
thesis for the degree of doctor of philosophy

Local Learning Rules

For Deep Neural Networks with Two-State Neurons

Rasmus Kjær Høier

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2025

Local Learning Rules
For Deep Neural Networks with Two-State Neurons

Rasmus Kjær Høier
ISBN 978-91-8103-176-8

Acknowledgements, dedications, and similar personal statements in this thesis,
reflect the author’s own views.

© Rasmus Kjær Høier 2025 except where otherwise stated.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5634
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000

Printed by Chalmers Digital Printing
Gothenburg, Sweden, March 2025

Local Learning Rules
For Deep Neural Networks with Two-State Neurons
Rasmus Kjær Høier
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The way artificial neural networks are trained with backpropagation requires
a degree of synchronization of operations, and non-local knowledge of the
computational graph of the network, which is infeasible in noisy asynchronous
circuitry (be it biological, analog electronic or optical). Learning algorithms
based on temporal or spatial neural activity differences allow estimating
gradients, and hence learning, without these problematic requirements.

In this thesis, we explore a number of such alternative learning algorithms.
Paper A presents a variation of contrastive Hebbian learning, which achieves
Lipschitz-1 hidden layers by construction. Paper B focuses on efficient training
on traditional digital hardware by presenting a variant of backpropagation
compatible with quantized weights. Paper C returns to the topic of contrastive
Hebbian learning by presenting a new local learning algorithm for training
feedforward networks based on neurons possessing two internal states. These
dyadic neurons perform credit assignment by encoding errors as differences
and predictions as averages of the internal states. Paper D provides a new
variation of dual propagation and provides derivations of both the original and
the new variant. Paper E presents a general framework for dyadic learning,
which encompasses dual propagation in feedforward models and equilibrium
propagation (a well-known variant of contrastive Hebbian learning) on Hopfield
models as special cases while also being applicable to arbitrarily connected
networks. The case of a skew-symmetric Hopfield network is found to be
particularly intriguing as it, like the model from paper A, provides Lipschitz-1
layers by construction.

Keywords: Contrastive Hebbian learning, lifted neural networks, local
learning, biologically inspired learning, Hopfield networks, quantized training.

i

List of Publications
This thesis is based on the following publications:

[A] R. Høier and C. Zach, “Lifted Regression/Reconstruction Networks”.
BMVC 2020.

[B] H. Le, R. Høier, C.T. Lin and C. Zach, “AdaSTE: An Adaptive Straight-
Through Estimator to Train Binary Neural Networks”. CVPR 2022.

[C] R. Høier, D. Staudt and C. Zach, “Dual Propagation: Accelerating
Contrastive Hebbian Learning with Dyadic Neurons”. ICML 2023.

[D] R. Høier and C. Zach, “Two Tales of Single-Phase Contrastive Hebbian
Learning”. ICML 2024.

[E] R. Høier, K. Kalinin, M. Ernoult and C. Zach, “Dyadic Learning In
Recurrent and Feedforward Models”. MLNCP workshop @NeurIPS 2024.

Other publications by the author, not included in this thesis, are:

[F] R. Høier and C. Zach, “A Lagrangian Perspective on Dual Propagation”.
First Workshop on Machine Learning with New Compute Paradigms at Neurips,
New Orleans, December 2023.

[G] M. Ernoult, R. Høier, J. Kendall, “A cookbook for hardware-friendly
implicit learning on static data”. Second Workshop on Machine Learning with
New Compute Paradigms at Neurips, Vancouver, December 2024.

iii

Contents

Abstract i

List of Papers iii

Acknowledgements xi

I Overview 1

1 Introduction 3
1.1 Thesis outline . 4
1.2 Notation . 5

2 Background 7
2.1 The von Neumann bottleneck 7
2.2 Locality of synaptic plasticity 8
2.3 Weight transport . 9
2.4 Hardware constraints of some non-von Neumann compute plat-

forms . 10
Hybrid analog-electronic/optical computing 11
Resistive networks . 12

v

3 Deep learning as constrained optimization 13
3.1 Two views on backpropagation 13

Using the chain rule . 14
The Lagrangian method . 15

3.2 Energy based models . 18
Contrastive Hebbian learning 19
Deriving CHL and EP using the optimal value reformulation . 20
Lifted neural networks . 21

4 Dyadic learning 25
4.1 Derivation via the optimal value reformulation 26
4.2 Specializing to a Hopfield-like energy 27

Structured weights . 28
4.3 Chapter summary . 30

5 Summary of included papers 33
5.1 Paper A . 33
5.2 Paper B . 34
5.3 Paper C . 34
5.4 Paper D . 35
5.5 Paper E . 36

6 Concluding Remarks and Future Work 37
6.1 Conclusion . 37
6.2 Future work . 38

General asymmetric Hopfield networks 38
Skew-symmetric resistive networks 39
Homotopy methods for faster training of (skew-)symmetric Hop-

field models . 39

References 41

II Papers 47

A Lifted Regression/Reconstruction Networks A1
1 Introduction . A3
2 Related Work . A4

vi

3 Lifted Regression/Reconstruction Networks (LRRN) A5
3.1 Motivation: Lipschitz continuity of linear 1-layer LRRNs A6
3.2 Lipschitz continuity of proximal-like operators A7
3.3 General LRRNs . A9

4 Learning with LRRNs . A11
4.1 Unsupervised setting . A12
4.2 Supervised learning . A14

5 Conclusion . A16
Appendix A - Unsupervised learning: additional visual results A17
Appendix B - Supervised Learning A17

B.1 - Supervised learning from random initialization A17
B.2 - Supervised learning with unsupervised pretraining A18
B.3 - The impact of weight decay on the Lipschitz estimates . . A19

References . A19

B AdaSTE B1
1 Introduction . B3
2 Related Work . B5
3 Background . B7

3.1 Notation . B7
3.2 Mirror Descent . B7
3.3 ProxQuant . B8

4 Adaptive Straight-Through Estimator B9
4.1 Bilevel Optimization Formulation B9
4.2 Relaxing by Optimal Value Reformulation B10
4.3 Updating the latent weights θ B11
4.4 Our choice for the inner objective E B13
4.5 Adaptive choice for β B15

5 Experimental Results . B17
5.1 Classification Accuracy B17
5.2 Evolution of Loss and Accuracy B19

6 Discussion and Conclusion . B20
Appendix A - A Mirror Descent Interpretation of AdaSTE B21
Appendix B - AdaSTE: the case µα < 1 B23
Appendix C - Imagenette Results and Mixup B26
Appendix D - Implementation Details B27
Appendix E - CIFAR-100 Results . B27

vii

Appendix F - Training AdaSTE and BayesBiNN for a larger number
of epochs . B27

References . B28

C Dual Propagation: Accelerating Contrastive Hebbian Learning
with Dyadic Neurons C1
1 Introduction . C3
2 Related Work . C5
3 Contrastive Hebbian Learning with Dyadic Neurons C8

3.1 The Contrastive Objective C8
3.2 Inference Rules and Weight Updates C11
3.3 Analysis . C12
3.4 Biological plausibility C15

4 Implementation . C16
4.1 Target Loss Functions C16
4.2 Max-Pooling Layers . C17

5 Experiments . C17
5.1 MLP Trained on MNIST C18
5.2 Deep CNN Experiments C19

6 Conclusion . C21
Appendix A - Deriving the update relations C23
Appendix B - Propagation of asymmetric finite differences C23
Appendix C - Hyper-parameter settings C24
Appendix D - Plots of training metrics C24
Appendix E - Network architecture C25
References . C28

D Two Tales of Single-Phase Contrastive Hebbian Learning D1
1 Introduction . D3
2 Related Work . D5
3 Background . D7
4 A Relaxation Perspective on Dual Propagation D8

4.1 The Optimal Value Reformulation and its Relaxation . D9
4.2 A Saddlepoint Relaxed Optimal Value Reformulation . D9
4.3 An Adversarial Relaxed Optimal Value Reformulation . D11

5 A Lagrangian Perspective on Dual Propagation D13

viii

6 Numerical Validation . D15
6.1 The impact of α on the Lipschitz continuity D16
6.2 VGG16 experiments . D18

7 Discussion . D19
8 Conclusion . D21
Appendix A - Additional Results . D22

A.1 - Divergence of DP . D23
Appendix B - CNN experimental details D23
Appendix C - Proofs of propositions D23
Appendix D - Stabilized Fixed-Point Iterations D28
Appendix E - Analysis of the fixed point iterations D29

E.1 - Fixed-point updates based on AROVR D30
E.2 - Fixed-point updates based on SPROVR D31

References . D33

E Dyadic Learning In Recurrent and Feedforward Models E1
1 Introduction . E3
2 Related work . E5
3 A Saddle point objective for dyadic learning E6
4 Experiments . E10
5 Discussion . E12
Appendix A - Deriving the objective E14

A.1 - Specializing to the Hopfield energy case E15
Appendix B - Mirror descent/ascent dynamics E17
Appendix C - Adding element-wise contractive non-linearities E19
References . E19

ix

Acknowledgments
First of all, thank you, Christopher, for the stimulating discussions and your
generous sharing of ideas and mathematical insights. To the other members
(past and present) of the Zach sub-group, Huu, Xixi, Sophia, Yara, Alex,
and James, thank you for the helpful feedback and discussions and for your
company these past 5 years. Thank you, to all the other wonderful past and
present members of the computer vision group! Lukas, Georg, Kunal, José,
Sofie, Jennifer, Josef, Ida, Fredrik, Erik, Roman, both Davids, both Carls,
Richard and Victor.

