally, the column containing the datatype was
dropped to analyze the results based on manual effort.

Tables 9, 10, 11, 12, 13, 14 illustrate the rankings of
the algorithms calculated utilizing the Bradley-Terry model
described in section 3.7.1. The ranks are utilized to answer
RQ1-RQ3. From left to right, the columns illustrate the name
of the algorithm, the median rank and the sample variance of
the ranks. The high variance indicates uncertainty in the esti-
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mated ranks and explains why the ranks of many algorithms
are tied. Table 15 illustrates which algorithms are always in
the top-3 highest-ranking algorithms and table 16 illustrates
the algorithms that are tied.

4.2 Analysis of the porbability of success

This research question was answered with respect to aggre-
gated results, datatype, and manual effort. To answer RQ4,
the following operations were performed on all three of the
datasets that were utilized to answer the previous RQs. First,
a copy of the dataset was made. A new column called "SD"
(for standard deviation) was added to copied and original
variants. In the original dataset, SD = 0 to indicate the
absence of noise. In the copied dataset, SD = 3 to indicate
noise in the data. To account for noise we simulated accu-
racy from a normal distribution with mean y and standard
deviation 3. After the operations on the copied dataset were
finished, both datasets were concatenated by row into a new
dataset. When the GLMM was applied, the odds ratio (OR)
of each algorithm’s intercept (aalg) and noise (bnoise) were
computed utilizing the new dataset. ORmeasures the relative
probability of success compared to the probability of failure.
An OR > 1 means that the parameter increases the proba-
bility of success. If 0 ≤ OR < 1, the parameter decreases
the probability of success and if OR = 1, the probability of
success is unchanged.

TheORs are located in tables 17, 18, 19, 20, 21, and 22.No
algorithm has OR > 1 for the fixed effects in any scenario.
A summary of the algorithms that have an OR > 1 for the
noise parameters is located in table 23.

4.3 Guidelines for practitioners

The recommended algorithms are presented in table 24 based
on the ranks and the probability of success. The recom-
mendations are based on the algorithms in the top-three
highest-ranking algorithms and have OR > 1 in the noise
parameter. In other words, the algorithms achieve a low error
rate and perform well in the presence of noise.

Practitioners are recommended to try FreeMatch because
it is among the top three highest-ranking algorithms for each
scenario. It has OR > 1 for the noise parameter in each
scenario except for a small allocation of labels. Therefore,
FreeMatch is recommended for all datatypes but works bet-
ter with more labels. If utilizing image datasets and a small
allocation of labels and practitioners are not satisfied with
FreeMatch, they are recommended to try SimMatch. It shares
the second-highest ranking algorithm spot with FreeMatch
and has OR > 1 for the noise parameter. For text datasets and
a small allocation of labels, practitioners are recommended
to utilize SoftMatch if they are not satisfied with FreeMatch.
SoftMatch is in the top-three highest ranking algorithms and

outranks FreeMatch for text datasets. In addition, SoftMatch
has OR > 1 for the noise parameter for text and a small
allocation of labels.

5 Discussion

Semi-supervised learning is a combination of supervised
learning and unsupervised learning where unlabeled data is
utilized to improve supervised learning [76]. An unsuper-
vised classifier is said to improve supervised learning well if
it helps the classifier predict the correct label and if it provides
fairness. Fairness means that the model outputs each class
label with an equal frequency given that the class distribu-
tion in the training data is uniform [76]. Fairness is obtained
when the mutual information is maximized [76].

The objective of semi-supervised learning algorithms is to
minimize the total loss function, defined as the sumof a super-
vised loss and an unsupervised loss [37, 58]. The supervised
loss involves labeled data, and the unsupervised loss involves
unlabeled data. Semi-supervised learning algorithms based
on other machine learning methods are available. However,
previous empirical and theoretical studies demonstrate that
semi-supervised machine learning algorithms may degrade
performance [77, 78].

