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A closure model is presented for large-eddy simulation (LES) based on the three-
dimensional variational data assimilation algorithm. The approach aims at reconstructing
high-fidelity kinetic energy spectra in coarse numerical simulations by including feedback
control to represent unresolved dynamics interactions in the flow as stochastic processes.
The forcing uses statistics obtained from offline high-fidelity data and requires only a few
parameters compared to the number of degrees of freedom of LES. This modeling strategy
is applied to geostrophic turbulence on the sphere and enables simulating indefinitely at
reduced cost. The method accurately recovers the energy spectra and the zonal velocity
profiles in the coarse model for three generic situations.

DOI: 10.1103/PhysRevFluids.10.013801

I. INTRODUCTION

The high computational costs involved in fully resolved turbulent flow simulations form a major
challenge for computational methods. The complexity of direct numerical simulations has prompted
the development of simulation strategies that require significantly fewer computational resources.
Among these is large-eddy simulation (LES) in which a filtered description of the dynamics
determines that only the largest, most energetic scales of motion are resolved and an LES (or
subfilter-scale) model is introduced to account for unresolved dynamics and discretization error
[1-3]. Recently, data-driven LES has become an active research field that focuses on using any
available data of the flow to specify models for accurate coarse-grid flow simulations. Machine
learning is commonly used, which has successfully reduced the computational cost while producing
relevant results in various settings. Examples include computing a variable eddy viscosity [4] or
subfilter-scale forces [5], approximating energy spectra [6], and specifying models minimizing the
number of tunable parameters [7]. Despite these advances, a computational overall-best LES model
has not yet been found. Instead, we propose combining 3D-variational data assimilation and LES
to correctly nudge the evolution of coefficients in a spherical harmonics expansion such that the
coarsened flow prediction closely matches reference statistics obtained from high-fidelity data.
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An abstract ideal LES model was put forward by Langford and Moser [8], which minimizes
instantaneous error in the resolved dynamics and yields exact agreement for spatial statistics. The
derived model term is the average subfilter-scale contribution, conditioned to the current configu-
ration of the resolved variables. Finding this conditional average is challenging in practice since
each resolvable configuration corresponds to a distribution of fields with unresolvable small-scale
dynamics. Nonetheless, this ideal model term may be approximated empirically when sufficient
data of the resolved system is available. Estimation of this distribution and, in particular, its mean is
what data assimilation is concerned with [9]. Data assimilation combines observations (data) with
predictions to reduce uncertainties optimally [10]. A Bayesian approach is commonly adopted to
account for uncertainty and subsequently to find a distribution of solutions in a probabilistic setting
[11,12]. The mean of this distribution is the corresponding ideal LES model minimizing errors in
the resolved dynamics. We consider the applicability of data assimilation algorithms in the context
of LES closure and determine new subfilter models using data assimilation theory.

The goal of this paper is to employ ideas from data assimilation in the context of LES for
geophysical applications. Specifically, we propose a method to correct model error in a statistical
sense for fluid dynamical systems in a stationary state. The chaotic behavior of turbulent flows
justifies reproducing flow statistics rather than the actual flow itself. To this end, we present a data-
driven stochastic forcing technique and apply this to coarse numerical simulations of geostrophic
turbulence on a sphere. The forcing stems from the 3D-Var data assimilation algorithm [13,14]
applied to the spectral representation of the solution, of which the measured statistics are assimilated
into the solution in a coarse numerical simulation. The result is a method similar to Fourier domain
Kalman filtering [10] and continuous data assimilation [15,16]. The forcing aims to reconstruct the
time-averaged energy spectrum obtained from high-fidelity data, which is a necessary criterion for
accurate coarse numerical simulations. The method thereby enables performing computationally
cheap numerical simulations that retain key flow statistics while being able to simulate for an
indefinite time. This can be used, e.g., for inexpensively generating accurate ensemble forecasts.
The current study aims to aid the development of efficient simulation strategies by replacing high
resolution with stochastic forcing terms when coherent spatial patterns are contained in the resolved
flow [17,18]. Such approaches have found meaningful applications in recent studies of idealized
ocean models, focusing on subgrid-scale modeling [19-21], uncertainty quantification [22-24], and
data assimilation [25].

The quasigeostrophic equations (QGE) model large-scale ocean dynamics including effects
induced by rotation and, for the multilayer QGE, stratification [26]. The concurrent formation of
large-scale patterns and intricate details in the flow has established the QGE as a test bed for LES and
reduced-order modeling (ROM) of geophysical flows. For example, an approximate deconvolution
method for LES of the single-layer [27] and two-layer [28] QGE have been developed. These
models were found to reproduce large-scale circulation patters while under-resolving the flow at
severely reduced computational cost. A gradient-dependent nonlinearly dispersive regularization
was proposed in [29], which was found to reproduce qualitative flow features on very coarse
grids and accurately predict total energy. Similar results were reported for the extension of this
approach to the two-layer QGE [30]. Two eddy viscosity closure models for ROMs based on
proper-orthogonal decomposition (POD) for the QGE were assessed in [31]. The POD-ROM closure
models serve as a efficient substitute for discarded POD modes and yielded improved accuracy
compared to a standard Galerkin projection method. The ROM approach was recently extended
to the two-layer QGE using POD and neural networks [32], reporting a significant computational
speed-up.

Considerable effort has been made in recent years concerning correcting model error using data
assimilation techniques and data-driven approaches. In [33], the authors compare the model errors
of mechanistic methods to purely data-driven methods and find that hybrid approaches outperform
purely data-driven methods. Examples of hybrid methods are closure models for LES and multiscale
problems, for which machine learning has been applied frequently [34]. Alternatively, model
errors can be controlled by data assimilation. For example, in [35] the model error is minimized
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by adaptively weighing predictions based on their accuracy. Alternatively, model error may be
reduced by assimilating statistics into a dynamical system, as recently proposed in [36]. Data
assimilation has also been applied to LES to optimize model parameters. The work [37] adopts
an ensemble-variational data assimilation approach to optimize a Smagorinsky coefficient and a
forcing term to match measured flow statistics. The study showed that the mean flow and Reynolds
stresses could be accurately approximated, outperforming traditional LES methods. More recently, a
similar approach was employed in [38], optimizing the parameters in a mixed LES closure model to
best approximate reference kinetic energy spectra. To our knowledge, there are no previous studies
that develop LES closure models by continuously assimilating flow statistics into the dynamical
system.

