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Abstract

Model serving has become crucial for AI applications, with convolutional neural
networks (CNNs) driving various applications from object detection to speech
recognition. While specialized accelerators and GPUs offer high performance for
CNN inference, CPU-based solutions provide better availability and portability
for server-side and mobile computing. Vector architectures such as RISC-V
Vector extension and ARM Scalable Vector Extension have emerged as a
promising solution, offering GPU-like parallel processing capabilities with low
latency, high availability, and lower energy consumption.

This thesis investigates co-design opportunities in vector architectures for
CNN inference, focusing on the interplay between convolutional algorithmic
optimizations and hardware design choices. First, it conducts a co-design
study that explores both convolutional algorithm optimizations and hardware
parameter tuning such as vector lengths, cache sizes, and vector lanes for CNN
inference on ARM-SVE and RISC-VV architectures. Second, it explores the
co-design of CNN layers by studying three distinct algorithmic implementa-
tions: Direct, im2col+GEMM, and Winograd, in conjunction with hardware
parameters for RISC-VV.

While optimizing the im2col+GEMM algorithm, various optimizations
have been applied to the GEMM kernel; however, our study shows that not all
optimizations benefit different vector architectures equally. Our co-design study
using the gem5 simulator demonstrates an ∼5× performance improvement
with 16384-bit vector lengths and 256MB of L2 cache, compared to 512-bit
vectors and 1MB of L2 cache. Since larger tile sizes cannot be used for the
Winograd algorithm due to numerical inaccuracies, this thesis proposes inter-
tile parallelism across the input/output channels using 8×8 tiles per channel to
utilize longer vector lengths. This approach improves data reuse and achieves
an additional performance improvement of 2.4× (compared to im2col+GEMM)
on the A64FX processor. Our co-design study also shows that the Winograd
algorithm has lower cache size requirements compared to im2col+GEMM.

The performance of convolutional algorithms depends on layer dimensions
(input/output/kernel dimensions, stride, and input/output channels), while
computational demands influence SIMD requirements, and cache sharing im-
pacts runtime algorithm selection in model serving. Our study shows that
Winograd performs better with smaller vector lengths, whereas the Direct al-
gorithm excels with longer vectors. While im2col+GEMM benefits from larger
caches, Direct and Winograd exhibit varying cache sensitivity across VGG16
layers. In contrast, all YOLOv3 layers benefit from the largest simulated L2
cache across all algorithms. To address these complexities, this thesis proposes
a random forest classifier that selects the optimal algorithm per layer with
92.8% accuracy and per-layer algorithm selection improves performance by
∼2× compared to using a single algorithm. Finally, our Pareto analysis of
area-performance trade-offs for a 7nm RISC-V multicore model shows that
algorithm selection leads to increased throughput per area, highlighting the
need for co-design in the context of model serving.
Keywords: CNNs, co-design, GEMM, Winograd, Direct, optimizations, long
vector architectures, vector length agnostic ISAs, model serving
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Chapter 1

Introduction

Convolutional Neural Networks (CNNs) play a key role in Artificial Intelligence
(AI) inference, powering a wide range of applications such as object detection [1],
natural language processing [2], and speech recognition [3]. These models require
high throughput and power efficiency due to power constraints (e.g., battery-
powered embedded devices or the power caps in data centers). Offloading
compute-intensive operations to neural accelerators and GPUs has become a
common approach to accelerate CNN inference [4–6]. However, integrating
specialized accelerators [7, 8] into general-purpose computing systems remains
challenging. Various frameworks [9–11] are optimized for GPUs, but server-side
inference requires availability and low latency [12], while mobile and embedded
devices benefit from CPU availability and portability [13,14]. Consequently,
optimizing CNNs has become popular on CPUs [14–16], while CPU vendors are
increasingly adding deep neural networks (DNN) capabilities to processors [17].

Vector-enabled processors have seen renewed interest as they bring GPU-
like parallel processing capabilities to CPUs while maintaining lower energy
consumption. In this context, tightly coupled modern long vector processors
with low latency, high performance, and power efficiency such as RISC-V Vector
Extension (RISC-VV) [18] and ARM Scalable Extension (ARM-SVE) [19] are
considered a promising option for efficient CNN inference serving [20,21]. These
vector architectures are based on vector length agnostic (VLA) instruction set
architecture (ISA), which ensures code portability across hardware platforms
with distinct vector lengths.

Maximizing performance in vector architectures requires efficient algorithmic
optimizations and a deeper exploration of the design space, such as leveraging
new levels of parallelism introduced by vector units and understanding the rela-
tionships between micro-architectural parameters, performance characteristics,
and area efficiency for applications of interest. Manual code transformation
and optimization are necessary to achieve an efficient algorithmic implementa-
tion by exposing the maximum available SIMD parallelism to the vector unit.
Additionally, modern architectures are integrating longer vector lengths to
support scientific applications and AI workloads. Longer vector lengths increase
the high data demand, necessitating larger caches. Furthermore, additional
vector lanes become necessary to maintain computational throughput. The
relationship between cache capacity, vector lanes, and vector length creates
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2 CHAPTER 1. INTRODUCTION

complex performance trade-offs that must be carefully analyzed. Since these
components occupy a significant die area and greatly impact performance,
tuning them to the requirements of optimized kernels is essential for designing
efficient, high-performing vector architectures for CNN inference.

CNNs consist of consecutive layers, with convolutional layers being the most
time-consuming. These convolutional layers can be implemented using various
algorithms [22], such as im2col+GEMM, Direct, Winograd, and FFT. The
Direct algorithm slides convolutional weights over the input tensor, performing
dot products [23]. The im2col+GEMM algorithm transforms the image into
a column matrix, turning the convolutional operation into a matrix multipli-
cation by convolving the transformed input matrix with the weight matrix.
Winograd and FFT reduce computational complexity, but require transforming
the image and weights, performing block-wise multiplications, and applying
output transformations. Winograd is effective with small kernel sizes, such as
3×3 or 5×5 [24], while FFT is better suited for larger kernel sizes [25].

Convolutional layers in CNNs vary in their dimensions, including input,
output, kernel height and width, input and output channels, and stride. Dif-
ferent convolutional algorithms exhibit varying performance based on each
layer’s dimensions, due to differences in computational complexity and memory
footprints [13]. Additionally, cache size and vector length can impact perfor-
mance, as some algorithms, like im2col+GEMM, increase the memory footprint.
Algorithmic optimizations that exploit longer vector lengths can help achieve
higher performance from the vector unit. Moreover, model serving is rapidly
becoming the standard approach for deploying AI applications, with cloud
providers reporting hundreds of trillions of AI model executions daily [26].
Model serving frameworks [27, 28] enable concurrent model replicas for bet-
ter resource utilization, although cache contention from co-running inferences
affects algorithmic decisions.

Despite extensive research on CNNs and hardware microarchitectural pa-
rameters tuning [20, 29–38], the interplay between the optimization space of
convolution algorithms and the design space of hardware parameters remains
unexplored. The lack of a co-design approach can hamper the design of future
vector architectures based on CPUs for CNN inference and model serving.

This thesis fills this gap by providing a co-design study that jointly explores
the optimization of convolutional algorithms and the tuning of hardware param-
eters on long vector architectures, aiming to provide guidance to programmers,
hardware designers, and compiler developers. Additionally, it proposes inter-
tile parallelism across input/output channels to utilize longer vector lengths
for the Winograd algorithm. Furthermore, this thesis conducts a co-design
exploration, focusing on the software parameters of convolutional layers and
algorithmic implementations alongside hardware parameters for vector archi-
tectures, demonstrating that selecting the best algorithm per layer leads to
better performance compared to using a single algorithm for all layers. To
select the best algorithm at runtime, this thesis proposes a Random Forest
classifier that selects the best algorithm for 92.8% of the cases. Furthermore,
analyzing the performance-area trade-offs reveals that combining per-layer
algorithm selection with model co-location enhances throughput per unit area,
emphasizing the importance of co-design in model serving.
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1.1 Background

Vector architectures: Vector supercomputers with long vector lengths [39]
were first developed in the 1970s to solve scientific problems. A new era of SIMD
architectures began in the 1990s with short vectors, initially built for media
streaming applications, which later became popular in Digital Signal Processing
(DSP) and general-purpose computing [40, 41]. SIMD ISAs with fixed short
vector length are now commonly used for general-purpose computing. However,
these ISAs provide limited portability, as a new instruction set extension is
required if a longer vector length is needed. To overcome this limitation, modern
long vector architectures such as RISC-VV [18] and ARM-SVE [19] offer vector
length agnostic ISAs, where there is no need to specify a specific vector length.
RISC-VV supports MVL up to 16384-bits in powers of 2 whereas ARM-SVE
implementations range from 128-bit to 2048-bits with 128-bit increments, as
implemented in Fujitsu’s A64FX processor with its 512-bit vector length.

Convolutional neural network models The core building block of CNNs is
the convolutional layer, which performs the convolution operation between the
input data and a set of learnable filters. These layers are followed by other types
of layers, including pooling layers, fully connected layers, and normalization
layers, depending on the network architecture. YOLOv3, CNN based object
detection model, which contains 107 layers of five different types, 75 of these
layers are convolutional, making them the most computationally intensive part
of the network. Similarly, in VGG16, a model for image classification, 13 of the
25 layers are convolutional, with an additional 3 fully connected layers. the
convolutional layers in YOLOv3 and VGG16 consume ∼96% and ∼64% of the
total inference time, respectively, when profiled on A64FX using Linux perf.

Algorithms for Convolutions: To optimize the performance of CNN-
based models, various convolutional algorithms can be employed. In this
thesis, I use three convolutional algorithms: im2col+GEMM, Direct, and
Winograd to implement the convolutional layers as most CNN-based network
models use convolutional layers with small kernel sizes of 1×1, 3×3 or 5×5.
I developed an optimized version of the im2col+GEMM algorithm in the
Darknet [42] framework, where the convolutional layer is implemented using
the im2col+GEMM algorithm. Additionally, I developed an optimized version
of the Winograd algorithm from the NNPACK [43] package for implementing
these convolutional layers. I then developed and optimized the Direct algorithm
for implementing these convolutional layers inside the Darknet framework.

1.2 Related Work

Several works have focused on optimizing convolutions for vector architectures.
Specifically, Kelefouras et al. [44] vectorize and optimize the 2D direct con-
volutions on Intel AVX. Wang et al. [35] optimize the Direct algorithm on
ARM NEON. Wang et al. [37] optimize the Winograd algorithm on RISC-V
architectures with a custom instruction extension. Louis et al. [29] port and
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optimize convolutional and matrix multiplication kernels of CNNs from Tensor-
Flow lite and study the reduced number of instructions on RISC-VV. Alaejos
et al. [45]optimize GEMM for deep learning on the ARM-NEON, ARM-SVE,
and Intel AVX512 vector extensions. Arm [46] has developed an ARM Com-
pute Library to optimize convolutional kernels for ARM-SVE. Dolz et al. [47]
optimize the im2col transformation and Winograd algorithms for ARM-SVE.
In another work, Dolz et al. [38] optimize the Winograd algorithm for Intel
AVX, ARM NEON, and ARM-SVE architectures. Santana et al. [36] optimize
the Direct algorithm for long vector architectures, focusing on the NEC SX
Aurora architecture

In the context of microarchitectural parameter tuning of modern long
vector architectures, Kodama et al. [33] evaluate the ”triad”, ”gemm” and
”nbody” application kernels with multiple vector lengths and number of physical
registers using ARM-SVE and evaluated the impact of vector length. Ramirez
et al. [32] study the impact of microarchitectural parameters, such as vector lane
and vector length, using different vectorized kernels presented in the RISC-V
Vectorized Benchmark Suite.

Concerning performance comparisons of different algorithmic implemen-
tations of convolutions, Jordà et al. [48] and Xu et al. [49] perform such an
analysis on GPUs. Jordà er al. [48] focus on cuDNN and propose that different
algorithms should be used depending on the kernel size. Xu et al. [48] also
look at cuDNN implementations and propose a scheme for algorithm selection
based on the convolution dimensions. Dolz et al. [50] focus on performance-
energy tradeoffs of the different algorithms for convolutions on ARM processors.
Zlatenski et al. [51] perform a comparative analysis of Winograd and FFT for
convolutions using different CNNs on modern CPUs, for full network models.

This thesis focuses on optimizing the im2col+GEMM, Winograd, and
Direct convolutional algorithms for long vector architectures using vector length
agnostic ISAs. It also presents a co-design study that explores the interaction
between microarchitectural parameters and algorithmic optimizations to fully
assess the performance potential of vector architectures for CNN inference,
providing valuable insights for programmers, hardware designers, and compiler
developers. Furthermore, this thesis conducts a co-design study to select the
optimal algorithm for each convolutional layer and analyzes its impact on the
achievable throughput per area for model serving.

1.3 Problem Statements

Problem 1: Prior work on CNN inference on vector architectures focuses
either on applying algorithmic optimizations [20,29–31,38] or on studying the
hardware micro-architectural parameters design points [32–34]. These studies
miss an opportunity to explore the trade-offs in algorithmic and architectural
co-design for CNN kernels running on long vector architectures. To address
this gap, this thesis investigates the following problem statement.

How to study the design space exploration to co-design an effective vector
architecture for high performing CNN inference?

Research questions: To provide a solution to the problem, we need to answer
four research questions.
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Q1 Are all algorithmic optimizations beneficial for different vector architec-
tures?

Q2 How is the performance of the im2col+GEMM algorithmic implementa-
tion affected by very long vector lengths, larger caches, and more vector
lanes within a vector unit?

Q3 Can the Winograd algorithm improve the performance of convolutional
layers on long vector architectures?

Q4 Can the performance of the Winograd implementation benefit from longer
vectors and larger caches?

Problem 2: Previous studies [35–37,47, 50, 52, 53] have focused on optimizing
the performance of specific algorithms on vector architectures, presenting
comparative analysis with state-of-the-art libraries for different layers of network
models on vector processors, and providing a comparative analysis of different
algorithmic implementations of convolutional layers on SIMD ARM-based
architectures. Despite the extensive research on convolutional neural networks
and various algorithmic implementations, the mutual impact of convolution
algorithms and hardware parameters remains unexplored. This limits resource
utilization and hampers the task of effectively designing future CPUs for CNN
model serving. This thesis performs a co-design study of three convolutional
algorithms: Direct, im2col+GEMM, and Winograd and addresses the following
problem statement:

How can model serving for CNNs achieve higher performance by co-designing
vector architectures?

Research questions: To provide a solution to the problem, four research
questions need to be addressed in this context:

Q5 What is the performance of different convolutional algorithms for different
layers on vector architectures?

Q6 Is there any single algorithm that benefits all the convolutional layers?

Q7 How to predict the optimal algorithm for each convolutional layer?

Q8 What are the throughput-area tradeoffs to efficiently serve CNNs with
vector architectures?

