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ABSTRACT

We consider unsupervised domain adaptation (UDA) for semantic
segmentation in which the model is trained on a labeled source
dataset and adapted to an unlabeled target dataset. Unfortu-
nately, current self-training methods are susceptible to misclassified
pseudo-labels resulting from erroneous predictions. Since certain
classes are typically associated with less reliable predictions in
UDA, reducing the impact of such pseudo-labels without skewing
the training towards some classes is notoriously difficult. To this
end, we propose an extensive cut-and-paste strategy (ECAP) to
leverage reliable pseudo-labels through data augmentation. Specif-
ically, ECAP maintains a memory bank of pseudo-labeled target
samples throughout training and cut-and-pastes the most confi-
dent ones onto the current training batch. We implement ECAP
on top of the recent method MIC and boost its performance on
two synthetic-to-real domain adaptation benchmarks. Notably,
MIC+ECAP reaches an unprecedented performance of 69.1 mloU
on the Synthia—Cityscapes benchmark. Our code is available at
https://github.com/ErikBrorsson/ECAP.

Index Terms— Semantic Segmentation, Unsupervised Domain
Adaptation, Pseudo-labeling, Data Augmentation, Self-training

1. INTRODUCTION

Unsupervised domain adaptation (UDA) is one of many approaches
used for semantic segmentation that aims to relax the requirements
on the availability of annotated training data. In UDA, an unlabeled
target dataset sampled from the same distribution as the test dataset
is available along with a labeled source dataset sampled from an-
other distribution. The source dataset could constitute an already an-
notated dataset or a synthetic dataset for which annotations can eas-
ily be created. Due to the difference in distribution between source
and target data, also known as the domain gap, a network trained on
source data typically does not perform well on target data. There-
fore, UDA methods use the unlabeled target data to adapt the model
to the test data distribution, for example, through adversarial training
[1,2, 3, 4] or self-training [5, 6, 7, 8, 9, 10].

In recent years, self-training has dominated the field and is
adopted by many recent works [11, 9, 12, 10]. A pivotal component
of this framework is the DACS [6] data augmentation, which entails
mixing a source and target image through a cut-and-paste operation.
Although DACS augmentation is effective in bridging the domain
gap, it does not handle the noise inherent to the pseudo-labels on
which the model is trained. Most existing methods that address
this problem attempt filtering the pseudo-labels based on predicted
confidence scores [5, 7, 13, 14]. Unsurprisingly, the unconfident
pseudo-labels often belong to hard-to-adapt classes, meaning that
such approaches may impede the learning of these classes since the

focus is shifted to easy-to-adapt classes. Multiple UDA methods
facilitate learning hard-to-adapt classes by setting class-wise confi-
dence thresholds when generating/filtering pseudo-labels [5, 7, 15]
or using sampling schemes that favors these classes [11, 15, 16].
Nevertheless, maintaining a healthy balance between classes while
focusing training on reliable pseudo-labels remains a challenge.

In this work, we take an entirely different approach to dealing
with pseudo-label noise in self-training, which is based on cut-and-
paste data augmentation. Specifically, we build a memory bank of
pseudo-labeled target samples during training, and in each iteration,
cut-and-paste confident samples from the memory bank onto the cur-
rent training batch. By cut-and-pasting content from a large pool
of images, our proposed method effectively makes use of the, typ-
ically scarce, confident pseudo-labels of the hard-to-adapt classes
and shifts focus away from erroneous pseudo-labels during train-
ing. Our method, which we call ECAP: Extensive Cut-and-Paste,
is to the best of our knowledge the first UDA method for semantic
segmentation that aims to increase the proportion of correct pseudo-
labels in each training image by means of cut-and-paste augmenta-
tion. Through comprehensive evaluation, ECAP is shown to increase
the performance of multiple UDA methods based on self-training
on the synthetic-to-real domain adaptation task. Notably, we reach
new state-of-the-art performance on both the GTA—Cityscapes and
Synthia—Cityscapes benchmarks by boosting the performance of
the recent method MIC [10] by 0.3 and 1.8 mloU respectively.