Data assimilation methods are used in the present study to determine the functional form of the
data-driven LES closure model. We consider flows that develop a statistically stationary state and
derive a data-driven model that can be used online, during coarsened simulations. The proposed
method can be specified entirely offline, exploiting already available data. After this preparatory
phase, a stand-alone model is obtained with which the coarsened flow can be simulated indefinitely
at reduced computational costs. This "offline-online" approach differs from so-called "continuous
data assimilation" methods that employ measurements that become available sequentially in time
during the simulations [15].

The offline-online data assimilation approach considered here shows similarities with studies
combining continuous data assimilation with reduced-order modeling. In these approaches, accurate
coarse-grained results are achieved by combining numerical predictions with real-time data. A
forcing term is then included in the prediction as it is integrated in time [39—41]. A recent example
is available in [42] where continuous data assimilation was used to improve the accuracy of
reduced-order models of flow past a cylinder. In such an approach, data for assimilation is received
and treated "on-the-fly," i.e., during the course of a simulation. In particular, [42] investigates the
effects of adding or removing dissipation from the reduced-order model. This approach can be used
to control the kinetic energy of the flow and nudge this in the desired direction. This methodology
was found to improve long-time accuracy. Continuous data assimilation is a preferred method when
time-accurate coarsened predictions are sought. In this paper, the chosen approach of collecting
and processing all data a priori, instead of on the fly, is suitable for data-driven LES of steady
turbulent flow. By working with the entire data set that is available from high-fidelity observations or
simulations, one may incorporate also long-term flow characteristics and optimize the prediction of
particular features such as the spectrum of the turbulence. This sets the currently presented method
apart from continuous data assimilation.

The technique presented in this paper has been applied to the two-dimensional Euler equations on
the sphere [43] and two-dimensional Rayleigh-Bénard convection [44,45], where reference spectra
could be accurately reproduced in coarse simulations. The former led to accurate and stable
long-term dynamics. The latter resulted in accurate average heat flux in the domain and generalized
well to a range of Rayleigh numbers centered around the reference value for which high-fidelity
data were available. In this paper, we demonstrate that this simple model recovers qualitative
features of reference simulations of geostrophic turbulence. We achieve this using a tailored model
to reconstruct reference energy spectra in coarse numerical simulations. These spectra serve as
a key statistic for the flow dynamics, and their reconstruction establishes the feasibility of the
proposed method. We note that other global quantities of interest may be reconstructed similarly
using tailored basis functions [7]. This motivates further development of data-driven LES strategies
using data assimilation methods that approximate ideal models in the sense of Langford and Moser
[8] and serves as a step toward nudging methods for isotropic two-dimensional turbulence and fully
developed three-dimensional turbulence.

The paper is structured as follows. The continuous data assimilation closure model is intro-
duced in Sec. II for dynamical systems in general, where we prove long-time consistency of the
model and discuss model generalization. The application to coarse-grained geostrophic turbulence
is highlighted in Sec. III, detailing the underlying equations in Sec. III A and assessing model
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performance in Secs. I[Il B-III D. In particular, we focus on the rotating Navier-Stokes equations and
two instances of the QGEs. The conclusions are presented in Sec. IV.

II. LES CLOSURE FROM THE 3D-VAR DATA ASSIMILATION ALGORITHM

In this section, we derive the continuous data assimilation-based closure. Subsequently we
provide error estimates and discuss consistency and generalizability.

A. Model derivation

The continuous data assimilation closure model that we propose and test here is based on the
premise that the average energy spectrum of the coarse numerical solution should equal that of
the reference solution, up to the smallest resolvable scale on the coarse computational grid. That
is, the measured energy spectrum is truncated at some coarse resolution N and serves here as the
key statistic to be reproduced in a coarse numerical simulation. This imposes a constraint on the
coefficients of the spectral representation of the coarse numerical solution, leading to the model
derivation via three steps outlined below.

The first step is a modal expansion of the dynamics. A (discretized) fluid dynamical system with
prognostic variable g described by

dg
i L(q), (D
for some operator L(g), can be projected onto a suitable set of basis functions. A basis of
spherical harmonics is adopted in the current study, which is a natural choice for flows on the
sphere. Naturally, different domains necessitate the use of different basis functions. For example,
a Fourier basis can be adopted on a periodic domain [44], whereas a basis obtained from proper
orthogonal decomposition (POD) is suited for general domains [45]. The current basis is denoted

by {Y;u}, where I =0, ..., N — 1 denotes the degree of the spherical harmonic function. Here N
is the adopted resolution. A total of 2/ 4+ 1 basis functions exist for each degree /, denoted by
the order m = —I, ..., [. Projecting the solution onto the basis functions allows for retrieving the

time-dependent coefficients {c;,,} that express the solution in the selected basis. The model will act
on the level of these coefficients. Their evolution is denoted by

dclm
dr
where (-, -) is the spatial inner product, ¢, is the expansion coefficient corresponding to Y,

and c is a vector containing all these coefficients. Similarly, the evolution of the magnitude of the
coefficients is given by

= (L(q), Yim) =: Le(c, [, m), 2)

d|clm|
dr

for an associated operator L,. Note that our approach does not require the actual form of L, or L,,
which in practice will also depend on the adopted discretization and resolution. Instead, we require
only a transformation from the numerical solution in physical space to the expansion coefficients
and vice versa. Respectively, these are defined as ¢;,, = {q, ¥;,,) and g = Y 1.m Clm¥im-

The second step is to formulate the model as stochastic forcing, to represent the unresolved
dynamics and inherent uncertainty. It is observed that the average energy level corresponding to ¢y,
is given by E(|cim|?), which satisfies

E(leiml*) = var(lepm]) + E(leim ) )

—: L,(c, 1, m), 3)

in a statistically stationary state. Thus an accurate energy spectrum can be obtained when achieving
accurate mean values and variances of the magnitudes of the coefficients. We accomplish this by
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including a feedback control term in the evolution of the magnitudes as
1
dlcim| = Li(e, I, m)dt + _L__(/'le — lcimDdt + 07, AWy, &)
Im

where dW,,, denotes Gaussian noise. The additional Ornstein-Uhlenbeck (OU) process arises in the
continuous-time limit of the 3D-Var data assimilation algorithm [13]. The noise term commonly
appears in data assimilation to emulate noisy observations, although the original formulation of the
continuous data assimilation method [15] is deterministic. In the current approach, the noise term
is included to realize an accurate reproduction of the reference variance. Numerical simulations
without a noise term were also studied previously [43,44]. The OU process in (5) is here defined for
each coefficient separately with mean (4, noise scaling o;,,, and forcing strength determined by the
timescale 7;,,, which will be defined in the third step. These are discretized as a prediction-correction
scheme, incorporating the feedback term via nudging (Newtonian relaxation). An entire time step
is then summarized as
tu+l

el = / L(c", 1, m)dt, (6)
t

n

e = e+ 2 am — [e) + cnma )
consisting of a prediction (6) and an ensuing correction (7). The superscripts indicate the time
instances, and AW,’:,:” is drawn from a standard normal distribution. The correction is independent
of the time-integration method in (6), which is not required to be in spectral space. The correction
(7) in the presented approach acts only on the magnitude of the basis coefficients.

