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Automation transformed various aspects of our human
civilization, revolutionizing industries and streamlining
processes. In the domain of scientific inquiry, automated
approaches emerged as powerful tools, holding promise
for accelerating discovery, enhancing reproducibility, and
overcoming the traditional impediments to scientific
progress. This article evaluates the scope of automation
within scientific practice and assesses recent approaches.
Furthermore, it discusses different perspectives to the
following questions: where do the greatest opportunities
lie for automation in scientific practice?; What are the
current bottlenecks of automating scientific practice?;
and What are significant ethical and practical conse-
quences of automating scientific practice? By discussing
the motivations behind automated science, analyzing the
hurdles encountered, and examining its implications, this
article invites researchers, policymakers, and stakehold-
ers to navigate the rapidly evolving frontier of automated
scientific practice.

automation | computational scientific discovery | metascience |
AI for science

‘‘Though the world does not change with a change of paradigm,
the scientist afterward works in a different world.’’

- Thomas S. Kuhn, The Structure of Scientific Revolutions

Automation is transforming every domain of scientific inquiry,
from the study of functional genomics in biology (1, 2) to
the derivation of conjectures in mathematics (3, 4). Recent
advances in automation are accelerating hypothesis generation
in chemistry (5–8), material discovery in materials science
(9, 10), and theory development in psychology (11). These break-
throughs are not only garnering attention but also an uptick in
funding and prizes dedicated to the automation of scientific
practice (12–14). Furthermore, concurrent advancements in AI,
software, and computing hardware are setting the stage for
even more extensive automation within the scientific process
(15–17).

The impact of automation in industry serves as a par-
allel to its potential in science. In the early 20th cen-
tury, industrial automation began with mechanized assembly
lines, revolutionizing manufacturing efficiency and output. The
introduction of robotics and computer-aided manufacturing
marked another leap, enabling precision and consistency pre-
viously unattainable by human labor. Today, industry-wide
automation facilitates not just cost-efficient mass production,
but also customized, adaptable, and intelligent manufacturing
processes. This evolution demonstrates the capacity of automa-
tion to radically redefine operational paradigms.

Drawing parallels to scientific practice, one can anticipate
a similar trajectory of profound change, where automation

could accelerate discovery, reshape research methodologies,
and redefine the very nature of scientific inquiry. At the same
time, automation in industry had significant impacts on workers
and the kind of products that dominate the marketplace. It
is thus important to consider parallel impacts in the scientific
setting which may have negative consequences for science and
society.

In this perspective, we evaluate what automation should
and can achieve for scientific practice. In doing so, we outline
the current state of science automation, drawing on recent
examples from different domains of science. Furthermore, we
examine technological advancements that open new avenues
for automation in science and discuss current bottlenecks.
Finally, we highlight a selection of practical and ethical consid-
erations and discuss how automation may lead scientists to
work in a different world, one where traditional methodologies
are redefined and new meta-paradigms for science emerge.

What Are the Bounds of Automating Scientific
Practice?

Scientific practice can be defined as the set of methods and
processes used by scientists to acquire knowledge about the
natural world. Automation, in its broadest sense, refers to
the use of technology to perform tasks with minimal human
intervention. In the context of scientific practice, automation
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specifically denotes the use of technological tools and systems
to carry out scientific tasks or processes traditionally performed
by human scientists.

The bounds of automation within scientific practice hinge on
at least two questions: first, is there a desire and justification for
automating a given scientific practice? This question touches
upon goal-related bounds—the alignment of automation with
the overarching goals of science. Second, what factors char-
acterizing a scientific practice influence the feasibility of au-
tomating that practice? This aspect focuses on the technological
bounds, assessing the practicality and potential constraints of
applying automation in science.

Goal-Related Bounds: What Automation Should (Not) Achieve.
Science is driven by normative and epistemic goals. Here, we
discuss arguments for and against automation serving these
goals.

The normative goals of science involve ethical, moral, and
societal values guiding both basic and applied science. One
such goal may be to enable cheap and fast discoveries that
advance human health. Along these lines, automation can
serve to yield faster scientific discoveries with fewer resources.
This is particularly desirable in the applied sciences, e.g., for
identifying novel drugs or treatments. Thus, automation can
aid scientific practice if societal needs are clear and research
questions are well defined. However, the process of identifying
a research question itself requires considering societal needs
or the interests of the scientific community. As noted in the
Opportunities section below, generative AI can integrate large
bodies of literature to identify societally and scientifically im-
portant gaps in our knowledge that are worth filling. However,
since the relevant normative considerations inherently depend
on evolving human contexts, it can be argued that humans
ought to always be involved in and monitor the degree to which
scientific practices achieve these objectives (18). Consequently,
full automation in these areas might not only be impractical
but also undesirable, underscoring the indispensable role of
human scientists in addressing the normative dimensions of
science.