1.4 Contributions

This thesis is based on two papers. Paper I addresses the first problem
statement and answers the research questions 1, 2, 3 and 4. Paper I is the first
work that shows the impact of different algorithmic optimizations on different
vector architectures (decoupled and integrated) with CNN kernels. Paper I also
proposes a novel vectorized implementation of Winograd implementation with
ARM-SVE that uses inter-tile parallelism across the input/output channels for
utilizing the longer vector lengths. The main contributions of this paper are:
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• We compare different algorithmic optimizations of the GEMM kernel
across two vector architectures: ARM-SVE (tightly integrated vector
architecture) and RISC-VV (decoupled vector architecture). Our analysis
demonstrates that not all optimizations benefit different vector archi-
tectures equally. Further, our co-design study shows that longer vector
lengths and bigger caches help to improve the performance by ∼5×,
however, scalability becomes limited with very long vector lengths (16384-
bit).

• We vectorize the Winograd kernels using inter-tile parallelism, which helps
to achieve 1.35× and 1.5× for YOLOv3 and VGG16 network models,
respectively, compared to im2col+GEMM on ARM-SVE. Our co-design
study shows that our Winograd algorithm is less sensitive to L2 caches
compared to im2col+GEMM.

In Paper II, we perform a comparative analysis of Direct, Winograd, and
two variants of im2col+GEMM algorithms on each convolutional layer of the
YOLOv3 and VGG16 network models. Our co-design analysis shows that
the performance of the algorithms for a convolutional layer depends on each
layer’s dimensions and hardware parameters. To predict the best algorithm for
each convolutional layer, in Paper II, we train an algorithm selection model
using a random forest that takes each layer’s dimensions and the hardware’s
microarchitectural parameters as inputs and outputs algorithm with the lowest
execution time for each layer. Paper II addresses the second problem statement
and addresses the research questions 5, 6, 7, and 8. The main contributions of
this paper are:

• Our performance comparison with 512-bit vector length and 1MB L2
cache shows that Winograd is the best choice for layers with 3×3 kernel
size, whereas im2col+GEMM works best for layers with skinnier matrices.
On the other hand, Direct works best for layers with high input dimensions
but low input/output channels.

• Our co-design study shows that Winograd works best with smaller vector
lengths while Direct excels with longer vector lengths. im2col+GEMM
takes benefit from larger caches except for layers with extremely skinny
matrices. Direct takes maximum benefit out of larger caches with longer
vector lengths.

• We train a Random Forest classifier using 5-fold validation with shuffling,
achieving a prediction accuracy of 92.8%. Selecting the optimal algorithm
for each layer can boost performance by more than 2× compared to using
a single algorithm. Our performance-to-area trade-offs for both single
and multiple model instances demonstrate that carefully selecting the
algorithm for each layer enables higher performance in a reduced area.

The rest of the thesis is organized as follows. In Chapter 2, a summary of
each paper is presented. Finally, Chapter 3 concludes the thesis, and discusses
some possible future research directions.



Chapter 2

Summary of the Papers

2.1 Paper I - Summary

As an alternative to off-chip accelerators, long vector length agnostic architec-
tures such as RISC-VV and ARM-SVE can offer high performance for machine
learning workloads and higher energy efficiency, making CPUs suitable for
CNN inference. However, manual transformations and optimizations are key to
achieving efficient algorithmic implementations and maximizing performance
from these long vector architectures. Furthermore, tuning hardware parameters
such as vector lengths and L2 cache size to the requirement of algorithmic
optimizations can significantly impact performance. Therefore, it is important
to have a joint exploration of the design space of vector architectures and
optimization space of CNNs to have design points for a high performing vector
architecture for CNNs. While existing works focus either on optimizing con-
volutional algorithms [20,29–31] or tuning hardware parameters [32–34], they
miss the trade-offs between both. In Paper I, we bridge this gap and perform a
co-design study between algorithmic optimizations and micro-architectural pa-
rameter choices, aiming to give guidance to programmers, compiler developers,
and hardware designers.

Convolutional layers are the most time-consuming of CNNs. In Darknet,
this layer is implemented using the im2col+GEMM algorithm with GEMM
consuming 93.4% of the computation time when compiled with clang on the
A64FX system. For experiments, we use the YOLOv3 (object detection) and
VGG16(image classification) network models, from the Darknet framework on
a 768×576 pixels input image. We use the gem5 simulator [32,54] to assess the
impact of integrating vector units tightly to the core in the case of ARM-SVE
and as a decoupled vector architecture attached to the L2 cache in the case of
RISC-VV.

To optimize the convolutional layer, we optimize all kernels in the Darknet
framework using intrinsic instructions of the respective ISAs, mainly focusing
on the GEMM kernel. We optimize the GEMM kernel using two approaches: 3
loops and 6 loops. We apply the following optimizations to the 3-loop imple-
mentation: i) vectorization with intrinsic instructions ii) contiguous memory
loads/stores to/from vector registers, iii) loop reorder, and iv) loop unrolling.
We apply the following BLIS-like optimizations to the 6-loop implementation:

7
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i) loop reorder, ii) matrix packing, iii) block size tuning, iv) loop unrolling,
v) prefetching, and vi) vectorization using intrinsic instructions. We simulate
the first 4 convolutional layers of the YOLOv3 network on RISC-VV@gem5
with a 512-bit vector length, 1MB of L2 cache and 8 vector lanes, on a sin-
gle core with different block sizes. We observed that the optimal block size
for the 6-loop implementation is 16 × 512 × 128, which differs ∼2% with
3-loop implementation, a difference that is not significant in the simulated
environment. This is because VPU is directly attached to the L2 cache, not
taking any benefit from bringing packed matrices in the L1 cache beforehand.
Additionally, RISC-VV@gem5 does not support software prefetching, which is a
desired feature in the 6-loops implementation. On ARM-SVE@gem5, the 6-loop
implementation achieves a 15% performance gain over the 3-loop approach,
leveraging cache usage despite the lack of software prefetching. On the other
hand, we observe a 2× performance improvement with ARM-SVE@A64FX
using 6-loop implementation, where the 6-loop implementation is able to take
advantage of the caches and prefetching.

Further, we tune the hardware parameters using the optimized 3-loop imple-
mentation in the case of RISC-VV@gem5 with the first 20 layers of the YOLOv3
model. Increasing the vector lengths from 512-bit to 16384-bit showcases the
performance saturates beyond the 8192-bit vector length. Increasing the L2
cache size from 1MB to 256MB shows a 1.5× - 1.9× performance gain for
different vector lengths Our study reveals that larger L2 caches are beneficial
with longer vector lengths, but the performance gains of very long vector
lengths are limited, as with 256MB L2 cache performance improves by ∼5%
from 8192-bit to 16384-bit vector lengths. Additionally, we tune the hardware
parameters using 6-loops optimization on ARM-SVE@gem5 which validates the
observations made by RISC-VV@gem5 that our optimized kernels can benefit
from longer vectors and larger cache sizes.

As an alternative to im2col+GEMM, we have optimized the Winograd im-
plementation of the convolutional layer with 3×3 kernel size from the NNPACK
package. For vectorizing the Winograd algorithm to utilize long vector lengths
in a VLA way, Paper I proposes an inter-tile parallelism across the input/output
channels by using an 8×8 tile from each channel on ARM-SVE. Using 4 in-
put/output channels with one row of 8×8 tiles from each channel as shown in
Figure 2.1, we can utilize two 512-bit vector registers. To utilize longer vector
lengths, we increase the number of input/output channels accordingly, e.g. 16
channels for 2048-bit vector registers. For vectorizing the tuple multiplications
in a VLA way on ARM-SVE, we increase the block size from 3 to 16 with 4
elements in each block i.e., utilizing a maximum of 2048-bit vector lengths. For
512-bit vector lengths, an additional performance of 1.5× is achieved on top of
im2col+GEMM.

Figure 2.1: Inter-tile parallelism in Winograd
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Increasing the vector length from 512 to 2048 bits while keeping the L2 cache
at 1MB, we observe a 1.4× performance improvement for both network models.
Increasing the L2 cache size from 1MB to 256MB improves performance by
1.75× and 1.4× for all vector lengths in YOLOv3 and VGG16 respectively. All
layers in VGG16 use Winograd, which has smaller cache requirements compared
to im2col+GEMM, whereas several layers in YOLOv3 invoke im2col+GEMM.
This emphasizes that our Winograd implementation does not have high cache
requirements.

2.2 Paper II - Summary

CNN models are built upon a series of consecutive layers, where each layer
is distinct based on dimensions such as input, output, kernel’s height and
width, input and output channels, and stride. Multiple algorithms such as
im2col+GEMM, Winograd, Direct, and FFT can be used to implement the
convolutional layer. These algorithms can demonstrate varying performances
for each layer as they have different computational complexities and memory
footprints. Moreover, cache memory can impact the performance of these
convolutional algorithms, as certain algorithms such as im2col+GEMM increase
the memory footprint of a convolutional layer. Additionally, these convolutional
algorithms need several optimizations to utilize the SIMD unit efficiently.

Model serving frameworks create replicas of a single model and distribute
incoming requests across these replicas by maintaining load balancing. However,
concurrent execution competes for cache resources, making the convolutional
algorithms dependent on co-running inference tasks. Therefore, it is important
to have a mutual impact of convolutional algorithms and hardware parameters
to have efficient design points for future vector CPUs for CNN model serv-
ing. Previous studies [35–38] have focused on optimizing the performance of
specific algorithms on vector architectures and presenting comparative anal-
yses with state-of-the-art libraries for different layers of network models on
vector processors. We identify the absence of a joint study of convolutional
algorithms and hardware parameters as a missed opportunity. In paper II, we
perform a co-design study of three distinct convolutional algorithms, Direct,
im2col+GEMM, and Winograd for implementing convolutions on RISC-V
based vector architecture. Since large kernel sizes are not common in modern
CNNs, we do not consider the FFT algorithm in this work.

We use two variants of the optimized im2col+GEMM algorithm from Paper
I. Additionally, we use the optimized Winograd algorithm from our workshop
paper [55] on RISC-VV. For the Direct algorithm, we manually vectorize and
optimize it with NHWC memory layout (where N refers to batch size, H refers
to input height, W refers to input width and C refers to input channels) on
RISC-VV using intrinsic instructions of the respective ISA. We evaluate each
convolutional layer of the YOLOv3 and VGG16 network model on RISC-VV
on a 768×576 pixels input image using the gem5 simulator [56].

We evaluate each convolutional layer of both network models with a 512-bit
vector length and 1MB of L2 cache size. Our study showcases that the Direct
algorithm is better when input/output dimensions are high, but input/output
channels are low. On the other hand, im2col+GEMM with 6 loops prevails
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Figure 2.2: Execution time of VGG16 for different vector lengths and L2 cache
sizes, when a single algorithm is used for all layers (Direct, im2col+GEMM - 3 loops,
im2col+GEMM - 6 loops,Winograd), compared against using the Optimal algorithm
per layer, and using our algorithm selection model to predict the optimal algorithm
per layer (Predicted Optimal).

and performs better in the case of skinny matrices, i.e., when input/output
dimensions are low, but input/output channels are high. Winograd shows
better or comparable performance for most layers, except for layers with high
input channels. Further, increasing vector lengths from 512-bit to 4096-bit
demonstrates that the Direct algorithm shows the maximum scalability of
2.4×–5.8× with longer vector lengths and outperforms the other algorithms.
The im2col+GEMM algorithm offers better performance for vector lengths
higher than 1024-bit for the skinny matrices. Additionally, increasing the L2
cache from 1MB to 64MB showcases the limited scalability of the Winograd
algorithm due to its fixed tile size, which does not utilize the larger caches.
Both variants of im2col+GEMM show limited scalability beyond 16MB of L2
cache for extremely skinny matrices. On the other hand, the Direct algorithm
benefits the most from larger caches.

Our evaluation shows that the selection of the convolutional algorithms
depends upon the layer’s dimensions and hardware microarchitectural param-
eters. Consequently, it is important to select an optimal algorithm for each
convolutional layer based upon the co-design study. In Paper II, we propose a
random forest classifier that achieves 92.8% prediction accuracy by considering
both convolutional layer dimensions and hardware configuration parameters.
Selecting the optimal algorithm improves the execution time by up to 1.85×
compared to always using the Direct algorithm and up to 1.73× over using
the 6-loop implementation of im2col+GEMM in the case of VGG16 as shown
in Figure 2.2. For YOLOv3, selecting the optimal algorithm improves the
execution time by 1.33× and 2.11× over always using the Direct and 6-loop im-
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Figure 2.3: Execution time of YOLOv3 (first 15 layers) for different vector lengths and
L2 cache sizes, when a single algorithm is used for all layers (Direct, im2col+GEMM
- 3 loops, im2col+GEMM - 6 loops, Winograd* -uses im2col+GEMM for some layers),
compared against using the Optimal algorithm per layer, and using our algorithm
selection model to predict the optimal algorithm per layer (Predicted Optimal).

plementation of im2col+GEMM algorithms, respectively as shown in Figure 2.3.
Moreover, our performance-area tradeoffs show that algorithm selection allows
for better performance in less area, compared to using a single algorithm for
each layer.
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Chapter 3

Conclusions and Future
Work

In this thesis, we present a hardware and software co-design study of CNNs
inference with three distinct algorithms, Direct, im2col+GEMM, and Winograd,
on modern long vector architectures by considering the architecture’s hardware
parameters tuning.

This thesis makes the following contributions: Paper 1 concludes that
optimizing the algorithms according to the underlying vector architecture is
important because not all types of vector architectures benefit from all the
optimizations. Manual optimizations on the vector architecture are crucial, as
a performance improvement of 3×-6× has been observed compared to auto-
vectorization. Paper 1 additionally concludes that tuning the microarchitectural
parameters with longer vector lengths, bigger caches, and more vector lanes
can improve the performance by ∼5×. However, the performance gain from
very long vectors is limited and additional vector lanes only benefit long vector
lengths by hiding the startup overhead and pipeline latency. Moreover, our
optimized Winograd algorithm with inter-tile parallelism further improves the
performance by 1.35× and 1.5× for YOLOv3 and VGG16 network models
respectively, while having a lower cache requirement. Paper 2 concludes that
the selection of an algorithm per convolutional layer highly depends on the
convolutional layer parameters and hardware microarchitectural parameters
such as vector lengths and L2 cache sizes. All the algorithms benefit ∼2×
with longer vector lengths (2048-bit) compared to 512-bits. Both algorithms
im2col+GEMM and Direct benefit about 1.5× from a larger L2 cache (64MB
compared to 1MB), but the Direct can have higher speedups if the vector length
is large (4096 bits). Moreover, our study shows that there is no single algorithm
that fits all the convolutional layers. Therefore, to select the best algorithm,
Paper 2 presents our Random Forest classifier, resulting in an average of 92.8%
prediction accuracy, with inference time predictions showing at most 10%
relative errors. Furthermore, algorithm selection can boost performance more
than 2× compared to using a single algorithm and results in more efficient
chips for CNN model serving.