Our main contributions are:

1. We propose a data augmentation method for unsupervised
domain adaptive semantic segmentation that is designed to
counteract pseudo-label noise during self-training

2. We demonstrate that our approach increases the mloU score
of previous state-of-the-art on two synthetic-to-real domain
adaptation benchmarks

3. We analyze the adverse effect of pseudo-label noise during
self-training

2. RELATED WORK

Unsupervised Domain Adaptation (UDA) methods for semantic
segmentation can broadly be categorized as either based on adversar-
ial learning [1, 2, 3, 4] or self-training [5, 7, 6, 8, 9, 10]. In the former
category, a discriminator network enforces domain invariance in the
input through style-transferred images [1, 17] or in the feature/output
space of the segmentation network [1, 17, 2, 3, 18]. In self-training,
on the other hand, pseudo-labels are created for the unlabeled tar-
get data on which the model is then trained further. Multiple works
also use an adaptation curriculum [19, 14], entropy minimization
[3, 20, 7, 21] and more recently contrastive learning [12, 22].



Inspired by consistency regularization [23], many self-training
methods enforce consistency between predictions on strongly
augmented images with the pseudo-labels generated on weakly-
augmented images. In particular, mixing the content of a source
and target image is commonly used as the strong augmentation
[6, 16, 24]. Furthermore, while pseudo-labels may be generated
naively from the model’s predictions [5, 7], many methods attempt
increasing the quality of the pseudo-labels by e.g., using a mean
teacher [6, 9], label prototypes [8, 25], or averaging predictions
over multiple stochastic forward passes [24] or augmentations of the
input [15].

The noise inherent to the pseudo-labels is often handled by ei-

ther filtering the unreliable pseudo-labels by predicted confidence
[5, 7, 13, 14], entropy [24] or uncertainty [26], or using a weighted
loss function that assigns lower weight to unreliable pseudo-labels
by e.g., model confidence [15], uncertainty [27] or depth estima-
tion [28]. A problem with reducing the contribution of unreliable
pseudo-labels is that the loss may become dominated by easy-to-
adapt classes that are more reliable than the hard-to-adapt classes
(these are often, although not necessarily, long-tail classes). To this
end, many methods use class-wise confidence thresholds when gen-
erating/filtering pseudo-labels such that hard-to-adapt classes can be
prioritized [5, 7, 15]. Others suggest using a focal loss to empha-
size difficult samples [15] or data sampling schemes that favors such
classes [11, 15, 16]. Different from all previous methods, ECAP
aims to mitigate the issue of noisy pseudo-labels by increasing the
proportion of correctly pseudo-labeled pixels in the training images
by means of cut-and-paste data augmentation.
Cut-and-Paste Data Augmentation has been used both for image
classification [29], object detection [30, 31, 32], semantic segmenta-
tion [33, 6, 21] and instance segmentation [34, 35, 32] in a variety
of settings, including supervised learning [29, 31, 34, 35], semi-
supervised learning [33, 34] and weakly-supervised learning [29,
32]. Notably, recent works [32] and [35] leverage generative models
and foreground segmentation models to create large-scale datasets
by cut-and-pasting multiple object instances into every training im-
age. In UDA however, cut-and-paste augmentation has mainly been
limited to methods that mix a single source and target image as a
way of overcoming the domain gap. This idea, first proposed by
DACS [6] has been used in many succeeding works [11, 9, 10, 12]
and given rise to a number of variations [16, 24, 36]. Unlike all pre-
vious methods for UDA, ECAP is not restricted to images in a single
batch but rather performs cut-and-paste data augmentation using a
large pool of target images that are stored in a memory bank. Im-
portantly, this allows ECAP to select the most suitable images for
augmentation and training by considering the confidence of the as-
sociated pseudo-label.

3. PRELIMINARY

In this section, we establish the notation and provide relevant details
for the self-training framework used in [6, 11, 9, 10] on top of which
ECAP is implemented.

In self-training, a segmentation network fs (called the student)
is trained on a set of Ng source domain images with associated la-
bels {z5* 4>*}~S and on a set of Ny unlabeled target domain
images with associated pseudo-labels {z7"*, QT’k}g:Tl. Dropping
the index k, for ease of notation, the pseudo-label § of an image T
constitutes a one-hot vector ¢;; of length C' at each pixel location
(2,7), where C' is the number of classes. The pseudo-label is created
during training by the teacher network g,, which is an exponential

moving average of the student’s weights. Formally, the pseudo-label
is defined by

Gije = [ = argmax, go (2" )ije], )
where [-] denotes the Iverson bracket.