The epistemic goal of science is to understand the natural
world through description, prediction, explanation, and control.
As discussed in the sections that follow, advances in machine
learning can aid in automating the description or explanation of
natural phenomena. Such automation can help reduce human
errors and biases, leading to more accurate predictions and bet-
ter control of natural phenomena. Even more so, automation
may help bypass or augment the cognitive capacities of human
researchers (19), enabling degrees of prediction and control
unachievable for human cognition alone. For example, machine
learning models can generate millions of proposals for novel
materials that lie beyond human intuition (9). Yet, the increase in
precision achieved through automation presents an epistemic
dilemma, as automation can limit human understanding. In the
basic sciences, advancement of human understanding may be
more desirable than merely improving predictability through
automation. The complexity of a machine learning model, for
example, might enhance its ability to accurately predict new
stable materials, but concurrently obscure the process by which
these predictions are made for human scientists. This scenario
illustrates a potential conflict between the scientific objectives
of enhancing prediction, on the one hand, and enabling hu-
man understanding, on the other (Practical Implications). This
suggests keeping human scientists involved in the scientific
process rather than minimizing their involvement. Meanwhile,
in applied sciences and engineering, the focus might shift
toward maximizing prediction and control, providing a stronger
case for automation of scientific practice.

Technological Bounds: What Automation Can (Not) Achieve.
The technological bounds of automation hinge on the difficulty
of automating scientific tasks. Here, we discuss four factors
characterizing this difficulty (Fig. 1). These factors indicate both
opportunities and barriers to automation, thereby guiding the
identification of areas within scientific practice where automa-
tion can be most effectively implemented or where it may face
challenges.

The first factor concerns the availability and quality of inputs
that a scientific task requires. Some tasks, such as identifying
a research question, rely on diverse and sometimes subjec-
tive inputs, including peer opinions, news articles, or funding
announcements. Such inputs may not be trustworthy, widely
accessible, or structured for machine processing, posing a
challenge to automation.

Another limiting factor for automation is the computational
complexity of algorithms available to perform a scientific task.
For example, identifying an appropriate experiment for testing
a research question may require taking into account numerous
decision variables (e.g., internal validity, resources needed,
novelty) and searching an exponentially increasing space of
possible experimental paradigms, which can be computation-
ally intractable.

A related, yet often overlooked, factor influencing the au-
tomation of scientific tasks is the complexity of requiredhardware
engineering. As stated in Moravec’s paradox, sensorimotor
tasks, like executing invasive brain recordings or social ex-
periments, require advanced solutions in robotics to facilitate
automation, which can pose more significant challenges to
automation compared to cognitive tasks (20).

Finally, some tasks are difficult to automate because of the
subjectivity of the task goal. Some scientific goals cannot be
easily turned into a well-defined objective, which is required to
communicate it to a machine. For instance, choosing between
scientific models can be a matter of personal preference (21).

While the four factors collectively dictate the automatability
of scientific tasks, they can be considered interdependent. For
example, the automated discovery of scientific equations long
relied on search methods with high computational complexity,
such as evolutionary computation or brute force search, to
identify a set of equations that best describes a given dataset
(22, 23). However, the ability to collect large datasets cheaply,
paired with improvements in computing hardware, enables the
application of “data-hungry” but computationally tractable ma-
chine learning algorithms for equation discovery (24–27). This
approach reduces computational complexity, illustrating how
enhancements in one factor can compensate for limitations in
another.

Automation in Current Scientific Practice

Existing approaches to automating science target tasks
with readily available inputs, computational complexity, and
hardware demands that align well with current technologi-
cal capabilities and clear task goals. Accordingly, efforts at

e.g., Experiment Identification

Hardware Complexity

Subjectivity of 
Task Goal

Availability and 
Quality of Inputs

e.g., Engineering and Maintenance of 
Experimentation Equipment

e.g., Problem Identification e.g., Model Selection

Computational Complexity

Scientific Task

Fig. 1. Factors determining the technological reach of automation in scien-
tific practice.
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automatization in science have mostly been confined to tasks
characterized by clearly specified objectives and well-defined
subtasks, which include instances of quantitative hypothesis
generation, experimental design, data collection, and quanti-
tative analysis and inference. While covering all advances is
out of the scope of this article, we highlight a subset of these
approaches, focusing on cases that facilitated novel discoveries.

