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ABSTRACT This paper proposes Koopman operator-based Stochastic Model Predictive Control (K-SMPC)
for enhanced lateral control of autonomous vehicles. The Koopman operator is a linear map representing
the nonlinear dynamics in an infinite-dimensional space. Thus, we use the Koopman operator to represent
the nonlinear dynamics of a vehicle in dynamic lane-keeping situations. The Extended Dynamic Mode
Decomposition (EDMD) method is adopted to approximate the Koopman operator in a finite-dimensional
space for practical implementation. We consider the modeling error of the approximated Koopman operator
in the EDMD method. Then, we design K-SMPC to tackle the Koopman modeling error, where the error
is handled as a probabilistic signal. The recursive feasibility of the proposed method is investigated with
an explicit first-step state constraint by computing the robust control invariant set. A high-fidelity vehicle
simulator, i.e., CarSim, is used to validate the proposed method with a comparative study. From the results,
it is confirmed that the proposed method outperforms other methods in tracking performance. Furthermore,
it is observed that the proposed method satisfies the given constraints and is recursively feasible.

INDEX TERMS Autonomous vehicles, data-driven control, Koopman operator, predictive control, stochastic
model.

NOMENCLATURE
• {XYZ} : Global coordinate frame
• {xyz} : Local coordinate frame
• Cαi : Cornering stiffness of tire, i ∈ {f , r}
• Vx : Longitudinal speed
• Vy : Lateral speed
• m : Total mass of vehicle
• li : Distance between front (rear) tire and center of
gravity (CG), i ∈ {f , r}

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiefeng Hu .

• Iz : Yaw moment of inertia of vehicle
• ay : Lateral acceleration in {xyz}
• L : Look-ahead distance
• ey = y− ydes : Lateral position error w.r.t. lane
• eyL : Lateral position error on look-ahead point
w.r.t. lane

• ψ : Yaw angle of vehicle in global coordinate
• eψ = ψdes−ψ : Heading angle error in local coordinate
w.r.t. lane

• δ : Steering angle
• R: Turning radius
• β: Vehicle side slip angle at CG
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I. INTRODUCTION
Autonomous driving vehicles provide advanced driver assis-
tance functions to relieve humans from monotonous long
drives and can significantly decrease traffic congestion and
accidents. A typical autonomous driving setup comprises
essential components such as perception, communication [1],
[2], localization, decision-making, trajectory planning [3],
and control. During trajectory planning and control, knowl-
edge of vehicle dynamics is necessary to execute accurate and
safe maneuvers, particularly in complex and unpredictable
road environments. Thus, it is essential to have a lateral
vehicle dynamic model to design a lateral controller. Lateral
control of autonomous driving has gained much attention in
many areas, such as automated parking control [4], lateral
control on curved roads [5], [6], and automated lane change
systems [7]. The bicycle lateral dynamic motion model
has been widely used to develop lateral control [8]. In the
dynamic model, lateral tire force and acceleration are used
to capture the dynamic motion of a vehicle for high-speed
driving to represent accurate vehicle behavior. Although
many studies have used the bicycle lateral dynamic model,
i.e., linear dynamic model, for practical applications under
certain conditions, such as a small tire slip angle with a
given vehicle speed, the nonlinearity of the vehicle dynamics
cannot be ignored because the tire model is highly nonlinear
due to the vertical load transfer [9]. Moreover, the vehicle
speed is no longer constant in dynamic driving. Therefore,
obtaining a model that captures the full vehicle dynamics for
various driving conditions is necessary even though a linear
vehicle model may be useful for designing a linear controller
under specific assumptions.

Numerous studies have attempted to identify the unknown
nonlinear dynamics in different research fields [10]. Recently,
a modeling approach has received significant attention
for complex systems whose dynamics are challenging to
capture [11]. Based on the data-driven model identification,
several methods exist to design a data-driven Model Pre-
dictive Control (MPC). Sparse Identification of Nonlinear
Dynamics (SINDy)-based MPC is proposed [12] for a
nonlinear system. The result of SINDy is generally a
nonlinear model. Thus, the authors designed a nonlinear
MPC to control the plant. Another method is Data-enabled
Predictive Control (DeePC) [13]. The method uses the input
and output data to conduct model identification at every
sample time recursively. In order to obtain an accurate
system model, we need an extensive dataset containing much
information about the system [14]. However, there is no big
change in input and output signals in the steady state. Thus,
with the recursive model identification, the method might
bring the computation burden and difficulty of extracting
the system dynamics in a steady state. In this context, the
Koopman operator has been used in model identification of
complex dynamics in recent years. The Koopman operator is
a linear map representing nonlinear systems on the manifold
in an infinite-dimensional space [15], [16]. One of the
primary benefits of using the Koopman operator is that the

linear model can express the underlying nonlinear behavior.
As a result, a linear control design method can be applied to
a general nonlinear dynamic system.

In recent years, the Koopman operator-based modeling
and control approach has been widely adopted in automated
driving because vehicles have highly nonlinear behaviors.
In [17], [18], [19], and [20], the authors proposed model
identification of nonlinear vehicle dynamics to control vehi-
cle lateral and/or longitudinal velocity. In [21] and [22], the
authors considered the global position control of the vehicle.
Position control is essential for controlling vehicles properly
on roads. In [23], the authors considered the local position
with respect to the given trajectory. Then, a mini-sized car
was used to show the effectiveness of the proposed system.
For practical implementation of the Koopman operator, the
papers mentioned above used Extended Dynamic Mode
Decomposition (EDMD) or neural networks to approxi-
mate the Koopman operator in a finite-dimensional space.
Unfortunately, the approximated Koopman operator causes
approximation uncertainty, which results in the presence
of modeling errors because there is a residual term in the
optimization problem of approximation of the Koopman
operator [24], [25], [26]. Therefore, the model mismatch
can not be negligible in using the Koopman operator, even
though the Koopman operator has a powerful linear property
representing the nonlinear dynamics. To tackle this problem,
[27] proposes a method of handling the approximation error
with an estimator. In [25], [28], and [29], the authors design
Robust Model Predictive Control (RMPC) for the nonlinear
system with constraints satisfaction under uncertainties.
However, it is challenging to obtain a robust positively
invariant set against the uncertainties of the approximated
Koopman operator because it is difficult to find the upper
bound of the approximation error outside of the given training
dataset.Moreover, even if we can obtain the Robust Positively
Invariant (RPI) set, the size of the RPI set can be large
because of the abnormal signal coming from the noise, which
makes an RMPC conservative [30], [31]. To resolve the
problem, stochastic MPC (SMPC) is proposed to consider
the probability of uncertainties and allow constraint violation
where the uncertainties rarely occur. Then, constraint tight-
ening can be relaxed, and the conservativeness of the RMPC
is reduced, while most cases of constraints are satisfied
with certain probability [30]. Therefore, with the SMPC
approach, we can effectively handle the uncertainties of the
approximated Koopman operator by considering the chance
constraints of the SMPC.