The third and final step of the model specification concerns the definition of the forcing pa-
rameters. If a reference mean value and variance for |c;,,| are known, then any stochastic process
that models dcy,, and reproduces this mean and variance will recover the desired energy level for
cim- Below we elaborate on a stochastic process that includes the discretized physical system L, and
simultaneously approximates the mentioned statistics. This implies that the energy spectrum may be
reconstructed while incorporating the original dynamics of the governing equations. In the analysis
of the 3D-Var algorithm, the evolution operators L. and L, are treated as the identity operators [46].
This assumption is appropriate in statistically stationary states and for sufficiently small time step
sizes. Under these assumptions, the evolution of |c;,,| in (6) and (7) can be treated as the first-order
autoregressive (AR(1)) process with mean p;,, drift coefficient (1 — At/7;,) and noise variance
olzm. We assume that high-fidelity snapshots are available a priori from which the reference mean
E(|cim.rer|) and variance var(|c,, ref|) are extracted. In the present study these snapshots are collected
from a high-resolution simulation, as a synthetic substitute for observational data which might be
used in, e.g., numerical weather prediction. To actually attain the measured reference values in the
AR(1) process, we require that 117, = E(|cjm.ref|) and

Ar\?
Oim = v/ var(|Cim,ref 1)1/ 1 — (1 - —) . ®)
Tim
This leaves 1y, as the only free parameter, drastically reducing the number of degrees of freedom
of the model. Here we choose 7, heuristically as the measured correlation time of the high-fidelity
time series of |cjy ref|- The AR(1) process becomes Gaussian noise in the limiting case of 17, <
At and becomes deterministic in the limit of large t;,,. Assuming, as in 3D-Var, that L. and L,
can be regarded as identity operators, the acquired model parameters are obtained independent of
the adopted discretization and coarse resolution. This assumption is used only in the derivation of
the model parameters, while the resulting algorithm actually integrates L to involve the dynamics.
Within this approximation the model parameters depend only on the high-fidelity data. While the
reference high-resolution kinetic energy spectrum defines the forcing, the forcing by itself does
not prescribe the energy levels in the coarse numerical simulations but contributes only to their
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ALGORITHM 1. Prediction-correction scheme (6) and (7) for one time step.

Procedure PREDICTOR-CORRECTOR (¢", L, At, t4im, Oim» Tim)

g« ,flm L(g™)dt > Time integration/prediction
for/=0,...,N—1do
form=-I,...,ldo
et — (@ V) > Projection onto basis vector
r < abs(ét!

¢ < angle(&\™)
AW < sample from N (0, 1)

r<r+ %(“’m —r)+ o AW > Correction of the magnitude
ittt «— r-expig > Reconstruction of the basis coefficient
end for
end for
g = N Y > Reconstruction of the vorticity field
return ¢"*!
end procedure

dynamics. The combination of both the coarse discretization and the forcing terms extracted from
the data determines how the spectral coefficients adapt in time.

The prediction-correction procedure (6) and (7) is summarized in Algorithm 1. Here we assume
that the values for w;,,, o7,,, and 17, are known and that a vorticity field g” at time ¢" is available. The
summation over all available modes in Algorithm 1 can be replaced by a fraction of the modes to
reduce the range of basis function at which the forcing is applied. This is demonstrated in Sec. III C.

The prediction-correction procedure (6) and (7) can be placed in the context of data assimilation
by defining a prediction and an observation. The prediction is obtained by evolving the prognostic
variable according to the coarse-grid discretization. Subsequently, the "observations" are flow fields
with the desired energy spectrum, which depend only on the means ji;, and variances o . In
this light, the nudging approach (7) acts as a correction and can be understood as a steady-state
Kalman-Bucy filter [9] with fixed gain At /t;,. In total, this yields a method that relies both on the
coarse discretization and on the data. The unresolved interactions between the expansion coefficients
are modeled as linear stochastic processes, which also underlie Fourier domain Kalman filtering
[10,47]. In the offline-online approach, all reference data are collected independently first, and
the model parameters are determined before any coarse numerical simulations are performed. This
corresponds to the approach typically embraced in data-driven LES [4].

B. Mean reversion and long-time consistency

The stochasticity in the model perturbs the prediction and serves to attain measured reference
variances of the magnitudes of the spectral coefficients. Despite this randomness in the model,
it is possible under certain conditions to show convergence of these magnitudes to the specified
mean values for the given model implementation. This mean-reverting property of the model is
required for long-time consistency. Namely, if a statistically steady state of interest is adequately
described by selected flow statistics, then it is a desirable model consistency feature to faithfully
reproduce these statistics in numerical simulations. In the present study, the magnitudes of the
spectral coefficients are selected as the key flow statistics to reproduce. Since each magnitude |c;,,|
is treated independently of the others in the correction scheme, it is sufficient to prove convergence
for these magnitudes separately. We therefore study the error evolution from time level n to n + 1.
Recall that w,, is the specified mean value corresponding to |c;,|. We define the error ¢}, at time
level n as the absolute difference between |cy,, | and py,,, thatis, e, = [|c},,| — | We assume that
the operator L, governing the evolution of |¢c;,| is Lipschitz continuous with Lipschitz constant C.
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In that case, we may bound the predicted value |5f’+1 | using
—CAt | = |et,| < CAt, ©)
and in particular we have

&t = tim| < [|ef| = mim| + CAL = €], + CAL. (10)
We assume At < 14,,, which can be realized by choosing At sufficiently small. As a result, 0 <
At/ < 1,and 1 — (1 — At/7,)* < 2At/T1,,. We use these bounds to obtain

n+1

elm HCnJrl

_U’lm|

= Hé”“l + —( = [en 1) + om AWLT =

< Hclml| - /’lei + \/m 2_|A‘}Vlfn+l

U At n+1
< €lm + CAr + Var(lclm,refD 2—|AW,m . (11D
Tim

The last two terms vanish in the limit of small Az, implying a decreasing error from which the
mean-reverting property of the model immediately follows.