Hypothesis Generation. Hypothesis generation is the develop-
ment of testable statements that are based on observations, ex-
isting knowledge, or theory. Advances in automated hypothesis
generation were primarily driven by two factors: improvements
in computer algorithms, and the availability of large datasets.

Initial automated hypothesis formation approaches relied
on symbolic reasoning systems. For example, in organic
chemistry, logical deduction based on existing knowledge
was employed to formulate hypotheses about the chemi-
cal constituents of body fluids (28). Furthermore, quantum
simulations, facilitated through cloud computing, became the
backbone of hypothesis generation for materials properties
(29, 30). The development of efficient search algorithms further
expanded the scope of automated hypothesis formation to
areas with large hypothesis spaces (3). For instance, hypoth-
esis generation in mathematics leveraged efficient machine
learning algorithms to identify novel conjectures about fun-
damental constants (3). Finally, deep learning enabled more
breakthroughs in chemistry. A landmark achievement in this
area is the nobel-prize winning AlphaFold, which predicts 3D
protein structures from amino acid sequences, facilitating the
development of drugs (6).

The availability of large datasets led to further advances
in automated hypothesis formation. One example is the field
of biomedicine, where large gene databases led to a surge
in hypothesis generation with computational methods, e.g.,
using data mining and network analysis to propose genes that
may be linked to diseases (31, 32). Similarly, existing materials
databases provided sufficient information for machine learning
methods to generate over 2.2 million proposals for novel
materials that, so far, escaped human intuition (9).

Experimental Design. The problem of automated experimental
design is to systematically identify the most informative
experiment to address a particular hypothesis or scientific
question. The informativeness of an experiment can be
evaluated in various ways. Some automated experimental
design methods are geared toward identifying the experimental
conditions that minimize the influence of nuisance variables–
experimental variables that are not of interest but can pollute
the informativeness of intended experimental manipulations
(33, 34). Other methods aim to find experimental conditions
that are well suited to identify a scientific model of interest
(35–37). This problem of experimental design is closely related
to the problem of active learning in machine learning research
(2, 38–40), which seeks to identify data points that can best
inform a machine learning model when included as training
data. A prominent active learning method used for scientific
practice is Bayesian optimal experimental design, which
has been successfully applied in various fields, including
psychology (36, 37, 41, 42), neuroscience (43), physics (44, 45),
biology (46, 47), chemistry (48, 49), materials science (50–52),
and engineering (53). For example, in the domain of psychology,
Bayesian optimal experimental design led to the discovery of
novel models of how humans discount the future relative to
the present (54).

While automated experimental design methods can fa-
cilitate efficient data collection and strong inferences, their

efficacy can be compromised if the underlying assumptions
are violated or if the scientific model is incorrectly specified
(55–57). This limitation led to unexpected findings in simula-
tion studies, where random sampling of experimental condi-
tions outperformed theory-driven approaches to experimental
design (38, 58), and where uniform sampling outperformed
adaptive approaches in learning continuous relationships (59).

Another limitation of current approaches to automated
experimental design pertains to their scope, as they focus on
navigating a predefined space of experimental manipulations.
Exploring novel research directions, however, often involves
identifying completely new experimental manipulations (60).

Data Collection. Data collection, often a time-consuming and
costly aspect of empirical research, is a significant bottleneck
in scientific discovery. Accordingly, automated tools for data
collection emerged as some of the most impactful innovations
in accelerating the pace of science. These tools span a wide
range of applications and fields: fitness trackers revolutionized
public health studies (61), continuous glucose monitors are
providing critical insights into nutrition and diabetes research
(62), and automated weather stations enhanced meteorological
predictions (63). In addition to providing streams of real-
time data for ongoing analysis, these automated systems
can minimize human observation and experimenter biases.
Experimenter bias occurs when the beliefs, expectations, or
preferences of the researcher unconsciously influence the
conduct or outcome of an experiment. Automating data col-
lection in animal studies helped to eliminate experimenter bias,
resulting in refutations of previous results, such as the evidence
for statistical learning ability in newborn chicks (64). A par-
ticularly noteworthy advancement in the behavioral sciences
was the adoption of web-based experiments, especially during
the COVID-19 pandemic. Online platforms and interfaces for
recruiting and conducting experiments did not only facilitate
the collection of behavioral data at a time when traditional lab-
based studies were impractical, but they also broadened the
scope and diversity of participants (65–67). Automating data
collection also generated opportunities for automating other
elements of behavioral research, such as adopting adaptive
experimental designs that change based on the responses of
participants (68) or collecting larger datasets that can support
the use of machine-learning algorithms (11).

