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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Volcanic eruptions and geoengineering aerosol injections could significantly reduce wind speeds, impacting wind energy.

- Simulations reveal a consistent 2-year global wind speed reduction after volcanic eruptions.

- The reduction is linked to a decrease in downward momentum flux, triggered by volcanic aerosol forcing.

- The 1815 Tambora eruption led to a �9.2% reduction in global wind power density in the following 2 years.
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Near-surface wind speed (NSWS), a determinant of wind energy, is influ-
enced by both natural and anthropogenic factors. However, the specific im-
pacts of volcanic eruptions on NSWS, remain unexplored. Our simulations
spanning the last millennium reveal a consistent 2-year global NSWS reduc-
tion following 10 major historical eruptions. This equates to an NSWS
decrease of approximately two inter-annual standard deviations from AD
851 to 1849. This reduction is linked to the weakening of subtropical de-
scending air and a decrease in downward momentum flux, triggered by vol-
canic aerosol forcing. The 1815 Tambora eruption, one of themost powerful
in recent history, led to a�9.2% reduction in global wind power density in the
subsequent 2 years. Our research fills a knowledge gap, establishes a theo-
retical foundation for empirical studies, and highlights the potential wind en-
ergy risks linked to large atmospheric aerosol injections, including volcanic
eruptions, nuclear warfare, and climate intervention.
INTRODUCTION
Near-surface wind speed (NSWS), 10mabove ground, has attracted consider-

able attention due to its implications for wind resource utilization, human health,
and environmental governance.1-4 Changes in NSWS are linked to variations in
atmospheric and surface conditions, such as large-scale atmospheric circula-
tions,1,2,5-9 vegetation coverage,10 urbanization,11 anthropogenic aerosols,12,13

and the greenhouse effect.14,15 However, the global NSWS response to powerful
natural external forcings, such as volcanic eruptions, remains largely unex-
plored.2 These eruptions have profound societal and environmental impacts, in-
jecting sulfur dioxide into the stratosphere, where chemical reactions transform it
into sulfate aerosols. These aerosols scatter incoming solar radiation, resulting in
a negative radiative forcing on the climate system. Understanding how volcanic
aerosols impact NSWS is crucial for addressing potential energy crises caused
by climate interventions involving stratospheric aerosol injections, which have
similar inter-annual climate effects as volcanic eruptions.16,17

Large volcanic eruptions significantly alter atmospheric composition, atmo-
sphere-ocean dynamics, the hydrological cycle, and the carbon cycle.18-22 Mod-
ern observations, paleoclimate proxies, and climatemodel simulations offermul-
tiple approaches for investigating volcanic forcing effects. Previous studies have
found that volcanic forcing weakens the global hydrological cycle,20,23

strengthens the polar vortex,24 and intensifies the AtlanticMeridional Overturning
Circulation.25 While some studies have revealed temperature and precipitation
changes following volcanic eruptions,26,27 the effects and physical mechanisms
of volcanic forcing on global NSWS changes have not been studied
previously.28,29

In this study, we quantify the global NSWS response to large tropical volcanic
eruptions and elucidate the underlying physicalmechanismsbyusing last-millen-
nium (LM) simulations. The model simulations suggest a robust reduction in
global NSWS in response to the volcanic aerosol forcing, particularly in subtrop-
ical regions, in the 2 years following volcanic eruptions.
RESULTS
Robust reduction in NSWS after tropical volcanic eruptions

Most in situ wind monitoring stations are located in Europe, East Asia, and
North America, with limited coverage in other regions.30,31 The existing observa-
ll
tions, covering only the last four decades, are insufficient for studying the impact
of rare, strong volcanic eruptions. Thus, to better understand the global NSWS
response to volcanic eruptions, we used a set of model simulations over a
long period, including over 10 strong volcanic eruptions, alongwith a superposed
epoch analysis (for details see materials and methods).32-34 This involved exam-
ining LM simulations based on multiple datasets from different sources,
including 10 models from the Paleoclimate Modeling Intercomparison Project
phases 3 (PMIP3) and 4 (PMIP4), and five volcanic-forcing members from the
Community Earth SystemModel-Last Millennium Ensemble (CESM-LME), listed
in Table S1. For eachmodel, we used the 10 strongest tropical volcanic eruptions
to calculate the multi-model ensemble mean for these events.
The spatial distributions of NSWS responses to large tropical volcanic erup-