Working in a fairly niche field, it was eye-opening for me to meet researchers
from other institutions working on similar problems at workshops and confer-
ences post-pandemic. Thank you, Maxence, for the many hours you dedicated
to discussing learning algorithms with me. Your insights were crucial in shap-
ing my understanding of the field. Thank you, Jannes, for giving me the
opportunity to learn about hardware-algorithm co-design. Thank you, Kirill,
for the whiteboard sessions and for insisting on the relevance of asymmetri-
cally connected networks. Thank you, Ben and Jack, for discussions and new
perspectives.

I am also grateful for my undergraduate thesis supervisors at Nuclear Physics
in Lund, Hanno and Kevin, and my manager at MAXIV, Steve. Working with
you gave me the confidence I needed to pursue research in a new field.

To my family, far-Kresten, mor-Bit, Marie, and Nikolaj. Thank you for your
patience and support. When things were difficult, I tried to imagine how you
would handle them, and it usually helped.

Finally, I want to thank my dear wife, Cibele. I don’t think I could have
done this without your support.

This research project was supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation.

xi

Part I

Overview

1

CHAPTER 1

Introduction

The programs encoded by artificial neural networks are fundamentally different
from software written by humans. Rather than writing explicit instructions,
we provide an over-parametrized function with a large amount of data and let
gradient descent take care of programming the correct parameter values for the
network. This view has led to artificial neural networks being referred to as
software 2.0 [1], highlighting the fundamentally different way these programs
are created. The qualitative differences between traditional software and
this new kind of software also translate to qualitatively different hardware
requirements. While manual programming requires reproducible hardware
with discrete states and a user-friendly programming interface, neural network
training does not impose these requirements. In principle, all you need is
hardware with many tunable parameters capable of providing an estimate of
the gradient of a loss function with respect to these parameters and, of course,
large amounts of data.

The early 20th century saw a diverse range of analog computing platforms
developed. Aided by their superior programmability and the invention of
the transistor, digital computers became dominant in the 1950s. A parallel
evolution from physically wiring in programs to externally stored programs

3

Chapter 1 Introduction

(such as punched cards) and digitally stored programs greatly aided the success
of digital computing. Early artificial neural networks were largely simulated
on digital hardware, for example, Rosenblatts perceptron [2], Fukushimas
Neocognitron [3] and the connectionist models of the parallel distributed
processing group [4]. Following the success of [5]–[7], GPUs have been preferred
over CPUs for artificial neural network training and deployment.

The energy consumed by these chips has motivated a number of efforts
toward developing more energy-efficient digital chips tailored to specific use
cases, as well as more radical efforts aimed at developing analog and optical
hardware accelerators for AI. The more radical approaches could potentially
require orders of magnitude less energy than digital computing but impose
new constraints. In many cases, one will only have access to the final steady
state reached during inference, while the trajectory taken and intermediate
derivatives are inaccessible. This necessitates developing alternatives to the
backpropagation of errors algorithm, which rely solely on information regarding
the final states of the network.

The work in this thesis is primarily focused on developing learning algo-
rithms that require little to no inter-neuron synchronization and only require
knowledge of the neural states at equilibrium. Although this is motivated by
the ongoing development of new hardware accelerators, the focus here is on
algorithms, and hardware is only addressed in passing.

While exotic hardware could potentially lead to massive gains in the speed
and energy efficiency of AI models, it is hard to predict when or even if a
moonshot technology will become mature enough for widespread adoption.
Training quantized neural networks is a more pragmatic approach to the rising
costs of AI, which can speed up training and inference of neural networks on
already existing digital hardware. This topic is explored in one of the included
papers using many of the same mathematical tools as in the other papers.

1.1 Thesis outline
The first part of the thesis part I motivates the research topic and provides
background information regarding the learning algorithms explored in the
included articles. Chapter 2 mainly serves as an extended motivation and
discusses the notion of locality with regard to synaptic updates and relates it to
biology and hardware. Chapter 3 explores some important learning algorithms

4

1.2 Notation

from the literature (backpropagation, variants of contrastive Hebbian learning,
and lifted network training) through the lens of constrained optimization.
Chapter 4 presents a general framework for local learning, generalizing learning
algorithms explored in the included research papers as well as one of the
reference algorithms. Chapter 5 summarizes the included research papers, and
chapter 6 contains the conclusion and future works. Part II consists of the
included research papers.

1.2 Notation
This section explains the notation used in part I of the thesis. We consider a
supervised learning setting where a dataset is made up of a set of inputs X
and desired outputs Y (labels). For simplicity we omit indices and denote a
single datapoint from the dataset by lowercase x and y. We use s to denote
a vector of neural states and W to denote the network’s adjacency matrix,
usually referred to as the weight matrix. Biases are omitted to reduce clutter.
sk denotes the k-th element of s and Wij denotes the strength of the synaptic
connection from neuron j to neuron i.

When discussing layered networks in particular we overload the notation
slightly and let s be a a list of layerwise state-vectors: s = {s0, s1, ..., sL},
where s0 = x. This will usually be clear from context, but to avoid unnecessary
confusion, we will use subscript l rather than subscript k in the layered setting.
We denote the number of states in a layer l as dl, such that sl ∈ Rdl . The
set of weights is defined as W = {W dl+1×dl

l }L−1
l=0 . It will occasionally be

convenient to distinguish between neural states before and after the activation
function is applied. We use a, defined through s := f(a), to denote the neural
pre-activations.

Note that the notation used in part I differs somewhat from the notation
used in the included papers in part II (more so for the first three papers and
less so for the last two papers).

5

CHAPTER 2

Background

While backpropagation is immensely powerful, it requires a strictly synchro-
nized order of operations (a bottom-up forward pass and a top-down backward
pass through the network), as well as knowledge of derivatives of non-linearities
and sharing of weights between the forward and backward passes (referred to
as the weight transport problem). These requirements are easy to fulfill on
general-purpose programmable digital hardware such as CPUs, GPUs, and
TPUs, though these devices are highly energy demanding [8]. Furthermore,
the biological implausibility of backpropagation was pointed out early on [9]
and has since motivated a rich literature on less implausible alternatives. In-
terestingly, this somewhat speculative research on biologically plausible credit
assignment has strong synergies with research on new computing paradigms
for energy-efficient AI, which often share some of the same constraints as
biological circuits.

2.1 The von Neumann bottleneck
In modern digital computers, memory and processing cores are physically
separate, which makes it necessary to transfer data and instructions between

7

Chapter 2 Background

memory and processors. This separation of memory and processing units is
a key aspect of the well-known Von Neumann architecture. The bus piping
data between memory and processing units is referred to as the von Neumann
bottleneck [10], as the limited bandwidth of this bus often becomes the limiting
factor in program runtime. This problem is exacerbated by the fact that
processor speeds have increased faster than data transfer rates. The von
Neumann bottleneck not only slows down computation but also wastes energy
because cores must idly stand by while waiting for data and instructions.
Modern chip design is, of course, much more complex. For instance, the von
Neumann bottleneck is partially alleviated by integrating smaller high-speed
memory on-chip close to the processing units. Nonetheless, the rate at which
data can be transferred remains a limiting factor.

2.2 Locality of synaptic plasticity
Co-locating memory and processing is one way to avoid the Von Neumann
bottleneck, but this necessitates considering what information will be locally
available to a given processing unit. In the context of learning this means neu-
rons will have to asynchronously carry out computations using only information
from neurons they are directly connected to.

It is common in the literature to motivate algorithms on the merits of locality,
though a proper definition is often absent (We are guilty of this as well in
the included papers). In the following, we consider a synaptic plasticity rule
to be local in space if updating a synapse Wij , connecting neurons i and j,
only involves the states of neurons i and j. This is satisfied by all learning
rules considered here, though architectures involving weight sharing (such as
CNNs) make algorithms non-local in space. We consider a plasticity rule to be
local in time if it does not require inferring distinct sets of states sequentially.
For a more rigorous but also quite dense treatment of the topic of locality of
synaptic plasticity, we recommend [11].