Statistical Inference. The automation of statistical inference
transformed dramatically from the era of manual compu-
tations, a reality echoed in old statistical textbooks filled
with computation-simplifying shortcuts. The introduction of
computers altered statistical methodologies, sometimes even
leading to their replacement by machine learning techniques.
For example, modern statistical inference engines, like Stan,
leverage techniques such as Markov Chain Monte Carlo (MCMC)
for efficient sampling of model parameters (69). Tools for
likelihood-free inference enable the analysis of statistical mod-
els that are not mathematically tractable. Furthermore, frame-
works such as Bayesian Workflow (70) and platforms such
as the Automatic Statistician (71) are streamlining complex
processes like Bayesian inference and the construction of tradi-
tional statistical models. The automation of statistical inference,
however, is mostly confined to the deduction of new knowledge
based on prespecified statistical models.

Scientific Inference and Model Discovery. Scientific inference,
unlike statistical inference, involves generating hypotheses
about observations (abduction) and generalizing from observa-
tions to laws or broader theories (induction). The automation of
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scientific inference is termed computational scientific discovery
and has so far centered on identifying models or laws that
elucidate specific phenomena (22, 23, 72). One instance of
computational scientific discovery involves the identification
of equations (“symbolic regression”) to uncover quantitative
laws governing a given dataset. Early efforts relied on heuristic
search techniques to rediscover insights from mathematics
(73, 74) or physics (75). Advances in machine learning and high-
performance computing facilitated equation discovery, building
on reinforcement learning (26), genetic algorithms (25, 76, 77),
MCMC sampling (78), mixed-integer nonlinear programming
(79), or gradient-based search techniques (24, 27, 80, 81).
However, most forms of computational model discovery are
limited to the rediscovery of existing knowledge. Possible
exceptions include the discovery of scaling laws and boundary
equations in plasma physics (82) and novel models of human
decision-making (11).

Closed-Loop Automation Spanning Multiple Scientific Prac-
tices. Demonstrations of successful closed-loop automation in
empirical research—implementing iterations between exper-
imental design, data collection, and model discovery—mark
a significant progression for automated scientific practice.
One pioneering example is the robot scientist Adam (Fig. 2A),
which was the first fully automated machine to discover novel
scientific knowledge (2). Adam investigated the functional ge-
nomics of the yeast Saccharomyces cerevisiae and discovered the
function of locally orphan enzymes—enzymes known to be in
yeast but for which the gene(s) encoding them were unknown.
The successor of Adam, Eve, is a robot scientist designed for
early-stage drug development (39), which identified chemical
compounds that outperformed standard drug screening. Eve’s
most significant discovery is that triclosan (an antimicrobial
compound commonly used in toothpastes) may aid against
malaria (39, 83, 84). Another example of a closed-loop discovery
system in biology is Wormbot-AI, a platform designed to
autonomously conduct experiments on the longevity of worms,
capable of testing thousands of interventions annually (85, 86).

Complete automation also gained momentum in materials
science and chemistry, where efforts are focused on integrat-
ing hypothesis generation, decentralized experimentation, and
cloud-based decision-making. For instance, modular robotic
platforms, driven by machine learning algorithms, were used
to optimize material properties by varying synthesis conditions
(87–89). One notable example is A-Lab (Fig. 2B), an autonomous
laboratory for the solid-state synthesis of inorganic powders,
which leverages a combination of active learning and machine
learning models trained on the literature, to propose and
synthesize novel material candidates (10).

Additionally, behavioral research became amenable to
closed-loop automation with the ability to collect data via
online experiments. Open-source tools like AutoRA (90) fa-
cilitate closed-loop research by integrating automated model
discovery, experimental design, and experimentation in
empirical research. AutoRA effectively interfaces with web-
based platforms for automated data collection, integrating the
acquisition of behavioral data from human participants. In
addition to facilitating the discovery of novel behavioral phe-
nomena and cognitive mechanisms, AutoRA served as a com-
putational testbed for philosophy of science, exposing cases
where random experimentation outperforms model-guided
experimentation (38).