tions in the eruption year (year (0)) and the first year after the eruption (year
(+1)) are similar (Figures 1A and 1B), with a pattern correlation coefficient of
0.74 (p < 0.01). After the eruptions, the model results show a significant large-
scale reduction in NSWS in large parts of the subtropics, includingNorth America
(NAM), North Africa-West Asia (NAWA), South America (SAM), South Africa
(SAF), and Australia (AUS) (see Table S2 for region definitions). Some significant
NSWS increases were found in small parts of the Eurasian high latitudes. The
decreased subtropical NSWS dominated the global-averaged NSWS variations
in year (0) and year (+1) (Figures 1C–1H). NSWS then recovered to its normal
climatological state in each region, suggesting that the effects of large tropical
volcanic forcing on NSWS last for approximately 2 years (Figure 1C). The spatial
patterns of the volcanic effects on NSWS are highly consistent between the vol-
cano-only and all-forcing experiments of CESM-LME (Figure S1), suggesting that
the use of volcano-only forcings of the CESM-LME did not influence the robust-
ness of our findings. Calculated reductions in NSWS during eruption years were
�0.04 m s�1 (Global), �0.04 m s�1 (NAM), �0.06 m s�1 (NAWA), �0.05 to
�0.06 m s�1 (SAM), �0.05 to �0.07 m s�1 (SAF), and �0.07 to �0.08 m s�1

(AUS) (Figures 1C–1H). The amplitude of the reduction is �2 times the inter-
annual standard deviation from AD 851 to 1849, highlighting the strong distur-
bance in NSWS caused by tropical volcanic eruptions. As a comparison, El
Niño-Southern Oscillation (ENSO) is one of the strongest factors in modulating
inter-annual climate variation, and the magnitude of ENSO-induced NSWS
changes in observations (Figure S2) are similar to NSWS responses to volcanic
forcing shown in Figure 1. Overall, a robust decrease in NSWS was observed
mainly in subtropical arid regions, except for SAM. These areas are typically char-
acterized by descending airflows associated with the meridional Hadley cell and
sparse surface vegetation.35

To quantify the potential loss of wind energy due to volcanic eruptions, we
calculated the changes in 100-m wind power density (WPD) (materials and
methods) in five geographical regions for each large tropical volcanic eruption
that occurred from AD 851 to AD 1849 (Figure S3). Based on the different volca-
nic forcing reconstructions in the models, we identified 16 volcanic eruption
events (Table S3) that primarily recorded a significant decline in WPD in year
(0) and year (+1). For instance, the Tambora eruption in 1815 is estimated to
have caused a �9.2% reduction in global WPD.
According to the distribution of onshore wind turbines in 2020,36 there are

�30,000 wind turbines operating in NAWA and �100,000 wind turbines in
NAM, while the other regions (SAM, SAF, and AUS) feature fewer wind turbines.
Notably, NAWA exhibits higher efficiency due to favorable climatological wind
speeds, suggesting that the impact of reduced NSWS could be significant in
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Figure 1. Annual-mean near-surface wind speed response to large tropical volcanic eruptions (A) Anomalous annual-mean near-surface wind speed (NSWS) (m s�1) in the eruption
year for the average of the 10 largest tropical eruptions documented in last-millennium simulations (AD 850–1850). Hatching denotes anomalies significant at the 0.05 level. (B) Same
as (A), but for responses in the first post-eruption year. (C) Globally average NSWS changes from the year before the eruption to the third post-eruption year. Year (0) denotes the
eruption year. Anomalies were calculated relative to the average value during the 5 years before each eruption. The error bars denote the full range in the models and the boxes cover
the 25th–75th percentiles. (D–H) Same as (C), but for area-averaged NSWS changes over North America (NAM), North Africa-West Asia (NAWA), South America (SAM), South Africa
(SAF), and Australia (AUS), respectively (see Table S2 for the definition of the regions).
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this region. Although NSWS over Eurasian high latitudes showed significant in-
creases in year (0) and year (+1), there are currently no wind turbines (nor plans
to build any) in that region.36

The LM simulations indicate a 2-year reduction in global NSWS following trop-
ical volcanic eruptions, with significant anomalies mainly located in subtropical
regions, particularly in the western and central continents. Since the results are
primarily derived frommodel simulations, it is essential to compare these results
with real-world data.We conducted the superposed epoch analysis to assess the
response of NSWS to the 1982 El Chichón and 1991 Pinatubo eruptions using
the Global Surface Summary of the Day dataset24 (Figure S4). The averaged
observational results of the two eruptions (red lines) show some similarities
with the model simulations (boxes). Specifically, there was a decrease in
NSWS over NAM, NAWA, and SAM in year (0) and year (+1) after the volcanic
eruptions. However, the results over SAF and AUS differ from the simulations.
These discrepancies may be attributed to: (1) limited observational coverage in
key regions shown in Figure 1, leading to significant uncertainties in quantifying
NSWS changes, (2) the observed NSWS variability being heavily influenced by in-
ternal variability (Figure S2), and (3) the limitations in models in predicting
NSWS.37,38 In the following sections, we use the model simulations to gain a
mechanistic understanding of how volcanic aerosol forcing affects NSWS.