Table 2.1 classifies a few algorithms according to the above definitions of
locality, whether they map to a single circuit, and whether they avoid requiring
knowledge of the exact derivatives of activation functions.

Backpropagation is classified as spatially local here because the weight
updates can be expressed in terms of activity and error states computed
directly at the synapse, assuming the same circuit is used in the forward and

8

2.3 Weight transport

backward pass. As the forward and backward passes require quite different
circuitry (This is discussed in chapter 3.1 and illustrated in Fig 3.1), a spatially
non-local physical implementation may be more practical. This has to do with
the forward pass involving the weights and elementwise nonlinearities, whereas
the backward pass involves the transpose of the weights and elementwise
multiplication by the derivative of the nonlinearities. Backpropagation is not
temporally local, as activities and error states are computed in two distinct
phases.

Contrastive Hebbian learning and equilibrium propagation use activities
inferred in two distinct temporal phases to update weights. The two phases
differ only with respect to boundary conditions and can consequently be run
sequentially on the same physical circuitry, making them temporally non-
local. The weight updates of contrastive Hebbian learning and equilibrium
propagation only require knowledge of the states local to a given synapse,
making them local in space. It is possible to make temporally local variants
of these algorithms through the use of twin-circuits [12], [13]. However, the
twin-circuit approach makes the algorithm non-local in space. Furthermore,
constructing accurate physical twin circuits for large-scale networks is likely
going to be challenging.

Dual propagation, the method of auxiliary coordinates, and predictive
coding have distinct neural compartments, which makes it possible to compute
predictions and errors simultaneously in a spatially and temporally local
manner. Predictive coding and the method of auxiliary coordinates also
require knowledge of the derivatives of the activation functions, which is
problematic for hardware, where exact knowledge of device imperfections is
not practically available.

All of these algorithms are explored in greater detail in chapter 3 and
chapter 4.

2.3 Weight transport
The weight transport problem typically refers to the way backpropagation
during the backward phase of learning requires transporting errors using the
transpose of the weights used in the forward phase. This entails that if neuron
i transmits activity through a scalar weight Wji in the forward phase, then
an error is transmitted through that same connection in the backward phase.

9

Chapter 2 Background

Algorithm Spatial Locality Temporal Locality avoids f ′

BP ✓ × ×
CHL & EP ✓ × ✓

DP ✓ ✓ ✓
MAC & PC ✓ ✓ ×

Table 2.1: Properties of different learning algorithms.

This strict symmetry does not agree with the connectivity of biological neural
networks, as pointed out early on [9]. The weight transport problem also
appears in the feedforward models trained by predictive coding and dual
propagation. Although the dynamics are feedforward during inference, this
is not the case during training, where activity is flowing forward through the
weights while errors simultaneously flow backward through the transpose of
the weights. The Hopfield models trained with contrastive Hebbian learning
and equilibrium propagation also give rise to a variant of the weight transport
problem by requiring symmetric connectivity Wij = Wji

1. Thus, the weight
transport problem applies to all of the methods listed in table 2.1.

There is extensive research on the effect of applying ad hoc modifications to
neural connectivity in order to circumvent the weight transport problem. [14]
replaced the backward transposed weight matrix used in the backward phase of
BP with a randomly initialized static matrix. [15] route error signals directly
from the output layer to each hidden layer via static random weights. [16]
modify the CHL dynamics to employ static random weights for all top-down
connections. These ad hoc modifications do not outright prevent learning but
do prevent the scaling to deep convolutional networks [17].

2.4 Hardware constraints of some non-von
Neumann compute platforms

The kinds of hardware we are able to build today are very different from the
brain, and hence, the built-in physical constraints differ. Blindly trying to

1Strictly speaking, you can apply EP and CHL to models with asymmetric weight matrices,
but only the symmetric part of the weight matrix is actually used in the neural dynamics.
This is discussed briefly in section 4.2.

10

2.4 Hardware constraints of some non-von Neumann compute platforms

emulate the constraints of one substrate (e.g. the brain) on a substrate that has
completely different constraints is likely to be detrimental to performance [18].
For instance, biological neural circuits exhibit asymmetrical neural connectivity,
but for some types of hardware, symmetric connectivity is not only possible
but necessary. While the weight transport problem is critical in terms of
biological plausibility, it is less of a concern when designing novel AI hardware
accelerators. However, the locality constraints of section 2.2 are of critical
importance. In the following, we will briefly consider two alternative types of
computing hardware for which on-device learning requires alternative learning
methods.

Hybrid analog-electronic/optical computing
Matrix multiplication is the core operation both for neural network inference
and training. Recently, a hybrid analog optical circuit AIM2 (analog iterative
machine) has been proposed as a fast and energy efficient matrix-vector multi-
plication engine [19]. In this circuit, states are represented by analog currents
and converted to light in order to carry out matrix-vector multiplication in the
optical domain. Given an N element state vector, a beam splitter is applied
to create N copies of the state vector. The resulting N × N array is then
elementwise attenuated by a spatial light modulator array (SLM)3 W before
the now attenuated N ×N set of states are converted to current and summed
column-wise.

At 0.6 nanoseconds per iteration, matrix-vector multiplication is extremely
rapid in this hybrid circuit. This makes it attractive for recurrently connected
models such as Hopfield networks, which need multiple iterations of matrix-
vector multiplication in order to converge to a fixed point. However, as all
computations are carried out in the analog domain, it is not possible to learn
the weights using backpropagation. Of the models listed in table 2.1, CHL,
EP, and DP can be applied to train models on this type of hardware as they
only require knowledge of the final fixed points. BP, MAC and PC are not
amenable to this type of hardware as they require exact knowledge of the
derivatives of the nonlinearities.

2More recent iterations employ the name AOC (Analog optical computer).
3Note that an SLM array can only attenuate, so signed weights require duplicating the states

and having one SLM represent positive weights and another SLM represent negative
weights.

11

Chapter 2 Background

The weight transport problem appears in a weaker form here as all the
proposed methods require encoding a degree of weight sharing (between the
weights and their transpose) when mapping weights to the SLM. In practice,
device imperfections will make this weight sharing approximate at best.

Resistive networks
In resistive networks, the learnable parameters are the resistors connecting node
voltages. Physical relaxation of such a circuit has been shown to correspond
to minimizing a particular energy function called the pseudo-power [20], [21].
Interestingly, resistive networks can be reparametrized as Hopfield networks
with symmetric connectivity [22], though the converse is not the case. I.e.,
resistive networks are a subset of Hopfield networks. By modeling weights
as conductances in a resistive network, the weight transport problem is en-
tirely bypassed, as edges are naturally bidirectional, satisfying Wij = Wji by
construction.

Resistive networks have been trained with equilibrium propagation [21]. More
recently, resistive networks have been trained in hardware using a modified
version of coupled learning (a variation of CHL) [12], where the distinct learning
phases were carried out in parallel on twin circuits rather than sequentially on
the same circuit.

12

CHAPTER 3

Deep learning as constrained optimization

The use of backpropagation in deep learning is today ubiquitous. However, the
degree of synchronization between layers during the forward and backward pass
and the need to compute derivatives of nonlinearities makes it impractical for
some alternative compute paradigms. In this chapter, we will look at supervised
end-to-end credit assignment through the lens of constrained optimization.
First, in section 3.1, we look at two derivations of backpropagation in artificial
neural networks. In section 3.2, we look at local alternatives to backpropagation
based on the concept of energy minimization.

3.1 Two views on backpropagation
We consider the problem of learning the parameters of a deep feedforward
neural network from a dataset (X,Y). For brevity, we use x and y to denote an
arbitrary data point from this dataset. We consider a multi-layer perceptron
with layerwise state-vectors s0 = x, al = Wl−1sl−1 and sl = fl(al−1) for
1 ≤ l ≤ L, where fl is an elementwise activation function. We denote the
number of states in a layer l as dl, such that sl ∈ Rdl . The goal is to learn
parameters W = {W dl+1×dl

l }L−1
l=0 that minimize a loss function ℓ(sL, y).

13

Chapter 3 Deep learning as constrained optimization

Note that although we here consider backpropagation in the context of
feedforward networks, it can also be applied to recurrent neural networks by
unrolling the temporal dynamics [23].

Using the chain rule
We find it convenient to use denominator layout, which means ∂ℓ/∂al and
∂ℓ/∂Wl will have the same shape as al and Wl respectively (in numerator
layout, the dimensions would be transposed). The use of denominator layout
also means that we must write the chain rule in opposite order from what is done
in single variable calculus (e.g. ∂p(q(x))

∂x = ∂q
∂x

∂p
∂q rather than ∂p(q(x))

∂x = ∂p
∂q

∂q
∂x .