In every training iteration, a source and target image and their
corresponding label and pseudo-label are mixed by a cut-and-paste
operation wherein pixels given by a binary mask m are cut from the
source sample and pasted onto the target sample. For convenience,
we define such a mixing operation between two images x1 and x> as

a(z1,z2,m):=mOx1+ (1 —m) O x2, 2

where ® denotes element-wise multiplication. Given the operator
« and binary mask m, the mixed image and corresponding label is
constructed by ™ = a(z®, 27, m) and y™ = a(y®, ", m).The
binary mask m is created by randomly selecting half of the classes
that are present in y° and setting m;; = 1 for all pixels included in
the selections and m;; = 0 otherwise.

Given the source and mixed image with corresponding labels as
defined above, the weights 6 of the student network fp are trained to
minimize the loss

L) = E[£°(y°, fo(2®) + LT ", fo(z").d™)], @)

where £ is the standard cross-entropy loss, £7 is a weighted cross-
entropy loss, and the expectation is taken over data from the source
and target datasets. Specifically, the second term is given by

H W C
LM M q") = =D T a Y ullog(@i), @)
i=1 j=1

c=1

where W and H are the width and height of the image ™ respec-
tively, ' denotes the predictions fg(z™) of the student network,
and qf;vf is the weight associated with each pixel. In [6, 11, 9, 10],
qf\;[ equals 1.0 for pixels originating from the source domain and
otherwise equals the ratio of pixels in the target image for which the
confidence of the pseudo-label exceeds a threshold 7, i.e.,

M L, 5
Gj =\ DL, SV ((mas g4 T),,0)>7] . ®)
T , otherwise.

4. EXTENSIVE CUT-AND-PASTE (ECAP)

In this work, we propose to cut-and-paste confident pseudo-labeled
content from multiple target domain images into the current training
batch. Our method ECAP comprises three main components that are
described in the following sections: (1) a memory bank containing
pseudo-labeled target samples, (2) a sampler drawing samples asso-
ciated with high confidence from the memory bank, and (3) an aug-
mentation module that creates the augmented training images. We
integrate ECAP with the self-training framework detailed in Section
3, but also recognize that ECAP may be applied in virtually any
UDA method based on self-training. Figure 1 provides a schematic
illustration of our method.
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Fig. 1. Schematic illustration of ECAP, constituting a memory bank, a sampler, and an augmentation module, integrated with the self-
training framework. The input to ECAP is a source and target image, =° and z”, along with the corresponding label y° and pseudo-label
§7, which is produced by the teacher go. This input is processed by the augmentation module together with samples from the memory
bank to generate a mixed image =™, an associated label 4™, and a weight ¢™. Simultaneously, z” and §” are added to the memory
bank for future use. The student network fy processes both the source image x° and the mixed image 2™ and is supervised by the loss

L3(y®, fo(@®)) + LT (y™, fo(a™), ¢"") during training.

4.1. Memory Bank

During training, a memory bank B, is constructed for each class c in
the dataset. Each memory bank B. consists of a set of | B.| images,
pseudo-labels and confidence scores {(zZ¢!, yBe!, qBC‘l)}l‘i‘i‘.
Again, dropping the index [ for ease of notation, 25 and y®¢ are
constructed by applying a binary mask m. to a target image = and
pseudo-label 7 according to (%<, yB¢) = (27 © me, 57 © me).
The binary mask m. takes the value 1.0 at each pixel location
(4, j) for which g is of class ¢, and otherwise m. takes the value 0.
Furthermore, the confidence score ¢P¢ is defined as the average con-
fidence of the teacher’s predictions corresponding to pseudo-label
of class c for the target image 27 according to

b Sict 2y 9o(@ )ijele = argmax,, (9o (2" )ijer)]
Ez‘vi1 Z]H:1 [C = argmax ., (g¢ ('TT)ijc’)]

Note that %<, B¢ and ¢®¢ are computed for every class ¢ present
in 47, which implies that (different parts of) a single target image ="
and the corresponding pseudo-label 47 are often added to multiple
memory banks. To avoid storing duplicates of certain target samples
as training spans multiple epochs, we allow at most one sample in
each memory bank B, per target image.