In this context, this paper proposes a Koopman
operator-based SMPC (K-SMPC) for enhanced lateral
control of autonomous vehicles. The EDMD method is
adopted to obtain the approximated Koopman operator in a
finite-dimensional space for practical use of the Koopman
operator. Our work considers the approximation error coming
from the EDMD-based approximation of the Koopman
operator. Since the Koopman operator is defined in an
infinite-dimensional space, the approximation error of the
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EDMD approach is inevitable. In addition, it is not easy
to compute the RPI set against the error, and the RPI
set might be much larger because of the abnormal error.
Therefore, we consider the approximation error to be a
probabilistic signal and design the chance constraints in
SMPC to handle the error. As a result, the proposed method
is less conservative than the RMPC with respect to the
error. To our knowledge, this paper is the first research in
which the SMPC is used to resolve the modeling error of
the approximated Koopman operator in the LKS application.
All constraints are satisfied under the Koopman modeling
error with recursive feasibility in the proposed method.
A high-fidelity vehicle simulator, CarSim, is used to validate
the proposed method. The simulation results confirmed
that the proposed method always satisfies the constraints
and is recursively feasible. Moreover, a comparative study
shows that the proposed method outperforms other methods:
the linear vehicle model-based SMPC (L-SMPC) and the
Koopman-based Linear Quadratic Regulator (K-LQ) [32].
The contributions of the paper are three-fold:

• We compute the Koopman-based vehicle model for the
Lane Keeping System (LKS). The vehicle model has
highly nonlinear dynamic motion in dynamic driving,
such as varying vehicle speed or cornering stiffness.
Thus, we reformulate theKoopman-based vehiclemodel
from [32] to effectively capture the vehicle nonlinear
dynamics for the LKS in various driving situations.

• The approximation error of the Koopman operator in a
finite-dimensional space is considered and handled as
a probabilistic error. Since the approximated Koopman
model may fail to represent the system accurately,
we designed K-SMPC to predict the expected state of
the system and satisfy constraints under uncertainties of
the approximated Koopman model. With the proposed
algorithm, we generated K-SMPC resistant to an error
in the model identification and uncertainties in the
dynamics.

• We prove the recursive feasibility of the proposed
K-SMPC with an explicit first-step state constraint by
computing a robust control invariant set by providing
a theorem. Compared to a mixed worst-case/stochastic
prediction for constraint tightening, the proposed
method is less conservative but has recursive feasibility.

The rest of the paper is structured as follows: Section II
investigates the vehicle nonlinear dynamics. Section III
introduces the background of the Koopman operator theory
and its application to vehicle dynamics for the LKS. Based
on the obtained Koopman operator, Section IV presents
the SMPC design process with recursive feasibility. The
simulation results are shown in Section V, and the conclusion
of the paper is described in Section VI.

II. NONLINEAR VEHICLE DYNAMICS ON ROADS
A. CLOTHOID ROAD LANE MODEL
We introduce a road lane where a vehicle may run to
be represented by a cubic polynomial curve. The cubic

FIGURE 1. Look-ahead lateral dynamic model [33].

polynomial curve is defined by the clothoid curve, where the
curvature of the curve is continuous and slowly varying [6],
[33]. To consider the clothoid constraint with slowly varying
curvature κ , it can be defined as

κ(s) = 2C2 + 6C3 s, (1)

where s denotes the arc length, 2C2 denotes the curvature
at s = 0, and 6C3 denotes the curvature rate. For a small
curvature, the arc length s can be approximated by the
longitudinal distance x [8]. Then, integrating (1) twice leads
to a clothoid cubic polynomial road model such that

f (x) = C0 + C1x + C2x2 + C3x3, (2)

where C0 denotes the lateral offset, and C1 denotes the
heading angle error. Generally, the clothoid lane curve model
is widely applied with the assumption of a plain road in
a camera-based lane recognition (see [34], [35], [36] and
references therein). The clothoid model can be applied to
represent the various road shapes, e.g., the circular or S-shape
road [8], [36]. It is well known that the road model is obtained
by a camera sensor. Moreover, from (1), C2 and C3 are the
shape of the road, which is not dependent on the vehicle
motion. On the other hand, C0 and C1 in (2) are dependent on
the vehicle motion since they show the relationship between
the vehicle and the road lane curve.

This paper considers the look-ahead distance to mimic
human driving behavior [37]. By using (2), the heading angle
error and a lateral offset at look-ahead distance L can be
computed as

f (L) = eyL = C0 + C1L + C2L2 + C3L3,

f ′(L) = eψL = C1 + 2C2L + 3C3L2, (3)

as shown in Fig. 1. In this case, L is the specific point on the
longitudinal axis of the vehicle as shown in Fig. 1.

B. LATERAL VEHICLE MOTION MODEL
In this subsection, we derive the lateral vehicle motion model
as the nonlinear dynamics. To begin with, consider Newton’s
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second law in the lateral direction of the vehicle such that

may = Fyf + Fyr (4)

where ay is the lateral acceleration of the vehicle at the center
of gravity and Fyf and Fyr are the lateral tire forces at the
front and rear wheels, respectively. The lateral tire force can
be represented as a nonlinear function with respect to the tire
slip angle αf , αr , and the vehicle state, which is given by

Fyf = 2Cαf (αf ) ·

(
δ − arctan(

Vy + lf ψ̇
Vx

)
)
,

Fyr = 2Cαr (αr ) ·

(
− arctan(

Vy − lr ψ̇
Vx

)
)
, (5)

where Cαf and Cαr are the cornering stiffness which is a
function of the tire slip angle. Cαf and Cαr are the ratio
between the tire slip angle and the tire lateral force. There
are two terms contributing to the lateral acceleration: the
translational acceleration ÿ, and the centripetal acceleration
Vxψ̇ such that

ay = ÿ+ Vxψ̇. (6)

Substituting (4) into (6) leads to

ÿ = −Vxψ̇ +
Fyf + Fyr

m
. (7)

In addition, the yaw dynamics of the vehicle along the z-axis
are represented by

Izψ̈ = lf Fyf − lrFyr , (8)

where lf and lr are the distances of the front wheel and the
rear wheel from the center of gravity, respectively.