The goal here is to derive the gradient of the loss by repeatedly applying
the chain rule.

min
W

ℓ(sL(W,x), y), where for k = 1, ..., L sl = fl(Wl−1sl−1) (P1)

For simplicity, we consider a single data point and do not limit ourselves to a
specific loss function.

It is convenient first to find the expression for the partial derivatives of the
preactivations ∂ℓ∂al of each layer in the network. In the following ⊙ is used
to denote partial derivatives.

∂ℓ
∂aL

= ∂sL

∂aL

∂ℓ
∂sL

= f ′
L(aL)⊙ ℓ′

:= δL

(3.1)

When computing the partial derivative for the preceding layer, L− 1, we reuse
that we already computed the partial derivative with respect to aL.

∂ℓ
∂aL−1

= ∂sL−1
∂aL−1

∂aL

∂sL−1
∂sL

∂aL

∂ℓ
∂sL︸ ︷︷ ︸

δL

= f ′
L−1(aL−1)⊙ (WL−1)⊤δL

:= δL−1

(3.2)

We note that each time we go one step further backward, we reuse the partial
derivatives computed at the previous layer, yielding the recursive relation.

δl := ∂ℓ
∂al

= f ′
l (al)⊙W⊤

l δl+1 (3.3)

Finally, applying the chain rule one step further through the linear transfor-
mation al+1 = Wlsl gives

∂ℓ
∂Wl

= ∂al+1
∂Wl

∂ℓ
∂al+1

= δl+1s
⊤
l . (3.4)

14

3.1 Two views on backpropagation

The computational graph of backprop is illustrated in the cartoon in Fig 3.1.
The states are computed in a sequential manner, with different operations
used in the forward (matrix multiplication using the weights and elementwise
nonlinearities) and backward pass (matrix multiplication using the transposed
weights and elementwise multiplication by the derivative of the activation
function). Note that the preactivations al = Wl−1sl−1 are reused during the
backward pass. While the weights Wl transport activity in the forward pass,
in the backward pass the transpose of the weights W⊤

l transport error vectors
δl+1. This is the classical example of the weight transport problem mentioned
in section 2.3. This synchronized order of operations, the different types of
operations carried out in the two phases, and the sharing of weights and
preactivations across the forward and the backward pass make implementing
backpropagation directly in physical hardware challenging.

Backpropagation in quantized neural networks

A common strategy for reducing the computational cost of running neural
networks on digital hardware is to quantize weights and/or activities. For both
activities and weights, this can be achieved by employing a quantized activation
function such as the sign function (note that weights usually do not have
activation functions). Incorporating discrete activation functions can speed up
inference significantly, as multiplication operations can be replaced by addition
and subtraction operations. The downside is that vanilla backpropagation
won’t work as the gradient of the sign function is either zero or infinity (at the
origin). Paper B deals specifically with the case where weights are binarized to
{-1, 1} and presents a principled way that permits error signals to flow through
the quantizing activation function.

The Lagrangian method
An alternative approach to deriving the state and weight updates of backpropagation-
based training is to employ the method of Lagrange multipliers [24]. This
method frames problem P1 as a constrained optimization problem where the
behavior of the network (in this case, nonlinear feedforward connectivity) is
enforced via a set of equality constraints.

min
W

ℓ(sL(W,x), y), s.t. sl = fl(Wl−1sl−1) ∀l ∈ {1, 2, . . . , L} (P2)

15

Chapter 3 Deep learning as constrained optimization

…
…

Figure 3.1: A cartoon of the forward and backward pass through the last two
layers of a deep neural network. In the forward pass (green), activity is
propagated through matrix multiplication and elementwise nonlineari-
ties. In the backward pass, errors are propagated backward through
the layers via the transpose of the weights (red). The preactivations
al = Wl−1sl−1 are reused during the backward pass in order to evaluate
the derivative of the activation function, which is multiplied onto the
backpropagated signal elementwise.

16

3.1 Two views on backpropagation

The method of Lagrange multipliers turns this constrained optimization prob-
lem into an unconstrained problem by constructing a new objective L in which
the constraints are baked in.

L(W, s, δ) = ℓ(sL) +
L∑

l=1
λ⊤

l (sl − fl(Wl−1sl−1))

Forward and backward dynamics follow from stationarity of L.

∂L
∂λl

= 0⇒ sl = fl(Wl−1sl−1) (3.5)

∂L
∂sl

= 0⇒ λl = W⊤
l λl+1 ⊙ f ′

l (Wl−1sl−1) (3.6)

∂L
∂Wl

= (λl+1 ⊙ f ′
l+1(Wlsl))s⊤

l (3.7)

This gives the same weight updates as the chain rule (with λl+1⊙f ′
l+1(Wlsl) =

δl).

Regarding the synchronicity of backprop

It is worth noting that the Lagrangian perspective does not impose a particular
order of operations. Although the most efficient way (at least on digital
hardware) is to compute the states and the weight updates via a forward pass
through the layers followed by a backward pass, it is not the only feasible
schedule. It is straightforward to verify that even choosing the update sequence
at which {sl, δl} is updated at random will result in the desired final states,
assuming sufficiently many updates are made, though such an algorithm strictly
speaking would not be what is typically understood by backpropagation. This
can be understood from the fact that the computational graph shown in
Fig 3.1 has no loops. Consequently, information only flows in one direction
in this unfolded graph. This is exploited in the included paper D, which
presents a derivation of the dual propagation algorithm, which can be viewed
as a reparametrization of this Lagrangian formulation of backpropagation. A
benefit of this particular reparametrization is that it not only avoids the need
for strict synchronization but also avoids the need to compute the derivative
of the activation function, which is required in backpropagation.

17

Chapter 3 Deep learning as constrained optimization

E(s,W)

s* y activity

(a) Before training

E(s,W)

s* y activity

(b) During training

E(s,W)

activitys*≈y

(c) After training

Figure 3.2: A simple scalar example of EBM training. During training the parame-
ters W are adjusted such that the minimum corresponds to the target
y.

3.2 Energy based models

An alternative perspective on neural network inference and training is based
on the concept of energy-based models (EBMs). In an EBM a network is
characterized by a scalar potential E(s,W), which is a function of a state
vector s and an adjacency matrix of learnable weights W . Unlike the previous
section, we do not explicitly assume a layered architecture here (but layers can
be introduced by enforcing a particular block sparsity in W). The minima of
the energy with respect to the states are interpreted as memories or predictions.
Figure 3.2 illustrates how an EBM is trained by reshaping the energy landscape
of E(s,W) by adjusting W in such a way that the minima correspond to
desired memories/predictions. This type of model was pioneered by, among
others [25]and [26] and builds on prior work on the Ising model. These models
are typically referred to as associative memory or Hopfield models. The energy
function optimized in [27] and [28] is

EHopfield(s,W) = G(s)− 1
2s

⊤Ws, where ∇sG(s) = f−1(s). (3.8)

It is possible to train such models to perform predictions by injecting a teaching
signal into a subset of units. Next, we will consider two different approaches to
supervised training, namely variations of contrastive Hebbian learning (CHL)
and lifted neural networks.

18

3.2 Energy based models

Figure 3.3: In contrastive Hebbian learning, states are inferred twice, once with out-
put neurons (yellow) clamped to a target vector (the positive/clamped
phase) and once without clamping (the negative/free phase). The in-
put neurons (red) are clamped during both phases, and the remaining
neurons (green) are minimizers of the network potential E. Left: A
layered network. Right: A densely connected network.

Contrastive Hebbian learning

Contrastive Hebbian learning is a method of training neural networks by
contrasting neural states subject to different perturbations [28]. Traditionally
this is done by designating a subset of input neurons and a subset of output
neurons. Figure 3.3 displays this setup for a layered and a densely connected
network, with input units in red, output units in yellow, and hidden units in
green. During the first phase of training, the positive or clamped phase, the
input units are clamped to some input x (for example, an image), while the
output units are clamped to a corresponding label y. The remaining neural
activations are inferred by minimizing the energy E. During the subsequent
negative/free phase, the output units are no longer clamped and all but the
input units are inferred by minimizing the energy.

Following [28] contrastive Hebbian learning has been revisited in a number
of works, mainly differing in terms of the boundary conditions imposed on the
output neurons (the yellow neurons in figure 3.3), and the structure of the
weight matrix W .