©)

4.2. Sampler

In each training iteration, a set of samples { S5}, ; =
{(xBC’l, yBC’l)}C,l is obtained by first selecting a set of classes and
then drawing a sample from the memory bank of each selected class
(we use a slight abuse of notation here as the index pair c, [ takes
on values that depend on the outcome of the sampling). Formally,
we define a set of random variables {r. ~ Bern(p,,)}$_; of which
a set of observations {r.}S_, is obtained in each training iteration.
For every class ¢, one sample is then drawn from memory bank B, if
re = 1. Since samples of high quality are preferred, we use the con-
fidence value g”¢, defined in Equation 6, when sampling from each
memory bank. Specifically, we propose uniform sampling from the
top n®¢ most confident samples in each memory bank B., where
nBc is a hyperparameter. Consequently, if we sort the confidence
scores of B, in descending order and let ¢(n<) be the score at po-
sition n®¢, the sampling probability pZ< of each sample in B.. can
be defined as

Bel 1/"BC7 if gBet > Q(nBC)

b "o, otherwise.

@)

Furthermore, we argue that the sampling probability p,.. should
increase as training progresses and the quality of the memory bank
increases. In this work, we let p,, be equal across all classes and
define p,, = noa(%), where ng € [0, 1] is a constant, M EC
is the mean expected confidence of a sample drawn uniformly from
the set of memory banks { B}, o is the sigmoid function, and 8 and
~ are two hyperparameters. With these design choices, p,_ is given
by
X g P —

N
where the index [ runs over every sample (with associated confi-
dence value ¢P'! and sampling probability p©<'') in memory bank
B.. Note that 8 can be thought of as a typical value of M EC at

which ECAP sampling comes online, while +y relates to how quickly
sampling comes online as M EC approaches 3.

), (®)

Pr. = noo(

4.3. Augmentation Module

The set of samples {SP¢*'} .. ; obtained by the sampler in Section 4.2
is used to create a composite image x~ and corresponding pseudo-
label yZ. This is done by initializing 2® and y” as blank canvases,
iterating over the samples in {SB“’l}c,l, and in each iteration cut-
and-pasting the content of SZ<"! corresponding to class ¢ onto the
canvases. Before pasting, however, the sample is subject to a se-
ries of transformations, including random scaling, translation and
horizontal flipping. The construction of z® and y? is described in
Algorithm 1, where « is the mixing operator defined in Equation 2.

Algorithm 1 Creating composite image

Initialize 7 and y® as blank canvases.
{88!}, < aset of samples provided by the Sampler.
Shuffle {SZ< '}, ;.
for (zP<!, yPel) in {SB1, | do
T(xPe!), T(yPe!) « Applying a set of random transforma-
tions to the sample.
me +— T(yPh) =¢
=P — a(T(zBY), 25 m.)
Y7 a(T(y""),y", me)
end for
return mB, yB

The composite image = and corresponding pseudo-label y”
are then used to alter the mixed image 2™ and corresponding



pseudo-label 3™, which are used in self-training as detailed in
Section 3. Specifically, we paste 7 (and y?) onto the source im-
age z° (and label y°) prior to DACS mixing. Formally, if we let
DACS(z®, 2%, 3%, 77 denote the algorithm detailed in Section 3
to generate a mixed sample and associated weight from a source and
target sample, we let

(xM7 M M) _

I

®

B _S B B S By ~
DACS(a(‘T y Lo, )7IT7a(y Yy ,m )ayT)a

where again o denotes the mixing operator defined in Equation 2
and m? is a binary mask corresponding to the parts of z” that has
been populated. Note that m? can be trivially computed by a small
addition to Algorithm 1, although we exclude it for simplicity. Also
note that the binary mask used internally in the DACS algorithm to
construct 2, y™, and ¢™ is now derived by selecting half of the
classes in a(y?, y®, m?), which means that pixels in 2™ originat-
ing from the composite image = will be associated with a weight
of 1.0. This design choice is made since the pseudo-label of z® is
expected to be of high quality.