Let us obtain the heading angle error rate

ėψ = ψ̇des − ψ̇, (9)

and the lateral position error rate

ėy = ẏ− ẏdes = ẏ+ Vxeψ . (10)

Then, we can obtain

ëy = ÿ− ÿdes = ÿ+ Vx ėψ

= −Vxψ̇ +
Fyf + Fyr

m
+ Vx ėψ . (11)

In order to mimic the general behavior of expert drivers, it is
necessary to consider error at the look-ahead distance [36],
as shown in Fig. 1. Then, the lateral offset error at the
look-ahead distance is given by

ėyL = Vx(eψL − β) + Lėψ
= ėy−Lψ̇ + Vx(eψL − eψ ) + Lψ̇des. (12)

Now, let us define the state, the input, and the external signal
of the vehicle dynamics [32], [36], [38]

x =
[
ey eyL ėy eψ ψ̇ ay Vy

]T
,

u = δ,

ϕ =
[
Vx C2 C3

]T
, (13)

FIGURE 2. Single track bicycle model [8].

where x ∈ Rn, u ∈ Rm, and ϕ ∈ Rd . Then, we can describe
the nonlinear vehicle dynamics such that

ẋ = fv(x,u, ϕ). (14)

Since the lateral tire force (5) is highly nonlinear with
respect to the tire slip angle and vehicle motion, (14) can be
represented as a nonlinear structure. Then, discretizing (14)
leads to a discrete-time vehicle nonlinear model given by

xk+1 = fd (xk ,uk , ϕk ). (15)

As reported in [8], the vehicle dynamics have strong
couplings in lateral and longitudinal directions due to the
tire characteristics. Thus, it can be challenging to identify the
cornering stiffness parameters. Figure 2 shows the schematic
illustration of vehicle dynamics. We can see how the lateral
and longitudinal forces on tires make vehicle motion, such as
Vx , Vy, and β at CG.Moreover, it is observed how tire slips αf
and αr are derived geometrically. Here, this paper tackles this
nonlinearity of the vehicle dynamics by taking advantage of
an emerging technique in the field of data-driven modeling,
i.e., the Koopman operator theory. It is not necessary to
have any prior knowledge of the internal parameters of the
vehicle. Only the collected dataset of the system state and
input are required to obtain the Koopman operator. Using
the property of the Koopman operator, we construct a linear
vehicle dynamic model precisely representing (15) in a lifted
space. We will discuss the detailed design process in the
following sections.

III. KOOPMAN OPERATOR
A. PRELIMINARY
The Koopman operator was initially proposed to capture the
nonlinear autonomous dynamics in an infinite-dimensional
space [15]. Thus, let us consider the discrete-time nonlinear
autonomous dynamics such that

ηk+1 = fa(ηk ), (16)

where ηk ∈ N is the state of the system, fa is the nonlinear
map, and k ∈ Z+ is the discrete-time. Let us consider
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FIGURE 3. Schematic illustration of the Koopman operator [10].

a real-valued scalar function πa : N → R, which is
the so-called observable [10], [16]. Each function πa is an
element of an infinite-dimensional function space Fa (i.e.,
πa ∈ Fa) [16]. Then, the Koopman theory provides an
alternative representation of (16) by a linear operator, i.e., the
Koopman operator Ka : Fa → Fa in the space Fa such that

Kaπa(ηk ) = πa(fa(ηk )) (17)

for every πa ∈ Fa, where the function space Fa is invariant
under the Koopman operator [16], [24]. Let us define the
lifted state such that zk = πa(ηk ). Then, we can rewrite (16)
as Kazk = zk+1. The schematic illustration of the Koopman
operator is shown in Fig. 3.
There are several ways to apply the Koopman operator to

controlled nonlinear systems with a slight change [24], [39],
[40]. This paper adopts the data-driven method from [24],
which is a rigorous and practical approach. Let us consider
a controlled discrete-time nonlinear system such that

ηk+1 = f (ηk , νk ), (18)

where νk ∈ V is the system input. We can then define the
extended state-space N × I(V), where I(V) is the space of
all the control sequences, µ := (νk )∞k=0. Using the scheme
from [24], we can define the extended state given by

χ =

[
η
µ

]
. (19)

With the extended state (19), (18) can be in the form of an
autonomous system such that

χk+1 = F(χk ) :=

[
f (ηk ,µk (0))

Lµk

]
, (20)

where L is the left shift operator, i.e., Lµk = µk+1, and
µk (0) = νk is the first element of the control sequence of
µ at the time step k [24]. Now, we can define the Koopman
operator Kf : F → F for (20) as

Kf π (χk ) = π (F(χk )), (21)

where π : N × I(V) → R is a real-valued function, which
belongs to the extended function space F [16]. Interestingly,
it is observed that the Koopman operator is linear in the

function space F , even though the dynamical system is
nonlinear [16].

B. KOOPMAN OPERATOR-BASED VEHICLE MODELING
In this subsection, we introduce the Koopman operator-based
vehicle modeling approach. In (21), we can see that the
Koopman operator Kf lies in the infinite-dimensional space
for representing the original nonlinear dynamics [15], [16].
Thus, it is challenging to directly use the Koopman operator
if the finite-dimensional approximation of the Koopman
operator is not obtained. To resolve this problem, this paper
uses the EDMDmethod from [24] and [41]. Let us first recall
the state, the control input, and the external signal of the
vehicle dynamics (15) such as (13).
Remark 1: Since this paper focuses on vehicle modeling

for lateral motion control, the longitudinal speed Vx can be
the external signal. In addition, the curvature and curvature
rate of the road lane, i.e., C2 and C3, are independent of the
vehicle motion, as mentioned in Subsection II-A. See [32],
[35], [36], [42], [43] and references therein for the details.
Thus, C2 and C3 can be the external signal. In general, ϕ is
available with an in-vehicle sensor and a camera. ♢
Then, we take and modify the approach from [24] and [41]

to define the extended state given by

Xk =

xk
uk
ϕk

 , (22)

whereXk ∈ Rn+m+d is the extended state. Then, we can have
the discrete-time autonomous system for the extended state
such that

Xk+1 = F(Xk ) :=

fd (xk ,uk , ϕk )uk+1
ϕk+1

 . (23)

The Koopman operator can then be obtained by

Kξ(Xk ) = ξ(F(Xk )), (24)

where ξ(xk ,uk , ϕk ) =
[
ϕ(xk ) uk wk

]T is the lifting function.
In this case, we consider ϕ(xk ) as

ϕ(xk ) =


φ1(xk )
φ2(xk )
...