So far, we have focused on the optimization space of algorithms for con-
volutions and the design space of vector architectures. There are various

13
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opportunities to extend this work. One promising direction is toward vision
transformers (ViTs), a deep learning architecture that applies to transformer
models, designed for natural level processing, object detection, image classifica-
tions, etc. These network models are built with self-attention and feedforward
layers, where matrix multiplication is the main kernel, contributing a sub-
stantial part of total inference time. However, optimizing ViTs on vector
architectures presents several challenges. First, many matrices are skinny and
irregular, making it challenging to utilize long vector lengths and optimize
them effectively. Second, data movement is substantial as each self-attention
layer involves two matrix-matrix multiplications along with one softmax kernel.
Therefore, mechanisms like data reuse and fusion are proposed [57] to reduce
memory accesses and improve performance.
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[53] M. F. Dolz, A. Castelló, and E. S. Quintana-Ort́ı, “Towards portable real-
izations of winograd-based convolution with vector intrinsics and openmp,”
in 2022 30th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), 2022, pp. 39–46.

[54] Gem5, “Gem5.” [Online]. Available: https://gem5.googlesource.com/
public/gem5

[55] S. R. Gupta, N. Papadopoulou, and M. Pericàs, “Challenges and opportu-
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Abstract—CPU-based inference can be deployed as an al-
ternative to off-chip accelerators. In this context, emerging
vector architectures are a promising option, owing to their
high efficiency. Yet the large design space of convolutional
algorithms and hardware implementations makes the selection
of design options challenging. In this paper, we present our
ongoing research into co-designing future vector architectures
for CPU-based Convolutional Neural Networks (CNN) inference
focusing on the im2col+GEMM and Winograd kernels. Using
the Gem5 simulator we explore the impact of several hardware
microarchitectural features including (i) vector lanes, (ii) vector
lengths, (iii) cache sizes, and (iv) options for integrating the vector
unit into the CPU pipeline. In the context of im2col+GEMM, we
study the impact of several BLIS-like algorithmic optimizations
such as (1) utilization of vector registers, (2) loop unrolling,
(3) loop reorder, (4) manual vectorization, (5) prefetching, and
(6) packing of matrices, on the RISC-V Vector Extension and
ARM-SVE ISAs. We use the YOLOv3 and VGG16 network
models for our evaluation. Our co-design study shows that
BLIS-like optimizations are not beneficial to all types of vector
microarchitectures. We additionally demonstrate that longer
vector lengths (of at least 8192 bits) and larger caches (of 256MB)
can boost performance by 5×, with our optimized CNN kernels,
compared to a vector length of 512-bit and 1MB of L2 cache.
In the context of Winograd, we present our novel approach of
inter-tile parallelization across the input/output channels by using
8×8 tiles per channel to vectorize the algorithm on vector length
agnostic (VLA) architectures. Our method exploits longer vector
lengths and offers high memory reuse, resulting in performance
improvement of up to 2.4× for non-strided convolutional layers
with 3×3 kernel size, compared to our optimized im2col+GEMM
approach on the Fujitsu A64FX processor. Our co-design study
furthermore reveals that Winograd requires smaller cache sizes
(up to 64MB) compared to im2col+GEMM.

Index Terms—CNNs, GEMM, Winograd, long vector architec-
tures, vector-length agnostic ISAs, co-design, optimizations

I. INTRODUCTION

Inference via Convolutional Neural Networks (CNNs) is
used in many Artificial Intelligence applications such as object
detection [1], natural language processing [2] and speech
recognition [3]. Most CNN-based object detection network
models work with a tight response-time limit and have high
and increasing computation costs [4]–[6]. Additionally, these
models often operate under tight power constraints, e.g.
battery power in embedded systems [7], or power caps in
datacenters [8]. Therefore, highly accurate real-time CNNs
require highly optimized kernels, running on energy-efficient
architectures with large computational capacity.

The popular approach for CNN inference, adopted by many
frameworks [6], [9], [10] is to offload the compute-intensive

kernels to GPUs [11]–[13]. Specialized neural accelerators
also exist [14], [15], but their integration in the general-
purpose computing stack is challenging. Nevertheless, many
use cases require availability, low-latency, or portability [16]–
[18], and therefore benefit from executing deep neural net-
works (DNNs) on tightly integrated systems. Consequently,
many works target software optimization of CNN inference on
CPUs [18]–[20], while CPU vendors increasingly add DNN
capabilities to processors [21].

In this aspect, vector processors play a leading role [22].
Contemporary vector architectures, such as ARM-SVE [23]
and the RISC-V Vector extension (RISC-VV) [24] specify a
maximum length of vector registers and allow the usage of
different vector lengths. These vector-length agnostic (VLA)
Instruction Set Architecture (ISAs) facilitate code portability
across iterations of the same machine with different vector
lengths.

The effectiveness of vector processors depends on
algorithmic optimizations and the hardware design. First,
given the limited compiler’s ability to perform transformations
during auto-vectorization [25], manual transformations and
optimizations to expose the available SIMD parallelism
to the vector processing units are key to achieving high
performance on vector architectures. Second, modern
architectures can combine very long vector units, more
on-chip vector parallelism and large caches. Tuning the
micro-architectural parameters to the requirements of the
vectorized and optimized kernels is integral to the design of
high-performing, efficient vector architectures.

Existing work on CNN inference on vector architectures
focuses either on applying algorithmic optimizations [26]–[29]
or on tuning the hardware micro-architectural parameters [30]–
[32]. We identify the absence of a combined study as a missed
opportunity to uncover algorithmic and architectural trade-
offs in the performance of CNN kernels running on vector
architectures. In this work, we bridge this gap with a co-
design study that performs a joint exploration of the design
space of vector architectures and the optimization space of
CNNs, aiming to provide guidance to programmers, hardware
designers, and compiler developers.

This paper studies the interplay between algorithmic opti-
mizations and micro-architectural parameter choices, demon-
strating the trade-offs in co-designing CNNs and vector archi-
tectures. For our co-design study, we vectorize all the kernels
of the convolutional layer from the Darknet framework [6]



on the RISC-VV and ARM-SVE architectures, using high-
level intrinsics of the respective ISAs. We then optimize
GEMM, the most time-consuming kernel, using various BLIS-
like [33] techniques to reduce the pressure on the memory-
subsystem, enforce contiguous memory accesses, and maxi-
mize the utilization of vector registers. We additionally op-
timize the Winograd algorithm from NNPACK [34], with
VLA vectorization on ARM-SVE, proposing a novel, inter-tile
parallelism scheme. We then use the gem5 [35] simulator to
assess the impact of tuning hardware parameters such as vector
lengths, vector lanes and L2 cache sizes, on the optimized
kernels. We consequently also assess the impact of integrating
vector units tightly to the core, in the case of ARM-SVE,
or as a decoupled vector architecture, in the case of RISC-
VV. Finally, we evaluate the performance of Winograd as an
algorithmic replacement for im2col+GEMM.

In summary, we make the following contributions:
1) We demonstrate that not all algorithmic optimizations

are beneficial to all different vector architectures, due
to traits of their micro-architectural design. To the best
of our knowledge, this is the first work that shows the
impact of different algorithmic optimizations with CNN
kernels on the ARM-SVE and RISC-VV ISAs.

2) We characterize the impact of hardware parameters
on convolutional layers with im2col+GEMM, showing
that longer vectors can improve the performance by
up to 2.5×, and larger caches can further improve
performance by up to 1.9× (i.e., a total of almost 5×),
when compared to a 512-bit long vector architecture
with 1MB of L2 cache.

3) We present a novel, vectorized implementation of
Winograd with ARM-SVE in a VLA manner, offering
up to 1.35× and 1.5× higher performance with the
YOLOv3 and VGG16 network models respectively,
compared to im2col+GEMM, on a single core of
A64FX. To the best of our knowledge, this is the first
implementation of Winograd utilizing long vectors
(up to 2048 bits). Moreover, our co-design study on
ARM-SVE shows that Winograd is less sensitive to the
L2 cache size compared to im2col+GEMM.

The rest of this paper is organized as follows. Section II offers
background on vector architectures and CNNs. Section III
presents our experimental platforms and setup. Section IV
describes the algorithmic transformations and optimizations
on the most-time consuming kernels of the convolutional
layer, namely im2col+gemm and Winograd. Section V details
the hardware parameters we consider in our co-design study.
Section VI presents our co-design study on the RISC-VV and
ARM-SVE architectures. Section VII evaluates the Winograd
kernel and Section IX concludes the paper.

II. BACKGROUND

A. Vector Architectures

Although long vector lengths were used in supercomputers
in the past [36], and short vectors later became popular

in general-purpose architectures [37], [38], the high energy
efficiency and scalable vector length of vector architectures
have led to renewed interest in High-Performance Computing.
While SIMD instruction set architectures with a fixed short
vector length are available and commonly used for general
purpose computing, introducing longer vector lengths requires
a new ISA extension, limiting portability. To overcome this
limitation, modern architectures such as RISC-VV [39] and
ARM-SVE [23] offer vector length agnostic (VLA) ISAs that
are portable across different hardware vector lengths.

a) RISC-V Vector Extension (RISC-VV): This is the
vector extension of the RISC-V Architecture, with 32 vector
registers and a maximum supported vector length (MVL) of
16384 bits. Different vector lengths (vlen) in powers of two,
not exceeding the MVL (maximum vector length), can be used.
A vector instruction vsetvl determines the granted vector
length (gvl) at runtime, using the requested vector length (rvl)
in elements and the element width in bits (sew) as input. RISC-
VV also supports strided-access, gather-load and scatter-store
vector operations.

b) ARM Scalable Vector Extension (ARM-SVE): This is
the vector extension of the ARMv8 architecture. The ARM-
SVE ISA operates on 32 vector registers and 16 predicate
registers. The supported MVL is 2048 bits, allowing to use
different vector lengths at runtime, from 128-bit to 2048-bit in
increments of 128-bits. Predicate registers are used for per-lane
predication, where elements with active lanes get processed
and inactive lanes either update the destination or leave the
destination unchanged. For the scalar loop tail, ARM-SVE
uses loop predication by masking out vector elements and by
processing partial vectors. ARM-SVE also provides gather-
load and scatter-store vector instructions.

B. Convolutional network models

Convolutional neural networks are implemented in multiple
deep learning frameworks. In this work, we focus on Darknet
[40], an open-source neural network framework written in
C and CUDA. It supports many pre-trained convolutional
network models for inference in various applications, such
as object detection and image classification. These network
models consist of different types of layers, but the computa-
tionally dominant layer is the convolutional layer. In Darknet, a
convolutional layer is built from the functions GEMM, im2col,
fill_cpu, copy_cpu, normalize_cpu, add_bias,
scale_bias and activate_array.

a) CNNs for object detection and image classification: A
popular CNN for object detection is YOLOv3, which features
107 layers of five different types, out of which 75 layers are
convolutional. A variant for the same task is YOLOv3-tiny,
which features 23 layers, out of which 13 are convolutional.
VGG16 is an image classification CNN. VGG16 includes 25
layers, out of which 13 are convolutional and 3 are fully-
connected layers. The fully connected layers also use compute
intensive kernels similar to convolutional layers.

b) Execution time breakdown for CNN inference: We
profile the execution time of different kernels in the YOLOv3



TABLE I: Hardware Platforms
RISC-VV ARM-SVE A64FX
@gem5 @gem5

ISA RISC-VV v0.8 ARM v8.2+sve ARM v8.2+sve
Processor in-order in-order out-of-order

Clock Rate 2GHz 2GHz 2GHz
L1 Cache size 64kB, 4-way 64kB,4-way 64kB,4-way
L2 Cache size 1MB, 8-way 1MB, 8way 8-MB, 16-way
Cache line size 64B 64B 256B

Prefetching No No Yes
Vector Length upto 16384-bit up to 2048-bit 512-bit
Vector Lanes upto 8 proportional not configurable

to vector length

network model, compiled with clang on the A64FX system
(see Section III for details) and collect measurements using
Linux perf. Approximately 92% of the total execution time is
spent on computation for inference, while the remaining 8% is
used for setting up the network model. We exclude the time for
setup, as it occurs only once, and calculate the percentage of
time spent on each kernel with respect to the total computation
time. The convolutional layer dominates execution, with GEMM
consuming 93.4% of the computation time.

c) Convolutional layer implementations: Our profiling
results show that the convolutional layer is the main building
block of CNN network models. In Darknet, this layer is
implemented using the im2col+GEMM algorithm, which is
also the dominant kernel. We focus on the optimization of the
generic im2col+GEMM algorithm, however, a convolutional
layer can be implemented with multiple algorithms, as no
”one-size-fits-all” strategy exists [41]: Winograd [42] works
best with convolutional layers with 3×3 or 5×5 kernel sizes
[43], FFT works best for layers with large kernel sizes, while
the Direct algorithm is better for 1×1 kernels. We therefore
also optimize the Winograd algorithm of the NNPACK [34]
package implementation, as in CNN-based network models
most of the network models have convolutional layers with
kernel sizes of 1×1, 3×3 or 5×5 [44].

III. METHODOLOGY

A. Hardware platforms

Our experimental analysis focuses on the RISC-VV and
ARM-SVE architectures. For the exploration of hardware
parameters, we simulate both architectures with gem5 [35],
a cycle-accurate simulator that models the core pipeline,
providing accurate timing predictions. For ARM-SVE, we use
the Fujitsu A64FX processor that implements the ARMv8-
SVE architecture, to evaluate our algorithmic optimizations.

The specifics of the hardware platforms used for our exper-
iments are described in Table I. We note that A64FX has 2
SIMD units, and the vector lengths are not reconfigurable, as
this is an actual processor. We use a RISC-V fork of gem5 [30]
and the public version of the gem5 simulator [45] with support
for modeling vector architectures, for RISC-VV and ARM-
SVE, respectively, in system call emulation (SE) mode. We
configure gem5 with the in-order “MinorCPU” CPU model,
with a frequency of 2GHz for the CPU and vector processor
unit (VPU). The memory subsystem is configured with two

levels of the data cache. We note that in RISC-VV@gem5, the
VPU is connected to the L2 cache. A small VectorCache buffer
of 2KB is used, through which the VPU reads and writes data
from/to the L2 cache. However, on ARM-SVE@gem5, data
for vector registers is accessed through the L1 cache itself.

B. Experimental setup
We evaluate the YOLOv3 network models from the Darknet

framework on a 768 × 576 pixels input image. To compile the
models, we use the EPI fork of the LLVM clang [46] cross-
compiler v12.0.0 for RISC-VV, LLVM armclang v20.3 [47]
for ARM-SVE@A64FX, and GCC cross-compiler version
10.2 for ARM-SVE@gem5. For both RISC-VV and ARM-
SVE, we use the -O3 optimization flag. To collect baseline
results, we use the -fno-vectorize compiler flag in
both compilers. Note that the baseline implementation of the
network models in Darknet does not include any manual
vectorization. The versions of Darknet with our vectorized and
optimized kernel implementations for ARM-SVE and RISC-
VV are open-source and publicly available 1 2.