19

Chapter 3 Deep learning as constrained optimization

CHL with layerwise discounting

In [29], it was shown that CHL approximates backpropagation in feedforward
models when applied to a recurrent model with weak feedback. This is achieved
by adding layerwise discounting factors to the network potential. The use of
weak feedback makes the teaching signal prone to vanishing in deeper networks
due to the finite numerical precision of digital computers. In noisy (e.g., analog
electronic) circuits, the weak feedback requirement is particularly problematic,
as the teaching signal may drown out in noise. The model explored in paper A
is an instance of contrastive Hebbian learning with layerwise discounting, but
employs a different energy function than the model of [29].

Equilibrium propagation

Rather than clamping output neurons during the positive phase equilibrium
propagation (EP) [30] nudges the output neurons by adding a term βℓ(s, y)
to the network potential. EP is typically applied to symmetric Hopfield
models but has been applied to feedforward models [31], nonlinear resistive
networks [22] and spiking neural networks [32]. In the limit of β → 0, equilib-
rium propagation’s weight updates correspond to gradient descent on ℓ(s(θ), y).
Followup works on equilibrium propagation has explored continual weight
updates [33], reducing gradient estimator bias [34] and improving robustness
to strong nudging through the use of complex-valued neurons [35].

Coupled learning

Coupled learning (CpL) [36] also employs weak feedback, but goes about it
in a different manner. Whereas CHL [28] fixes output units to the target
vector y and EP nudges them towards lower loss, CpL first infers the free
states and then clamps the output units to a convex combination of the free
solution and the target vector. CpL has been successfully implemented in
small-scale physical circuits [12], but the resulting gradient estimate lacks the
strong theoretical guarantees of EP [37].

Deriving CHL and EP using the optimal value reformulation
In the following, we will show a simple method for deriving equilibrium
propagation and contrastive Hebbian learning based on a particular refor-

20

3.2 Energy based models

mulation of an inequality constraint, called the optimal value reformulation
(OVR) [38]. The core idea is that s = arg min′

s E(s′) is equivalent to the
constraint E(s) ≤ mins′E(s′) since the inequality constraint is only satisfied
when s actually is the minimizer of E. Using the optimal value reformulation,
contrastive Hebbian learning and equilibrium propagation can be derived in a
very concise manner [39], without specifying the underlying energy E(s,W),
loss function ℓ(s, y) or connectivity W .

min
W

ℓ(s, y) s.t. s = arg min
s′

E(s′,W) (P3)

Renaming the variable s as s+ and using the optimal value reformulation, this
can be rewritten in a more malleable form. The optimal value reformulation
replaces the constraint s = arg mins0 E(s0,W) by the equivalent constraint
E(s,W) ≤ mins0 E(s0,W).

⇔ min
W

ℓ(s+, y) s.t. E(s+,W) ≤ min
s0

E(s0,W). (3.9)

We then proceed to enforce the constraint through a penalty term, weighted
by a scaling factor 1/β. The penalty term will always be non-negative since
E(s+,W) ≥ mins0 E(s0,W) by construction.

min
W

(
min
s+

(
ℓ(s+, y) + 1

βE(s+,W)
)
−min

s0

1
βE(s0,W)

)
(3.10)

Multiplying by β and rewriting −mins0 E(s0,W) as maxs0 −E(s0,W) yields

min
W

min
s+

max
s0

(
βℓ(s+, y) + E(s+,W)− E(s0.W)

)
(3.11)

This formulation recovers Contrastive Hebbian learning in the limit β →∞
(the output neurons effectively become clamped) and recovers equilibrium
propagation in the limit β → 0 (the output units receive an infinitesimal
nudge). Coupled learning, being more of a heuristic method, does not fit neatly
into this formulation due to the way the loss is computed in terms of both s0

and s+ during the nudged phase: ℓ(s+, αy + (1− α)s0), where α ∈ [0, 1].

Lifted neural networks
Lifted neural networks also seek to optimize an objective subject to constraints
on the neural states. Lifted networks typically assume a layered architecture

21

Chapter 3 Deep learning as constrained optimization

and employ quadratic energies rather than the Hopfield energies typically
employed in contrastive Hebbian learning. In the following, we return to the
overloaded notation where subscript l denotes the layer index.

min
W

ℓ(sL(W,x), y), s.t. sl = arg min
sl

El(sl, sl−1, θl−1)) ∀l ∈ {1, 2, . . . , L}

(P4)

Rather than dealing with this constrained optimization problem, an uncon-
strained optimization problem is constructed by enforcing the constraints via
penalty terms.

min
W

min
s
ℓ(sL) + 1

β

L∑
l=1

El(sl, sl−1,Wl−1) (3.12)

This formulation of neural network training was first proposed by Carreira-
Perpinan & Wang in [40], where it was referred to as the method of auxiliary
coordinates (MAC). The inner problem can be solved using gradient descent,
exact coordinate descent, or even off-the-shelf solvers. The potential employed
in [40] is

EMAC
l (sl, sl−1,Wl−1) = 1

2 ||sl − fl(Wl−1sl−1)||22 (3.13)

Since then, a number of works, sometimes referred to as lifted neural networks,
employing similar objectives have been proposed. Alternating minimization
(AM) [41], differs in that the inner optimization is not carried out with respect
to activations but rather with respect to preactivations al (defined through
sl = fl(al)), by employing

EAM
l (sl, al−1,Wl−1) = 1

2 ||al −Wl−1fl−1(al−1)||22 (3.14)

In a parallel line of research, motivated by biological plausibility, training
predictive coding networks in a layered model also corresponds to solving
problem 3.12 while employing the potential given by Eq 3.14. This connection
has previously been highlighted in [39].

The appearance of the activation function in equation 3.13 and equation 3.14
has the disadvantage that inference dynamics will involve the derivative of
the activation function, which, depending on the inference method can lead to
slow convergence, while also being problematic from the perspective of analog

22

3.2 Energy based models

amenability and biological plausibility. An alternative approach is to express
the energy purely in terms of activity s (as opposed to in terms of both s

and a) and add non-negativity constraints. This formulation is based on an
interpretation of the ReLU nonlinearity as a proximal operator [42].

Eprox
l (sl, sl−1,Wl−1) = 1

2 ||sl −Wl−1sl−1||22 + I(sl)≥0 (3.15)

Here I(sl)≥0 is an indicator function, which has value ∞ if any element of sl

is negative and zero otherwise. This imposes a hard projection to the non-
negative real numbers Rdl

0 when updating the states, resulting in ReLU-type
neurons. A restriction of this formulation is that it limits the networks to ReLU
units (or with a slight modification to hard sigmoid units). Equation 3.15 is
the energy function used in paper A.

Lifted learning as CHL The lifted formulation can be seen as a special case of
contrastive Hebbian learning in a layered feedforward network with quadratic
layerwise energies El [31]. In this setting, the energy of the free phase is always
exactly zero, making equation 3.11 equivalent to equation 3.12.

23

CHAPTER 4

Dyadic learning

Contrastive Hebbian learning (including the variant explored in paper A)
relies on two sequential inference phases, layerwise discounting and requires
multiple neural state updates in order for inference to converge. Motivated by
these limitations, the paper C and D proposes a local learning algorithm, dual
propagation, for training feedforward models based on dyadic neurons (neurons
with two internal states). Dual propagation propagates errors and activities
simultaneously (hence the name) and inference converges rapidly. However, the
underlying models are qualitatively different (CHL is for symmetric Hopfield
models and DP is for feedforward models).

Paper E provides a general framework that bridges the gap between these
algorithms. Starting from neuron-level energy-based constraints we derive a
contrastive learning objective, which does assume a particular connectivity
(beyond a lack of self-connections). When we specialize to Hopfield models and
restrict the connectivity, this dyadic learning framework recovers as special
cases equilibrium propagation in symmetric Hopfield models, dual propagation
in feedforward models, and a class of inherently robust Lipschitz-1 models
when the underlying connectivity is chosen to be a skew-symmetric.