φN (xk )

 ∈ RN , (25)

where φi : Rn
→ R is the real-valued lifting function,

and N ≫ n. In general, the lifting function φi is a
user-defined nonlinear function. In this paper, the EDMD
method from [24] is used to approximate the Koopman
operator in (24) as a finite-dimensional linear operator. The
analytical solution is obtained by

min
K

M−1∑
i=0

∥ξ(Xi+1) −Kξ(Xi)∥22, (26)
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whereM is the length of a dataset. To solve the optimization
problem, we first need to collect a dataset by conducting
several numerical simulations. Then the dataset matrices are
given as

X =
[
x0 x1 . . . xM−1

]
∈ Rn×M ,

U =
[
u0 u1 . . . uM−1

]
∈ Rm×M ,

D =
[
ϕ0 ϕ1 . . . ϕM−1

]
∈ Rd×M ,

Y =
[
x1 x2 . . . xM

]
∈ Rn×M , (27)

where M is the length of a dataset. Let us define the basis
function φi such that

zk = ϕ(xk ) :=


xk

φN−n(xk )
...

φN (xk )

 ∈ RN . (28)

Since predicting the future input and external signal is not of
interest [24], [26], this paper omits the last (m + d) rows of
each ξ(Xi+1)−Kξ(Xi) in (26). However, we focus on the first
N rows such that

min
K

M−1∑
i=0

∥∥∥
ϕ(xk+1)

uk+1
ϕk+1

 −K

ϕ(xk )
uk
ϕk

 ∥∥∥2
2

(29)

where

K =

 A B Bϕ
(∗) (∗) (∗)
(∗) (∗) (∗)

 .
Then, (26) can be converted into

min
A,B,Bϕ

∥Ỹ − AX̃−BU − BϕD∥
2
F , (30)

where

X̃ =
[
ϕ(x0) ϕ(x1) . . . ϕ(xM−1)

]
,

Ỹ =
[
ϕ(x1) ϕ(x2) . . . ϕ(xM )

]
,

and ∥ · ∥F is the Frobenius norm. By solving the optimization
problem (30) [24], [32], we can obtain the linear model such
that

zk+1 = Azk + Buk + Bϕϕk + Gwk ,

xk = Czk . (31)

where the reconstruction matrix C is obtained by C =[
I (n×n) 0

]
. Here, note that this paper introduces the residual

term wk in (31). This is because there may be a residual
term in solving (30), which results in the approximation
error of the Koopman operator [24], [25], [26]. Thus, the
modeling error of the tuplet (A,B,Bϕ) is inevitable due to
the approximated Koopman operator in a finite-dimensional
space. To resolve the problem, we consider the residual
term wk of the Koopman-based model in designing the
controller. Moreover, we assume that wk is the bounded
probabilistic signal such that wk ∈ W = {wk |∥wk∥∞ ≤ w̄},
E[wk ] = 0, and the covariance matrix of wk is 6w. In the

FIGURE 4. Schematic illustration of the proposed method. The
approximation error of the Koopman operator is handled as a stochastic
uncertainty.

following subsection, we will introduce the design process
of the proposed controller considering the approximation
error wk .

IV. KOOPMAN OPERATOR-BASED STOCHASTIC MODEL
PREDICTIVE CONTROL
A. SYSTEM STATE, OBJECTIVE, AND CONSTRAINTS
In this subsection, we first describe the system state to be
controlled. One can denote the predicted trajectories with
k + i|k , i.e., predicted at time k and i steps into the future.
We define zk+i|k as

zk+i|k = sk+i|k + ek+i|k , (32)

where the state zk+i|k is decomposed into two parts: the
deterministic state sk+i|k and the zero mean stochastic error
ek+i|k , i.e., E[zk+i|k ] = sk+i|k . Let us define the stabilizing
control gain K satisfying the following Riccati equation such
that

P = ATPA− ATPB(R+ BTPB)−1BTPA+ Q (33)

whereK = (R+BTPB)−1BTPA. Then, as it is common in the
linear SMPC scheme, e.g., [30], the control strategy is given
by

uk+i|k = Kzk+i|k + vk+i|k (34)

where vk+i|k ∈ Rm is the optimal control input obtained by
solving the SMPC problem. Using (32) and (34), one can
derive the dynamics of the deterministic state and error state
given by

sk+i+1|k = Aclsk+i|k + Bvk+i|k + Bϕϕk+i|k (35a)

ek+i+1|k = Aclek+i|k + Gwk+i|k (35b)

where Acl = A− BK is strictly stable.
Remark 2: As mentioned in II-A, C2 and C3 are intrinsic

parameters of a road shape independent of the vehicle’s
lateral motion [8]. Thus, with a given road, it is immediate to
obtain C2 and C3 in the prediction horizon [35]. Moreover,
the vehicle speed can be obtained with speed planning and
control according to the road curvature [5]. Therefore, this
paper assumes that ϕ is available in the horizon N . ♢

Let the cost function in a stochastic framework be

J = E

[ Np−1∑
i=0

(
zTk+i|kQxxzk+i|k + zTk+i|kQxvvk+i|k

+ vTk+i|kQvvvk+i|k
)

+ zTNp|kPzNp|k

]
, (36)
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where E[·] denotes the expectation value, Qxx ⪰ 0, Qxv ⪰ 0,
Qvv ≻ 0, and P is the solution to (33). Substituting (32)
into (36) leads to the cost function in a deterministic
framework by using E[zk+i|k ] = sk+i|k such that

J =

Np−1∑
i=0

(
sTk+i|kQxxsk+i|k

+ sTk+i|kQxvvk+i|k + vTk+i|kQvvvk+i|k
)