To analyze the impact of the vector lengths, we vary the
vector lengths in both simulated architectures from 512 bits up
to 2048 bits on ARM-SVE and up to 16384 bits on RISC-VV,
in powers of 2. To analyze the impact of on-chip parallelism
on RISC-VV, we vary the number of vector lanes from 2 up
to 8. To analyze the impact of cache parameters, we increase
the L2 cache size on both simulated architectures from 1MB
up to 256MB. We calculate the L2 cache latency using the
latency of AMD Zen2 L2 [48] (12 cycles @ 7nm tech) and
extrapolating it to a cache size of 1MB, using the CACTI
tool [49], resulting in a latency of 12 cycles.

To collect time measurements, we perform 100 repetitions
for all experiments on A64FX, ensuring that the 95% confi-
dence interval of the mean falls within 5% of the mean.

IV. ALGORITHMIC OPTIMIZATIONS

In this section, we focus on the algorithmic optimizations
for im2col+GEMM for the convolutional layer. We addition-
ally describe the optimization of the Winograd implementation
of convolutional layers.

A. im2col+GEMM optimizations
To maximize the attainable performance, we begin by

vectorizing all kernels of the convolutional layer in Darknet
with low-level intrinsic instructions of the respective ISAs on
each of our experimental platforms. However, as discussed
in Section II, GEMM is the most time consuming kernel, and
aside from vectorization, manual optimizations are necessary
to extract the maximum parallelism out of im2col+GEMM.

Assuming a convolutional layer with a k × k kernel size,
on an input image of dimensions h × w × c, where h, w, c
are the height, width, and number of channels respectively,
for n number of filters, GEMM takes as input a weight matrix
M × K, and an input matrix K × N , where M = n, K =
k × k × c, and N = h× w.

1https://github.com/chalmers-hart/Darknet-ARM-SVE.git
2https://github.com/chalmers-hart/Darknet-RISCVV.git



1: i← 0 , j ← 0, k ← 0
2: for i← 0, i < M , i++ do
3: for k ← 0, k < K, k ++ do
4: tmp = alpha * A[i, k]
5: for j ← 0, j < N , j+ = 1 do
6: C[i, j] += tmp * B[k, j]
7: end for
8: end for
9: end for

Fig. 1: Naive implementation of GEMM

1: i← 0 , j ← 0, k ← 0
2: long int gvl;
3: for j ← 0, j < N do
4: gvl← vsetvl(N − j) //compute ’granted vector length’
5: for i← 0, i < M , i+ = U do //U is unrollfactor
6: V C[i : i+ U ]← C[i : i+ U, j : j + gvl]
7: for k ← 0, k < K, k ++ do
8: V B ← B[k, j : j + gvl]
9: for it← 0, it < U , it++ do

10: tmp = alpha × A[it, k]
11: V tmp← tmp //broadcast
12: V C[it]← vfmacc (V C[it],V tmp, V B, gvl)
13: end for
14: end for
15: C[i : i+ U, j : j + gvl]← V C[i : i+ U ]
16: end for
17: j+ = gvl
18: end for

Fig. 2: Optimized 3-loop implementation of GEMM

Fig. 1 shows the pseudocode for the naive implementation
of GEMM (C = alpha · A · B + beta · C), as implemented
in Darknet. In the pseudo code, A (M × K) represents the
weight matrix, B (K ×N ) represents the input matrix and C
(M ×N ) represents the output matrix.

To optimize GEMM, we follow two approaches. The first
approach optimizes the 3-loop implementation, depicted in
Fig. 2. The second approach tiles the matrices, resulting in
a 6-loop implementation depicted in Fig. 3, where we apply
optimizations.

We apply the following optimization to the 3-loop imple-
mentation: i) vectorization with intrinsic instructions ii) con-
tiguous memory loads/stores to/from vector registers, iii) loop
reorder, and iv) loop unrolling. Loop reordering reduces the
pressure on the memory subsystem by maximizing the reuse of
the vector registers. Loop unrolling hides the pipeline latency
by maximizing the vector register utilization and increasing
the parallelism in the algorithm.

Figure 2 shows the pseudocode for the optimized 3-loop
implementation of the GEMM kernel. In this algorithm,
we use the jik loop order, and we unroll the intermediate
loop j to reuse the vector data of matrix B by performing
U (unrollfactor) times dot products with different A matrix
elements. The loop in line 3 is incremented by the vector
length gvl to take advantage of VLA and the loop in line
5 is incremented by U to take advantage of loop unrolling.
Loops are reordered to reuse the loaded vector data as much as
possible. Low level intrinsics are used to manually vectorize
the algorithm. For RISC-VV, the vector length is calculated

1: i← 0 , j ← 0, k ← 0
2: long int gvl;
3: for j1← 0, j1 < N , j1+ = blockN do
4: for k1← 0, k1 < K, k1+ = blockK do
5: Pack MatrixB
6: for i1← 0, i1 < M , i1+ = blockM do
7: Pack MatrixA
8: for j ← 0, j < blockN , do
9: gvl← vsetvl(blockN − j)

10: for i← 0, i < blockM , i+ = U do
11: Prefetch block of C matrix into L1 cache
12: Prefetch packedA matrix into L2 cache
13: Prefetch packedB matrix into L2 cache
14: V C[i : i+ U ]← C[i : i+ U, j : j + gvl]
15: for k ← 0, k < blockK, k ++ do
16: Prefetch packed B matrix into L1 cache
17: Prefetch packed A matrix into L1 cache
18: V B ← packedB[k, j : j + gvl]
19: for it← 0, it < U , it++ do
20: tmp = alpha × packedA[it, k]
21: V tmp← tmp //broadcast
22: V C[it]← vfmacc (V C[it],V tmp,V B,gvl)
23: end for
24: end for
25: C[i : i+ U, j : j + gvl]← V C[i : i+ U ]
26: end for
27: j+ = gvl
28: end for
29: end for
30: end for
31: end for

Fig. 3: Optimized 6-loop implementation of GEMM

using the vsetvl intrinsic instruction. Once matrices are
loaded to the vector registers (V B, V C, V tmp), we use a
fused multiply-add vector intrinsic vfmacc to calculate the
multiplication and addition for the intermediate resultant ma-
trix V C. V tmp, a scalar value broadcasted to the vector
register, is passed as the second parameter to the vfmacc
intrinsic. The compiler internally uses vector-scalar multiply-
add intrinsics and avoids the use of the broadcast intrinsic
instruction. The resulting multiple multiply-add operations
hide the pipeline latency.

Furthermore, we optimize the 6-loop implementation, where
the original matrices in GEMM are tiled in blocks of di-
mensions blockM , blockN , blockK. We apply the following
BLIS-like [33] optimizations: i) loop reorder, ii) matrix pack-
ing, iii) block size tuning, iv) loop unrolling, v) prefetching,
and vi) vectorization using intrinsic instructions. We perform
loop reorder and unrolling for the same reasons as in the 3-
loop implementation. We pack matrices to facilitate contiguous
memory accesses. We tune the block sizes to the size of the
caches, in order to minimize memory accesses and maximize
reuse. Finally, prefetching assists in hiding load latencies.

Fig. 3 shows the pseudocode for the optimized 6-loop imple-
mentation of the GEMM kernel. The 6-loop implementations
allow us to pack the blocks of matrices A and B so that the
innermost loop performs contiguous accesses. The order in
the innermost 3 loops is jik, where matrix A is accessed in
continuous order from the packed A matrix to perform the



dot product with the packed B matrix. The first three loops
in lines 3, 4, and 6 are incremented by block sizes blockM ,
blockN , and blockK, tuned to the architecture. Matrices are
packed in lines 5 and 7, to facilitate contiguous cache access in
the inner-most loop and facilitate prefetching. Matrix packing
operations are also vectorized using intrinsic instructions.

The inner loops (lines 8 and 10) are incremented by gvl
(granted vector length) and U (unrollfactor), as in the 3-
loop implementation, to make use of VLA and facilitate loop
unrolling. Here, gvl×U is also called the “macro-block” size.
As in the 3-loop implementation, we perform loop reorder.
Additionally, in this implementation, the blocks of matrix C
are prefetched into the cache before storing them in the vector
registers. We also prefetch the A and B packed matrix data
into the L1 cache. The remainder of the inner-most loop is
vectorized in the same way as in the 3-loop implementation.

We note that prefetching capabilities vary among the plat-
forms. The toolchain used for RISC-VV does not yet support
software prefetching (Zicbop extension), therefore any relevant
intrinsic instructions are ignored by the compiler. In the case of
ARM-SVE, the compiler generates the assembly instructions
for prefetching, which take effect on the A64FX processor, but
are treated as no-ops on our gem5 platform, which currently
does not support software prefetching.

B. Winograd optimizations

As an alternative to im2col+GEMM, for convolutional lay-
ers with small filter sizes, we target the Winograd algorithm
from the NNPACK [34] package. NNPACK, Arm Compute
Library and other implementations [28], [50], [51] vector-
ize Winograd with ARM-NEON. We vectorize Winograd by
building on the NEON implementation in NNPACK in a VLA
way, to utilize the longer vector lengths up to 2048-bit on
ARM-SVE. The Winograd implementation requires an input,
weight, and output transformation and a tuple multiplication,
and operates on a default tile size of 8×8. Vectorizing the
transformations with longer vector lengths would require a
larger tile size, however, in this case, the numerical accuracy
would drop. Therefore, we employ a scheme of inter-tile
parallelism across the input/output channels by using an 8×8
tile from each channel, which allows us to vectorize the
transformation kernels using long vector lengths. Using 4
input/output channels with one row of 8×8 tiles from each
channel as shown in Fig. 5, we can utilize two 512-bit vector
registers. To utilize longer vector lengths, we increase the
number of input/output channels accordingly, e.g. 16 channels
for 2048-bit vector registers.

The pseudocode in Fig. 4 shows our inter-tile parallelization
across the channels for the input transformation in Winograd.
Lines 2 to 4 select the vector length, and determine the number
of channels at runtime, in a VLA manner. For example, for a
512-bit vector length with 16 single precision elements, the
number of channels will be 4. If the number of channels
is more than 4, inter-tile parallelism is enabled. Lines 6-
16 create the buffers buff1, buff2 to utilize the specified
vector length. In Line 17, these buffers are used as a input for

1: i← 0 , j ← 0, k ← 0, tileitr ← 0
2: elements = 4
3: VL = svcntw() // get vector length
4: interchannels = V L/elements
5: if channels >= 4 then
6: tiles = interchannels
7: for tileitr ← 0, tileitr < channels, tileitr+ = tiles do
8: //Buffer preparation for longer vectors
9: for k ← 0, k < tiles, k+ = 1 do

10: for i← 0, i < 8, i+ = 1 do
11: for j ← 0, j < 4, j+ = 1 do
12: buff1[(i×V L)+(j+(k×4)))] = pack row-wise

0-3 elements of 8x8 tile
13: buff2[(i×V L)+(j+(k×4)))] = pack row-wise

4-7 elements of the same 8x8 tile
14: end for
15: end for
16: end for
17: nnp iwt8x8 3x3 with offset sve vectorized()
18: Store the transposed data in their respective tiles across

channels.
19: end for
20: else
21: // single tile
22: nnp iwt8x8 3x3 with offset sve vectorized()
23: end if

Fig. 4: Input transformations code snippet from winograd showcasing
the inter-tile parallelism across channels

the SVE-vectorized input transformation kernel. We optimize
the kernels for the weight and output transformation for
longer vector lengths in a similar way, using the same inter-
tile parallelization scheme, and applying the corresponding
vectorized transformation (replacing the function in line 17).

We additionally vectorize the tuple multiplication in a VLA
way, which can use up to 2048-bits of vector length. To utilize
the longer vector lengths for tuple multiplication, we increase
the number of blocks for the GEMM kernel, using 16 blocks
with 4 elements in each block. Therefore, there will be a total
of 64 elements to utilize the maximum 2048-bit vector length.

V. HARDWARE TUNING

In this section, we detail our methodology to study the
impact of tuning hardware parameters with the optimized
kernels for CNN inference. We focus on three parameters:
vector lengths, L2 cache sizes, and the number of vector lanes.
To support scientific applications and AI workloads, the latest
chips are integrating longer vector lengths for fast processing.
As the vector length increases, so does the pressure on the
memory subsystem. Adding larger caches to alleviate the pres-
sure can increase the access time. Even if we assume constant
access time, we still need to determine the exact cache size that

Fig. 5: Inter-tile parallelism in Winograd



is beneficial. Along with the cache sizes, there is a need to have
more on-chip parallelism. However, bigger caches and more
on-chip parallelism can influence the performance differently
for different vector lengths. Therefore, it is important to study
the trade-off between these micro-architectural parameters, as
these hardware components occupy significant die area, while
having an important influence on performance.

Vector length agnostic ISAs can work with different vector
lengths without any modifications to the ISA, hence making
vector length a hardware parameter in designing vector archi-
tectures. With recent ISAs supporting very long vector lengths,
this raises the question of how long the vector lengths should
be. Tuning the vector lengths to the demands of optimized
CNN kernels can guide hardware designers in the selection of
the appropriate vector lengths on future architectures.

Longer vector lengths require more on-chip storage, which
consequently may require larger cache to effectively handle
locality. Larger cache sizes can reduce the cache miss rate,
therefore this raises the question of how large should the L2
cache be for different vector lengths. This question also relates
to the length of vector registers, since longer vector registers
can lead to increased pressure on the memory subsystem.

The number of vector elements to be processed per cycle
is determined by the available on-chip parallelism. To achieve
this, additional pipelines can be added to a vector architecture.
However, this raises the question of how many vector lanes are
required for different vector lengths, as adding more pipelines
increases the start-up overhead, which can potentially degrade
the performance with short vector lengths.

To respond to the aforementioned questions, our analysis
shows the trade-offs between these three micro-architectural
parameters. We highlight that other micro-architectural pa-
rameters, such as in-order vs. out-of-order cores, the core
frequency, or the number of registers, can also be important,
but are beyond the scope of this paper.

VI. EVALUATION OF IM2COL+GEMM

In this section, we present the results of our co-design
study of CNN inference on RISC-VV and ARM-SVE. We
first showcase the impact of algorithmic optimizations and
hardware parameter tuning on RISC-VV, using a single core.
For ARM-SVE, we evaluate our algorithmic optimizations in
detail on the A64FX processor and perform the hardware
parameter tuning on ARM-SVE@gem5. In all experiments
with gem5, we report performance in terms of execution
cycles. We exclude cycles spent on the initialization phase,
such as network setup, as this is a constant overhead not
incurred when continuously running inference over a stream
of images.