25

Chapter 4 Dyadic learning

4.1 Derivation via the optimal value reformulation
The following is a condensed version of the derivation of the dyadic learning
objective found in the appendix of paper E. Our starting point is the following
constrained optimization problem.

min
W

ℓ(s, y) s.t. ∀ k sk = arg min
s′

k

Ek(s′
k, s\k,Wk,\k) (P5)

This problem states that we wish to optimize some training loss ℓ(s, y) subject
to the constraint that each individual neuron sk is the minimizer of an energy
Ek, which we assume has a unique minimizer. Ek takes as arguments sk, all
the other neurons s\k (s with the k-th element removed) and the synaptic
connections between sk and s\k denoted by Wk,\k (The k-th row of W with
the k-th element removed). For brevity, the weight argument is omitted
in the following. Next we introduce new variables s+ and s− and define
s̄ := 1

2 (s+ + s−) and rewrite the problem as

min
W

min
s+

max
s−

1
2ℓ(s

+, y) + 1
2ℓ(s

−, y)

s.t. ∀ k
{
s+

k = arg mins′
k
Ek(s′

k, s̄\k)
s−

k = arg mins′
k
Ek(s′

k, s̄\k)

(4.1)

This reparametrization might look a little strange, but since Ek is has a
unique minimizer and we are enforcing that s+

k and s−
k are minimizers of

Ek, then problem 4.1 remains equivalent to problem P5. The benefit of this
reparametrization is that we can now apply the optimal value reformulation
(twice), which makes it possible to construct penalizers.

min
W

min
s+

max
s−

1
2ℓ(s

+, y) + 1
2ℓ(s

−, y)

s.t. ∀ k
{
Ek(s+

k , s̄/k) ≤ mins′
k
Ek(s′

k, s̄/k)
Ek(s−

k , s̄/k) ≤ mins′
k
Ek(s′

k, s̄/k)

(4.2)

In much the same way as when going from Eq P3 to Eq 3.11 in the previous
chapter, we now turn the constrained optimization problem into an uncon-
strained one by approximately enforcing the constraints via penalty terms
weighted by 1/β > 0. As usual, the constraints are strictly satisfied in the
limit β → 0. Since we are minimizing with respect to s+ and maximizing with

26

4.2 Specializing to a Hopfield-like energy

regard to s−, the penalty terms have opposite signs, which means the terms
involving s′

k cancel out. This leads us to the dyadic learning objective.

min
W

min
s+

max
s−

1
2ℓ(s

+, y) + 1
2ℓ(s

−, y) + 1
β

∑
k

(
Ek(s+

k , s̄/k)− Ek(s−
k , s̄/k)

)
(4.3)

This objective is a generalization of the dual propagation objective from paper C
and D. However, unlike the dual propagation objective, this objective does not
assume a particular energy function or connectivity.

4.2 Specializing to a Hopfield-like energy
We consider a particular kind of Hopfield-like energy given by

Ek(sk, s\k) = G(sk)− skWk\ks\k − skθ0,kx (4.4)

The first term G as usual determines the activation function through ∇sG(s) =
f−1(s). The second term denotes interactions between sk and the other neurons,
and the last term denotes interactions between sk and a set of static inputs
x. This objective resembles a classical continuous Hopfield model but has a
notable difference. At equilibrium, this energy satisfies

s = f(Ws+ θ0x), (4.5)

whereas the traditional Hopfield energy (EHopfield(x, s,W, θ0) = G(s)− 1
2s

⊤Ws−
s⊤θ0x), satisfies

s = f(1
2 (W +W⊤)s+ θ0x). (4.6)

The appearance of 1
2 (W+W⊤) means that CHL and EP only use the symmetric

part of the weight matrix1, whereas this dyadic objective allows us to train
models with symmetric, feedforward, skew-symmetric, and general asymmetric
connectivity (as long as Wii = 0). This is a benefit as symmetric connectivity
introduces the weight transport problem and can be difficult to realize in
physical hardware2. Of course, if W = W⊤, then we get the same behavior as

1Since we know that: W = 1
2 (W + W ⊤)︸ ︷︷ ︸

symmetric

+ 1
2 (W − W ⊤)︸ ︷︷ ︸

skew−symmetric
2The exception being the resistive networks mentioned in Chapter 2.4.

27

Chapter 4 Dyadic learning

CHL and EP. With this choice of energy equation 4.3 becomes

min
{W,θ0}

min
s+

max
s−

1
2ℓ(s

+, y) + 1
2ℓ(s

−, y)

+ 1
β

(
G(s+)−G(s−)− (s+ − s−)⊤(Ws̄+ θ0x)

)
.

(4.7)

Introducing a concatenated total state-vector
(

s+

s−

)
Eq. 4.3 can be rewritten

as.

min
W,θ0

min
s+

max
s−

1
2ℓ(s

+, y) + 1
2ℓ(s

−, y)

+ 1
β

(
G(s+)−G(s−)− (s+ − s−)⊤θ0x

− 1
4

(
s+

s−

)⊤(
W +W⊤ W −W⊤

−W +W⊤ −W −W⊤

)
︸ ︷︷ ︸

W(W)

(
s+

s−

))
.

(4.8)

It is interesting that regardless of the structure of W , the parametrized con-
trastive weight matrix W(W) is always symmetric. However, the underlying
structure of W does have a profound impact on both the training and inference
dynamics of the resulting model.

Structured weights
In the absence of a teaching signal (or equivalently in the limit β → 0) we
get s+ = s−, which means terms involving W⊤ cancel out, and the resulting
dynamics satisfy Eq 4.5 at equilibrium. The exact structure of W determines
whether the model has layers and what kind of feedback it employs (if any).
In the following we will briefly discuss the most interesting cases, which are
skew-symmetric, feedforward and symmetric connectivity. Each of these cases
are illustrated in Fig 4.1. Layers are imposed via block-sparsity.

Symmetric weights

In the case of symmetric W (illustrated in Fig. 4.1a), then 1
2 (W +W⊤) = W

and 1
2 (W −W⊤) = 0. This means the blocks governing interactions between

s+ and s− vanish from the objective, making it possible to carry out the
minimization with respect to s+ and the maximization with respect to s−

28

4.2 Specializing to a Hopfield-like energy

(a) Symmetric (b) Feedforward (c) Skew-symmetric

Figure 4.1: Examples of differently structured adjacency matrices of a simple three-
layer model with three neurons per layer. Entries below the main
diagonal correspond to bottom-up/feedforward connections (layer 1
to layer 2 and layer 2 to layer 3. Entries above the main diagonal
correspond to top-down/feedback connections (layer 2 to layer 1 and
layer 3 to layer 2).

separately. This objective and the resulting dynamics correspond to equilibrium
propagation in a continuous Hopfield model.

Lower triangular weights

If W is lower triangular (illustrated in Fig. 4.1b), then the dynamics correspond
exactly to dual propagation applied to a feedforward model. In this model,
the mean of neurons’ two internal states (s+ and s−) is propagated forward
through W , and the difference is propagated backward through W⊤. You can
think of the feedforward model as a special kind of Hopfield model with lower
triangular connectivity.

Skew-symmetric weights

If W is skew-symmetric (illustrated in Fig. 4.1c), then 1
2 (W + W⊤) = 0

and 1
2 (W −W⊤) = W . This means that we end up with a bipartite graph

where elements of s+ only interact directly with elements of s− and vice
versa. In general, this means that one has to infer both the s+ and s−

states simultaneously. However, in the case of a layered network (achieved by
introducing a particular block sparsity into W), then the training dynamics
decouple into one min-max problem over odd layers of s+ and even layers
of s− and another min-max problem over even layers of s+ and odd layers
of s−. This allows training to be carried out in two sequential phases using

29

Chapter 4 Dyadic learning

the same physical hardware. This is similar to equilibrium propagation but
differs as each phase is a min-max problem rather than a pure minimization
problem. As shown in paper E this model has the remarkable property that
the dynamics of the hidden layers are Lipschitz-1, giving it a degree of inherent
robustness to perturbations.

A good intuition for this model’s inherent stability is to think of each pair
of neurons as a negative feedback system3. Intuitively, if neuron A is exciting
neuron B, then neuron B will inhibit neuron A, effectively tempering the degree
to which A excites B.

Interpolating between the three structured cases

It is possible to smoothly interpolate between all three of the structured cases
by parametrizing W in terms of a lower triangular matrix θ and a scalar
parameter λ ∈ [0, 1]. Defining Wλ := θ− θ⊤ + 2λθ⊤. If λ = 0, then Wλ will be
skew-symmetric, if λ = 1 then Wλ will be symmetric, and if λ = 1/2 then Wλ

will be lower triangular, giving rise to a feedforward model. Figure 4.1 shows
the three extreme cases (fully skew-symmetric, lower-triangular (feedforward),
and symmetric). The use of this interpolation property is discussed in the
future works section of chaper 6.

Arbitrarily connected weights

In the most general case, we place no restrictions on W (apart from not having
self-connections). In this case, the dyadic neurons will propagate the differences
in their internal states through the network via the transposed weight matrix
W⊤ and the mean through W . This is somewhat similar to the case of lower
triangular W discussed above. However, in that setting, errors/differences only
flow down through the layers, and activities/means only flow up, whereas in
the unstructured setting, errors and activities flow in both directions.

4.3 Chapter summary
In this chapter, we have shown how to derive a training objective by reparametriz-
ing and relaxing the initial neural network training problem. By altering the
network’s connectivity, the dyadic learning framework encompasses equilibrium

3In control systems negative feedback is often used to improve the stability of a system.