5.1 The quantity-quality tradeoff

In recent years, deep semi-supervised learning has increased
in popularity due to the success of the FixMatch algo-
rithm [44]. Previous algorithms like UDA, MixMatch and
ReMixMatch precede FixMatch and are all inferior in many
scenarios [44]. FixMatch takes many ideas from the previous
techniques and simplifies them yet achieves better perfor-
mance [44].

Many modern deep semi-supervised learning algorithms
including FixMatch, utilize pseudo-labeling [37], and con-
sistency regularization [43, 79]. Pseudo-labeling is a semi-
supervised technique that trains a supervised classifier
to classify pseudo-labels for unlabeled instances. These
pseudo-labels improve the generalization performance by
maximizing the conditional log-likelihood and minimizing
the entropy of unlabeled data [37].

A problemwith semi-supervised learning is that if labeled
data is scarce, the supervised classifier will perform poorly
and produce low-quality pseudo-labels [30]. Tomitigate this,
FixMatch utilizes a threshold that makes sure that only the
pseudo-labels of sufficient quality are utilized. The con-
sistency regularization aspect of FixMatch is to minimize
the cross-entropy between the predictive distributions of the
class labels givenweakly augmented and strongly augmented
instances. Utilizing pseudo-labeling leads to the quantity-
quality trade-off [21]. The quantity-quality trade-off states

123



4138 International Journal of Data Science and Analytics (2025) 20:4127–4148

Table 15 Summary of top-three highest ranking algorithms

Aggrgated Image Text Audio Small allocation of labels Large allocation of labels

�-model NO NO NO NO NO NO

Mean-Teacher NO NO NO NO NO NO

Pseudo-Label NO NO NO NO NO NO

VAT NO NO NO NO NO NO

MixMatch NO NO NO NO NO NO

ReMixMatch NO YES NO NO NO NO

UDA NO YES NO YES NO NO

FixMatch NO NO YES YES NO YES

FlexMatch NO YES NO NO YES NO

Dash NO NO NO NO NO NO

AdaMatch YES YES YES YES YES YES

CRMatch NO NO YES NO NO NO

CoMatch NO NO NO NO NO NO

SimMatch YES YES YES YES YES YES

SoftMatch YES NO YES YES YES NO

FreeMatch YES YES YES YES YES YES

Supervised NO NO YES NO YES YES

Table 16 Top-three highest ranking algorithms

Scenario 1st 2nd 3rd

Aggregated AdaMatch SimMatch FreeMatch, SoftMatch

Image FreeMatch, SimMatch AdaMatch, ReMixMatch FlexMatch, UDA

Text AdaMatch CRMatch, SoftMatch CoMatch, FixMatch, FreeMatch, SimMatch

Audio FixMatch, SoftMatch AdaMatch, SimMatch FreeMatch, UDA

Small allocation of labels AdaMatch SimMatch FlexMatch, FreeMatch, SoftMatch

Large allocation of labels FixMatch AdaMatch FreeMatch, SimMatch

that higher thresholds lead to fewer pseudo-labels in the
training set. Based on the results of this study, the optimal
algorithms are FreeMatch, SimMatch and SoftMatch, which
all extend upon FixMatch and try to provide both high quality
and quantity but in different ways. SimMatch and SoftMatch
were both developed in the same year and were originally
not compared to each other. FlexMatch was published a year
after SoftMatch and SimMatch and consequently was not
compared to these either. Therefore, none of the three was
explicitly designed to outperform one another.

The pseudo-labels that FixMatch computes are called
semantic pseudo-labels. SimMatch extends FixMatch and
strives to include more high-quality pseudo-labels by utiliz-
ing both semantic and instance pseudo-labels. The instance
pseudo-labels are calculated utilizing similarity distributions.
Semantic and instance pseudo-labels are then matched to
belong to the same class. The instance pseudo-labels are
inputs in a third loss function called the instance loss. Unlike
other semi-supervised learning algorithms, SimMatch is

unique in this regard. The previous state-of-the-art algorithm
was CoMatch which is based on consistency regularization
and contrastive learning [46]. CoMatch utilizes similarity
matching through label distribution, but SimMatch is faster,
more robust and achieves better performance than CoMatch.
The FixMatch and SimMatch algorithms utilize a fixed
threshold during training to maintain high-quality pseudo-
labels. On the downside, the algorithms discard many labels
and reduce quality. Other algorithms, such as Dash and
AdaMatch, utilize a dynamically increasing threshold to out-
perform algorithms that utilize a fixed threshold.