Physical mechanisms involved in decreasing NSWS
Vertical momentum fluxes are crucial for modulating NSWS, as winds in the

upper levels of the atmosphere tend to be stronger than those near the Earth’s
surface.12 Volcanic sulfur aerosols absorb and reflect solar radiation and absorb
longwave radiation in the stratosphere, reducing surface irradiance. This leads to
anomalous warming of the low-level stratosphere and surface cooling from
approximately 50�S to 50�N (Figures S5A and S5B), thereby suppressing tropical
convection19,39 and favoring weakened Hadley circulations in both hemi-
spheres.40,41 The zonally averaged atmospheric overturning circulation shows
weakened descending motion in the subtropics, in the descending branches of
the Hadley cells, due to the weakening of the Hadley circulation (Figures S5C
and S5D). Thus, for the average of the five subtropical study regions, the fastest
wind speed occurs just below 300 hPa (Figure 2A), and the climatological vertical
profile mainly shows a descending motion (Figure 2B). The vertical momentum
fluxes (materials andmethods) weremostly positive below 300 hPa in the clima-
2 The Innovation 6(1): 100734, January 6, 2025
tological mean, indicating that momentumwas transported from upper to lower
levels of the troposphere in the subtropical study regions (Figure 2C).
After the tropical volcanic eruptions, reductions in horizontal wind speed

primarily occurred in the upper troposphere according tomodels (Figure 2A).
The profile of vertical velocity mainly shows an anomalous ascending mo-
tion within the troposphere, which contrasts with climatological descending
flows present during non-eruption years, although with a weak descending
anomaly against climatological ascending motion below 850 hPa (Fig-
ure 2B). As a result, the downward momentum flux was substantially
reduced in the troposphere (Figure 2C). We also found that the horizontal
momentum flux contributes negligibly to the tropospheric wind speed
changes over these regions (Figure S6). We further quantified the relative
contributions of vertical wind shear and vertical velocity on changes in inte-
grated vertical momentum flux (materials andmethods). Vertical wind shear
made different contributions in each of the five study regions, having posi-
tive effects in NAWA and SAF, and negative effects in NAM, SAM, and AUS
(Figure S7). Changes in the integrated vertical momentum flux in the 2 years
following the volcanic eruptions were generally dominated by contributions
from vertical velocity in all five regions (Figure S7). These results suggest
that the weakened subtropical vertical circulation in response to large trop-
ical volcanic eruptions can generate a reduced vertical momentum flux from
upper levels of the atmosphere down to the surface, which weakens the
NSWS (Figure 2C).
Although NSWS generally decreases over subtropical land regions after volca-

nic eruptions, these changes were not significant in subtropical East Asia (EA).
Due to its unique topographic landscape, situated east of the Tibetan Plateau,
EA is a monsoonal region dominated by climatological ascent at low levels of
the troposphere.42,43 At the regional scale, the climatological mean wind speeds,
vertical velocities, and vertical momentum fluxes were consistent between
NAWA, SAF, NAM, and AUS (Figures S8–S10). In SAM and EA, the climatological
mean vertical motions were ascending rather than descending (Figures S8E and
F). The deviations in vertical momentum flux induced by tropical volcanic erup-
tions were upward in all regions, suggesting that an anomalous upward mo-
mentum flux may favor a weakened NSWS, and vice versa.
The relationships between NSWS and atmospheric states across the five sub-