30

4.3 Chapter summary

propagation and dual propagation-based training as special cases in Hopfield
and feedforward models respectively. Furthermore, the dyadic learning frame-
work opens the door to training asymmetric (including skew-symmetric) models.
There are a number of ways to build upon this, including exploring robust
skew-symmetric models for noisy analog hardware, more biologically plausible
asymmetric synaptic connectivity, and new choices of energy functions. We
will discuss some of these directions in chapter 6.

31

CHAPTER 5

Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A
R. Høier and C. Zach
Lifted Regression/Reconstruction Networks
Proceedings of the British Machine Vision Conference 2020.
Copyright © remains with the authors.

We propose a new neural network model, in which each pair of adjacent
layers behave like an auto-encoder, simultaneously performing regression and
reconstruction. The model employs quadratic penalty terms as network energy
similar to many lifted networks and predictive coding networks, but learning
is implemented running inference twice under different boundary conditions as
in contrastive Hebbian learning. When constraining the reconstruction weights
to be identical to the regression weights the network has Lipschitz-1 hidden
layers by construction. This is a useful property with regards to robustness to
perturbations (e.g. noise or adversarial perturbations).

33

Chapter 5 Summary of included papers

5.2 Paper B
H. Le, R. Høier, C.T. Lin and C. Zach
AdaSTE: An Adaptive Straight-Through Estimator to Train Binary
Neural Networks
The IEEE/CVF Conference on Computer Vision and Pattern Recognition
2022.
Copyright © remains with the authors.

Employing binary ({-1,1}) weights in neural networks, allows replacing
costly Floating point multiplication with addition/subtraction. This makes
the training of quantized neural networks an attractive near term avenue for
addressing the high energy costs of running AI systems on existing digital
hardware. However, this requires modifying the learning rules as quantizing
functions (such as the sign function) have zero valued derivatives almost
everywhere. Here we consider binary neural network training through the lense
of constrained optimization and optimize the networks loss function subject
to the constraint that the weights must be binary. By relaxing this problem
appropriately we arrive at a gradient estimator that conditionally ignores the
derivative of the activation function. The resulting gradient estimator is based
on directional finite differences with an adaptive choice of spacing. This allows
informative gradients to flow through the sign function, and helps the network
to retain plasticity.

5.3 Paper C
R. Høier, D. Staudt and C. Zach
Dual Propagation: Accelerating Contrastive Hebbian Learning with
Dyadic Neurons
International Conference on Machine Learning 2023.
Copyright © remains with the authors .

Inspired by lifted neural networks and compartmental neuron models we
propose a variant of contrastive Hebbian learning in which each neuron is a

34

5.4 Paper D

dyad with two internal states. Having two states permits neurons to simulta-
neously propagate activity and error signals and facilitates approximating the
gradients computed by backpropagation. The resulting single-phased algorithm
essentially braids the two phases of traditional contrastive Hebbian learning
into a single phase, which radically reduces the number of iterations required
during simulations. A variety of different inference schedules are shown to
work well on MNIST and FashionMNIST, including one where the order in
which neuron states are updated is chosen at random. Using the most efficient
inference schedule the algorithm is benchmarked on convolutional networks
and the CIFAR10, CIFAR100 and ImageNet32x32 datasets, where it is shown
to outperform state-of-the-art biologically inspired learning algorithms.

5.4 Paper D

R. Høier and C. Zach
Two Tales of Single-Phase Contrastive Hebbian Learning
International Conference on Machine Learning 2024.
Copyright © remains with the authors .

Optimizing the dual propagation objective has been shown to approximate
backpropagation in the previous paper, but a rigorous derivation of the objec-
tive was missing. Here we show how to derive the dual propagation objective,
using relaxations of the optimal value reformulation, and how to derive a new
variation of dual propagation, using a reparametrization of the Lagrangian
associated with the training problem (P2). Whereas the original dual propaga-
tion required a certain hyper parameter governing the feedback nudging signal
arriving at each layer to be α = 1/2 the new variant avoids such a requirement.
We show experimentally that asymmetric nudging (α = 0) permits using a
stronger teaching signal. This may be critical when training on noisy compute
substrates where a weak teaching signal will drown out in noise.

35

Chapter 5 Summary of included papers

5.5 Paper E
R. Høier, K. Kalinin, M. Ernoult and C. Zach
Dyadic Learning In Recurrent and Feedforward Models
Machine Learning with New Compute Paradigms.
Copyright © remains with the authors .

We propose a framework for training arbitrarily connected Hopfield models.
The paper focuses on a specific parametrization of the connectivity, which per-
mits smoothly interpolating between symmetric Hopfield models, feedforward
models and skew-symmetric Hopfield models. The framework encompasses
as special cases the known training algorithms equilibrium propagation (on
Hopfield models) and dual propagation (on feed-forward models). The skew-
symmetric setting is particularly interesting as it is Lipschitz-1 (and hence
robust to perturbations) by construction. The skew-symmetric model is further
motivated by draswing parallels to negative feedback loops, which are widely
used for their stabilizing effects.

36

CHAPTER 6

Concluding Remarks and Future Work

6.1 Conclusion

There is an interesting dependence between research on neural network learn-
ing algorithms and the hardware available for deploying and training neural
networks. Which algorithmic innovations seem worthwhile to pursue is highly
dependent on the assumptions one makes about future hardware and vice
versa.

The main underlying motivation behind the research presented here is that
there will be a space for analog and/or optical hardware accelerators in the AI
compute landscape of the future. This will necessitate learning algorithms that
do not rely on exact knowledge of activation functions and their derivatives,
and which require little to no inter-neuron synchronization. A secondary but
persistent motivation throughout this research project has been to develop less
implausible (from a biological point of view) learning algorithms.

In papers A, C, D and E, we have developed learning algorithms which have
these characteristics. In a sense, the research project comes full circle with
the last paper (E, as the dyadic learning framework generalizes the algorithm
developed in C and D to arbitrarily connected architectures, one of which has

37

Chapter 6 Concluding Remarks and Future Work

a similar Lipschitz-1 property to that of the LRRN model of paper A, while
being significantly easier to simulate.

Paper B is a bit of an outlier compared to the other four papers as it focuses
on reducing the compute footprint of existing digital hardware by training
neural networks with binary weights. However, in terms of methods, the
general approach of reformulating and relaxing a constrained optimization
problem is shared with the other papers.

6.2 Future work

General asymmetric Hopfield networks

In feedforward networks, the weight transport problem has been addressed
by variations of feedback alignment [14]. However, feedforward models are
unrealistic as models of biological learning as they are entirely driven by
bottom-up connections during the forward pass and entirely driven by top-
down connections during the backward pass. In contrast biological circuits
do not exhibit such a strict separation between feedforward and feedback
processing. Indeed, both feedforward and feedback processing are believed to
play important roles in vision and overlap temporally [43].

Contrastive Hebbian learning and equilibrium propagation do employ feed-
back connections, but also impose strictly symmetric connectivity, which is
also biologically implausible. In contrast, in the general formulation of dyadic
learning (when the weights are not parametrized) inference is both recurrent
and avoids weight transport. However, the weight transport problem does
appear at training time, as means of activities are transported through the
weights, and differences are transported through the transpose of the weights.

A step towards a more biologically plausible learning algorithm would be to
take inspiration from feedback alignment and replace the weight transpose in
the dynamics of dyadic learning with a distinct weight matrix. An appealing
aspect of this approach is that unlike efforts to make CHL and EP [16], [44]
avoid weight transport, this modification only affects training dynamics (leaving
inference dynamics completely unchanged).

38

6.2 Future work

Skew-symmetric resistive networks
The skew-symmetric Hopfield model’s inherent robustness to perturbations
makes it an interesting algorithm for training neural networks in noisy analog
hardware. Dyadic learning using a skew-symmetric Hopfield model should
permit a strong gain on the teaching signal, which is necessary to prevent
the teaching signal from drowning out in noise. As mentioned in section 2.4,
resistive networks constitute a subset of continuous Hopfield networks, so it is
natural to wonder if one could adapt the skew-symmetric model to the setting
of resistive networks where circuit noise is a real challenge. An electrical
component called a gyrator may be useful for modeling such skew-symmetric
connectivity in analog hardware (J. Kendall, personal communication, Novem-
ber 2024). It is likely that exact skew-symmetry will be hard to enforce in
physical hardware due to device non-idealities. Consequently, exploring the
impact of non-idealities on the robustness properties is a natural auxiliary
research question.

Homotopy methods for faster training of (skew-)symmetric
Hopfield models
Simulating the training of symmetric and skew-symmetric Hopfield models is
time-consuming as inference requires tens or hundreds of iterations to converge
(and must be repeated twice). Furthermore, initialization is crucial, and there
is less knowledge regarding how best to initialize these models than there is
for feedforward models.