A. Algorithmic optimizations with RISC-VV

We first analyze the performance of the algorithmic opti-
mizations for im2col+GEMM on RISC-VV@gem5. To vec-
torize the inner-most kernels of the optimized 3-loop and
6-loop implementations, we use the EPI builtins [52]. In
the 3-loop implementation we have tuned the loop unrolling

TABLE II: Relative execution time of YOLOv3 (4 layers) with the
optimized 6-loop implementation, compared to the optimized 3-loop
implementation of im2col+GEMM on RISC-VV@gem5

Block sizes Normalized Performance
128×1024×256 0.9
16×1024×128 0.95
16×512×128 0.98
16×512×256 0.96
32×512×128 0.97

64×1024×128 0.95

factor by utilizing up to 32 vector registers. Our study shows
no significant improvement beyond utilizing 16 registers for
RISC-VV. In fact, by utilizing the 32 register, we experienced a
performance drop by ∼15% due to register spilling. Therefore,
we set the unrollfactor as 16 for the 3-loop and 6-loop
implementations. Moreover, for the optimized 6-loop imple-
mentation, we tune the block sizes of the matrices, determined
by the blockM , blockN , blockK parameters, to fit the packed
matrices into the L2 cache, since, in the RISC-VV@gem5
model, the VPU is connected to the L2 cache.

We simulate the first 4 convolutional layers of the YOLOv3
network on RISC-VV@gem5, with 1MB of L2 cache and 8
vector lanes, on a single core, using the optimized 3-loop im-
plementation and the optimized 6-loop implementation, with
different block sizes. The relative execution time of the 6-loop
implementation over the 3-loop implementation is presented in
Table II, for block sizes of different dimensions. We observe
that the optimal block size for the 6-loop implementation is
16 × 512 × 128, where the two implementations only differ
by 2%, a difference that is not significant in the simulated
environment.

Overall, the results indicate that the optimized 6-loop im-
plementation does not offer any performance benefit over the
optimized 3-loop implementation on RISC-VV, despite the
BLIS-like optimizations. We attribute this to the following two
reasons. First, the 6-loop implementation packs the matrices to
facilitate contiguous cache accesses during the inner-most loop
and prefetches the packed B and A matrices in the L2 and L1
caches. The rationale behind tuning the block size in BLIS-
like optimizations is to fit matrix B in the last-level cache (L2)
and matrix A in the L1 cache. However, in RISC-VV modeled
with gem5, the VPU is connected to the L2 cache. Therefore,
data in the L1 cache is not directly accessed by the VPU, and
practically, the implementation benefits only from caching in
L2. Additionally, as also explained in Section IV, RISC-VV
does not support prefetching, which is a desired feature in the
6-loop implementation, in order to hide the latencies associated
with matrix packing.

We conclude that BLIS-like optimizations do not boost
the performance of convolutional layers on RISC-VV.
We highlight that, after vectorizing all the kernels of the
convolutional layer and by optimizing the im2col+GEMM
kernel with the 3-loop implementation, we observe 14 ×
higher performance compared to the naive baseline for the
YOLOv3-Tiny network model.



TABLE III: Average vector length and L2 cache miss rate
Vector length YOLOv3 L2 cache miss rate(%)

512-bit 512 32
1024-bit 1022.9 36
2048-bit 2041.9 39
4096-bit 4063.7 42
8192-bit 8111.9 61
16384-bit 15902.2 79

B. Hardware parameters tuning with RISC-VV

Using the optimized 3-loop implementation, which demon-
strates the best performance on RISC-VV, we proceed our
experimentation with tuning hardware parameters of the archi-
tecture. We experiment with the first 20 layers of the YOLOv3
model, out of which 15 are the convolutional layers.

a) Scalability with different vector lengths: Fig. 6
demonstrates the impact of different vector lengths on the
performance of the convolutional layers on RISC-VV. For this
experiment, we consider a fixed L2 cache size of 1MB and a
fixed number of vector lanes, equal to 8 on gem5, varying
only the vector length. We note that longer vector lengths
hide the pipeline latency of vector lanes, thus any overheads
associated to the start-up time become minimal. Moving from
512-bit to 16384-bit vector lengths, the performance increases
by 2.5×, but effectively, the performance saturates beyond
the 8192-bit vector length. To analyze this effect, we present
the consumed average vector lengths and L2 cache miss
rate, collected in gem5, in Table III. Although the 16384-
bit vector length is almost fully utilized, the L2 cache miss
rate increases significantly both for the 8192-bit and 16384-
bit vector lengths. We therefore attribute this performance
saturation to the increase in the L2 cache miss rate. Although
longer vector lengths help in hiding latency, which should
boost the performance without increasing the cache size, they
also require more data to be processed per cycle, therefore to
be transferred from the memory to the cache and then to the
VPU, hence the increased L2 cache miss rate.

b) Scalability with different L2 cache sizes: We continue
our hardware parameter tuning with the L2 cache sizes. We
examine the impact of L2 caches for different vector lengths,
since we have observed an increase in L2 cache miss rate
for the 1MB cache as the vector length increases. For this
experiment, we consider a fixed number of vector lanes equal
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Fig. 6: Impact of vector lengths on RISC-VV@gem5 for YOLOv3
(20 layers), for constant L2 cache 1MB and 8 vector lanes.
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Fig. 7: Impact of the L2 cache size on RISC-VV@gem5 for YOLOv3
(20 layers), for 8 vector lanes.

to 8, on gem5. We expect a larger L2 cache to reduce the miss
rates, however, one should note that larger caches come with
increased access latencies and require more chip area.

Fig. 7 shows the performance of YOLOv3 from 1MB to
256MB with different vector lengths. We observe that for
vector lengths up to 4096 bits, the performance increases by
1.5× as we increase the L2 cache size. For the longer 8192-
bit and 16384-bit vector length, the equivalent performance
improvement is 1.7×-1.9×. We additionally observe that, with
a 256MB L2 cache, performance improves by ∼5% from
8192-bit vector length to 16384-bit vector lengths and L2
cache miss rates are 2.4% and 2.6% respectively. Therefore,
we conclude that larger caches are beneficial, given that their
latency remains low. Moreover, it is important to use larger
L2 caches for longer vector lengths, but the performance
gains of very long vector lengths are limited. Note
that we have performed the same experiment on YOLOv3
using the optimized 6-loop implementation of im2col+GEMM,
with block sizes tuned for an 8MB L2 cache, validating our
conclusions regarding the L2 cache size tuning.

c) Scalability with different numbers of vector lanes:
We finalize our analysis of hardware parameters by tuning the
number of vector lanes, i.e. the parallel SIMD units in the
vector architecture that determine the on-chip parallelism. We
examine the impact of this hardware parameter for different
vector lengths, as increasing the number of vector lanes also
increases the startup time; execution starts only after filling all
the vector lanes. We note, however, that this analysis is limited
by gem5 capabilities, which only allows to simulate up to 8
vector lanes. For this experiment, we consider a fixed 1MB L2
cache. Increasing the vector lanes from 2 to 8 with different
vector lengths, we observe a performance improvement of
∼1.25× for the 8192-bit vector length. In the case of 512-bit,
performance scales from 2 to 4 lanes, but becomes saturated
beyond 4 lanes. We therefore conclude that additional vector
lanes are more beneficial to longer vector lengths.

C. Algorithmic optimizations with ARM-SVE

Similarly to RISC-VV, for ARM-SVE, we analyze the per-
formance of the algorithmic optimizations for im2col+GEMM.
For this, we use A64FX. We let the compiler to auto-vectorize
all the kernels and manually vectorize kernels that the compiler



TABLE IV: Arithmetic Intensity and Sustained performance of
YOLOv3 convolutional layers on A64FX

Layers M N K AI % of Peak
L1 32 369664 27 7.32 46
L2 64 92416 288 26 72
L3 32 92416 64 11 50
L5 128 23104 576 52 77
L6 64 23104 128 21 70
L10 256 5776 1152 101 81
L11 128 5776 256 42 75
L38 256 1444 512 76 82
L44 1024 361 4608 126 83
L45 512 361 1024 88 78
L59 255 361 1024 65 75
L61 256 1444 768 85 91
L62 512 1444 2304 162 83
L75 255 5776 256 63 75

fails to vectorize, such as normalization and activation. We
manually vectorize the inner-most kernels of the optimized
3-loop and 6-loop implementations on SVE.

Comparing the 6-loop implementation to the 3-loop im-
plementation with ARM-SVE on A64FX, we observe a 2×
performance improvement using the 6-loop, BLIS-like opti-
mized GEMM kernel on the YOLOv3 network model. Unlike
the case of RISC-VV modeled with gem5, which poses the
limitation of the VPU being attached to the L2 cache, on
A64FX, the 6-loop implementation is able to take advan-
tage of the caches and improve the performance of GEMM.
Moreover, since prefetching is a hardware feature of A64FX,
the prefetching instructions boost the performance of the 6-
loop implementation. We note, however, that the 6-loop im-
plementation outperforms the 3-loop implementation by 15%
on ARM-SVE@gem5 which does not support prefetching,
with a 512-bit vector length. Comparing the optimized 6-loop
implementation to the naive GEMM in Darknet, we observe
a ∼32× performance improvement for YOLOv3 on A64FX.

a) Per-layer sustained performance: We assess the sus-
tained performance of the convolutional layers in YOLOv3,
with respect to their arithmetic intensity, as per the roofline
model, on A64FX, using our optimized kernels. YOLOv3 has
75 convolutional layers, but some layers work on the same
input sizes. We therefore consider the 14 discrete convolutional
layers which work with discrete matrix sizes, and compute the
arithmetic intensity (AI) per layer as follows:

AI = ArithmeticOperations
Bytes = 2×M×N×K

4×(M×N+K×N+M×K)

where M , N , K correspond to the sizes of the weight, input
and output matrices. We showcase the results in Table IV.
We note that the peak performance of a single A64FX core
is 62.5 GFLOPs. The results indicate that some layers have
low AI and sustained performance, especially the layers with
small M and K values, i.e., small weight matrix size. There is
additional room for performance improvement for these layers,
which is, however, beyond the scope of this paper, where we
optimize kernels focusing primarily on portability across ISAs
with VLA vector extensions.

b) Performance Analysis of Manual vs Auto-
vectorization: To understand the effectiveness of auto-
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Fig. 8: Impact of vector lengths and L2 cache size on ARM-
SVE@gem5 for YOLOv3 (20 layers).

vectorization, we performed a comparative analysis for
manual optimization and auto-vectorization. Both clang
and gcc compilers were able to vectorize most of the CNN
kernels, however with performance limitations. As a reference,
auto-vectorization achieved ∼6.3x speedup compared to the
baseline for YOLOv3-tiny. Forcing the compiler to unroll
loops while auto-vectorizing, with different unroll degrees,
we achieved ∼9x speedup. With manual vectorization and
optimizations, we were able to achieve ∼21× speedup
compared to the baseline, on ARM-SVE on A64FX.

D. Hardware parameters tuning with ARM-SVE

Similarly to RISC-VV, we study the impact of micro-
architectural parameters with ARM-SVE using gem5. As the
ARM-SVE model in gem5 sets the number of vector lanes
proportional to the vector length, we focus only on tuning
the vector length and the L2 cache size. We do not further
tune the block sizes of the 6-loop implementation, as they fit
in the smallest simulated cache. Fig. 8 shows the impact of
different vector lengths and L2 cache sizes on the performance
of the first 20 layers of YOLOv3. We observe that, for a
cache of 1MB, moving from 512-bit to 2048-bit vector lengths,
the performance improves by 1.34×. Additionally, similarly
to RISC-VV, performance benefits from larger caches, with
a performance improvement of 1.6× as we increase the L2
cache size from 1MB to 256MB for 2048-bit vector length.
Our findings for ARM-SVE agree with our observations for
RISC-VV: our optimized kernels can benefit from longer
vectors and larger cache sizes, which can significantly boost
the performance of CNN inference on vector architectures.

VII. EVALUATION OF WINOGRAD

As explained in Section IV, we vectorize the transformation
and tuple multiplication kernels of Winograd in a VLA way,
using intrinsic instructions on ARM-SVE. Our kernels adapt
the different vector lengths and can be executed with 512-bit,
1024-bit and 2048-bit vector lengths. We use these kernels in
Darknet, to implement convolutional layers with kernel sizes
of 3×3 and stride 1 and 2. For convolutional layers of different
kernel sizes, we fall back to our optimized im2col+GEMM.

For our Winograd implementation on ARM-SVE, we use
intrinsics to create tuples of four vectors and then transpose



these vectors. On RISC-VV, currently, no specific intrinsics
are available to perform these operations. We therefore imple-
mented a solution that uses temporary buffers and additional
store and gather-load intrinsics. This however limits the per-
formance improvement and the potential insights of running
Winograd on the RISC-VV with very long vectors. Because of
this reason, we do not include RISC-V results in the Winograd
analysis.

A. Algorithmic optimizations with ARM-SVE

We evaluate the performance of the optimized Winograd im-
plementation in Darknet on the A64FX processor. As a base-
line for comparison, we use our optimized im2col+GEMM.
We note that a naive implementation of Winograd is slower
than using the naive implementation of im2col+GEMM, there-
fore we use our optimized im2col+GEMM as the baseline for
comparison. A primary analysis revealed that the weight trans-
formation is a major bottleneck, but it can be performed offline
for inference. After excluding the weight transformation time,
we achieve a speedup of 1.5× compared to im2col+GEMM
for VGG16, where all convolutional layers use 3×3 kernel-
sized filters. For YOLOv3, where 38 out of the 75 use 3×3
kernel-sized filters, the equivalent speedup is 1.35×. Out of
these 38 layers, the 32 with stride 1 perform 2.4× better with
Winograd compared to im2col+GEMM, while for the 6 layers
with stride 2, Winograd is 1.4× slower than im2col+GEMM.
The remaining layers use 1×1 kernel-size filters and default
to im2col+GEMM. We therefore conclude that our optimized
Winograd algorithm offers significant performance im-
provement for layers with stride 1, however, different
algorithmic optimizations are required to achieve high
performance for layers with stride 2. Still, convolutional
layers require careful algorithmic selection related to the
kernel sizes and strides.

B. Hardware parameter tuning with ARM-SVE

Similarly to our approach for im2col+GEMM, we study
the impact of hardware parameters on the performance of our
optimized Winograd algorithm for ARM-SVE, using Gem5.
As indicated by our evaluation on A64FX, we use Winograd
for all convolutional layers with 3×3 kernel sizes and stride 1,
and default to our optimized im2col+GEMM implementation
for all other cases. In particular, we study the impact of the L2
cache size, ranging from 1MB up to 256MB, and the impact
of different vector lengths, i.e. 512-bit, 1024-bit and 2048-bit.
The number of vector lanes is propotional to vector lengths.

We showcase the results of our analysis for the first 20
layers of YOLOv3 in Fig. 9, and for VGG16 in Fig. 10. For
both network models, for an L2 cache of 1MB, we observe a
performance improvement of 1.4× as we increase the vector
lengths from 512 to 2048 bits, due to increased throughput
and decreased pressure on the memory subsystem.