+ sTk+Np|kPsk+Np|k + c, (37)

where c = E[
∑Np−1

i=0 (eTk+i|kQxxek+i|k ) + eTNp|kPeNp|k ]
which does not depend on the decision variables vk+i|k .
Thus, we can convert the stochastic cost function into the
deterministic cost function.
In terms of the stochastic error and its influence on the

deterministic state, the state constraints at the i-th time step
in the receding horizon can be described as probabilistic
constraints based on the risk level or allowable probability
of violation, i.e., ϵi ∈ [0, 1], such that

P[Hizk+i|k ≤ hi] ≥ 1 − ϵi, (38)

where P[·] denotes the probability, Hi ∈ Rp×N , and hi ∈

Rp. Then, the following theorem provides the process to
convert (38) into the deterministic constraints.
Theorem 1: At time k with a given prediction horizon Np,

the probabilistic constraints of (38) are satisfied if and only if
the following deterministic constraints are satisfied such that

Hisk+i|k ≤ hi − qi(1 − ϵi), for i = 0, · · · ,Np − 1 (39)

where qi(1 − ϵi) =

√
HT
i 6iHi

√
1−ϵi
ϵi
. ♢

Proof: By using (32), we can rewrite (38) as

P[Hisk+i|k ≤ hi − Hiek+i|k ] ≥ 1 − ϵi. (40)

Then, we can obtain

Hisk+i|k ≤ hi − qi(1 − ϵi) (41)

where P[−qi(1 − ϵi) ≤ −Hiek+i|k ] = 1 − ϵi because
sk+i|k is the deterministic variable. Then, it is immediate to

derive qi(1− ϵi) =

√
HT
i 6iHi

√
1−ϵi
ϵi

by Chebyshev–Cantelli

Inequality [44], where 6i+1 = ATcl6iAcl + GT6wG with
60 = 6w. □

Consequently, we can define the sets of the deterministic
state constraints and input hard constraints for the K-SMPC
as

S = {sk+i|k ∈ RN
| Hisk+i|k ≤ hi − qi(1 − ϵi)}, (42a)

U = {uk+i|k ∈ Rm
| u ≤ uk+i|k ≤ u}, (42b)

1U = {1uk+i|k ∈ Rm
| 1u ≤ 1uk+i|k ≤ 1u}, (42c)

where u, u, 1u, and 1u denote the lower bound input,
the upper bound input, the lower bound input rate, and the
upper bound input rate, respectively. Moreover, 1uk+i|k =

uk+i|k − uk+i−1|k is the input rate. A constraint tightening

FIGURE 5. Recursive set projected on the space of the first and third state
of sk .

method similar to (41) can be applied to define the terminal
region such that

Sf = {sk+Np|k ∈ RN
| HN sk+Np|k ≤ hNp − qN (1 − ϵNp )}.

(43)

B. RECURSIVE FEASIBILITY AND STABILITY OF
RESULTING K-SMPC ALGORITHM
In order to guarantee the recursive feasibility of the K-SMPC,
we construct the first-step state constraint of the prediction
horizon [45]. In [46], it was reported that the probability
of the constraint satisfaction in i steps of the prediction
horizon at time k is not equal to the probability of the
constraint satisfaction in i − 1 steps of the prediction
horizon at time k + 1. Thus, we need to use further
constraints to satisfy the recursive feasibility. In [46], the
authors proposed a mixing stochastic and worst-case state
prediction in constraint tightening for recursive feasibility in
the presence of perturbation. However, in [47], the authors
point out the mixed stochastic/worst-case approach is rather
restrictive and has higher average costs if the solution is near a
chance constraint. Instead, [47] proposed the constraint only
in the first step of the prediction horizon where only the
recursive feasibility is of interest. Therefore, we focus on the
first step state constraint for recursive feasibility, proposed by
a paper in the model-based setting [45]. Thus, the proposed
method is less conservative than the mixed-state prediction
approach, e.g., [46].

Let us define the following set

CT =

 s0|k ∈ RN
∃v0|k , · · · , vNp−1|k
(35a) and (42) hold
sk+Np|k ∈ Sf


as the T -step set with a feasible first step state constraint for
the deterministic system (35a) under tightened constraints.
The T -step set is obtained by the backward recursion
from [48]. Since CT is not necessarily robust positively
invariant with respect to the disturbance set W , further

13950 VOLUME 13, 2025



J. S. Kim et al.: K-SMPC for Enhanced Lateral Control of Autonomous Vehicles

computation of the robust control invariant polytope C∞
T is

required. To calculate C∞
T , let us define a set as

C i+1
T =

{
s ∈ C i

T
∃v0|k such that (42c) holds,
sk+1 ∈ C i

T ⊖ GW.

}
(44)

The set C∞
T is then computed by C∞

T = ∩
∞

i=0C
i
T , where the

initial set is C0
T = CT . The recursive computation method

can provides the C∞
T until C i

T = C i+1
T [45], [49]. This paper

adopts the Multi-parametric toolbox from [50] in MATLAB
to compute the set C∞

T , as shown in Fig. 5.
In this paper, we additionally consider the soft constraints

on the first-step input. Thus, the slack variables, i.e., σ ∈ R

and σ ∈ R, are used in the cost function given by

Js = J + σ T Sσ + σ T Sσ (45)

where S > 0. Then, we have the final K-SMPC algorithm
such that

v∗

·|k = arg min
vk+i|k

Js (46a)

subject to sk+i+1|k = Aclsk+i|k + Bvk+i|k
+ Bϕϕk+i|k , (46b)

sk+i|k ∈ S, (46c)

uk+i|k ∈ U, 1uk+i|k ∈ 1U , (46d)

sk+1|k ∈ C∞
T ⊖ GW, (46e)

us − σ ≤ uk|k ≤ us + σ , (46f)