Like FixMatch, SoftMatch minimizes a total loss that is
decomposed into a supervised and an unsupervised loss.
The inputs of these losses are the same as FixMatch, but
the unsupervised loss is the weighted cross-entropy, which
requires a sample weight function. The sample weight func-
tion in SoftMatch is assumed to have a Gaussian truncated
distribution whose mean and variance are estimated utiliz-
ing historical predictions of the model’s exponential moving
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Table 17 Odds ratios for fixed
effects and noise parameters
(aggregated data)

Parameter OR Mean OR HPD low OR HPD high OR Range

a_adamatch 0.334 0.067 2.334 2.268

a_crmatch 0.206 0.041 1.436 1.395

a_comatch 0.183 0.036 1.249 1.213

a_dash 0.178 0.035 1.296 1.261

a_fixmatch 0.240 0.047 1.683 1.637

a_flexmatch 0.297 0.058 2.119 2.061

a_freematch 0.175 0.034 1.240 1.206

a_meanteacher 0.092 0.018 0.635 0.617

a_mixmatch 0.021 0.004 0.154 0.150

a_pimodel 0.016 0.003 0.113 0.110

a_pseudolabel 0.098 0.019 0.680 0.660

a_remixmatch 0.034 0.006 0.251 0.245

a_simmatch 0.261 0.051 1.859 1.807

a_softmatch 0.334 0.065 2.353 2.288

a_supervised 0.057 0.011 0.411 0.399

a_uda 0.052 0.010 0.370 0.360

a_vat 0.110 0.022 0.771 0.749

b_adamatch 0.929 0.800 1.078 0.278

b_crmatch 1.106 0.946 1.289 0.343

b_comatch 0.956 0.814 1.120 0.305

b_dash 0.970 0.828 1.139 0.311

b_fixmatch 0.976 0.838 1.139 0.301

b_flexmatch 0.976 0.835 1.139 0.304

b_freematch 1.033 0.879 1.216 0.337

b_meanteacher 0.980 0.829 1.158 0.329

b_mixmatch 1.087 0.864 1.363 0.499

b_pimodel 1.031 0.794 1.333 0.539

b_pseudolabel 1.000 0.852 1.177 0.325

b_remixmatch 0.999 0.815 1.233 0.418

b_simmatch 1.006 0.856 1.180 0.325

b_softmatch 0.973 0.836 1.134 0.298

b_supervised 1.032 0.864 1.238 0.375

b_uda 0.982 0.806 1.193 0.387

b_vat 0.998 0.848 1.170 0.322

average. Therefore, the threshold varies at each time stamp,
and theoretical arguments demonstrate that SoftMatch pro-
vides better quantity and quality over UDA, FixMatch and
FlexMatch [21].

TheFreeMatch algorithmutilizes supervised and unsuper-
vised loss as FixMatch, but also calculates the self-adaptive
threshold (SAT) to balance the quantity-quality trade-off by
automatically adjusting the threshold during training. The
threshold is low at the start of training, but as training con-
tinues, it becomes more confident and increases. The SAT
is calculated by combining two other thresholds, known as
global and local thresholds. The global threshold represents
the model’s confidence in unlabeled data and is computed

utilizing EMA. The local threshold is class-specific and,
therefore, considers that different class labels are easier than
others to predict. Finally, fairness is included to make the
label predictions fair. From simulations, it is observed that
FreeMatch achieves superior performance on various bench-
marks. ReMixMatch and UDA may outperform FreeMatch
due to the MixUp property [80]. The results of [59] demon-
strate that FreeMatch has a lower threshold in the early
learning process than FlexMatch and FixMatch and, there-
fore, utilizes more data than these [59].
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Table 18 Odds ratios for fixed
effects and noise parameters
(image data)