tropical regions were quantified by regression analysis based on model outputs
www.cell.com/the-innovation
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Figure 2. Wind speed, vertical velocity, and vertical
momentum flux in response to large tropical volca-
nic eruptions (A) Composite of five regional (North
America, North Africa-West Asia, South America,
South Africa, and Australia) averages of the annual-
mean wind speed (m s�1) in response to 10 large
tropical volcanic eruptions based on LM simulations.
Red solid, blue solid, and blue dashed lines denote the
climatology (average of 5 years before the eruption),
anomalies in the eruption year (year (0)), and anom-
alies in the first post-eruption year (year (+1)),
respectively. Anomalies were calculated relative to the
climatology. (B and C) Same as (A), but for vertical
velocities (10�2 3 Pa s�1) and vertical momentum
flux (10�6 3 m s�2). Positive fluxes are downward.
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(materials and methods) (Figure 3). The results show positive correlations be-
tween NSWS and averaged vertical velocity at 1,000–200 hPa (Figures 3A and
3B) in both the eruption year and the following year. We also focused on the col-
umn-integrated effect of vertical momentum flux on NSWS changes. Models
show positive correlations between NSWS and the integrated vertical mo-
mentum flux at 1,000–200 hPa (Figures 3C and 3D). Although the correlation co-
efficients for all relationships are significant at the 0.01 level, the R2 values in
the regressions are less than 0.2, which indicates the poor predictive power
from models. The decreased downward momentum flux resulted in reduced
horizontal momentum transfer from upper levels of the troposphere down to
the Earth’s surface, thus offering a simple physical explanation for the decreased
NSWS.
DISCUSSION
Different volcanic eruptions are associated with various component composi-

tions including contents of CO2, SO2, Cl, and other volatiles, and also eruptive col-
umn heights, which lead to significant differences in their effects on climatic and
environmental changes.14,15,18 In this study, we use multiple model simulations,
which mainly consider the latitude-height distributions of aerosol optical depth
(radiative forcing) induced by volcanic eruptions (Table S3), and the additional
complexities are not considered. Model simulations suggest a 2-year weakening
of global NSWS following large tropical volcanic eruptions. Figure 4 summarizes
the plausible physical mechanismbehind the aerosol effects of large tropical vol-
canic eruptions on subtropical NSWS. Aerosol forcing from these eruptions leads
to global tropospheric cooling, which weakens the Hadley circulation.40,41 The
decrease in NSWS is linked to a weakened subtropical atmospheric descent, fa-
voring a reduced downward vertical momentum flux. Specifically, less kinetic en-
ergy is transferred from the upper levels of the troposphere to the Earth’s surface,
resulting in a reduction in NSWS. We highlight that the Hadley circulation as a
plausible link between the vertical momentum flux from the upper atmosphere
(free troposphere) to the surface (boundary layer). Considering the comparison
between model simulations and observations are not well matched, there are
two key limitations in our work. First, more reliable observational data are needed
in the future to verify the model results. Second, the models’ ability to simulate
the variability of NSWS should be further improved and studied.

Strong tropical volcanic eruptions can significantly reducewind power density.
North America and Australia have already begun to heavily utilize wind energy,44

and the desert regions of North Africa are considered to contain some of the
world’s richest wind energy resources.45 In some subtropical regions, a portfolio
with diverse energy sources should be carefully designed to account for the po-
tential negative impacts of unforeseen volcanic eruptions, as well as similar ef-
ll The
fects caused by nuclear war or climate interven-
tion. Such considerations are crucial for future
planning, especially regarding wind energy
production.

MATERIALS AND METHODS
LM simulations

Eleven LM climate simulations were used in this

study (Table S1), including seven models from PMIP3,

three models from PMIP4, and simulations from
CESM-LME. Four volcanic forcing reconstructions were used in these simulations:

GRA08,46 Ammann,47 CU13,48 and EVA(2k).49 Each PMIP simulation had 1 member, and

the CESM-LME had 13 all forcingmembers and 5 volcanic forcingmembers. The ensemble

mean of all volcanic forcing members in CESM-LME was calculated to ensure that each

model had the same composite weight. All models shared the same millennium period

(AD 851–1849).

For historical volcanic eruptions, different volcanic forcing reconstructions exist and

they indicate different eruption dates and strengths. Following the literature,33,50 we

formed three groups that were each comprised of the 10 largest tropical volcanic erup-

tions in each simulation according to GRA08,46 Ammann,47 CU13,48 and EVA(2k).49 A

tropical eruption was defined by the aerosol density and aerosol optical depth being

evenly distributed in both hemispheres.46 Considering some dating errors among

the three groups, we identified 16 volcanic eruption events in 11 models from AD

850 to 1849 (i.e., AD 971, 1108, 1171, 1213, 1229/1230, 1257, 1275, 1284/1286,

1452/1456/1458, 1600, 1641, 1674, 1695/1696, 1809, 1815/1816, and 1835). The

weakest eruption in this set was still stronger than the 1991 Pinatubo eruption, which

indicates that a stronger response of the NSWS to volcanic forcing could be detected in

LM simulations before AD 1850.