0 ≤ σ ≤ us − u, 0 ≤ σ ≤ u − us,

(46g)

sk+N |k ∈ Sf , (46h)

sk|k = zk|k , (46i)

i ∈ {0, . . . ,N − 1}, (46j)

where us ∈ R and us ∈ R are the upper and lower bound
for the first control input, respectively. In (46f), we can see
that the soft constraint is used in the first-step input. We also
consider the slack variable to satisfy the input constraint (46d)
by imposing (46g).
Remark 3: We impose the input constraint (46d) to

consider the physically bounded front tire angle δ of vehicles.
In addition, it is needed to minimize the tire angle on straight
roads or curved roads with small curvature. To that end,
we additionally impose the input constraint (46f) with slack
variables, i.e., σ and σ . ♢
Asmentioned above, the recursive feasibility is guaranteed

by the constraint (46e). Moreover, the following theorem
provides the details of the recursive feasibility and its proof.
Theorem 2 (Recursive Feasibility [51]): Let us consider

the lifted system (31) with the controller (34). If there exists
a feasible solution when k = 0, then the optimization
problem (46) is feasible for k > 0. ♢
Proof: If the K-SMPC optimization problem (46) is

feasible at k = 0, then sk+1|k ∈ C∞
T ⊖ GW . In the next time

step, we can obtain zk+1 = sk+1|k + Gwk ∈ C∞
T for every

realization wk ∈ W , i.e., zk+1 is the feasible state in the next

time. Therefore, the K-SMPC optimization problem (46) is
recursively feasible. Refer to [51] for more details. □
In order to prove the stability of the closed-loop system

constructed by (46), we introduce a discrete-time Input-to-
State Stability (ISS) Lyapunov function [52].
Definition 1 (ISS-Lyapunov function [52]): A function V :

RN
→ R+ is an ISS-Lyapunov function for system zk+1 =

fL(zk , µk ) if the following holds:
• There exist K∞ functions α1, α2 such that

α1(∥z∥) ≤ V (z) ≤ α2(∥z∥), ∀z ∈ RN .

• There exist a K∞ function α3 and a K function γ such
that

V (fL(z, µ)) − V (z) ≤ −α3(∥z∥) + γ (∥µ∥)

for all z ∈ RN , and µ ∈ M.
Using Definition 1, the following theorem provides the

stability of the closed-loop system.
Theorem 3 (Stability of closed-loop system): If feasibility

of (46) at k = 0 is given, then the closed-loop system (46)
under the proposed controller is input-to-state stable with the
ISS-Lyapunov function

V (z∗
k ) = E

{ Np−1∑
i=0

(
∥z∗

k+i|k∥
2
Q + ∥u∗

k+i|k∥
2
R
)
+ ∥z∗

k+Np|k∥
2
P

}
.

♢
Proof: Let V (z∗

k ) and V (z∗

k+1) be an ISS-Lyapunov
candidate function at time k and k + 1, respectively. With the
stabilizing control input after prediction horizon uk+N |k =

Kzk+N |k , we have

E{V (z∗

k+1)} − V (z∗
k )

= E
{ Np−1∑

i=1

(
∥z∗

k+i|k∥
2
Q + ∥u∗

k+i|k∥
2
R
)
+ ∥z∗

k+Np|k∥
2
Q

+ ∥u∗

k+Np|k∥
2
R + ∥z∗

k+Np+1|k∥
2
P

}
− V (z∗

k )

≤ E
{
∥z∗

k+Np|k∥
2
Q + ∥z∗

k+Np|k∥
2
KTRK + ∥z∗

k+Np|k∥
2
ATclPAcl

+ ∥Bϕϕk+Np|k∥
2
P + ∥Gwk+Np|k∥

2
P − ∥z∗

k|k∥
2
Q − ∥u∗

k|k∥
2
R

− ∥z∗

k+Np|k∥
2
P

}
= E

{
− ∥z∗

k|k∥
2
Q − ∥u∗

k|k∥
2
R + ∥Bϕϕk+Np|k∥

2
P

+ ∥Gwk+Np|k∥
2
P

}
≤ −∥z∗

k|k∥
2
Q + ∥Bϕϕk+Np|k∥

2
P + E

{
∥Gwk+Np|k∥

2
P

}
(47)

where s∗k|k = z∗

k|k , and A
T
clPAcl + KTRK + Q = P since P is

the solution of (33). Therefore, V (z∗
k ) is the ISS-Lyapunov

function and the closed-loop system is input-to-state
stable. □
Moreover, summing (47) over k = 0, 1, . . . leads to

lim
n→∞

1
n

n∑
k=0

E(∥zk∥2Q + ∥uk∥2R) ≤ Lss (48)
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Algorithm 1 Procedure of the proposed method
Offline Phase:
1: Collect dataset (27)
2: Design the lifting function ϕ(·) (28)
3: Find the approximated Koopman operator (30)
4: Design the stabilizing control gain K (33)
5: Compute the constraints (42)
6: Compute the set C∞

T using (44)
Online Phase:
7: for k = 0, · · · do
8: Measure zk|k , ϕk|k
9: Solve the optimization problem (46)

10: Obtain the optimal solution v∗
·|k

11: Use the first element of v∗
·|k for the control input

12: end for

where Lss = limn→∞

∑n
k=0E(∥Bϕϕk∥

2
P + ∥Gwk∥

2
P)/n by

using discrete-time version of Dynkin’s Formula [53]. It is
straightforward that the state of the closed-loop system does
not converge asymptotically to the origin but remains within
a neighborhood of the origin due to the external signal
and uncertainty by viewing (48), which means mean-square
stability [30], [46].

V. SIMULATION RESULTS
A. SIMULATION SET-UP AND KOOPMAN
OPERATOR-BASED VEHICLE MODELING
The proposed method was validated using the co-simulation
platform with MATLAB/Simulink and CarSim. The vehicle
dynamic simulator, CarSim, provides a vehicle model with
27 degrees of freedom for representing the highly nonlinear
vehicle dynamics allowing for testing of the realistic motion
of a vehicle. We used various roads provided by CarSim
to obtain the training dataset for computing the Koopman
operator with a sample time of 0.01s. Some of the system
states are related to the given road lane, i.e., ey, eyL , ėy,
and eψ ; thus a path-follow controller stabilizing the vehicle
lateral motion is needed to obtain the dataset. Moreover,
random signals are added to the input to sufficiently excite
the nonlinear vehicle dynamics. For more details, refer to
our previous work [32], [38]. Then, the dataset matrices (27)
is obtained with M = 1.22 × 105. We chose N =

22 in (25) to obtain the lifted state. In addition, it is reported
that a thin plate spline radial basis function is an effective
lifting function in autonomous vehicle modeling compared
to the other basis functions [32]. Thus, the nonlinear lifting
functions φi are selected as the thin plate spline radial basis
functions, i.e., φi(x) = ∥x − cl∥22 · log∥x − cl∥2 where cl
is randomly selected with a uniform distribution in a certain
range [24]. The number of thin plate spline radial basis
functions is set to 15 in (28).