Parameter OR mean OR HPD low OR HPD high OR range

a_adamatch 0.152 0.030 0.940 0.911

a_crmatch 0.011 0.002 0.079 0.077

a_comatch 0.140 0.027 0.867 0.840

a_dash 0.070 0.014 0.437 0.423

a_fixmatch 0.064 0.012 0.413 0.401

a_flexmatch 0.071 0.014 0.465 0.451

a_freematch 0.068 0.014 0.442 0.428

a_meanteacher 0.034 0.006 0.223 0.217

a_mixmatch 0.002 0.000 0.018 0.018

a_pimodel 0.014 0.002 0.095 0.092

a_pseudolabel 0.041 0.008 0.257 0.249

a_remixmatch 0.093 0.018 0.596 0.578

a_simmatch 0.063 0.012 0.413 0.401

a_softmatch 0.153 0.030 0.983 0.952

a_supervised 0.017 0.003 0.117 0.114

a_uda 0.033 0.006 0.219 0.213

a_vat 0.026 0.005 0.170 0.165

b_adamatch 0.952 0.763 1.182 0.420

b_crmatch 1.923 1.394 2.765 1.371

b_comatch 0.924 0.732 1.162 0.430

b_dash 0.936 0.737 1.192 0.455

b_fixmatch 0.995 0.773 1.275 0.502

b_flexmatch 1.031 0.815 1.302 0.487

b_freematch 1.032 0.813 1.309 0.496

b_meanteacher 0.864 0.650 1.141 0.490

b_mixmatch 0.951 0.354 2.450 2.096

b_pimodel 1.002 0.693 1.450 0.758

b_pseudolabel 0.999 0.786 1.273 0.487

b_remixmatch 0.997 0.789 1.256 0.467

b_simmatch 1.086 0.845 1.387 0.542

b_softmatch 0.968 0.770 1.220 0.450

b_supervised 1.055 0.769 1.447 0.678

b_uda 1.020 0.776 1.350 0.574

b_vat 0.999 0.756 1.320 0.564

5.2 Benchmarking

Due to the rapid development and publication of deep semi-
supervised learning algorithms, continuous benchmarking is
necessary. Furthermore, benchmarking is only able to evalu-
atemethods implemented in a current release of the software.
New releases of amethodmay differ in accuracy and runtime,
which is why permanent benchmarking efforts are necessary.
In addition, datasets utilized to evaluate algorithms need to
be updated due to the fact that many datasets are too easy
for the algorithms to learn. In [32], Item Response Theory
demonstrates that many datasets utilized to evaluate graph-
based semi-supervised learning algorithms are too easy to

learn. Therefore, many algorithms will achieve low error
rate on benchmark datasets but may perform differently on
real-world datasets because they are more difficult to learn.
In particular, only four out of 15 benchmark datasets are
suitable for evaluating graph-based semi-supervised learn-
ing [32]. Similarly, [81] demonstrates that many supervised
machine learning algorithms suffer from the same prob-
lem. Furthermore, USB utilizes many benchmark datasets
that have been proven too easy for supervised learning and
graph-based semi-supervised learning. Therefore, determin-
ing whether these datasets are suitable for evaluating the
algorithms contained in USB is essential. Datasets must be
updated or discarded with time due to their ability to evaluate
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Table 19 Odds ratios for fixed
effects and noise parameters
(text data)