C. Model generalization

A common challenge in data-driven modeling is the ability to generalize calibrated models to
different parameter regimes and thereby increase their applicability in practical situations. In the
current section, we discuss the model applicability in different parameter regimes and when high-
fidelity data are not fully available.

The closure model presented in Sec. I A is calibrated using statistical data but does not require
specific values of the relevant dimensionless numbers. Therefore, the model is in principle not
limited to the parameter regime at which it is calibrated. This has been demonstrated using the same
modeling approach for two-dimensional Rayleigh-Bénard convection [44], calibrating the forcing
at Rayleigh number Ra = 10'? and subsequently applying it at different parameter regimes. In that
case, the resulting large-scale forcing was found to produce accurate heat flux estimates, expressed
via the Nusselt number, across two decades of Rayleigh numbers without the availability of data
at these parameter regimes. However, the model performance deteriorated for markedly different
Rayleigh numbers where the flow physics had changed considerably. These results underpin the
model premise to account for unresolved processes in a statistical manner, as well as its capability
to still do so approximately when the flow physics have slightly changed.

The energy spectra in the model calibration are assumed to be measured from high-fidelity data.
If such reliable data of the flow physics are not available, one might instead integrate experimental
data and observations or theoretical statistical estimates such as energy scaling laws. On the other
hand, flow statistics other than the energy spectrum can be used for model calibration. While
the cut-off energy spectrum is chosen as a necessary statistic for coarsened flow descriptions to
adhere to, correctly producing the energy spectrum is not a sufficient criterion to obtain coarsened
numerical solutions that fully agree with the reference solution. Other flow aspects that might
be easier to estimate, e.g., spatially integrated quantities such as the total energy or the total
enstrophy, can also be used for model calibration. Such quantities of interest can be used either
in conjunction with the energy spectrum as a possible way to improve the prediction accuracy or as
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FIG. 1. Instantaneous vorticity snapshots for the RNSE initialized from a filtered high-resolution snapshot
in the statistically stationary state. Left: reference solution (N = 1024), displaying only modes resolvable for
N = 48 for a qualitative comparison with the coarse model results. The solutions at coarse computational grids
are obtained by applying the closure model at N = 24 (middle left), N = 32 (middle right), and N = 48 (right).
The vorticity fields are obtained 40 time units after initializing from the reference statistically stationary state.

a replacement when estimates of the energy spectrum are not available. The model derivation can
be readily extended to act spatially integrated functions of the vorticity. The derivation then follows
analogously as presented in Sec. Il A. Namely, one needs only to change |c;,| into the specified
quantity of interest, where the we require that the quantity of interest is statistically stationary. Then
treating the evolution of the quantity of interest as the identity operator in the model derivation is
still valid for small time steps. The model is then applied to provide corrections to one or more
selected quantities of interest to reproduce corresponding reference mean values and variances.
Once the quantities of interest are selected and a correction is determined by the model, the key
point becomes to enforce this correction for the selected quantities in numerical simulations. In
the case of the energy spectrum, the magnitudes of the Fourier modes are adjusted to obtain the
desired spectrum. For more general quantities of interest defined as integrated functions of vorticity,
a tailored forcing method was recently developed to exclusively control these quantities [7,48]. The
mean-reverting property presented in Sec. II B still holds in this case. Assessing the model when
using general quantities of interest warrants its own study and is left for future work. In the next
section, we evaluate the model when using forcing designed to reproduce reference energy spectra.

III. APPLICATION TO GEOSTROPHIC TURBULENCE

In this section, we demonstrate the continuous data assimilation closure for LES by applying it
to the rotating Navier-Stokes equations (RNSE) and the quasigeostrophic equations (QGEs). The
governing equations and adopted numerical methods are introduced in Sec. IIl A. The model is

= Reference — N =24 N =32 — N =48 —— N = 48 (no model)
100 0.05 L5

102 0.04

1074 0.03

Energy
Latitude
o

10°%

107 / 0.01

10710 0
10° 10! 10* -20 -10 0 10 20

‘Wave number Vorticity value Velocity

0.02

Occurence fraction

FIG. 2. Instantaneous energy spectra (left), vorticity distribution (center), and zonal velocity (right), for the
RNSE. The vorticity fields are obtained 40 time units after initializing from the reference statistically stationary
state.
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= Reference — N =24 N=32 —N=48

— 100
B 0

= S B 10
S = £
s 2 >

S T i
= 4 =
o 2

5 10 15 20 5 10 15 20 5 10 15 20
Wave number Wave number Wave number

FIG. 3. Instantaneous contributions per wave number for each of the terms in (17) for the RNSE. Shown are
the contributions per time unit of the convective term (left), the diffusion terms (center), and the friction term
(right). The quantities are measured 40 time units after initializing from the reference statistically stationary
state.

subsequently assessed in a series of numerical experiments. The first results deal with predictions
initialized from the reference steady state while forcing at all modes, in Sec. III B, and only a part
of the modes, in Sec. III C. Section IIID concerns the model performance using random initial
conditions.