Evaluating the impact of L2 cache sizes, we observe that,
for the first 20 layers of YOLOv3, performance improves by
1.75× for all vector lengths, when increasing the caches from
1MB to 256MB. For VGG16, the performance improves by
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Fig. 9: Impact of vector lengths and L2 cache size with Winograd
on ARM-SVE@gem5 for YOLOv3 (20 layers).
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Fig. 10: Impact of vector lengths and L2 cache size with Winograd
on ARM-SVE@gem5 for VGG16.

1.4× from 1MB to 64MB, but the network does not benefit
from a larger cache. We note that all layers in VGG16 use
Winograd, which has smaller cache requirements compared
to im2col+GEMM, whereas several YOLOv3 layers invoke
im2col+GEMM. As a conclusion, longer vectors are highly
beneficial to the performance of Winograd-enabled convo-
lutional layers and networks. With respect to the L2 cache
size, our optimized Winograd algorithm does not have high
cache requirements, and therefore is able to perform well
with moderately large L2 cache sizes.

We finally compare the performance of VGG16 using
Winograd, compared to im2col+GEMM, with different vec-
tor lengths of 512, 1024 and 2048 bits, with 1MB of L2
cache. The performance improves by 1.4×, 1.5×, and 1.3×
respectively, compared to im2col+GEMM, for the different
vector lengths, showing that Winograd is a good alternative to
im2col+GEMM for any vector length.

VIII. PERFORMANCE-AREA ANALYSIS

Our analysis so far has shown that the performance of
CNN inference can benefit from longer vector lengths and
larger caches. This, however, will require a larger chip area.
To evaluate this performance-area tradeoff, as well as the
attainable performance in a fixed area envelope, we examine
the scenario of a RISC-VV core with a decoupled VPU of 8
lanes, like the one simulated in Section III, implemented in
7nm FinFET technology. Given the results in [53], we estimate
the area of the core, VPU and vector register file (VRF) in
22nm, based on the assumption that only the VPU VRF area
will increase proportionally to the vector length, while the
core and VPU FPU area will remain constant. Our analysis
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Fig. 11: Pareto frontier for the performance and area of a RISC-
VV chip implemented at 7nm, with increasing vector lengths and L2
cache sizes, for YOLOv3 (20 layers).

estimates that the chip area dedicated to the VRF consumes
3%, 6.9%, 12.68%, 22.5%, and 36.9% of the total chip area,
as we increase the vector length from 512 bits to 8192 bits.
We then scale the total area to a 7nm FinFET technology,
which translates to a conservative estimate of a 6.2× increase
in transistor density [54], [55]. PCacti [56] is used to estimate
the area of L2 caches in 7nm.

We present our analysis for the performance of the first 20
layers of the YOLOv3 network against the expected chip area
in Figure 11. It is evident that the impact of longer vector
lengths on area is minimal, but it is significant for perfor-
mance. Most of the points on the Pareto frontier correspond
to longer vector lengths. On the other hand, the cache size
has a more significant impact on the total area, driving the
chip area up to 125.1mm2 for the largest configuration, with
less significant impact on performance. We find the Pareto-
optimal configuration for both performance and chip area to
use the smallest examined L2 cache size, i.e., 1MB, with one
of the larger vector lengths, i.e., 4096 bits. Although we expect
that technology scaling will further decrease the required
area, making hardware designs with larger caches feasible, we
highlight that the caches still consume most of the area and
power of the chip [57] and algorithmic implementations which
are less sensitive to the cache size, e.g., Winograd instead of
im2col+GEMM, need to be considered for effective co-design
of future vector architectures.

IX. CONCLUSION

In this paper, we presented a hardware and software co-
design study of CNN inference on modern vector architectures
with variable vector lengths. Focusing on the most time-
consuming kernels in convolutional layers, we have devel-
oped efficient, VLA-vectorized, optimized implementations of
im2col+GEMM and the Winograd algorithm.

Experimenting with two different ISAs, RISC-VV and
ARM-SVE, we conclude that certain optimizations are not
portable across vector architectures, and highlight the fol-
lowing portable optimizations: i) maximize utilization/reuse
of vector registers, ii) use unstrided load/store instructions,
for contiguous memory accesses, iii) use multiple multiply-
add instructions to hide the pipeline latency. We additionally
conclude that longer vector lengths improve performance even
with smaller caches, however larger caches with low latencies
can help minimize any adverse effects from increased cache
misses. Finally, more vector lanes can hide the pipeline and
startup latency for longer vector lengths.

Our algorithmic optimizations using VLA ISAs for
im2col+GEMM improve the performance of CNN inference
by 14× for YOLOv3-Tiny on RISC-VV and by 32× for
YOLOv3 on ARM-SVE, compared to the naive implemen-
tation of im2col+GEMM in Darknet. Our vectorized Wino-
grad algorithm offers additional performance improvement of
1.35× and 1.5× to YOLOv3 and VGG16 respectively, while
having lower cache requirements.

We believe that our work is useful to programmers, hard-
ware designers and compiler developers. In the future, we aim
to extend our algorithmic optimizations for vector architectures
to more kernels in DNN inference and examine additional,
influential architectural and micro-architectural features.
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ABSTRACT
The performance of convolutional algorithm depends on the size,
stride, and input/output channels of the convolutional kernel. More-
over, the varying computational demands of convolutional layers
influence the requirement for SIMD support on multicore proces-
sors. Finally, sharing cache resources in scenarios such as inference
serving also impacts the runtime choice of the best algorithm.
To identify the best settings, we perform a co-design exploration,
focusing on the software parameters of the convolutional layers
of convolutional neural networks (CNNs), and three distinct algo-
rithmic implementations: Direct, im2col+GEMM, and Winograd,
jointly with hardware parameters for vector architectures. Our
simulation-based study identifies that Winograd is suitable for
convolutional layers with a 3×3 kernel size and stride 1, specifically
for shorter vector lengths and L2 cache sizes. For layers with more
input/output channels, im2col+GEMM performs better. Looking at
VGG-16, our study shows that not all the layers benefit from our
biggest simulated cache memory when using the Direct and Wino-
grad implementations, while the im2col+GEMM implementation
scales to an L2 cachememory of 64MBwith all layers. In contrast, all
the simulated layers of YOLOv3 benefit from an L2 cachememory of
64MB, for all convolutional algorithms. To select the best implemen-
tation at runtime, we develop a random forest predictor that selects
the best algorithm in over 90% of the cases, with limited degradation
when a sub-optimal configuration is selected. We conclude with a
Pareto analysis of the area-performance trade-off in an inference
serving scenario, on a 7nm RISC-V multicore model with a vector
unit supporting vectors of 512 up to 4096 bits.

ACM Reference Format:
Sonia Rani Gupta, Nikela Papadopoulou, Jing Chen, andMiquel Pericàs. 2024.
Co-Design of Convolutional Algorithms and Long Vector RISC-V Processors
for Efficient CNN Model Serving. In The 53rd International Conference on
Parallel Processing (ICPP ’24), August 12–15, 2024, Gotland, Sweden. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3673038.3673121

1 INTRODUCTION
Model-serving is a major source of computing cycles, with some
cloud providers reporting over hundreds of trillion of AI model
executions per day [31]. Within AI model serving, Convolutional
neural networks (CNNs) are commonly used in image and vision

tasks. CNNs are computationally intensive and require high com-
puting power to accelerate their performance. GPUs (Graphics
Processing Units) have been widely used to accelerate CNNs due to
their parallel processing capabilities [4, 22, 42]. As an alternative,
CNNs have also become popular on CPUs [18, 27, 28] where they
benefit from higher availability, and the increasing parallel pro-
cessing capabilities offered by larger core counts and SIMD units.
In particular, emerging long vector architectures are a promising
direction for efficient inference serving [11, 23].

CNN models are built upon a series of consecutive layers, with
convolutional layers being the most time-consuming. Various algo-
rithms can be employed to implement these convolutional layers,
including Direct, im2col+GEMM, Winograd, and FFT. The Direct
convolutional operation involves sliding convolutional weights
over the input tensor and calculating the dot product between
the weight and input [33]. On the other hand, the im2col+GEMM
algorithm transforms the image into a column matrix, turning the
convolutional operation into a matrix multiplication by convolving
the transformed input matrix with the weight matrix. This matrix
multiplication operation can significantly enhance the performance
of the convolutional layers because of the well-established opti-
mizations for GEMM on most computing platforms [19]. While
im2col+GEMM shares the computational complexity of Direct, it
does increase the memory footprint [35] because of the image-
to-column transformation (im2col). Winograd and FFT necessitate
the initial transformation of both the image and weights, followed
by block-by-block multiplications on the transformed input and
weight matrices, concluding with output transformation. These
methods enhance the convolutional implementation’s performance
by reducing computational complexity. Winograd is effective with
small kernel sizes, such as 3×3 or 5×5 [6], while FFT is better suited
for larger kernel sizes [29]. Since large kernel sizes are not common
in modern CNNs, we do not further consider the FFT algorithm in
this work.

Common convolutional network models consist of multiple
convolutional layers with distinct dimensions, dictated by the input,
kernel, and output’s width and height, the input and output chan-
nels, and the stride of the convolution [37]. Notably, the different
algorithms (im2col+GEMM, Direct, Winograd) that can be used to
implement convolutional layers demonstrate varying performance
depending on the convolution dimensions, as a consequence of
their varying algorithmic complexity and memory footprint [32].
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Moreover, the underlying computer architecture affects the per-
formance of each algorithm. On the one hand, cache sizes, and
memory bandwidth influence the performance, as certain algorith-
mic implementations, such as im2col+GEMM, increase the memory
footprint of a convolutional layer. On the other hand, vector units
can offer high performance to algorithms, albeit they require several
algorithmic optimizations to exploit increasing vector lengths.

Model-serving frameworks [7, 10] aim to optimize inference
performance through techniques like concurrent model execution.
This approach creates replicas of a single model, enabling parallel
processing on a single hardware unit (GPU or CPU). Load balancing
distributes incoming requests across these replicas, maximizing
resource utilization. While beneficial for cost-effective deployment,
particularly for smaller models, concurrent execution introduces
competition for caching resources. Consequently, the selection of
the optimal algorithm becomes dependent on the characteristics of
co-running inference tasks.

Previous studies [14, 20, 21, 40, 43, 44] have focused on optimiz-
ing the performance of specific algorithms on vector architectures,
presenting comparative analyses with state-of-the-art libraries for
different layers of network models on vector processors, and explor-
ing the interplay of algorithmic optimizationswith hardware param-
eters of long vector architectures. Several works [12, 13, 16] provide
a comparative analysis of different algorithmic implementations of
convolutional layers on SIMDARM-based architectures. Despite the
extensive research on convolutional neural networks and various
algorithmic implementations, the mutual impact of convolution
algorithms and hardware parameters remains unexplored, reducing
utilization and hampering the task of effectively designing future
CPUs for CNN model serving.

In this paper, we conduct a performance investigation and co-
design study on three distinct algorithms, Direct, im2col+GEMM,
and Winograd, for the implementation of convolutions on RISC-V
based architectures implementing the "V" vector extension v1.0 [2]
(RVV). RVV enables a style of programming called vector length ag-
nostic programming (VLA), which allows the same program to run
unmodified on processors implementing different vector lengths.
We simultaneously explore the characteristics of convolutional
neural network models and the hardware parameters of long vector
architectures, focusing on the vector length and the size of the L2
cache. Building upon our previous work, where we have developed
optimized versions of im2col+GEMM and Winograd for vector
architectures [20, 21], we use two variants of im2col+GEMM [21], a
3-loop implementation and a 6-loop implementation, and the Wino-
grad algorithm [20] implemented and optimized for RVVwithin the
Darknet framework [38]. We additionally implement a vectorized
implementation of the Direct algorithm on RVV, following the
implementation proposed in [40] for the oneDNN framework. Our
simulations on an RVV-enabled fork of gem5 [1] show that blocking
of the input channels is not a beneficial optimization for the Direct
algorithm over naive vectorization. Instead, loop reordering pro-
vides a greater improvement in performance (3×). Subsequently, we
present a comparative analysis of the three algorithms, considering
the tradeoffs between algorithmic optimizations, shared last-level
cache sizes, and vector lengths. Our simulation results show that
there is no optimal algorithmic choice for all convolutional lay-
ers. Hence, to support efficient model serving, we train several

classification algorithms, finding that random forests exhibit high
accuracy in selecting the optimal algorithm for each case. We
conclude the paper with insights into the trade-off between the
performance, throughput, and resource considerations for the long
vector architectures.

We hereby highlight the main contributions of our paper:
• We vectorize the Direct algorithm and perform a comparative
analysis involving our previously developed, vectorized imple-
mentations of im2col+GEMM [21] and Winograd [20], on an
RVV model with a vector length of 512 bits and an L2 cache of
1MB. The analysis shows Winograd to be the best choice for
layers with 3×3 kernel size, whereas, the 6-loop implementation
of im2col+GEMM is the best choice for layers with large numbers
of input and output channels and skinnier matrices. The Direct
algorithm performs best when the input and output dimensions
are high, but the number of channels is relatively small.

• Our co-design analysis demonstrates that the Winograd algo-
rithm exhibits adequate performance with small vector lengths
for 3×3 kernel sizes, while the Direct algorithm excels with
longer vector lengths. The im2col+GEMM variants require larger
L2 caches owing to their larger memory footprints, however,
the 6-loop im2col+GEMM variant scales well and exhibits high
performance for layers with large input and output dimensions.
The Direct algorithm benefits from large cache sizes, especially
as the vector length increases, and performs well with large input
and output dimensions when the matrices are not skinny.

• We evaluate several classification algorithms and train an algo-
rithm selection model using random forests, which deliver the
best prediction accuracy. The trained model selects the optimal
algorithm in 92.8% of the cases, on average. The overall slowdown
introduced by mispredicted layers is negligible in most cases, and
never above 10%.

• We employ Pareto frontiers to analyze the trade-off between
execution time, model serving throughput, and area when using
the different algorithms with the VGG16 and YOLOv3 network
models. We show that, for the case of a single network, algorithm
selection allows for better performance in less area, compared to
using a single algorithm for each layer. Our analysis for co-located
model instances shows that co-location and algorithm selection
offer throughput that scales linearly with area, making a com-
pelling case for co-design for model serving.

2 RELATEDWORK
Several works have focused on optimizing convolutions for vector
architectures. Specifically, Alaejos et al. [5] optimize GEMM for
deep learning on the ARM-NEON, ARM-SVE and Intel AVX512
vector extensions. Wang et al. [44] optimize the Winograd algo-
rithm on RISC-V architectures with a custom instruction extension.
Dolz et al. [16] optimize the im2col transformation and Winograd
algorithms for ARM-SVE. In another work, Dolz et al. [15] optimize
the Winograd algorithm for Intel AVX, ARM NEON, and ARM-SVE
architectures. Santana et al. [40] optimize the Direct algorithm for
long vector architectures, focusing on ARM-SVE. Kelefouras et al.
[25] vectorize and optimize the 2D direct convolutions on Intel AVX.
Wang et al. [43] optimize the Direct algorithm on ARM NEON. In
our previous work [20, 21], we optimize the im2col+GEMM and
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Winograd algorithms on ARM-SVE and RISC-V Vector extensions,
also performing a co-design study concerning the vector length,
vector lanes, and L2 cache size.

