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Abstract
Magneticmaterials are omnipresent in everyday life, with applications spanning awide range offields.
This focus collection provides a comprehensive overview of recent developments in the synthesis and
characterization of advancedmagneticmaterials, both in their bulk and low-dimensional forms.
These studies aim to enhance our understanding of fundamental physical properties and identify
suitable candidatematerials for various device applications.We believe that this focus collectionwill
serve not only as a valuable reference but also as a source of inspiration for further research on
advancedmagneticmaterials.

Magneticmaterials play a vital role inmodern technologywith their potential applications in energy, healthcare,
electronics, communication, thermalmanagement, etc. Thesematerials are integral to devices like electric
motors, transformers,magnetic sensors, data storage systems,magnetocaloric devices andmedical imaging
technologies [1–6].With the advent of advancedmanufacturing techniques and computationalmodeling,
magneticmaterials have expanded their relevance to emerging fields like spintronics, quantum computing, and
sustainable energy systems [7–10]. The globalmarket formagneticmaterials is poised for sustained growth,
driven by increasing demand for renewable energy solutions,miniaturized electronics, and advanced healthcare
devices. This rapid development necessitates a deeper understanding of the synthesis, properties, and
applications ofmagneticmaterials to unlock their full potential in existing and novel applications.

The papers included in this issue ‘MagneticMaterials andDevices’ contribute significantly to this endeavorby
addressing various aspects ofmagneticmaterials, devices and their applications.One key area of interest isHeusler
alloys, known for their diverse properties andwide range of potential applications. Studies onV2MnAs and
V2MnGa show their stability andpromising thermoelectric performance,with large Seebeck coefficients [11]. In
contrast, investigations into thequaternaryHeusler alloys LiXNiSb (X=Be,Mg,Ca, Sr, Ba) show thatwhile these
alloys crystallize in type-III arrangements, they lack a resultantmagneticmoment despite the presence ofmagnetic
Ni [12]. Among the studied alloys, LiMgNiSb ismetallic, while LiCaNiSb andLiSrNiSb are semiconducting,with
the latter two showingpromise for solar cell applications due to their significant absorption in the visible spectrum.
Together, thesefindings underscore the versatility ofHeusler alloys in energy technologies.

Magnetic fields play a significant role in influencing the thermoelectric properties ofmetal-oxide based
systems.Notably, phenomena such as the spin Seebeck effect and the anomalousNernst effect are critical in the
functioning of thermoelectric devices. Understanding howmagnetism induces unconventional thermoelectric
responses is essential for the development of efficient energy conversion technologies. The review byDubey et al
explored the impact ofmagnetic fields on the thermoelectric properties ofmetal oxides, emphasizing their
potential for enhancing energy conversion efficiency through improved Seebeck coefficients, thermal
conductivity, and electrical resistivity [13].

In thefield of energy conversion, the performance of electricmachines is highly dependent onboth soft
magneticmaterials andpermanentmagnets (PM).With thedepletion of rare-earth elements and the rising costs
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and instability of their supply, there is an increasing demand for rare-earth-leanor rare-earth-freePMs. In
response, Li et al focusedonoptimizing the ballmilling process to achieve highmaximumenergyproduct (BH)max

values for the rare-earth-freePM,MnBi, in its low-temperature phase [14]. On the other hand,Karabulut et alhave
manufactured stator cores of softmagnetic compositematerial and grain-oriented steel for small-size axialflux
permanent-magnet synchronousmachines. Their analysis concluded that grain-oriented steel outperformsother
materials in termsof lower iron loss, torque, and efficiency [15]. Nunez et alutilized high energyX-ray irradiation
tomodifymagnetocaloricmaterials (MnNiSi)1−x(Fe2Ge)x andLaFe13-x-yMnxSiyHz for the investigation of
magnetic cooling application [16].With sustained crystal structures andmagnetic phases under irradiation, the
change inmaximummagnetic entropy shifts to different temperatures in twomaterials. The enhanced
magnetization also provides thepotential for an advanced technology inmagnetocaloric energy conversion.