Parameter OR mean OR HPD low OR HPD high OR range

a_adamatch 0.054 0.008 0.439 0.430

a_crmatch 0.127 0.019 1.098 1.079

a_comatch 0.055 0.008 0.455 0.447

a_dash 0.058 0.009 0.491 0.482

a_fixmatch 0.082 0.013 0.706 0.693

a_flexmatch 0.088 0.013 0.744 0.731

a_freematch 0.042 0.006 0.354 0.347

a_meanteacher 0.012 0.002 0.106 0.104

a_mixmatch 0.015 0.002 0.129 0.126

a_pimodel 0.006 0.001 0.053 0.052

a_pseudolabel 0.015 0.002 0.125 0.123

a_remixmatch 0.000 0.000 0.001 0.001

a_simmatch 0.060 0.009 0.493 0.484

a_softmatch 0.035 0.005 0.304 0.299

a_supervised 0.011 0.002 0.099 0.097

a_uda 0.001 0.000 0.013 0.013

a_vat 0.024 0.003 0.198 0.195

b_adamatch 0.893 0.688 1.155 0.466

b_crmatch 0.846 0.657 1.089 0.432

b_comatch 1.018 0.791 1.306 0.515

b_dash 0.975 0.753 1.269 0.516

b_fixmatch 0.946 0.734 1.213 0.479

b_flexmatch 0.906 0.694 1.190 0.496

b_freematch 1.011 0.791 1.298 0.507

b_meanteacher 1.172 0.852 1.618 0.766

b_mixmatch 1.066 0.781 1.459 0.678

b_pimodel 0.991 0.645 1.520 0.875

b_pseudolabel 0.996 0.726 1.366 0.639

b_remixmatch 0.003 0.000 3.455 3.455

b_simmatch 0.958 0.732 1.250 0.518

b_softmatch 1.065 0.813 1.391 0.578

b_supervised 1.059 0.768 1.469 0.702

b_uda 0.956 0.375 2.394 2.019

b_vat 1.024 0.774 1.358 0.584

the algorithms [32] and it is important to include real-world
datasets in evaluations. Furthermore, benchmarking is essen-
tial for the industry as they must know what algorithms to
utilize on their real-world datasets.

5.3 Robustness

This study does not utilize real-world datasets in the eval-
uation. Instead, noise is added to the benchmark datasets
to make them more representative of real-world data and
make the results more generalizable. When constructing
machine learning algorithms, it is essential to consider accu-
racy and robustness. Many machine learning algorithms rely

on assumptions on the data. Both supervised and semi-
supervised learning rely on empirical riskminimization [82],
which means that all instances in the training set is from the
same distribution. Therefore there is no guarantee that the
trained algorithm generalizes well on data that is out of dis-
tribution (OOD). There are many different measurements for
evaluating the robustness of an algorithm, such as robustness
measure [83] and coefficient of variation [22]. The results
of this study demonstrate that noise may improve the per-
formance of semi-supervised algorithms. More specifically,
noise increases the probability of achieving error rate below
10% for all datatypes. Noise has previously been demon-
strated to improve the performance of algorithms in other
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Table 20 Odds ratios for fixed
effects and noise parameters
(audio data)