Superposed epoch analysis and significance
Classical superposed epoch analysis32 was used to investigate the impact of volcanic

eruptions on NSWS changes and related physical mechanisms. The effects of background

noises were reduced by removing the climatology of the 5-year means that preceded each

eruption. Consequently, performing the superposed epoch analysis removedmost of the in-

fluence of internal variability among different models. Each model was bi-linearly interpo-

lated into a 2� 3 2� resolution before calculating the multi-model ensemble mean.51 Stu-

dent’s t test was used to test the statistical significance, assuming that each model is an

independent sample.

Wind power density
Vertical extrapolationwas used to calculate wind speeds at an altitude of 100m,which is

close to the height of wind turbines, according to the power law:52

U100m = U
�
H
10

�a

(Equation 1)

whereU100m andU denote the 100- and10-mwind speeds, respectively;a denotes thewind-

shear exponent, whichwas a constant of value0.14 in this study53; andH is the target height

(100 m).

WPD was calculated as the wind power per unit area54:

WPD =
1
2
rU100m

3 (Equation 2)
Innovation 6(1): 100734, January 6, 2025 3



Figure 3. Vertical velocity and vertical momentum flux determine near-surface wind speed response to tropical volcanic eruptions (A) Regression model (materials and methods)
of anomalous near-surface wind speed (m s�1) and 1,000–200 hPa averaged vertical velocity (10�2 3 Pa s�1) in the eruption year based on LM simulations. Symbols in the legend
denote the North America (NAM), North Africa-West Asia (NAWA), South America (SAM), South Africa (SAF), and Australia (AUS) regions. The red shading shows the 90% confidence
interval calculated from bootstrapping. (B) Same as (A), but for the regression model in the first post-eruption year. (C and D) Same as (A and B), but for near-surface wind speed and
1,000–200 hPa integrated vertical momentum flux (10�6 3 m s�2).
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Here, we assumed that the air density was globally uniform55 ðr = 1:225 kg�1m� 3Þ.
MOMENTUM FLUX TRANSPORT
The temporal evolutions of wind speed can be written as:

WS =
ffiffiffiffiffiffiffiffiffiffiffiffi
u2+v2

p
(Equation 3)

vWS
vt

f � u$
vWS
vx

� v$
vWS
vy

� u$
vWS
vP

(Equation 4)

where u and v denote the zonal and meridional wind speeds, respectively; u de-
notes the vertical velocity in an isobaric coordinate system; andWS denotes total
horizontal wind speed.

Then, the horizontal and vertical momentum flux were defined as:

horizontal flux = � u$
vWS
vx

� v$
vWS
vy

(Equation 5)

vertical flux = � u$
vWS
vP

(Equation 6)
4 The Innovation 6(1): 100734, January 6, 2025
The relative contributions of vertical velocity and vertical wind shear to
changes in the vertical flux of horizontal momentumwere determined by decon-
structing Eq. 6 as follows:

D

�
u $

vWS
vP

�
= Du $

vWS
vP

+ u $D
vWS
vP

+ Du$D
vWS
vP

(Equation 7)

where D and the overbar denote anomaly and climatology, respectively. The
three terms on the right-hand side represent the contributions fromvertical veloc-
ity, vertical wind shear, and nonlinear processes, respectively.
Linear regression analysis
Linear regression was performed on the LM simulation outputs using the

least-squares method to identify the general relationships between NSWS
and other physical variables. To assess the uncertainty of these relation-
ships, we employed a bootstrap method, which is a commonly used statis-
tical technique for estimating confidence intervals and testing hypothe-
ses.56-58 The 90% confidence interval was calculated using the bootstrap
method56 as follows:

(1) Ten thousand bootstrap samples were created from the dataset.
www.cell.com/the-innovation
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Figure 4. The physical mechanisms by which tropical volcanic eruptions reduce subtropical near-surface wind speed Tropical volcanic eruptions induce a weakened Hadley
circulation and an anomalous ascending motion in the atmosphere over subtropical regions. A weakened vertical momentum flux from high levels of the troposphere to the Earth’s
surface leads to a reduction in near-surface wind speed.

REPORT
(2) The statistics (e.g., mean, median, standard deviation) were calculated
for each bootstrap sample.

(3) The 5th and 95th values in the sorted list corresponded to the 5th and
95th percentiles of the statistical distribution, respectively. The interval
between these two values was the 90% confidence interval for the true
value of the statistics.
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