Based on the obtained training dataset, we approximate the
Koopman operator in the finite-dimensional space using (30).
The approximated Koopman operator is tested to validate

FIGURE 6. Model fitting accuracy of the Koopman model with validation
set.

the modeling accuracy with a validation dataset. The fitting
performance is shown in Fig. 6. The red line depicts the
true state of the vehicle acquired from CarSim, and the blue
line illustrates the predicted vehicle state by the Koopman
operator-based vehicle model. As shown in Fig. 6, the
Koopman-based vehicle model can predict the vehicle state
well. Moreover, we can observe that the last three states are
also well predicted through zoom-in windows.

B. COMPARATIVE STUDY
We conducted a comparative study to validate the effective-
ness of the proposedmethod, i.e., the Koopman-based vehicle
model and the SMPC scheme. To do this, we adopted two
different methods, i.e., K-LQ and L-SMPC. The K-LQ uses
the Koopman-based vehicle model with an LQR controller.
We can observe the effectiveness of the SMPC scheme by
comparing the proposed system with the K-LQ. On the other
hand, the L-SMPC is the same as the proposed method except
for the vehicle model, i.e., the L-SMPC uses the linear vehicle
model. Thus, the validity of the Koopman-based vehicle
model can be confirmed by comparing the proposed method
with the L-SMPC. The details of each method are as follows.

1) K-LQ
The K-LQ method [32] uses the Koopman operator-based
vehiclemodel, the same as (31). However, the linear quadratic
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FIGURE 7. Tire slip angle in dataset.

regulator was adopted to control the system, i.e., the only
difference with the proposed method is the control scheme.
From [32], the road information, i.e., ϕ, was not considered
in the controller design. Thus, we can evaluate the tracking
performance of the proposed scheme on high-curvature roads
by comparing the performance of the K-LQ.

2) L-SMPC
The linear vehicle model was adopted as the look-ahead
lateral dynamic model from [5] and [36] with the state xTv =[
eyL ėy eψ ψ̇

]T given by

ẋv = Avxv + Bvuv + Bvϕϕv, (49)

where

Av =


0 1 0 −L
0 a22 a23 a′

24
0 0 0 −1
0 a′

42 a43 a44

 , Bv =


.0
b′

21
0
b41

 ,

Bvϕ =


L Vx
Vx 0
1 0
0 0

 , uv = δ, ϕv =

[
ψ̇des

eψL − eψ

]
,

with

a22 = −
2Cαf + 2Cαr

mVx
, a23 = −a22Vx ,

a24 = −1 −
2Cαf lf − 2Cαr lr

mVx2
, a′

24 = (a24 − 1)Vx ,

a42 = −
2Cαf lf − 2Cαr lr

Iz
, a′

42 = a42/Vx ,

a43 = −a42, a44 = −
2Cαf lf 2 + 2Cαr lr 2

IzVx
,

b21 =
2Cαf
mVx

, b′

21 = b21Vx , b41 =
2Cαf lf
Iz

.

Then, the linear vehicle model was discretized with
the zero-order-holder method. We designed the SMPC to
be similar to (46) except for the system model (46b). The
linear model-based SMPC for the LKS was successfully
studied in [54]. However, the linear model is not appropriate
since the cornering stiffness is no longer linear with respect
to the tire slip angle when the road curvature is high
and vehicle speed rapidly changes [8], [54]. Therefore,

FIGURE 8. L-SMPC has large tracking error (C0 and C1) in pink-colored
section, where vehicle speed is rapidly varying. K-LQ has large tracking
error (C0 and C1) in blue-colored section, where road has high curvature:
(a) Vehicle longitudinal speed, and (b) road coefficients.

FIGURE 9. ey histogram.

we can confirm the effectiveness of the proposed method in
dynamic lane-keeping scenarios by comparing the result of
the L-SMPC.

For a fair comparison with the proposed method, we used
the same weighting matrix on the system state and control
input in the design of the controller of each method.
Specifically, the weighting matrix for the method using the
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FIGURE 10. Control results of the system state.

Koopman-based model (i.e., K-LQ and K-SPMC) is as Q =0 0 0
0 Qv 0
0 0 0

 ∈ RN×N ,R = Rv ∈ Rm where Qv ∈ R4×4

and Rv ∈ R is the weighting matrix for L-SMPC, and
N is the dimension of the lifted state in (28). Moreover,

FIGURE 11. Uncertainty wk for each system state.

this paper designs the longitudinal controller to control the
vehicle speed with respect to the road curvature with a
proportional-derivative (PD) controller. The design process
of the longitudinal controller is out of the scope of this paper;
hence, the reader can refer to the authors’ work [55] for a
detailed description. In Fig. 8 (a), it can be shown that the
vehicle longitudinal speed is equal to each method. Thus, the
tracking performance of each method only depends on each
lateral controller.

We use the race-track road provided by CarSim to validate
the tracking performance of each method. As shown in Fig. 7,
the race-track road has high-curvature curved roads so that the
vehicle can have a highly nonlinear motion, i.e., the tire slip
angle is large. Since the comparative study is conducted to
test the utility of each method in nonlinear vehicle motion,
the race track can be appropriate for a test environment. The
road lane coefficients, i.e., C0, C1, C2, and C3 in (2), are
illustrated in Fig. 8 (b). The blue line represents the result
of the K-LQ, the red line is the L-SMPC, and the green line
depicts the result of the proposed method. It should be noted
that C2 is the curvature of the lane, representing the road
shape. Hence, each control method was conducted on the
same path. As mentioned in II-A,C0 denotes the lateral offset
error, and C1 denotes the heading angle error. We can see
that the proposed method has a lower lateral position error
and a lower heading angle error, i.e., C0 and C1, compared
to other methods in Fig. 8 (b). In particular, the proposed
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FIGURE 12. Results of control input and slack variables.