Concerning performance comparisons of different algorithmic
implementations of convolutions, Jordà et al. [24] and Xu et al. [45]
perform such an analysis on GPUs. Jordà et al. focus on cuDNN
and propose that different algorithms should be used depending on
the kernel size. Xu et al. also look at cuDNN implementations and
propose a scheme for algorithm selection based on the convolution
dimensions. Dolz et al. [12] focus on performance-energy tradeoffs
of the different algorithms for convolutions on ARM processors.
Zlatenski et al. [46] perform a comparative analysis of Winograd
and FFT for convolutions using different CNNs on modern CPUs,
for full network models.

In this paper, we utilize optimized algorithmic implementations
for im2col+GEMM, Winograd, and Direct-based convolutions. We
focus on the emerging, long vector architectures with the vector-
-length-agnostic RVV ISA, and perform not only a comparative
analysis of algorithms at a per-layer basis, but also a co-design study,
and a performance-area analysis, seeking to optimize future vector
architectures for convolutions. In contrast to our previous work
[20, 21], where we seek to explore the performance potential of
vector architectures for CNNs via co-design, we focus on the aspect
of algorithm selection and its impact on the attainable throughput
per area in the scenario of model serving.

3 METHODOLOGY
3.1 Experimental Platform
In this work, we focus on the RISC-V Vector Extension [2] (RVV)
within the RISC-V Architecture. Including 32 vector registers, the
RISC-V Vector architecture supports a maximum vector length
(MVL) of 16384 bits. RVV allows the utilization of various vector
lengths (vlen), expressed as powers of two, provided they do not
exceed the MVL. The architecture employs the concept of vector
length to specify the number of elements to be processed within a
vector. The vector instruction vsetvl instruction is used to dynam-
ically determine the vector length at runtime. This instruction takes
the requested vector length (rvl) in elements and the element width
in bits (sew) as inputs. The output of this instruction is the granted
vector length (gvl) in elements. In this way, Vector Length Agnostic
(VLA) code generation with different vlen is handled at runtime.

We perform all our experiments on a fork of the gem5 simu-
lator [1], a cycle-accurate simulator configured with the RISC-V
in-order RiscvMinorCPU CPUmodel, with a core frequency of 2GHz.
The simulator implements a tightly integrated vector unit targeting
the RVV v1.0. In our experiments, we vary the maximum vector
length of the vector units from 512 bits up to 4096 bits. The memory
subsystem is configured with DDR3 1600 memory technology with
12.8GiB/s bandwidth per core, which is not far from the measured
per-core bandwidth of a recent Intel Xeon Max 9480 with HBM
(∼19GB/s) [30]. Additionally, the simulated CPU integrates two
levels of data cache. We fix the L1 cache size to 64KB and vary
the L2 cache size from 1MB up to 64MB in our experiments. We
note that this fork of gem5 models a constant latency for all vector
instructions. In practice, the latency of the instructions will vary
with the implementation of RVV. Also, we note that the simulator

supports vector lengths only up to 4096 bits. To validate the results
of convolutional layers, we additionally use Spike [3], a RISC-V ISA
simulator that supports vector lengths up to 4096 bits and supports
the RVV v1.0 extension.

3.2 Algorithms for Convolutions
In this paper, we focus on three different algorithms commonly used
to implement convolutional layers, namelyWinograd, im2col+GEMM,
andDirect.We employ two variants of the optimized im2col+GEMM
algorithm for the RVV architecture, as described in [21], a 3-loop
implementation and a 6-loop implementation, hereby denoted as
im2col+GEMM - 3 loops and im2col+GEMM - 6 loops. Although this
previous work shows that the GEMM - 3 loops implementation per-
forms better on RVV, in this work, we simulate a tightly integrated
RISC-V vector unit, which resembles the architecture of the Fujitsu
A64FX processor, where the GEMM - 6 loops implementation has
been shown to perform more efficiently. We tune the block size to
fit in the L2 cache of our architecture, at a size of 16×512×128. We
utilize the vectorized and optimized Winograd implementation out-
lined in [20]. The aforementioned implementations are open-source
and publicly available. For the Direct algorithm, we leverage the
algorithms described by Santana et al. [40], which target long vector
architectures and have been evaluated on the NEC Vector Engine.

Implementing the Direct algorithm for RVV. We implement the
Direct algorithm in the Darknet framework [38]. Following the
rationale in [40], the Direct algorithm can be best optimized with
the NHWC memory layout of the input (where 𝑁 refers to the
number of images in the batch,𝐻 refers to the input height,𝑊 refers
to the input width, and 𝐶 refers to the input channels). Therefore,
we transform the input and weights from the NCHW format to the
NHWC format, before starting the computations. Subsequently, we
"naively" vectorize the Direct algorithm across the input channels
𝐼𝐶 . Following this, we implemented blocking of the input channels,
as proposed in [40], however, we did not observe any performance
improvement on top of the naive vectorization, as the memory
footprints of the subtensors produced by blocking are smaller than
the L2 cache size of 1MB we simulate. This is partly because the
proposed blocking scheme in [40] aims to optimize the algorithm
on an L2 cache size of 256KB, with a long cache line of 128 bytes.
To further optimize the vectorized algorithm, we instead followed
a loop reordering strategy, accessing the input channels after the
output channels and dimensions, improving performance by 3×
over the naive vectorized version. Furthermore, we utilize and
reuse the maximum possible vector registers by unrolling the loops
around the output width (𝑂𝑊 ) and output height (𝑂𝐻 ). We choose
the unrolling factor in such as way that the algorithm utilizes
the maximum possible vector registers by avoiding landing on
the tail loop if possible, to avoid any potential bottleneck in the
performance due to the tail loop. If the tail loop is unavoidable, we
also vectorize it using RVV intrinsic instructions.

3.3 Experimental Setup
In this paper, we evaluate two popular CNN models. The first one
is YOLOv3 [39], an object detection network, which features 107
layers of five different types, out of which 75 layers are convolu-
tional. We profile the execution time of the convolutional layers
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Table 1: Convolutional layers of the VGG-16 (top) and
YOLOv3/20 layers (bottom) network models. IC = Input
Channels, OC = Output Channels, IH = Input Height, IW
= Input Width, OH = Output Height, OW = Output Width,
KH= Kernel Height, KW = Kernel Width

Layers IC OC IH,IW OH,OW KH,KW stride
1 3 64 224 224 3 1
2 64 64 224 224 3 1
3 64 128 112 112 3 1
4 128 128 112 112 3 1
5 128 256 56 56 3 1
6,7 256 256 56 56 3 1
8 256 512 28 28 3 1

9,10 512 512 28 28 3 1
11 512 512 14 14 3 1

12,13 512 512 14 14 3 1
Layers IC OC IH,IW OH,OW KH,KW stride

1 3 32 608 608 3 1
2 32 64 608 304 3 2
3 64 32 304 304 1 1
4 64 64 304 304 3 1
5 64 128 304 152 3 2
6,8 128 64 152 152 1 1
7,9 64 128 152 152 3 1
10 128 256 152 76 3 2
11 256 128 76 76 1 1

12,14 128 256 76 76 3 1
13,15 256 128 76 76 1 1

of YOLOv3, as implemented in the Darknet framework, finding
that the convolutional layers contribute ∼96% of the total execution
time. The second model is VGG-16 [41], an image classification
model, which includes 25 layers, out of which 13 are convolutional
and 3 are fully connected. Profiling VGG-16 within the Darknet
framework, we find the convolutional layers contributing ∼ 64% of
the total execution time.

We evaluate the layers of YOLOv3 and VGG-16 network models
from the Darknet [38] framework on a 768 × 576 pixels input image,
using a batch size of 1, which is a common case for inference. As
described above, we use a fork of gem5 for our experiments. To
acquire feasible simulation times, we limit our evaluation to the first
20 layers of the YOLOv3 network, out of which 15 are convolutional
layers. We provide details on the dimensions of the convolutional
layers of VGG-16 and YOLOv3 in Table 1. We note that we use
single-precision floating point numbers for the weights, and thus
for all computations. We use the EPI-Builtins [17] to vectorize
the Direct convolutional algorithm on RVV in a VLA way. We
use the EPI fork of the LLVM [9] Clang cross-compiler version
17.0.0 for RVV, with -O3 optimization flag to compile all the three
convolutional algorithms in our setup.

For our co-design study, we vary the maximum vector length
from 512 to 4096 bits on RVV, incrementing in powers of 2. To
analyze the impact of cache parameters, we increase the L2 cache
size from 1MB up to 64 MB. We consider a constant latency of 20
cycles for all the L2 cache sizes.
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Figure 1: Comparative analysis for different algorithms for
VGG-16 convolutional layers on RVV with gem5, with a
vector length of 512 bits and 1MB of L2 cache.
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Figure 2: Comparative analysis for different algorithms for
the first 15 convolutional layers of YOLOv3 on RVV with
gem5, with a vector length of 512 bits and 1MB of L2 cache.

4 EVALUATION
In this section, we first showcase our findings for the best suitable
algorithm for each layer in the CNN-based VGG-16 and YOLOv3
network models on RVV, on a single core. Subsequently, we present
the results of our per-layer co-design study for both networkmodels.
In all experiments with gem5, we report the per-layer performance
in terms of execution time in seconds. We then implement a pre-
dictor for algorithm selection, and showcase the performance-area
tradeoffs for model serving on a 7nm RVV chip.

4.1 Performance Comparison of Convolution
Implementations

We start our evaluation with a performance comparison of convolu-
tions with the 3 different algorithms, i.e. Winograd, im2col+GEMM
(with the two variants of GEMM), and Direct. We evaluate each
convolutional layer of YOLO-v3 and VGG-16 on RVV using the
gem5 simulator, for a fixed vector length of 512 bits, and an L2
cache size of 1MB. Figure 1 shows the per-layer performance for
the VGG-16 network model. We observe that, for layers #1 and
#2, where the input and output width/height are high (𝐼𝐻 , 𝐼𝑊 ,
𝑂𝐻 ,𝑂𝑊 ), the Direct algorithm performs well, although the winner
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algorithm for layer 2 is Winograd. For layers #3 to #13, Winograd,
as well as the 6-loop implementation of im2col+GEMM perform
better than all other algorithms. For layers #5 to #13, where the
input and output matrices become skinny but the number of input
and output channels (𝐼𝐶 , 𝑂𝐶) increase, the 6-loop im2col+GEMM
variant prevails. Although Winograd reduces the computational
complexity of the convolutional layer by reducing the number of
multiplications, the increased numbers of input and output channels
add transformation overheads to the Winograd algorithm, leading
to its inferior performance, compared to im2col+GEMM. In the case
of layer #1, Winograd underperforms compared to all other algo-
rithms, as the number of input channels is too low for the algorithm
to use the inter-tile parallelism approach described in [21].

Figure 2 shows the per-layer performance of the different algo-
rithms for the first 15 convolutional layers of the YOLOv3 network
model. The YOLOv3 network model has convolutional layers with
kernel sizes 3×3 with stride 1 or 2 and 1×1 kernel sizes. We note that
the Winograd algorithm is only appropriate for layers with kernel
sizes of 3×3 and strides of 1, due to issues of numerical stability. We
therefore only present results with Winograd for layers with these
properties. Similar to the case of VGG-16, Direct offers superior
performance for layer #1, where the input and output dimensions
are high but the number of input channels is low. Additionally, the
Winograd algorithm demonstrates high performance for all the
layers where it is applicable and comparable performance to the
6-loop im2col+GEMM implementation, for many of these layers.
The Direct algorithm offers high performance to layers #1-#3, where
the input and output dimensions are high, but as the matrices
become skinnier, for layers #5-#15, the 6-loop im2col+GEMM im-
plementation prevails. It is noteworthy that the performance of the
3-loop and 6-loop implementation of im2col+GEMM is comparable
for the first layers, but the 6-loop transformation proves beneficial
to skinny matrices.

4.2 Co-designing Convolutions on Long Vector
Architectures

In this section, we jointly explore the effect of the hardware pa-
rameters of vector architectures and the algorithm selection for the
implementation of convolutional layers. As discussed, we focus on
the vector length and the L2 cache size.

4.2.1 The effect of the vector length. We experiment with vector
lengths ranging from 512 bits to 4096 bits, while keeping the L2
cache size fixed to 1MB, and observe the scalability of the different
algorithms on the convolutional layers of VGG-16 and YOLOv3.

In Figure 3, we show the scalability of the different algorithms on
the layers of VGG-16. The Winograd algorithm scales from ∼1.3×
to ∼1.7× as we increase the vector length from 512 to 2048 bits.
However, moving from 2048 bits to 4096 bits, we observe limited
scaling, especially for skinny matrices. We attribute this behavior
to the need for larger sub-block sizes to leverage longer vector
lengths for the tuple multiplication in the Winograd algorithm. As
a consequence, the block sizes for the input and output channels
are reduced, requiring increased loop iterations for transformations
and tuple multiplications, resulting in increased overhead despite
the use of longer vector lengths.

On the other hand, the 3-loop im2col+GEMM variant scales from
∼1.4× to ∼3.5× when transitioning from vector lengths of 512 to
4096 bits. However, layers #6 and #7 exhibit no scalability beyond
2048 bits, and layer #8 experiences performance degradation beyond
2048 bits.We attribute this to increased pressure to the L2 cache, and,
examining the L2 cache miss rate for these layers, we observe a very
high cache miss rate of ∼ 98% for vector lengths of 4096 bits. The
6-loop im2col+GEMM variant algorithm demonstrates scalability
of ∼1.4× up to ∼2.1× for all layers as we increase the vector length
from 512 bits to 4096 bits. The Direct algorithm demonstrates the
best scalability for all layers, with performance improvements of
∼2.4× - 5.8× transitioning from 512 bits to 4096 bits of a vector
length. We do note, however, that the 6-loop im2col+GEMM variant
can offer better performance than the Direct algorithm with vector
lengths of 2048 bits for layers #6 to #13.

We conduct a similar analysis for YOLOv3 in Figure 4. The
Winograd algorithm is applicable on a total of 6 convolutional
layers, and these layers exhibit scaling between ∼1.3× and ∼1.6×,
as we increase the vector length from 512 bits to 4096 bits, however,
we observe no noticeable scalability as from 2048 bits to 4096 bits.
The 3-loop im2col+GEMM variant scales between ∼1.3× and ∼3.5×
for the YOLOv3 layers. On the other hand, the im2col+GEMM 6
loops kernel demonstrates scaling between ∼1.3× and ∼2.0× for
the YOLOv3 layers. Similarly to the case of VGG-16, the Direct
algorithm exhibits better and robust scalability, scaling between
∼1.9× and ∼4.6× for all layers. Moreover, the Direct algorithm
outperforms the other algorithms for most layers, except for those
involving skinnier matrices (i.e. layers #10, #12, and #14), where the
im2col+GEMM variants offer better performance for vector lengths
higher than 1024 bits.