Parameter OR mean OR HPD low OR HPD high OR range

a_adamatch 0.469 0.077 3.310 3.233

a_crmatch 0.376 0.063 2.696 2.633

a_comatch 0.008 0.001 0.059 0.057

a_dash 0.039 0.006 0.292 0.285

a_fixmatch 0.206 0.033 1.490 1.457

a_flexmatch 0.585 0.100 4.030 3.929

a_freematch 0.097 0.015 0.727 0.711

a_meanteacher 0.110 0.017 0.825 0.808

a_mixmatch 0.004 0.001 0.027 0.026

a_pimodel 0.001 0.000 0.009 0.009

a_pseudolabel 0.079 0.013 0.586 0.573

a_remixmatch 0.000 0.000 0.001 0.001

a_simmatch 0.700 0.124 4.653 4.529

a_softmatch 0.862 0.156 5.896 5.741

a_supervised 0.034 0.006 0.235 0.229

a_uda 0.036 0.006 0.255 0.249

a_vat 0.210 0.035 1.614 1.579

b_adamatch 0.914 0.618 1.344 0.726

b_crmatch 0.996 0.670 1.491 0.821

b_comatch 0.919 0.636 1.323 0.688

b_dash 1.025 0.659 1.601 0.942

b_fixmatch 0.987 0.634 1.538 0.903

b_flexmatch 0.999 0.698 1.430 0.731

b_freematch 1.126 0.703 1.795 1.093

b_meanteacher 0.894 0.573 1.372 0.798

b_mixmatch 1.178 0.799 1.743 0.944

b_pimodel 1.166 0.664 2.096 1.432

b_pseudolabel 0.993 0.654 1.505 0.852

b_remixmatch 0.003 0.000 3.586 3.586

b_simmatch 0.932 0.660 1.308 0.648

b_softmatch 0.877 0.625 1.220 0.595

b_supervised 1.019 0.688 1.506 0.818

b_uda 0.887 0.589 1.350 0.760

b_vat 0.974 0.627 1.520 0.893

studies [18, 22, 84]. In [22], three deep learning algorithms
are evaluated across image datasets and their performance
is compared between clean data and perturbed data. The
results demonstrate that perturbed data improves robustness,
and error rate in many cases [22]. Similarly, [84] compares
the error rate of machine learning algorithms evaluated on
text datasets where the amount of noise added to the sam-
ples varies between 0–100%. The results demonstrate that
adding noise up to 40% will leave the error rate unchanged,
and adding noise up to 70% will only increase the error rate
slightly. Since noise may degrade or increase performance,
it is necessary to investigate the impact of noise on the prob-
ability of successfully obtaining an error rate of 10% or less

by simulating accuracies as described in Sect. 3. The results
of this study demonstrate that noise increases the probabil-
ity of successfully achieving error rate below 10% for all
datatypes, which is confirmed by [18, 22].

5.4 Comparison with the original evaluation

This paper evaluates two additional algorithms SoftMatch
and FreeMatch that have been added to USB since the
original paper evaluation [19]. This paper utilizes Bayesian
modeling, which has many advantages and provides a more
fair evaluation due to the many benefits of Bayesian analysis.
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Table 21 Odds ratios for fixed
effects and noise parameters
(small allocation of labels)

Parameter OR mean OR HPD low OR HPD high OR range

a_adamatch 0.047 0.012 0.196 0.185

a_crmatch 0.036 0.009 0.151 0.142

a_comatch 0.028 0.007 0.121 0.114

a_dash 0.024 0.006 0.104 0.098

a_fixmatch 0.034 0.008 0.142 0.133

a_flexmatch 0.036 0.009 0.146 0.138

a_freematch 0.031 0.008 0.130 0.123

a_meanteacher 0.017 0.004 0.073 0.069

a_mixmatch 0.004 0.001 0.017 0.016

a_pimodel 0.000 0.000 0.000 0.000

a_pseudolabel 0.012 0.003 0.049 0.046

a_remixmatch 0.005 0.001 0.024 0.023

a_simmatch 0.052 0.013 0.223 0.210

a_softmatch 0.061 0.015 0.255 0.240

a_supervised 0.010 0.002 0.044 0.042

a_uda 0.004 0.001 0.021 0.020

a_vat 0.019 0.004 0.079 0.074

b_adamatch 0.912 0.715 1.167 0.452

b_crmatch 0.961 0.749 1.230 0.481

b_comatch 0.940 0.727 1.212 0.485

b_dash 0.970 0.744 1.261 0.517

b_fixmatch 0.965 0.751 1.233 0.482

b_flexmatch 0.995 0.773 1.288 0.515

b_freematch 0.995 0.771 1.281 0.510

b_meanteacher 1.045 0.802 1.367 0.564

b_mixmatch 1.001 0.693 1.459 0.766

b_pimodel 4.007 0.669 53.703 53.034

b_pseudolabel 0.995 0.748 1.331 0.582

b_remixmatch 0.930 0.655 1.312 0.657

b_simmatch 1.044 0.824 1.330 0.507

b_softmatch 1.008 0.794 1.270 0.476

b_supervised 1.031 0.765 1.403 0.638

b_uda 0.994 0.700 1.408 0.709

b_vat 0.897 0.679 1.186 0.507

The Bayesian Bradley–Terry ranks obtained in this study
differ from the FriedmanRanks obtained in the original paper
[19]. The Bayesian Bradley–Terry model accounts for the
uncertainty that is associated with the variation the error
rate. Therefore, this study provides less misleading ranks
than [19]. The original paper does not compare aggregated
data or consider the number of available labels [19]. It only
considers datatypes and does not give practitioners an idea of
how many labels are required to achieve the lowest possible
error rate.