FIGURE 13. SMPC infeasibility: 0 for feasible, 1 for infeasible.

controller had a lower error on the lane with a high curvature,
as shown by the blue section in Fig. 8 (b). However, the
L-SMPC had a large error in the pink section in Fig. 8 (b)
compared to other methods because the linear vehicle model
is no longer accurate with rapid varying of vehicle speed [8],
as illustrated by the pink section in Fig. 8 (a). On the other
hand, the K-LQ can track the given lane even with rapid
speed changes because the Koopman operator-based vehicle
model can represent the highly nonlinear vehicle dynamics.
However, the K-LQ has a larger error on roads with a high
curvature, as depicted by the blue region in Fig. 8 (b). This is
because the K-LQ does not consider the future system state,
while the K-SMPC and the L-SMPC predict the future state
with the curved road information from ϕ in the optimization
problem. As mentioned before, C0 denotes the lateral offset
error, which is equal to the system state ey. Thus, we observe

FIGURE 14. Results of the tire slip angle.

that the proposed method has the lowest lateral error by the
statistical way, i.e., histogram, as is shown in Fig. 9.

The results of the controlled system state are observed in
Fig. 10. As defined by the state of the system in (13), some
states represent the path-tracking performance. Specifically,
ey and eyL are the lateral position errors at CG and the
look-ahead distance, respectively. In addition, ėy is the
lateral speed tracking error, and eψ is the heading angle
tracking error. In Fig. 10, the blue line represents the
K-LQ, the red line represents the L-SMPC result, the green
line represents the proposed method, and the black line
represents the tightened constraints of each state. We set
the constraints as |ey| ≤ 1 m, |eyL | ≤ 1 m, |ėy| ≤

0.95 m/s, |eψ | ≤ 10 deg, and |ψ̇ | ≤ 30 deg/s to
keep the vehicle within the given lane. Besides, we set
the covariance matrix 6w from the data. The uncertainty
wk is computed, as shown in Fig. 11. First, we compute
each state uncertainty’s mean value µ. The variance then is
calculated for each state such that 1

M

∑M
i=1(xi − µ)2 where

M is the length of the dataset in (26). We use the variance for
the covariance matrix. The covariance matrix is defined as
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6w = diag
[
σ1 σ2 σ3 σ4 σ5 σ6 σ7 01×(N−7)

]
where σ1 =

1.43e− 5, σ2 = 2.70e− 5, σ3 = 1.31e− 3, σ4 = 7.64e− 6,
σ5 = 2.46e− 3, σ6 = 1.5, and σ7 = 1.41e− 3.
As shown in Fig. 10, it can observed that the proposed

method has less error in the lateral position, lateral speed,
and heading angle, i.e., ey, eyL , ėy, and eψ . Moreover, the
proposed controller satisfies the given constraints of each
system state, while other methods violate the constraints
in some sections. As a result, the proposed method has
better tracking performance than the other methods in the
LKS application. We can observe the quantitative results in
Table. 1 and Table. 2. It can be confirmed that the proposed
method dramatically reduces the lateral position error in
terms of the root mean squared error and the max error than
the other methods.

In Fig. 12 (a), the control input rate of each method is
depicted. The result of the K-LQ is the blue line, the L-SMPC
method is the red line, the K-SMPC is the green line, and the
constraints are shown as the black dotted line.We can observe
that the K-LQ violates the given constraints, while the
L-SMPC and the K-SMPC satisfy the constraints. However,
the L-SMPC has a large input rate in some ranges, which
means a large oscillation of control input. In Fig. 12 (b),
we can see the control inputs of each method. It can be
seen that the L-SMPC has a large oscillation in some ranges
because the L-SMPC is infeasible where the given constraints
are violated, as shown in Fig. 13. On the other hand, the
K-LQ and the K-SMPC method have a smooth control input.
In addition, the proposed method slightly violates the input
constraints at about 600 m and 1800 m to control the vehicle
on the high curvature road. However, note that we consider
the soft constraints on the first step of the input. Thus, the
slack variables can be observed, as shown in Fig. 12 (c).

The results of each tire slip angle are shown in Fig. 14 for
each method. The pink section of Fig. 14 represents the linear
relationship between the lateral tire force and the tire slip
angle [8], [32], i.e., the cornering stiffness is a linear function
of the tire slip angle in (5). In this paper, the linear region

TABLE 1. Comparison of controller performance on validation road.

TABLE 2. Comparison of controller performance on validation road.

FIGURE 15. Boxplot of control results of the system state.

is selected within ±3 deg of the tire slip angle because the
lateral tire force and the tire slip angle can be in a linear
relationship provided by CarSim data and [8], [32]. The
Koopman-based vehicle model (i.e., K-LQ and K-SMPC)
maintains the tire slip in the linear region. Thus, it can be
seen that the Koopman-based model captures the vehicle’s
nonlinear behavior and effectively controls the vehicle under
dynamic situations. On the other hand, the L-SMPC method
leaves the linear region so that the linear vehicle model is no
longer valid. In Fig. 15, the boxplot of the control results of
each system state is depicted. The green box is the result of
the proposed method, the blue box is the result of the K-LQ,
and the red box is the result of the K-SMPC. The bottom
and top of each box are the 25th and 75th percentiles of the
data, respectively. The red line in the middle of each box
is the median value. We can see that the proposed method
remarkably reduces the lateral position error compared to
other methods. Note that lateral position error can be the most
important criteria in tracking performance.

VI. CONCLUSION
In this paper, we proposed the K-SMPC for the enhanced
LKS of autonomous vehicles. The EDMD method was used
to approximate the Koopman operator in a finite-dimensional
space for practical implementation. The modeling error of the
approximated Koopman operator in the EDMD method was
handled as a probabilistic signal. We then designed K-SMPC
to tackle the modeling error. The recursive feasibility of
the proposed method was guaranteed with the explicit
first-step state constraint by computing the robust control
invariant set. A high-fidelity vehicle simulator, CarSim,
was used to validate the effectiveness of the K-SMPC for
the simulation. We conducted a comparative study between
K-LQ and L-SMPC, confirming that the proposed method
outperforms other methods with respect to tracking perfor-
mance. Furthermore, we observed that the proposed method
satisfies the given constraints and is recursively feasible.
In future work, a comparative study will be conducted with
the Koopman-based RMPC to evaluate the conservativeness
quantitatively. Future research may also include a real-car
experiment. We will consider the real-time feasibility of
implementing the proposed method in the real world. The
optimization problem (46) should always be solved on a real-
time platform, e.g., MicroAutoBox from dSPACE. Therefore,
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analysis of computation burden on a real-time platform will
be considered as future work.
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