5. EXPERIMENTS

5.1. Implementation Details

Datasets: We study ECAP in the setting of synthetic-to-real do-
main adaptation on the popular benchmarks GTA—Cityscapes and
Synthia—Cityscapes. The GTA [37] and Synthia [38] datasets con-
sist of 24,966 and 9,000 simulated training images respectively along
with accompanying labels. The Cityscapes [39] training dataset con-
sists of 2,975 images, which are used as the unlabeled target dataset.
In line with previous works, we evaluate the performance on the
Cityscapes validation set of 500 images. Additionally, we study day-
to-nighttime and clear-to-adverse-weather domain adaptation on the
benchmarks Cityscapes—DarkZurich and Cityscapes—ACDC re-
spectively. The DarkZurich [40] dataset is captured during night-
time and consist of 2,416 training and 151 test images, while the
ACDC [41] dataset is captured in adverse weather and comprises
1,600 training and 2,000 test images. The Cityscapes training dataset
is used as the labeled source dataset for these benchmarks.
Training: In this work, MIC [10] is used as a baseline on top of
which ECAP is implemented. MIC is based on the self-training
framework detailed in Section 3 with the addition of Rare Class
Sampling [11], ImageNet Feature Distance [11] and multi-resolution
fusion [9], as well as Masked Image Consistency [10]. We use the
exact training parameters of MIC [10] and refer the reader to [10] for
details. The only difference when applying ECAP is that the mixed
training sample is created according to Equation 9.

For simplicity, we let n¢ in Equation 7 be equal for all classes
and set v = 0.005 in Equation 8 in all our experiments. In the aug-
mentation module of ECAP, we apply random scaling by a factor r,
sampled uniformly on the interval [0.1, 1.0], as well as random trans-
lation and horizontal flipping. In the experiments on Synthia, we dis-
able sampling from the ECAP memory banks corresponding to the
classes Terrain, Truck and Train since these don’t exist in the Syn-
thia dataset. Furthermore, while MIC [10] refrains from training on
pseudo-labels in the region of the Cityscapes images corresponding
to the ego-vehicle hood as well as on the image borders, we find this
detrimental in the case of Synthia—Cityscapes. Therefore, we dis-
able this feature and instead train on the entire Cityscapes image for
this benchmark. This is elaborated further in the supplementary ma-
terial available at https://sigport.org/documents/ecap-supplementary.

5.2. Comparison with State-of-the-Art

We compare ECAP with existing UDA methods on four popular
benchmarks in Table 1. The reported mean and standard deviation of
each experiment are computed from three runs with different random
seeds. We use the following hyperparameters of ECAP: ng = 1.0,
B = 0.95 nPe = 40 for GTA—Cityscapes, no = 1.0, =
0.80, nB¢ = 30 for Synthia—Cityscapes, no = 0.53, 3 = 0.98,
nf“ = 30 for Cityscapes—DarkZurich, and np = 1.0, 8 = 0.90,
nZe = 50 for Cityscapes—ACDC.

On GTA—Cityscapes, ECAP gives a modest boost of 0.3 mIoU
to MIC. On Synthia—Cityscapes, we report the results of MIC as
well as MICT, which is a variant of MIC that trains on pseudo-labels
in the entire target image. We find that MICt outperforms MIC by
0.9 mloU, showing that it is beneficial to train on the entire image
for this benchmark. When additionally applying ECAP, performance
is boosted further by another 0.9 mloU, reaching an unprecedented
performance of 69.1 mloU.

On the other hand, ECAP degrades the performance of MIC
on Cityscapes—DarkZurich and Cityscapes—ACDC due to large
drops in IoU for certain classes, such as road and sidewalk, al-
though some classes benefit from ECAP, especially wall and fence
in Cityscapes—ACDC. We hypothesize that ECAP is not as suitable
for these domain adaptation benchmarks since the appearance of
objects is a less discriminative factor for images with poor visibility.
Instead, the context and prior knowledge about the scene becomes
increasingly important to correctly segment images under such con-
ditions. Since ECAP is based on aggressive data augmentation,
it may hamper learning of context (e.g., the sky typically appears
above the road in the images), which may be a significant issue
in low visibility conditions. Qualitative results and an extended
analysis is provided in the supplement.