The parametrized version of dyadic learning permits gradually transforming
a feedforward model (λ = 1/2) into a symmetric (λ = 1) or skew-symmetric
Hopfield model (λ = 0). This would allow us to use established best practices
for feedforward network initialization and training to decrease the training
time of Hopfield models by gradually adjusting λ. Alternatively, one could
take off-the-shelf feedforward models and gradually turn them into (skew-)
symmetric Hopfield models through fine-tuning.

39

References

[1] A. Karpathy, “Software 2.0,” Medium, 2017, Accessed: February 1rst
2025.

[2] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain.,” Psychological review, vol. 65,
no. 6, p. 386, 1958.

[3] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[4] D. E. Rumelhart, G. E. Hinton, J. L. McClelland, et al., “A general
framework for parallel distributed processing,” Parallel distributed pro-
cessing: Explorations in the microstructure of cognition, vol. 1, no. 45-76,
p. 26, 1986.

[5] K.-S. Oh and K. Jung, “Gpu implementation of neural networks,” Pattern
Recognition, vol. 37, no. 6, pp. 1311–1314, 2004.

[6] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE conference on computer
vision and pattern recognition, IEEE, 2012, pp. 3642–3649.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, vol. 25, 2012.

41

References

[8] S. Luccioni, Y. Jernite, and E. Strubell, “Power hungry processing: Watts
driving the cost of ai deployment?” In The 2024 ACM Conference on
Fairness, Accountability, and Transparency, 2024, pp. 85–99.

[9] F. Crick, “The recent excitement about neural networks,” Nature, vol. 337,
pp. 129–132, 1989.

[10] J. Backus, “Can programming be liberated from the von neumann style?
a functional style and its algebra of programs,” Communications of the
ACM, vol. 21, no. 8, pp. 613–641, 1978.

[11] C. Bredenberg, E. Williams, C. Savin, B. Richards, and G. Lajoie,
“Formalizing locality for normative synaptic plasticity models,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[12] S. Dillavou, M. Stern, A. J. Liu, and D. J. Durian, “Demonstration of
decentralized physics-driven learning,” Physical Review Applied, vol. 18,
no. 1, p. 014 040, 2022.

[13] S. Dillavou, B. D. Beyer, M. Stern, M. Z. Miskin, A. J. Liu, and D. J.
Durian, “Machine learning without a processor: Emergent learning in
a nonlinear electronic metamaterial,” arXiv preprint arXiv:2311.00537,
2023.

[14] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Ran-
dom synaptic feedback weights support error backpropagation for deep
learning,” Nature communications, vol. 7, p. 13 276, 2016.

[15] A. Nøkland, “Direct feedback alignment provides learning in deep neural
networks,” in Advances in neural information processing systems, 2016,
pp. 1037–1045.

[16] G. Detorakis, T. Bartley, and E. Neftci, “Contrastive hebbian learning
with random feedback weights,” Neural Networks, vol. 114, pp. 1–14,
2019.

[17] M. Refinetti, S. D’Ascoli, R. Ohana, and S. Goldt, “Align, then memorise:
The dynamics of learning with feedback alignment,” in Proceedings of
the 38th International Conference on Machine Learning, M. Meila and
T. Zhang, Eds., ser. Proceedings of Machine Learning Research, vol. 139,
PMLR, 2021, pp. 8925–8935.

[18] J. Laydevant, L. G. Wright, T. Wang, and P. L. McMahon, “The hardware
is the software,” Neuron, vol. 112, no. 2, pp. 180–183, 2024.

42

References

[19] K. P. Kalinin, G. Mourgias-Alexandris, H. Ballani, et al., “Analog itera-
tive machine (aim): Using light to solve quadratic optimization problems
with mixed variables,” arXiv preprint arXiv:2304.12594, 2023.

[20] W. JOHNSON, Nonlinear electrical networks, 2010.
[21] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier,

“Training end-to-end analog neural networks with equilibrium propaga-
tion,” arXiv preprint arXiv:2006.01981, 2020.

[22] B. Scellier, “A fast algorithm to simulate nonlinear resistive networks,”
arXiv preprint arXiv:2402.11674, 2024.

[23] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[24] Y. Lecun, “A theoretical framework for back-propagation,” in Proceedings
of the 1988 Connectionist Models Summer School, CMU, Pittsburg, PA,
Morgan Kaufmann, 1988, pp. 21–28.

[25] S.-I. Amari, “Learning patterns and pattern sequences by self-organizing
nets of threshold elements,” IEEE Transactions on computers, vol. 100,
no. 11, pp. 1197–1206, 1972.

[26] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[27] J. J. Hopfield, “Neurons with graded response have collective compu-
tational properties like those of two-state neurons.,” Proceedings of the
national academy of sciences, vol. 81, no. 10, pp. 3088–3092, 1984.

[28] J. R. Movellan, “Contrastive hebbian learning in the continuous hopfield
model,” in Connectionist Models, Elsevier, 1991, pp. 10–17.

[29] X. Xie and H. S. Seung, “Equivalence of backpropagation and contrastive
hebbian learning in a layered network,” Neural computation, vol. 15, no. 2,
pp. 441–454, 2003.

[30] B. Scellier and Y. Bengio, “Equilibrium propagation: Bridging the gap
between energy-based models and backpropagation,” Frontiers in com-
putational neuroscience, vol. 11, p. 24, 2017.

43

References

[31] B. Millidge, Y. Song, T. Salvatori, T. Lukasiewicz, and R. Bogacz, “Back-
propagation at the infinitesimal inference limit of energy-based models:
Unifying predictive coding, equilibrium propagation, and contrastive
hebbian learning,” arXiv preprint arXiv:2206.02629, 2022.

[32] E. Martin, M. Ernoult, J. Laydevant, et al., “Eqspike: Spike-driven
equilibrium propagation for neuromorphic implementations,” Iscience,
vol. 24, no. 3, p. 102 222, 2021.

[33] M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier, “Equi-
librium propagation with continual weight updates,” arXiv preprint
arXiv:2005.04168, 2020.

[34] A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio, J. Grollier, and D.
Querlioz, “Scaling equilibrium propagation to deep convnets by drasti-
cally reducing its gradient estimator bias,” Frontiers in neuroscience,
vol. 15, p. 129, 2021.

[35] A. Laborieux and F. Zenke, “Holomorphic equilibrium propagation
computes exact gradients through finite size oscillations,” Advances in
Neural Information Processing Systems, vol. 35, pp. 12 950–12 963, 2022.

[36] M. Stern, D. Hexner, J. W. Rocks, and A. J. Liu, “Supervised learning
in physical networks: From machine learning to learning machines,”
Physical Review X, vol. 11, no. 2, p. 021 045, 2021.

[37] B. Scellier, M. Ernoult, J. Kendall, and S. Kumar, “Energy-based learning
algorithms for analog computing: A comparative study,” arXiv preprint
arXiv:2312.15103, 2023.

[38] J. V. Outrata, “A note on the usage of nondifferentiable exact penalties
in some special optimization problems,” Kybernetika, vol. 24, no. 4,
pp. 251–258, 1988.

[39] C. Zach, “Bilevel programs meet deep learning: A unifying view on
inference learning methods,” arXiv preprint arXiv:2105.07231, 2021.

[40] M. Carreira-Perpinan and W. Wang, “Distributed optimization of deeply
nested systems,” in Artificial Intelligence and Statistics, 2014, pp. 10–19.

[41] A. Choromanska, B. Cowen, S. Kumaravel, et al., “Beyond backprop: On-
line alternating minimization with auxiliary variables,” in International
Conference on Machine Learning, PMLR, 2019, pp. 1193–1202.

44

References

[42] Z. Zhang and M. Brand, “Convergent block coordinate descent for
training tikhonov regularized deep neural networks,” in Advances in
Neural Information Processing Systems, 2017, pp. 1721–1730.

[43] D. Wyatte, D. J. Jilk, and R. C. O’Reilly, “Early recurrent feedback facil-
itates visual object recognition under challenging conditions,” Frontiers
in psychology, vol. 5, p. 674, 2014.

[44] B. Scellier, A. Goyal, J. Binas, T. Mesnard, and Y. Bengio, “Generaliza-
tion of equilibrium propagation to vector field dynamics,” arXiv preprint
arXiv:1808.04873, 2018.

45

 HistoryItem_V1
 PageSizes

 Range: all pages
 Size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Action: Make all pages the same size
 Scale: Scale width and height equally
 Rotate: Counterclockwise if needed

 D:20250213081602

 0

 D:20250213081559
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 1
 2662
 181

 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 CCW
 Uniform

 AllDoc

 CurrentAVDoc

 Custom

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3n
 Quite Imposing Plus 5
 1

 212
 211
 212

 1

 HistoryList_V1
 qi2base