A. Governing equations and numerical methods

The RNSE and QGE are part of a larger family of geophysical fluid dynamical models [49] and
are cornerstones in the study of rotating fluids on a planetary scale. In terms of potential vorticity ¢
and stream function ¥, the QGE on the sphere read [50]

i =1V, q) +v(Aw +20) —aw + f, (12)
(A —yp* )y = o, (13)

Here the Poisson bracket {y, g} governs the advection of ¢, v is the viscosity, & the Rayleigh
friction, and f an external forcing. Nonlinear Coriolis effects are included via u = sin ¢ with ¢ the
latitude on the sphere, while y denotes the Lamb parameter [51]. The Lamb parameter is determined
by the radius of the sphere R and the Rossby deformation length R,

R? gH

Y :41?, WhereRd = T (15)
d
—Reference — N = 32 — N = 48 (no model) —Reference — N =32 — N = 48 (no model) — Reference — N = 32 — N = 48 (no model)
—N=24 —N=48 —N=24 —N=48 —N=24 —N=48

10

100 100

Scaled energy
Scaled energy
Scaled energy

5
L

107°

.
s

10" 10! 10% 10° 10! 0? 10° 10! 10°
Wave number Wave number ‘Wave number

FIG. 4. Dissipation spectra measured from instantaneous snapshots of the RNSE (left) and the QGE with
Lamb parameter y = 10 (middle) and y = 10* (right). The snapshots are initialized from a filtered high-
resolution snapshot in the statistically stationary state.
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FIG. 5. Third-order structure functions per separation distance in radians. The structure functions are
measured for the zonal velocity in an instantaneous snapshot of the RNSE (left) and the QGE with Lamb
parameter y = 10° (middle) and y = 10 (right). The snapshots are initialized from a filtered high-resolution
snapshot in the statistically stationary state.

Here g is the gravitational acceleration, H is the average fluid layer thickness, and €2 is the rotation
frequency of the sphere. We denote the longitude by 6. Without loss of generality, we set the radius
of the sphere to unity, for which the Poisson bracket can be written in coordinates as

1 Yy dg 9y dgq
, ,0)= — ). 16
(V. 4)($.0) COS¢<3¢89 TRT (16)
We refer to [52] for a comprehensive derivation of the QGE on the sphere.
For the QGEs, the evolution of the spectral coefficients (1) can be further expanded as
LC(C, 17 m) - ({w’ q}a Ylm) + <V(A(1) + 2(1))5 Ylm) - ((YC(), Ylm) + <f7 Ylm) (17)

={v,q}, Vi) + (=LA + 1Dy +2v — a)cpn + (f, Yim)-

The last term on the right-hand side of (17) depends on the external forcing. In the high-resolution
simulations of the QGE performed by [50], the forcing is localized in a narrow band around degree
[ = 100 and will therefore lead only to a nonzero contribution of (f, Y},,) for the spectral coefficients
within this band. Further expanding the transport term ({y, ¢}, Y;,,) leads to a complicated expres-
sion in which the transport spectrum can be expressed as a bilinear form on the spectra of ¥ and w
[53]. The triadic interactions of the spherical harmonic modes in the transport term are rigorously
analyzed in [53]. In particular, the most stringent criterion for interaction between different wave
numbers [, [, I3 is that I3 = [, 4+ [;. We note, however, that further expansion of the evolution of
the coefficients (L) or their magnitudes [L, in Eq. (3)] is not necessary for applying the proposed
closure model. Instead, only the transformations from the vorticity field to the spectral coefficients
and vice versa are required.

In the absence of dissipation and external forcing and damping, the dynamics are fully governed
by the convective term {ir, g}. In these cases, the functions given by the integrated powers of
potential vorticity

M@=L¢M (18)

are conserved quantities and are referred to as Casimir functions.

The governing equations are discretized using the spatial Zeitlin discretization [54], which is
suitable for the Navier-Stokes equations [55] and QGE [50] on the sphere. Time integration is
performed as reported by [56], using second-order Strang splitting [57] where viscous dissipation,
external forcing, and damping are treated via a Crank-Nicolson scheme [58] and the convective
term is integrated with a Casimir-preserving time integrator [59]. Combined, these methods provide
a second-order accurate discretization of the dynamics while conserving integrated powers of
vorticity in the absence of external forcing and viscosity. In particular, this implies the conservation
of the total vorticity and the enstrophy (integrated squared vorticity). The high-fidelity numerical
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experiments used here are originally presented by Franken et al. [50]. The reference data are
obtained at high resolution (N = 1024) with external forcing applied at wave number / = 100 to
ensure that a nontrivial statistical steady state is reached.

We consider three test cases representing distinct flow regimes by varying the Lamb parameter
y. We adopt y = 0, recovering the RNSE, y = 10%, and y = 10*. These values are based on
physical parameters relevant for Earth applications [60]. The adopted Rayleigh friction constant
a is chosen as 2 x 1072, which was found to avoid an accumulation of energy in the largest flow
scales while balancing the energy injected by the external forcing [56]. The dissipation v is set at
10~ in dimensionless units. The viscosity should not be regarded as molecular viscosity but instead
represents the subgrid enstrophy dissipation [61].

Including enstrophy dissipation ensures that the flow is fully resolved at the chosen resolution. A
double cascade in the energy spectrum is observed once the statistically steady state is reached,
in agreement with known theoretical and experimental results on two-dimensional turbulence
[56,62,63]. This is visible in the nonzonal modes, which follow scaling laws of —5/3 and —3.
Zonal jets are formed in the solutions due to the rotation of the sphere, leading to zonal modes
dominating the larger scales of motion [50].

The characteristic length scale is defined as the radius of the sphere and leads to a Rossby number
Ro = 1073 for the adopted rotation speed. This value is similar to the Rossby number for oceanic
flows [52]. The characteristic time is defined as the rotational period of the sphere, here chosen
as Q7' =6 x 1073 time units. The characteristic velocity is determined by the maximal zonal
velocity and is approximately 0.5, expressed as characteristic length per characteristic time. For
these parameters, the Reynolds number Re A 5.3 x 10’ is found. It is important to bear in mind that
the Reynolds number is not based on conventional molecular dissipation. The reference simulations
and coarse simulations are carried out with a step size At = 10™* and At = 5 x 1073, respectively.
These values correspond to approximately 60 and 30 time steps per characteristic time. All reference
data are collected from 200 consecutive snapshots in the statistically steady state, each separated by
0.1 time units.

The overall complexity of the employed numerical method is O(N?) per time step for an adopted
resolution N [55]. A significant reduction in computational costs and memory requirements can
therefore be achieved if accurate predictions are possible on coarse computational grids. The
implementation of the closure term introduced in the previous section induces some overhead
computational costs, primarily due to the conversion between the vorticity field and the spectral
coefficients. Coarse resolutions of N = 24, 32, 48 are considered in the next section. At these
resolutions, the overhead costs were timed and typically amount to less than 12%, 16%, and 25%,
respectively, of the runtime of an integration step. The closure yields predictions of relevant accuracy
at very modest costs compared to the high-resolution computations. The simulation speed-up
basically follows the N3 scaling. Since we may successfully simulate the dominant dynamics on
grids that are approximately 21 to 42 times coarser than the grid employed for the reference solution,
the speed-up per time step amounts to a factor around [(1 — 0.25) x 21]3 ~ 3.9 x 10? in the worst
case to [(1 — 0.12) x 42]° =~ 5.0 x 10* times in the best case. These estimates are obtained after
all offline preparations were incorporated. Additionally, the coarse computational grids allow for a
larger time step size than the value adopted on the reference grid, although this further decrease in
computational cost was not considered in the presented cost estimates. Other additional calculations,
such as the computation of the model parameters from the data, take place during the offline step
and do not affect the online computational efforts.