5.3. ECAP on Other Methods

We also implement ECAP on various prior art models on the
GTA—Cityscapes benchmark to understand how well ECAP gener-
alizes across different methods. The results for each model without
ECAP is taken from [10], while the results with ECAP are computed
from three experiments on different random seeds. In Table 2, it can
be seen that ECAP gives a substantial performance boost to all in-
vestigated methods, showing that it’s not designed specifically for
MIC. Noteably, both convolutional neural networks and transformer
architectures benefit from ECAP. Furthermore, it is apparent that
less capable models benefit more from ECAP than current state-of-
the-art. This is expected since improving state-of-the-art becomes
increasingly difficult as performance saturates.

5.4. In-Depth Analysis of ECAP

This section provides an in-depth analysis of ECAP and specifi-
cally addresses the issue of pseudo-label noise, which has been the
main driver of our proposed method. To save time, experiments
are done on a single random seed and conducted with DAFormer
since it has a substantially faster training time than MIC. In Table
3, the results from training four different variants of DAFormer on
GTA—Cityscapes are presented. Two of the columns correspond to
standard DAFormer and DAFormer+ECAP (with the same settings
as in Section 5.3). On the other hand, DAFormer (denoise) uses the
target domain labels to set the pixel-level weights to zero for any in-
correct pseudo-labels, thereby eliminating such pseudo-labels’ con-
tribution to the training (recall that a weighted cross-entropy loss
function is used). Conversely, DAFormer (oracle) directly replaces



Table 1. Semantic segmentation performance (IoU in %) on four different UDA benchmarks.

- B = 8 B B g 5 g, _~4 . 2
Method ¥ B @ B £ A & B 5 B » &4 £ U =5 @ = = A& |mlU
GTA—Cityscapes (Val.)
DACS [6] 89.9 39.7 879 30.7 39.5 385 464 52.8 88.0 44.0 88.8 672 358 845 457 502 0.0 27.3 34.0|52.1
HRDA [9] 964 744 91.0 61.6 51.5 57.1 639 69.3 913 484 942 79.0 529 939 84.1 857 759 639 67.5|73.8
PiPa [12] 96.8 763 91.6 63.0 57.7 60.0 654 72.6 91.7 51.8 94.8 79.7 564 944 859 884 789 635 67.2|756
MIC [10] 974 80.1 91.7 61.2 569 59.7 66.0 71.3 91.7 514 943 79.8 56.1 94.6 854 90.3 80.4 64.5 68.5|759
MIC+ECAP 974 803 91.6 604 58.2 60.9 65.6 71.8 91.7 52.8 939 80.6 57.2 944 852 91.1 82.1 652 67.8|76.2
+0.1 +0.4 0.0 +1.9 +0.6 +0.7 +0.6 1.0 #0.1 +0.5 +0.2 0.5 *1.4 0.1 +22 +0.1 *1.4 +04 =+0.7|+0.1
Synthia—Cityscapes (Val.)
DACS [6] 80.6 25.1 819 21.5 29 372 227 240 83.7 90.8 67.6 383 82.9 38.9 28.5 47.6|483
HRDA [9] 852 47.7 88.8 495 48 572 657 609 853 929 794 528 89.0 64.7 639 649|658
PiPa [12] 88.6 50.1 90.0 53.8 7.7 58.1 672 63.1 88.5 945 79.7 57.6 90.8 70.2 65.1 66.9 | 68.2
MIC [10] 86.6 50.5 89.3 479 78 594 66.7 634 87.1 946 81.0 589 90.1 61.9 67.1 643|673
MICH 91.0 55.7 899 504 84 588 66.7 629 89.2 946 81.2 57.6 90.6 65.3 66.0 63.2]68.2
+0.9 #2.0 0.1 +1.7 0.1 +04 02 04 =*1.2 +0.1 0.1 0.5 %03 +5.7 +0.7 £1.7|%0.2
MICH+ECAP 90.8 552 90.0 50.7 82 593 68.3 63.0 89.0 94.8 81.8 58.6 90.9 714 67.1 659]69.1
+0.8 +1.6 +0.1 +3.7 0.6 +0.2 0.3 02 =03 +0.2 +0.3 +0.3 +0.0 +0.4 +1.3 +0.5|%0.3
Cityscapes— Dark Zurich (Test)
DAFormer [11]]93.5 65.5 73.3 39.4 19.2 533 44.1 44.0 59.5 345 66.6 534 527 82.1 527 9.5 89.3 50.5 385538
HRDA [9] 904 563 72.0 39.5 195 57.8 52.7 43.1 593 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 559
MIC [10] 94.8 75.0 84.0 55.1 284 62.0 355 52.6 59.2 46.8 70.0 652 61.7 82.1 642 18.5 91.3 52.6 44.0(60.2
MIC+ECAP 90.6 55.8 822 534 250 621 382 514 63.5 43.1 733 639 59.1 83.1 622 162 91.8 474 47.0 |584
+23 495 +14 +44 +31 1.0 +89 +22 51 +2.3 5.7 03 204 0.6 +0.8 +2.7 +0.3 6.6 0.7 |+1.2
Cityscapes—ACDC (Test)
DAFormer [11]|58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 583 32.6 82.7 583 549 824 44.1 50.7|55.4
HRDA [9] 883 579 88.1 552 36.7 563 629 653 742 57.7 859 688 457 88.5 764 824 87.7 52.7 60.4|68.0
MIC [10] 90.8 67.1 89.2 545 405 572 620 684 763 61.8 87.0 713 494 89.7 757 86.8 89.1 56.9 63.0|70.4
MIC+ECAP 69.5 569 89.2 57.5 438 564 49.6 672 77.0 62.8 66.6 71.3 432 894 732 68.0 88.7 56.8 62.3|65.8
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Table 2. Performance of different UDA methods without and with