The Friedman ranks obtained from the original study [19]
are located in Table 25. The original study had CRMatch
in the top three highest ranking algorithms for images, but

UDA replaced it in this study. The results of this study are
the same as the original for text and audio. However, the
rank order is different and more algorithms are top-ranked
in this study because the Bradley–Terry ranks incorporate
uncertainty. Therefore there are ties in this study. Friedman
ranks do not incorporate uncertainty, so there are no ties in
[19].

6 Threats to validity

This section discusses four types of threats to validity for
simulation studies described in [85].
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Table 22 Odds ratios for fixed
effects and noise parameters
(large allocation of labels)

Parameter OR mean OR HPD low OR HPD high OR range

a_adamatch 0.103 0.027 0.390 0.363

a_crmatch 0.090 0.023 0.339 0.316

a_comatch 0.042 0.011 0.162 0.151

a_dash 0.054 0.014 0.205 0.191

a_fixmatch 0.093 0.025 0.342 0.317

a_flexmatch 0.149 0.039 0.556 0.517

a_freematch 0.048 0.013 0.183 0.170

a_meanteacher 0.019 0.005 0.074 0.069

a_mixmatch 0.005 0.001 0.020 0.019

a_pimodel 0.009 0.002 0.034 0.031

a_pseudolabel 0.035 0.009 0.134 0.125

a_remixmatch 0.006 0.001 0.023 0.022

a_simmatch 0.073 0.020 0.274 0.254

a_softmatch 0.093 0.025 0.350 0.326

a_supervised 0.013 0.003 0.052 0.049

a_uda 0.018 0.005 0.068 0.064

a_vat 0.031 0.008 0.115 0.107

b_adamatch 0.922 0.735 1.158 0.423

b_crmatch 1.053 0.828 1.337 0.510

b_comatch 0.972 0.776 1.217 0.441

b_dash 0.962 0.770 1.205 0.435

b_fixmatch 0.983 0.790 1.227 0.437

b_flexmatch 0.949 0.752 1.201 0.449

b_freematch 1.072 0.858 1.341 0.483

b_meanteacher 0.956 0.746 1.219 0.473

b_mixmatch 1.163 0.853 1.599 0.746

b_pimodel 1.043 0.783 1.393 0.610

b_pseudolabel 1.008 0.814 1.241 0.426

b_remixmatch 1.050 0.775 1.420 0.645

b_simmatch 0.981 0.779 1.229 0.450

b_softmatch 0.959 0.765 1.200 0.435

b_supervised 1.034 0.809 1.320 0.510

b_uda 0.936 0.720 1.217 0.496

b_vat 1.069 0.856 1.330 0.474

First is Construct Validity, which refers to how appro-
priate the statistical model is for answering the research
questions. The RQs of this paper are concerned with ranking
semi-supervised learning algorithms according to the lowest
error rate. The Bayesian Bradley–Terry model was created
for ranking and is appropriate for answering our RQs. The
Bayesian Linear Regressionmodel is utilized to calculate the
probability of exceeding a certain threshold and is therefore
appropriate to calculate the probability of an algorithm to
achieve an error rate below 10%.

Second isExternal Validity, which refers to howgeneraliz-
able the results are to other situations. In [19], the algorithms
are evaluated on the same datasets. The algorithms have pre-

viously been evaluated in a similar way but with Friedman
ranks in [19]. Thanks to the replication package, the results
may be replicated and there is external validity.