B. Model predictions from initial conditions in the steady state

In what follows, we assess the closure model at coarse resolutions of N = 24, 32, 48, i.e., much
smaller than resolution N = 1024 that is required for high-fidelity simulations. The external forcing
is focused on wave number / = 100, which cannot be resolved explicitly at the selected coarse levels
of resolution. Hence, a model is required to represent the effects of the forcing on the resolvable
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scales of motion. This is illustrated by comparing results obtained with and without the model while
initializing the simulations from a filtered high-resolution snapshot. Furthermore, this emphasizes
the ability of the model to statistically correct errors arising from unresolvable dynamics on coarse
grids. The coarse simulation results are compared qualitatively via instantaneous potential vorticity
snapshots and quantitatively through the average energy spectrum, the vorticity distribution, the
zonal velocity, the contributions of each of the terms appearing in the dynamics (17) per wave
number /, and third-order structure functions of the zonal velocity. The solutions are compared at a
lead time of 40 time units, which corresponds to 8000 coarse-grid time steps or approximately 267
rotations of the sphere.

The contribution of each of the terms in the dynamics relates to the interscale energy transfer.
Specifically, the nonlinear transport term {1, g} ensures interactions between different scales of
motion and strongly influences the interscale energy transfer. The use of coarse computational grids
affects this transfer because of the truncation of the dynamics to the resolvable scales [64]. A correct
transfer of energy between the largest resolved scales of the flow is ideally achieved by including
a closure model [2,65]. The rate of change of the energy per wave number / generally depends on
more than one spectral component and the corresponding phases. Correspondingly, it can be used
as an independent measure to assess the model performance as this rate of change was not explicitly
included in the design of the closure model.

Third-order structure functions are statistical quantities which embody the flux of energy and
enstrophy [66] and have been used to examine these fluxes in atmospheric flows without requiring
measurements of the entire velocity field [67]. In this study, it provides an appropriate statistical
metric for the model performance as it is a two-point correlation in physical space, rather than
spectral space in which the model is derived. We adopt the definition

S3(r) = (lu(x + 1) — u()P)/Ir, (19)

which we compute for the zonal velocity. Here x 4+ r and x are points on the sphere and || denotes
the arc length between the two points. The brackets (-) denote the ensemble average. A linear scaling
in the energy dissipation rate and the distance » was established for S3(r) by Kolmogorov [68] for
three-dimensional turbulence. The scaling rates in two-dimensional turbulence depend on whether
the turbulence is actively forced or decays and whether it is affected by large-scale drag [66].

The results for the RNSE are shown in Figs. 1-3. The instantaneous vorticity snapshots in Fig. 1
reveal that a good agreement of the zonal structures in the vorticity field is obtained with the model
and demonstrate that increasing the resolution of the coarse numerical simulations yields instanta-
neous vorticity fields with increasingly smaller features. By construction of the forcing method,
the small-scale features comply with the desired kinetic energy, as is observed in Fig. 2. This
establishes that the continuous data assimilation closure model presented in Sec. II indeed improves
the energy spectra of the prognostic variable. This contrasts with the no-model results, where the
energy decreases throughout the simulation due to viscosity and damping, as may also be seen in
the instantaneous vorticity distributions and the zonal velocity. The dissipation spectrum in the left
panel of Fig. 4 displays the energy per wave number /, multiplied by /(I 4+ 1) to better quantify
the dissipative scales in the flow. As before, we observe that the model obtains good agreement
with the reference across all resolvable scales, while the no-model simulation clearly deviates from
the reference as previously discussed. The loss of energy in the no-model simulation results in
a vorticity distribution concentrated around zero and a decreased zonal velocity. The individual
contributions to the dynamics of each term in (1) are shown in Fig. 3. These results indicate a
difference between the model dynamics and the reference dynamics caused by the differences in
the energy transfer due to convection, which is attributed to the coarsely discretized dynamics
and ensuing discretization errors. In particular, the energy transfers for N = 32 and N = 48 are
very similar, while the respective vorticity distributions in Fig. 2 show some disparities, suggesting
that the increased accuracy in the vorticity distribution at N = 48 is due to more detailed flow
representation when compared to N = 32. The third-order structure functions of the model zonal
velocity in Fig. 5 show qualitative agreement with the reference across the measured separation
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FIG. 6. Instantaneous vorticity snapshots for the QGE with Lamb parameter y = 10° initialized from
a filtered high-resolution snapshot in the statistically stationary state. Left: reference solution (N = 1024),
displaying only modes resolvable for N = 48 for a qualitative comparison with the coarse model results. The
solutions at coarse computational grids are obtained by applying the closure model at N = 24 (middle left),
N = 32 (middle right), and N = 48 (right). The vorticity fields are obtained 40 time units after initializing from
the reference statistically stationary state.

distances. A loss in zonal velocity amplitude increases as the resolution decreases, which likely
causes the deviation of the structure function from the reference.

The results for the QGE are shown in Figs. 6—11. Comparing the instantaneous vorticity
snapshots (Figs. 6 and 9) shows that the zonal patterns in the vorticity are visible for the QGE
with y = 103 but are difficult to identify when y = 10*. Given the overall agreement in the energy
spectra (Figs. 7 and 10) and the dissipation spectra (Fig. 4), the observed discrepancies are attributed
to phase errors in the coarse model solutions. Similarly, the discrepancies between the reference
solution and the model solutions, as far as diffusion and damping are concerned, are attributed to the
qualitative differences in the instantaneous vorticity field. This is in contrast to the RNSE, where the
latter two quantities were almost exactly reproduced in the coarse model simulations. Additionally,
the zonal velocity is largely independent of the phases of the coefficients and is captured well.
This is also observed in the third-order structure functions in Fig. 5, where the model results
show qualitative agreement with the reference and suggest convergence for increasing resolution.
Extending the model construction and explicitly including the requirement to accurately predict the
interscale energy transfer may further optimize the model parameters and reduce phase errors.