The understanding ofmagnetic structure lays a solid foundation for facilitating the technological application
of room-temperaturemagneticmaterials [17]. Banerjee et al studiedmagnetic properties of an
antiferromagnetic compound LiFe2SbO6 from2K to 900K,which exhibit high-temperaturemagnetic order
with a collinear spin structure andmagnetodielectric coupling at amuch lower temperature thanmagnetic
ordering [18]. In such scenario, a negativemagnetocapacitance arises at a low-temperaturemagnetic phase
crossover point, which is revealed by neutron powder diffraction, DCmagnetization and specific heat
measurements. Guzman et al prepared thinfilms ofNi-Zn ferrites using themagnetron sputtering technique,
and studies themagnetic properties,metal valence states and ferromagnetic resonance, showing the potential
application on high-frequency devices [19].

Additivemanufacturing (AM) has emerged as a promising approach for producing complex, net-shaped
components withminimal waste, and has recently been employed in the development of novelmagnetic
materials [7, 20]. Sharma et al explored the potential of utilizing AM to printmagnetocaloricmaterials suitable
for heat-exchange structures [21]. They have created structures of lanthanum-calciumbasedmanganite oxide
particles and studied theirmagnetocaloric properties to assess the technical feasibility of employing AM for
magnetic heat pumps. Aswe look to the future of data storage and logic devices, skyrmions have garnered
significant attention due to their potential applications in spintronics. These topological structures can
significantly impactmagnetic data storage technologies.Mohanty et al observed topological Hall effect and
skyrmions in themultilayer system, Pt/Co/Ir/Co/Pt by tuning the spacer layer thickness, using combined
transport andmagnetic forcemicroscopy studies [22].

At thenanoscale, anisotropicmagnetite nanoparticles exhibit distinctmagnetic and electronic properties,
which canbefinely tuned by factors such as size, shape, and composition [23, 24]. Various synthesis techniques,
including thermal decomposition and co-precipitation, enable precise control over nanoparticle size and shape,
facilitating tailoredmagnetic properties [25]. The shape andmagnetocrystalline anisotropy of Fe3O4 nanoparticles
also play crucial roles in defining theirmagnetic attributes, with different geometries leading to varied saturation
magnetization and coercivity values. These nanoparticles hold considerable potential infields like spintronics and
magnetic resonance imaging,where optimizedmagnetic properties are essential for enhanced performance.Mitra
et al reviewed the role ofmagnetic anisotropies onmagnetic andmagnetoresistanceproperties at thenanoscale,
showcasing how surface, shape, andmagnetocrystalline anisotropies canbe engineered to achieve precise control
ofmagnetic behavior [26]. Fan et aldeveloped thedoping of holmium intoY-Fe-B based permanentmagnets for
the enhancements ofmagnetic properties and thermal stability. Besides, a hot-pressing andhot deformation
process significantly improves the intrinsic coercivity [27].

Activated carbon is well-known for its high surface area, excellent chemical stability, and versatility,making
it an idealmaterial for various applications, including adsorption, catalysis, and electrochemical processes. Its
use in electrochemistry, in particular, has garnered significant attention due to its ability to enhance sensor
performance. Building on these properties, a nanocomposite of nickel ferrite and activated carbon (NiF/AC)
was developed to improve a highly sensitive electrochemical sensor for detecting theophylline (TPL) in
pharmaceutical tablets [28]. Khatun et al optimized the composition to stabilize the desired ferromagnetic
properties in iron and nickel co-doped tin oxide nanoparticles [29]. This advancement highlights the growing
role ofmagneticmaterials in healthcare, particularly in enhancing diagnostic tools.

The articles in this Focus Issue offer a comprehensive insight into the expanding field ofmagneticmaterials
and devices.We hope that this collectionwill inspire continued research and development in this critical area of
science and its applications.
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