ECAP (mloU in %).

Network UDA Method w/o ECAP w/ECAP diff
DeepLabV2 DACS 53.9 58.3 +4.4
DeepLabV2 DAFormer 56.0 61.2 +5.2
DeepLabV2 HRDA 63.0 65.6 +2.6
DeepLabV2 MIC 64.2 66.3 +2.1
DAFormer DAFormer 68.3 69.1 +0.8
DAFormer HRDA 73.8 75.0 +1.2
DAFormer MIC 75.9 76.2 +0.3

all pseudo-labels with the corresponding labels, serving as an upper
bound for DAFormer’s performance. Along with mloU of the four
models, we also present the target accuracy, which is the propor-
tion of correct pseudo-labels, as well as the target loss noise ratio,
which is the proportion of the target loss that is derived from incor-
rect pseudo-labels. The target loss refers to the part of the loss that is
derived from target domain pixels, which may originate from either
the sampled target image or the ECAP memory bank. The target ac-
curacy and target loss noise ratio are computed on the mixed training
images and are averaged over the final 50 iterations of training.

In Table 3, the performance of DAFormer (oracle) is 5.8 mloU
points higher than DAFormer. Moreover, DAFormer (denoise) sig-
nificantly narrows this gap by 4.0 mloU points, demonstrating that
shifting focus towards correct pseudo-labels during training is an ef-
fective strategy. Furthermore, ECAP increases the target accuracy of
DAFormer to a level on par with DAFormer (denoise) and addition-

ally lowers the target loss noise ratio of DAFormer. This indicates
that augmenting the training examples with ECAP increases the pro-
portion of correctly pseudo-labeled content and as a result, the re-
maining erroneous pseudo-labels make up a smaller proportion of
the loss value. Importantly, ECAP increases the mloU of DAFormer
significantly, although not as much as DAFormer (denoise) and (or-
acle) which both have access to the target domain labels.

Table 3. Performance (in %) of four variants of DAFormer.
DAFormer DAFormer ECAP

DAFormer (denoise)  (oracle) (DAFormer)
mloU 68.0 72.0 73.8 68.7
Target accuracy 87.8 89.3 100.0 89.6
Target loss noise ratio 37.9 0.0 0.0 333

Table 4 further shows the target accuracy of DAFormer+ECAP
(from Table 3) split over different classes and pixels originating from
the ECAP memory bank and the sampled target image respectively.
It is evident that the content from the memory bank typically is asso-
ciated with more accurate pseudo-labels. This is especially true for
thing classes such as train, motorbike and bike, while not as apparent
for stuff classes such as road, sidewalk and building.