C. Model predictions with partial mode corrections

We now turn our attention to the prediction quality when the closure model is applied to only a
part of the modes. Reducing the number of forced modes reduces the number of model parameters
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FIG. 7. Instantaneous energy spectra (left), vorticity distribution (center), and zonal velocity (right), for the
QGE with Lamb parameter y = 10>. The vorticity fields are obtained 40 time units after initializing from the
reference statistically stationary state.
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FIG. 8. Instantaneous contributions per wave number for each of the terms in (17) for the QG with Lamb
parameter y = 10°. Shown are the contributions per time unit of the convective term (left), the diffusion terms
(center), and the friction term (right). The quantities are measured 40 time units after initializing from the
reference statistically stationary state.

and the required amount of data, which is beneficial when dealing with large data sets. Conversely,
such reduced forcing also implies less control over nudging the flow toward its desired dynamics.
A balance between these two requirements should be found. This is achieved by combining prior
knowledge of the physical system with data-driven modeling and may be desired when aiming to
reproduce a small number of flow statistics [7,36].

The ability of the closure model to reproduce select quantities with fewer forced modes is
demonstrated in two numerical experiments. The results from Sec. III B suggest that the most
energetic modes of the solution are those approximately up to wave number / = 20. Incidentally,
the dominant zonal flow structures are represented by spherical harmonics with m = 0. The first
test performed here employs the model only for the most energetic modes, i.e., modes with
[=0,...,20,m = —I, ..., [ Inthe second test, we exploit the known zonal structure by applying
the model only to all modes / =0, ..., N — 1 with m = 0. Both experiments deal with the RNSE
to clarify the presentation of the results. All other simulation parameters are the same as previously
presented.

The results of the numerical tests are summarized in Figs. 12 and 13, respectively. The results in
Fig. 12 establish that the model reproduces the energy spectrum accurately up to the forced wave
number. A qualitative deterioration of the vorticity distribution is observed compared to the results
in Sec. III B, visible as deviating shapes of the distributions. However, the zonal velocity is still
maintained well despite the reduced forcing. Similar results are obtained for the second test, as
depicted in Fig. 13. Forcing only the zonal modes approximates the reference spectrum reasonably
well and maintains the zonal velocity accurately.

QD ALL Wy ' -"\'t’u
A\

;\\‘

-25 -20 -15 -10 -5 0 5 10 15 20 25

FIG. 9. Instantaneous vorticity snapshots for the QGE with Lamb parameter y = 10* initialized from
a filtered high-resolution snapshot in the statistically stationary state. Left: reference solution (N = 1024),
displaying only modes resolvable for N = 48 for a qualitative comparison with the coarse model results. The
solutions at coarse computational grids are obtained by applying the closure model at N = 24 (middle left),
N = 32 (middle right), and N = 48 (right). The vorticity fields are obtained 40 time units after initializing from
the reference statistically stationary state.
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FIG. 10. Instantaneous energy spectra (left), vorticity distribution (center), and zonal velocity (right), for
the QGE with Lamb parameter y = 10*. The vorticity fields are obtained 40 time units after initializing from
the reference statistically stationary state.

D. Model predictions from random initial conditions

We now assess the model performance after initializing the flow with a random vorticity field. In
such cases, assimilating measured statistics in numerical simulations may accelerate convergence
towards a statistically steady state [36]. This can potentially be applied to reduce the spin-up time for
numerical experiments of climate models [69] and turbulence [70]. The purpose of the current tests
is to assess the generalizability of the model for use on coarse grids. With random initial conditions,
an accurate representation of the flow physics is not guaranteed when enforcing a select number of
statistics [7] and may help identify points of improvement of the model.

Initializing the flow from a random field outside the statistically steady state will yield coarse-
resolution simulations that are unrecognizably different from the actual high-fidelity solution, when
not including a closure model. Namely, not resolving the external forcing leads to discrepancies even
for the large-scale flow features, underlining the necessity of tailored explicit models to reproduce
flow statistics. The initial conditions for each simulation are a random smooth vorticity field. Only
the expansion coefficients of the zonal modes are real-valued, and we require that the initial signs
of these coefficients in the coarse representation agree with the reference, reflecting a setting where
only partial information about the initial condition is given. The simulation parameters are otherwise
as reported in Sec. III A. The instantaneous snapshots of the vorticity are similar to those presented
in Sec. III B and are therefore omitted here. The results in this section are time averages, where the
average is taken when the solutions have reached a statistically steady state. Each result is averaged
over 200 consecutive flow snapshots separated by 0.1 time units.
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FIG. 11. Instantaneous contributions per wave number for each of the terms in (17) for the QGE with Lamb
parameter y = 10*. Shown are the contributions per time unit of the convective term (left), the diffusion terms
(center), and the friction term (right). The quantities are measured 40 time units after initializing from the
reference statistically stationary state.
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FIG. 12. Instantaneous energy spectra (left), vorticity distribution (center), and zonal velocity (right), for
the RNSE when only applying forcing to wave numbers [ = 0, ..., 20. The vorticity fields are obtained 40
time units after initializing from the reference statistically stationary state.

The results for the RNSE are shown in Figs. 14 and 15. The energy spectra depicted in the
left panel of Fig. 14 indicate that the mean energy spectrum of the reference solution is accurately
reproduced in all coarse numerical simulations, up to the smallest resolvable scales at the chosen
resolution. The average zonal velocities are shown in the right panel of Fig. 14 and illustrate that
the reference velocity profiles can be captured to a large extent on all considered coarse grids.

Despite the qualitative agreement between the reference and coarse numerical solutions, de-
viations may be observed in the zonal velocity in Fig. 14. These deviations are localized near
the poles and around 0.2-0.6 in latitude. Comparison with the results in Sec. III B suggests that
this is caused by the random initial condition. In particular, we attribute this discrepancy to the
expansion coefficients of the zonal modes having the wrong sign. The agreement of the coarse-grid
energy spectra with the reference spectra imposes a constraint only on the magnitudes of the basis
coefficients but not on their phases. Despite including the correct coefficient signs in the initial
condition, fully complying with the reference solution, the model does not explicitly enforce this
correspondence during the subsequent numerical simulations. As a result, this appears to induce the
observed discrepancies near the poles.