Third is Internal Validity, which refers towhether the inde-
pendent variables cause the outcome because simplification
was made in the machine learning model or because some
factors were not accounted for. In this study, no factors were
omitted or any simplification in the models were made. Thus
internal validity is ensured.

The final threat is Conclusion Validity, which refers to
whether the results were evaluated utilizing appropriate
statistical tests. In the study, posterior predictive checks
are performed and the number of efficient examples and
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Table 23 Summary of algorithms with odds ration higher than one

Aggrgated Image Text Audio Small allocation of labels Large allocation of labels

�-model YES YES NO YES YES YES

Mean-Teacher NO NO YES NO YES NO

Pseudo-Label YES NO NO NO NO YES

VAT NO NO YES NO NO NO

MixMatch YES NO NO YES YES YES

ReMixMatch NO NO NO NO NO YES

UDA NO YES NO NO NO NO

FixMatch PN NO NO NO NO NO

FlexMatch NO YES NO NO NO NO

Dash NO NO NO YES NO NO

AdaMatch NO NO NO NO NO NO

CRMatch YES YES NO NO NO YES

CoMatch NO N0 YES NO NO NO

SimMatch YES YES NO NO YES NO

SoftMatch NO NO YES NO YES NO

FreeMatch YES YES YES YES NO YES

Supervised YES YES YES NO YES YES

Table 24 Recommended Algorithms

Algorithm Datatype Comment

FreeMatch All, large allocation of labels In the top-3 highest ranking algorithms for every scenario

Has OR > 1 in the presence of noise for every scenario except for small
allocation of labels

SimMatch Images, small allocation of labels Ties spot as highest ranking algorithm with FreeMatch

Has OR > 1 in the presence of noise for images and small allocation of labels

SoftMatch Text Second-highest ranking algorithm

Has OR > 1 in the presence of noise for text and small allocation of labels

Table 25 Top-three highest ranking algorithms for the original study
[19]

Scenario 1st 2nd 3rd

Image ReMixMatch CRMatch AdaMatch

Text SimMatch CRMatch CoMatch

Audio AdaMatch SimMatch FixMatch

Gelman-Rubin potential scale reduction are interpreted [86]
to evaluate the results.

7 Conclusion

This study analyzes deep semi-supervised learning algo-
rithms and presents a framework for what algorithms to
utilize in industrial situations to obtain a certain error rate.
The study provides an updated evaluation of USB that

includes more algorithms added since the first evaluation
[19]. In addition, this study investigates the impact of noise
to understand how the algorithms will perform on real-world
datasets.

According to the results, none of the algorithms have an
error rate below 10%. The original simulations [19] were
run utilizing different baseline deep learning models, and
different hyperparameters were utilized for each task and
varied across algorithms. It is possible to achieve a lower
error rate if different supervised baselines are utilized and
the hyperparameters are appropriately set for a given dataset.
A takeaway is that many of the semi-supervised learning
algorithms outperform supervised learning, and therefore,
utilizing unlabeled data is relevant to improving the error
rate. In addition, the results also demonstrate that the more
labels are available, the better the error rate.

Generally, practitioners are recommended to investigate
three algorithms: FreeMatch, SimMatch and SoftMatch.
FreeMatch is recommended on all datatypes and for large
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allocations of labels. SimMatch is recommended for utilize
on image data and a small allocation of labels. Finally, it is
recommended that SoftMatch be utilized for text data types
and small allocation of labels. The algorithms are recom-
mended for these scenarios since the results demonstrate the
algorithms are the highest-ranking and perform well on real-
world data.

The results of this study help machine learning specialists
in industry and academia determine which algorithm will
have the lowest error rate.

For future simulation studies, it is relevant to examine
these algorithms utilizing other statistical models such as
Bayesian regression [50] to answer related RQs and evalu-
ate other types of semi-supervised learning algorithms not
included in USB. Another interesting study is to utilize the
item response theory to investigate if the 15 datasets are
appropriate for evaluating USB.
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