4.2.2 The effect of the L2 cache size. We further experiment with
the L2 cache size, as it can significantly reduce the pressure on the
main memory. We consider L2 cache sizes of 1MB to 64MB, fixing
the vector length at 512 and 4096 bits.

We showcase the scalability of the different algorithms for the
L2 cache size, for the layers of VGG-16, in Figures 5 and 6, for
vector lengths of 512 bits and 4096 bits respectively. For the case
of Winograd, the algorithm scales ∼1.3× - 1.5× for layers #1 to #4
when increasing the L2 cache from 1MB to 64MB, for the vector
length of 512 bits, and ∼1.3×-1.6×, for the vector length of 4096 bits.
The number of input and output channels in this case is small and
allows the algorithm to scale. For layers #5 to #13, we observe a
scalability of∼1.2× - 1.5× as we increase the L2 cache size from 1MB
to 16MB, but the algorithm does not benefit from further increasing
the cache to 64MB, for any vector length.

The 3-loop im2col+GEMM algorithm scales well, with perfor-
mance improvements of ∼1.8× - 2.4× for the smaller vector length
of 512 bits, as we scale the L2 cache from 1MB to 64MB, and
achieving remarkably high performance for the 64MB cache. For
the 4096-bit vector length, the algorithm benefits intensively from
the 64MB cache for layers #4 to #10, which exhibit high L2 cache
miss rates with longer vectors, scaling up to ∼3.6×. However, for
the more compute-intensive layers #11 to #13, the algorithm does
not benefit from L2 caches larger than 16MB, and the performance
does not scale further. On the other hand, the 6-loop im2col+GEMM
cache-friendly variant benefits less from the larger L2 cache sizes,
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Figure 3: Scalability of different convolutional algorithms with vector lengths from 512 bits to 4096 bits for the convolutional
layers of VGG-16, for an L2 cache of 1MB, on RVV with gem5.
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Figure 4: Scalability of different convolutional algorithms with vector lengths from 512 bits to 4096 bits for the first 15
convolutional layers of YOLOv3, for an L2 cache of 1MB, on RVV with gem5.

improving ∼1.1×-∼1.76× as we move from 1MB to 64MB, for both
the smaller and larger vector length. Similarly to the 3-loop variant,
it does not show any further improvement by increasing the cache
size further than 16MB in the case of the more compute-intensive
layers #11 to #13.

The Direct algorithm scales moderately as we increase the L2
cache size from 1MB to 16MB, with improvements of ∼1.1× - 1.4×
for the vector length of 512 bits, and ∼1.2× for layers #2 to #4 and
∼2.2× for layers #5 to #13 for the vector length of 4096 bits. The
only exception is layer #2 for the case of 512 bits, which has high
input and output dimensions, where the Direct algorithm benefits
from the 64MB of cache.

We similarly examine the scalability of the layers of the YOLOv3
model, in Figures 7 and 8, for 512 bits and 4096 bits of vector
lengths respectively. For the layers where the Winograd algorithm
is applicable, we observe a scalability of ∼1.2× - 1.3× and ∼1.3× -
1.4×when increasing the cache size from 1MB to 64MB, for the case

of 512 bits and 4096 bits of vector lengths respectively. Notably, the
layers with higher input and output dimensions benefit more when
increasing the cache size from 16MB to 64MB. For the case of the
3-loop im2col+GEMM variant, we observe scaling of ∼1.1× - 2×,
for both vector length sizes, but the last layers #10-#15 only lightly
benefit from increasing the cache size from 16MB to 64MB. The
6-loop variant of im2col+GEMM shows similar scalability of ∼1.1×
- 2× as we increase the L2 cache size. The Direct algorithm, on the
other hand, sees a significant performance boost from scaling the
L2 cache size, especially for the case of the longer vector length
of 4096 bits, with scalability of ∼1.3×-∼2.8×. We point out that
layers #2 and #4 are those that benefit the most from increasing the
cache size from 16MB to 64MB, however, the performance of the
last layers #10 to #15 experience no further scalability from 16MB
to 64MB of L2 cache. In both the cases of im2col+GEMM variants
and the Direct algorithm, the layers #3, #6, and #8, with the smaller
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Figure 5: Scalability of different convolutional algorithms with L2 cache sizes from 1MB to 64MB for the convolutional layers
of VGG-16, for a vector length of 512 bits, on RVV with gem5.
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Figure 6: Scalability of different convolutional algorithms with L2 cache sizes from 1MB to 64MB for the convolutional layers
of VGG-16, for a vector length of 4096 bits, on RVV with gem5.

kernel size of 1 × 1 and higher input/output dimensions benefit
more from the increase of the L2 cache size.

In summary, we attribute the limited scalability of the Winograd
algorithm to the fixed tile size, which does not fully utilize larger
cache sizes, for both shorter and longer vector lengths. Both variants
of im2col+GEMM benefit up to more than 2× from larger cache
sizes, for any vector length, especially for layers with moderate
numbers of input and output channels but high input and output
dimensions. Conversely, the Direct algorithm benefits the most
from the larger L2 cache when the vector length is long and the
input and output dimensions are high, as is the case of the first
convolutional layers of YOLOv3.

4.3 Algorithm Selection
Our results show that there is no single algorithm that minimizes
the execution time across all layers. Therefore, to minimize the

execution time of a full network model, a machine learning frame-
work should be able to select the appropriate algorithm per layer at
compile time or at runtime (autotuning). To this end, we construct
a fast and accurate predictor that performs algorithm selection, de-
pending on the layer dimensions, and the hardware configuration.

To predict the optimal algorithm among Winograd, the two
variants of im2col+GEMM and Direct, we experiment with several
classification models, available in the Python scikit-learn 1.3.2
package, including a Support Vector Machine, K-Nearest Neighbors,
Naive Bayes, a Multilevel Perceptron, a Decision Tree, Gradient
Boosting, and Random Forests, to predict the best performing algo-
rithm per layer. We use as input parameters the vector length, the
L2 cache size, the input channels, height, width, stride, and padding,
the output channels, height, and width, and the kernel height and
width, totaling 12 parameters, out of which 2 are relevant to the
architecture and 10 are drawn from the convolution dimensions.
The model outputs the algorithm predicted to perform the best. We
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Figure 7: Scalability of different convolutional algorithms with L2 cache sizes from 1MB to 64MB for the first 15 convolutional
layers of YOLOv3, for a vector length of 512 bits, on RVV with gem5.
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Figure 8: Scalability of different convolutional algorithms with L2 cache sizes from 1MB to 64MB for the first 15 convolutional
layers of YOLOv3, for a vector length of 4096 bits, on RVV with gem5.

select random forests as the classifier with the best performance.We
partition the data (of 448 data points) into 80% for training and 20%
of testing, and use 5-fold cross-validation and shuffling, therefore
all points in a testing set are not included in the corresponding
training set, i.e. are previously unseen by the model. We tune the
hyperparameters of the Random Forest classifier, resulting in a
maximum tree depth of 10, and the usage of bootstrapping.

Our evaluation shows that the algorithm selectionmodel achieves
an average prediction accuracy of 92.8% (ranging from 91% to 96%)
across the 5 cross-validation sets, indicating the model’s profi-
ciency in correctly selecting the best-performing algorithms under
various contexts. Notably, within the 7.1% of misclassified lay-
ers/configurations, if the predicted algorithm is employed instead
of the optimal one, the mean absolute percentage error in the
performance of layers is only 20.4%.

To demonstrate the importance of our algorithm selection model,
and to further evaluate its accuracy, we assess the inference time of

VGG-16 and YOLOv3 in Figures 9 and 10 respectively. Specifically,
we compare the execution time of each networkmodel when always
using the same algorithm for all layers, against using the Optimal
algorithm per layer, or the Predicted Optimal algorithm per layer,
namely the output of our algorithm selection model. For VGG-16,
we observe that selecting the optimal algorithm per layer results
in reduced execution compared to using any single algorithm,
for all examined hardware configurations. Indicatively, selecting
the optimal algorithm can improve the execution time by up to
1.85× over always using the Direct algorithm and up to 1.73× over
using the 6-loop implementation of im2col+GEMM. Concerning the
predictive ability of our algorithm selectionmodel, the average error
compared to the optimal configuration is 1.67% and the maximum
error is 8.4%. For YOLOv3, selecting the optimal algorithm can
improve the execution time by up to 1.33× and 2.11× over always
using the Direct and 6-loop implementation of im2col+GEMM
algorithms, respectively. The average error from the predicted
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Figure 9: Execution time of VGG-16, for different vector
lengths and L2 cache sizes, when a single algorithm is used
for all layers (Direct, im2col+GEMM - 3 loops, im2col+GEMM
- 6 loops, Winograd), compared against using the Optimal
algorithm per layer, and using our algorithm selection
model to predict the optimal algorithm per layer (Predicted
Optimal).
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Figure 10: Execution time of YOLOv3 (first 15 layers), for
different vector lengths and L2 cache sizes, when a single
algorithm is used for all layers (Direct, im2col+GEMM- 3 loops,
im2col+GEMM - 6 loops,Winograd*-uses im2col+GEMM for
some layers), compared against using the Optimal algorithm
per layer, and using our algorithm selection model to predict
the optimal algorithm per layer (Predicted Optimal).

optimal configuration against the optimal configuration is 0.95%,
and the maximum error is 5.9%. We also point out that, even in
configurations where our algorithm selection model introduces
some error, it still manages to provide configurations that are better
than always using a single algorithm to compute all layers.

4.4 Performance-Area Tradeoffs
Our analysis so far has shown that convolutional layers scale with
longer vector lengths and larger cache capacity, for all the different
algorithms. However, the longer vector lengths and larger L2 cache
sizes require a larger chip area. To evaluate this performance-area
tradeoff, as well as the attainable performance in a fixed area
envelope, we first examine the scenario of a single model instance
executing on an RVV core with an integrated VPU, like the one
simulated in Section 3, implemented in 7nm FinFET technology.
Building on the results in [26], we estimate the area of the core, VPU,
and vector register file (VRF) in 22nm, based on the assumption
that both the VPU and VRF area will increase proportionally to
the vector length. In contrast, the core area will remain constant.
Our analysis estimates that the chip area dedicated to the VPU and
VRF consume ∼28%, ∼43%, ∼60% and ∼75% of total chip area, as
we increase vector lengths from 512 bits to 4096 bits. We then scale
the total area to a 7nm FinFET technology, which translates to a
conservative estimate of a 6.2× increase in transistor density [8, 34].
We use PCacti [36] to estimate the area of L2 caches in 7nm.

We showcase the performance (in cycles) - area (in𝑚𝑚2) tradeoff,
accompanied by the Pareto curve, for VGG-16 in Figure 11. Due
to space limitations, we omit the relevant figure for YOLOv3. It
is evident that the impact of longer vector lengths on the area is
minimal, but it is significant for performance, while the cache size
has a more significant impact on the total area. The Pareto frontier
consists of 7 data points, including all possible configurations with
the smallest possible cache, i.e. 1 MB of cache, as well as all config-
urations with a vector length of 4096 bits. All the Pareto frontier
points correspond to selecting the optimal algorithm per layer. The
Pareto-optimal point for both VGG-16 and YOLOv3 is given by the
configuration with 2048 bits and 1MB of L2 cache, with a total area
of 2.35𝑚𝑚2. Using the optimal algorithm per layer results in 1.18×
- 1.6× better performance compared to using a single algorithm
for YOLOv3, and in 1.26×-2.32× better performance for VGG-16.
Inversely, the Direct algorithm would require an area of 3.07𝑚𝑚2,
i.e. 30% more area, to achieve the same level of performance both
for YOLOv3 and VGG16, while im2col+GEMM can only achieve
the same performance for YOLOv3 at 13.6𝑚𝑚2.

We then consider the case of a multi-core RVV chip. We consider
configurations with 1, 4, 16, and 64 cores, of 512 up to 4096 bits of
vector lengths, with a shared L2 cache of 1, 4, 16, 64, and 256 MB,
at 7nm, as a realistic server in a model-serving context, resulting in
200 different hardware configurations. To simplify our analysis, we
consider the existence of some static cache partitioning mechanism,
e.g. similar to Intel CAT, which grants isolated cache ways to each
hosted application. We also assume that the memory bandwidth
does not become a bottleneck in this system, which is known to
be the case for some systems with high-bandwidth memory [30].
On each of these configurations, we co-locate from 1 up to 64
identical instances of each network model, with the assumption
that the cores and L2 cache do not become oversubscribed. We then
analyze the tradeoff between the achieved throughput, in terms
of Images/Cycle, and the required area, for VGG-16, in Figure 12.
We observe that by co-locating multiple instances of VGG-16, we
achieve an increase in throughput that is equivalent to the increase
in area, as we add a larger cache size, a longer vector length, or
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Figure 11: Performance-area tradeoff and Pareto frontier for
a single instance of VGG-16 on an RVV chip at 7nm.
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Figure 12: Throughput-area tradeoff and Pareto frontier for
multiple instances of VGG-16 on an RVV chip at 7nm, using
the optimal algorithm per layer.

additional cores. We highlight that all points of the Pareto frontier
correspond to co-locating as many models as possible with the
lowest possible L2 cache per model (1MB or 4MB at most). Such a
configuration is enabled by the presence of high external memory
bandwidth. Notably, though, such configurations will increase the
energy consumption on external memory accesses. Finally, our
analysis reveals that for a hardware configuration of 64 cores,
256 MB of cache, and vector units of 4096 bits, co-locating model
instances with the optimal algorithm per layer leads to improved
overall throughput by 1.16×, compared to using the best-performing
algorithm (Direct), across all layers.

5 CONCLUSION
In this paper, we explore CNN co-design involving three distinct
algorithms: direct, im2col+GEMM (two variants), and Winograd,
on the convolutional layers of two CNN models i.e., YOLOv3 and
VGG-16, with hardware parameter tuning for the RVV architecture,

targeting model serving of CNNs. Our co-design exploration fo-
cused on tuning the vector length from 512 bits to 4096 bits, and the
L2 cache size from 1MB to 64MB. Our study shows that the choice
of the best algorithm depends on several parameters, including the
kernel size, the dimensions of the activations, the vector length,
and the L2 cache size. To select the best algorithm for each layer we
build a Random Forest classifier, resulting in an average of 92.8%
prediction accuracy, with inference time predictions showing at
most 10% of relative errors. Finally, we analyze performance/area
tradeoffs in the case of a single, as well as multiple model instances,
showing that carefully selecting the algorithm per layer allows
for higher performance in a reduced area. Coupled with model
co-location, algorithm selection leads to increased throughput per
area, highlighting the need for co-design in the context of model
serving.

In the future, we aim to parameterize algorithmic optimizations,
and include more hardware features in our exploration, enhancing
our search space. We will also consider alternative neural net-
work architectures and additional computational kernels, such as
point-wise and depth-wise convolutions and attention mechanisms.
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