The average zonal velocity profiles exhibit a modest grid dependence. This illustrates that
once the coarse grid forcing is obtained, the corresponding closure is quite independent of the
adopted discretization method and resolution: this can be traced back to the adopted 3D-Var
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FIG. 13. Instantaneous energy spectra (left), vorticity distribution (center), and zonal velocity (right), for
the RNSE when applying forcing only to all resolvable zonal modes (m = 0). The vorticity fields are obtained
40 time units after initializing from the reference statistically stationary state.
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FIG. 14. Average energy spectra (left), vorticity distribution (middle), and zonal velocity (right) for the
RNSE. The results are averaged over 200 snapshots.

approach in which the L. and L, operators are assumed to be identity operators. Dependence on
the adopted resolution is arguably a desirable feature of a closure model. Typically, in LES the
length scale associated with the closure is taken as the mesh size [1]. This implies that increased
spatial resolution diminishes the closure term [71,72]. Ultimately, adopting higher resolutions also
decreases the effects of truncation and discretization errors, thereby decreasing the closure term and
enabling approaching high-fidelity simulations as a consistency feature. Restoring some dependence
on the discretization and resolution by extending the data assimilation algorithm may remove the
grid-independence of the coarse-grid predictions. This is subject of ongoing research.

The average contribution of each of the terms in the dynamics is depicted in Fig. 15. A
comparison between the reference solution of the RNSE and the corresponding coarse-grid model
solutions shows that the convective terms at N = 24 deviate significantly from the reference. The
magnitudes at lower wave numbers (I < 15) are underestimated at resolutions N = 32 and N = 48.
This indicates that more stringent constraints on the coefficient evolution may help improve the
model. The third-order structure function for the zonal velocity is depicted in the left panel of
Fig. 16. The model results are qualitatively similar to the reference, although no robust convergence
is found. The results indicate that the velocity correlations at small separations are well captured
and that the predicted correlations decrease in quality at larger separation distances.

The test cases for the QGE at y = 103 (Figs. 17 and 18) and y = 10* (Figs. 19 and 20)
display similar qualitative results as observed for the RNSE. The average energy spectra show good
agreement up to the smallest resolvable scales, as designed, for both test cases at all adopted coarse
resolutions. Good agreement is observed for the average zonal velocity, especially capturing the
tapering profile in the latitudinal direction. Similar to the results of the RNSE, some deviations
of the zonal velocity are observed near the poles which are again attributed to phase errors in
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FIG. 15. Average contributions per wave number for each of the terms in (17) for the RNSE. Shown are
the contributions per time unit of the convective term (left), the diffusion terms (center), and the friction term
(right). The quantities are averaged over 200 snapshots.
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FIG. 16. Third-order structure functions per separation distance in radians. The structure functions are
measured for the zonal velocity in an instantaneous snapshot of the RNSE (left) and the QGE with Lamb
parameter y = 103 (middle) and y = 10* (right). The snapshots are initialized from a random smooth vorticity
field.

the instantaneous vorticity fields. This reflects that a correct energy spectrum is a necessary but
not sufficient modeling criterion. This suggests that imposing further model constraints might be
desirable to improve predictions of these and higher-order moments, e.g., by employing statistical
quantities such as the energy rate of change [64,73]. This is further highlighted in the comparison
between the contributions of each term in the dynamics for the two QGE cases, as shown in
Figs. 18 and 20. The reference values of the magnitudes of the convective term are not followed
as closely as observed for the RNSE. In particular, for y = 10 the magnitude of the convective
terms is generally underestimated. For y = 10%, these magnitudes are somewhat underestimated at
the largest scales (up to wave numbers 4) and overestimated at the smaller scales. As observed for
the RNSE, the third-order structure functions obtained with the model are in qualitative agreement
with the reference. Convergence to the reference is observed at the smallest separation distances,
while the deviation from the reference becomes increasingly similar at larger separations.

The numerical experiments have been repeated for fully random initial conditions, without
enforcing the correct signs of the zonal mode coefficients, and compared to the results when
initializing with the correct signs. In those cases, the energy spectrum was accurately reproduced
while the zonal velocity prediction deteriorated. At the same time, the structure functions showed a
slight decrease in accuracy while not changing qualitatively. This underlines that the model fulfills
its design criterion of reproducing kinetic energy spectra. However, the sensitivity of the prediction
of other flow statistics to the adopted initial conditions suggests that the energy spectrum is a
necessary, but not sufficient, design criterion and that imposing additional statistical constraints
may be desirable.
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FIG. 17. Average energy spectra (left), vorticity distribution (middle), and zonal velocity (right) for the
QGE with Lamb parameter y = 103. The results are averaged over 200 snapshots.
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FIG. 18. Average contributions per wave number for each of the terms in (17) for the QGE with Lamb
parameter y = 10°. Shown are the contributions per time unit of the convective term (left), the diffusion terms
(center), and the friction term (right). The quantities are averaged over 200 snapshots.

IV. CONCLUSIONS

In this work, a data-driven stochastic closure for turbulence modeling in large-eddy simulation
(LES) was presented based on the 3D-Var data assimilation algorithm. The closure is motivated by
the theoretical connection between so-called ideal LES and data assimilation. The added feedback
forcing term is designed specifically to approximate the energy spectrum and is based on reference
flow statistics obtained from offline high-resolution simulations. The corresponding closure model
has few tunable parameters, and the reduced computational costs enable fast computation of
stochastic ensemble predictions for indefinite times.

The proposed model was applied to three generic cases of geostrophic turbulence, described
by the rotating Navier-Stokes equations and the QGEs on the sphere. The closure was found to
accurately recover the energy spectra on several coarse computational grids, establishing the desired
spectrum-reconstructing property of the model. As a result, qualitative agreement was observed
in the key flow statistics when applying the model after initializing the flow from known initial
conditions. Initialization from random initial conditions yielded satisfactory results but indicated at
the same time that more stringent constraints may be beneficial to obtain stand-alone models with a
wider range of applicability.

Further model development based on data assimilation techniques is ongoing. Several exten-
sions of the currently presented model can be investigated, including, e.g., explicitly coupling the
Ornstein-Uhlenbeck processes using covariance estimates, employing Bayesian modeling to specify
the forcing parameters, including additional statistical information such as interscale energy transfer
in the nudging procedure, or explicitly taking into account discretization effects by employing an
ensemble Kalman filtering approach.
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QGE with Lamb parameter y = 10*. The results are averaged over 200 snapshots.
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