5.5. Hyperparameter Sensitivity Analysis

This section provides a sensitivity analysis of the hyperparameters
of ECAP. To save time, we perform experiments on a single seed
on GTA—Cityscapes using DAFormer+ECAP (np = 1.0,8 =



Table 4. Accuracy (in %) of pseudo-labels for pixels originating
from the ECAP memory bank and the sampled target image.
Road Sidew. Build. ... Train M.bike Bike
Memory bank 94.3 673  89.9 96.1 80.7 76.3
Target image 919 60.5 90.4 55.0 375 57.4

0.93,nB¢ = 30) as a baseline and change the hyperparameters one
at a time. Table 5 reports the performance and deviation from this
baseline in terms of mloU under a number of different settings.

Table 5. Performance of ECAP (mloU %) under different hyperpa-
rameter settings. The A-row displays the deviation from the ECAP
baseline and ECAP™ indicates the removal of random scaling, trans-
lation and flipping in the augmentation module.

no B nle

ECAP™
DAFormer
ECAP

0.053 0.53]0.75 0.97|5 50 100
A -0.6  +0.2|+00 -0.8 [-1.0 +0.2 -0.7 |£0.0 -1.3 +0.0
mloU |68.5 69.3]69.1 68.3|68.1 69.3 68.4|69.1 67.8 69.1

ECAP intensity no: Since ECAP is reduced to DAFormer when
no = 0 it is expected that the performance approaches that of
DAFormer as the value of ng decreases. In Table 5, it can be seen
that nop = 0.053 achieves lower performance than the ECAP base-
line, although still superior to DAFormer. However, no = 0.53
performs slightly better than the ECAP baseline, which indicates
that ng = 1.0 (which out of convenience was used in most experi-
ments of our paper) may not be optimal.

Sampling schedule 5: We analyze the impact of changing the value
of 8 which determines when ECAP sampling comes online during
training. In practice § = 0.75, 8 = 0.9 (baseline) and § = 0.97
implies that ECAP comes online roughly at iteration 3k, 8k and 20k
respectively. In Table 5, it can be seen that ECAP performs well even
when starting sampling very early in training, indicating that do-
ing ECAP augmentation with initially less confident pseudo-labels
doesn’t impede learning. On the other hand, an excessively large
value of (3 results in performance similar to DAFormer, which is ex-
pected since ECAP is reduced to DAFormer as 3 approaches 1.0.
Effective memory bank size nZ<: In Table 5 it can be seen that
nBe = 50 performs slightly better than the baseline n?° = 30,
while nZ¢ = 5 and nZ< = 100 perform significantly worse than the
baseline, although still advantageous in comparison to DAFormer.
We hypothesize that using an unnecessarily small memory bank is
suboptimal since it implies less diversity of the ECAP samples. Con-
versely, an excessively large memory bank implies that less confi-
dent samples are included in the memory bank, which may lower
ECAP’s effectiveness in reducing pseudo-label noise.
Transformations in the augmentation module: In Table 5,
ECAP™ denotes the removal of the random scaling, translation,
and horizontal flipping included in the augmentation module of
ECAP. We note that removing these components doesn’t effect the
performance in this experiment and is not essential to the functioning
of ECAP.

6. CONCLUSIONS

In this paper, we presented ECAP, a data augmentation method
designed to reduce the adverse effect of erroneous pseudo-labels

for unsupervised domain adaptive semantic segmentation. By cut-
and-pasting confident pseudo-labeled target samples from a memory
bank, ECAP benefits training by shifting focus away from erro-
neous pseudo-labels. Through comprehensive experiments, we
demonstrate the effectiveness of our approach on synthetic-to-real
domain adaptation. Notably, we boost the performance of the recent
method MIC with 0.3 mIoU on GTA—Cityscapes and 1.8 mloU
on Synthia—Cityscapes, setting new state-of-the-art performance
in both cases. Our experiments on day-to-nighttime and clear-to-
adverse-weather domain adaptation benchmarks additionally high-
lights a limitation of ECAP. Namely that ECAP may hamper the
learning of context information and generate predictions with less
bias and higher variance following training with aggressive data
augmentation. Therefore, we find ECAP less suitable for adaptation
to domains with e.g., poor visibility, where context information and
a strong bias is pivotal for making accurate predictions. Thanks to
the demonstrated benefits of ECAP on synthetic-to-real UDA, we
hope that ECAP can be part of future UDA methods to further push
the state-of-the-art on this important problem.
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