Finally, researchers introduced a Large Language Model
(LLM)-based agent for automating empirical machine learning
research, from idea development and experimental design
to execution and data analysis, e.g., for improving existing

machine learning models (91). Notably, this system also lever-
aged LLMs to automate the writing and peer review of the
resulting research manuscript, with the computational cost of
one article estimated to be just 15 USD.

Despite their potential to accelerate scientific discovery, it is
important to recognize that the pioneering examples of closed-
loop automation are currently confined to specific, automatable
research steps and operate within a constrained range of
experimental design and model spaces as delineated by human
researchers (cf. Fig. 2).

Future Opportunities

Existing approaches for automating scientific practice primarily
target tasks for which a) high-quality data is available, b)
the computational complexity can be addressed by current
algorithms, c) hardware complexity is manageable, and d)
task goals are well-defined (cf. Fig. 1). The most promising
prospects for future automation in scientific practice are found
in tasks traditionally limited by human cognitive capacities. This
includes areas requiring the processing of large volumes of
high-dimensional data or exhaustive literature searches. In this
section, we highlight a few technological trends that promise to
push the boundaries of science automation along these lines.

Data Collection, Standardization, and Sharing. Advancements
in cost-effective data collection, standardization, and sharing
significantly boost the automatability of scientific practices,
particularly those dependent on empirical data. For example,
in the behavioral sciences, the utilization of crowd-sourced
experimentation platforms like Amazon Mechanical Turk and
Prolific revolutionized the efficiency of behavioral data collec-
tion. Additionally, LLMs that can mimic human behavior were
proposed as proxies for participants, aiding in the acquisition
of large-scale datasets (92). Once acquired, such large—yet
cost-efficient—datasets can empower data-hungry machine
learning algorithms, enabling them to uncover novel, and more
precise models of human behavior (93–96). Large-scale data
collection, however, still bears significant hardware challenges,
e.g., for collecting biological samples from a large number of
participants (Future Challenges). Nevertheless, the data quality
needed for automated analysis techniques should be comple-
mented by data standardization and sharing.

Scientific data-sharing platforms, such as the Open Science
Framework, facilitated the availability and accessibility of data
needed for automated analyses and computational discovery.
The potential of data sharing and standardization is perhaps
best illustrated in materials science, where databases for
stable materials enabled the prediction of large quantities of
new materials (9). Other scientific domains profit from similar
efforts. For example, in neuroscience, archives like DANDI,
OpenNeuro, DABI, and BossDB allow researchers to share
data using community standards (97), such as BIDS for neural
data (98).

Combining Data-Driven and Knowledge-Driven Discovery. A
particularly promising approach to automating scientific discov-
ery is the integration of preexisting human knowledge into the
discovery process. Traditionally, data-driven discovery methods
operated with minimal prior knowledge about the specific do-
main of scientific inquiry. This pure data-driven approach makes
such methods particularly susceptible to noisy data. However,
recent work demonstrates that incorporating prior theoretical
knowledge can significantly aid in recovering scientific models
from noisy datasets. For example, Bayesian symbolic regression
exhibits greater efficacy in recovering equations from noisy
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Fig. 2. Closed-loop automation systems. (A) Adam for functional genomics. (B) A-Lab for materials science. (C) AutoRA for behavioral sciences. Dashed boxes
list knowledge and processes provided by human researchers.

data when given priors about scientific equations extracted
from Wikipedia (78, 99). Similarly, embedding prior knowledge
in the form of general logical axioms proved instrumental in
rediscovering complex scientific laws, including Kepler’s third
law of planetary motion and Einstein’s relativistic time-dilation
law (79, 100). Furthermore, experiments with the BacterAI,
which uses active learning for the automated study of microbial
metabolisms, have demonstrated the advantage of leveraging
relevant prior knowledge (101). Specifically, when the metabolic

model trained on one bacterial species was retrained for the
species of interest, it more efficiently discovered its metabolic
model compared to starting the learning process from scratch,
despite the two species differing in their metabolic capabilities.
These examples highlight the benefits of combining data-
driven and knowledge-driven approaches for automated model
discovery.

The benefits of knowledge-driven discovery are, however,
fundamentally limited by the quality of prior knowledge. For
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example, Bayesian adaptive experimentation can be misled if
prior knowledge mischaracterizes the data (102, 103). Thus,
data-driven approaches to computational model discovery
become particularly beneficial when dominant scientific models
in the empirical sciences are more informed by (wrong) theory
versus data. This is evident in computational models of human
reinforcement learning, which predominantly rely on classic
machine learning algorithms (104). Recent work demonstrated
that a data-driven model discovery can uncover novel reinforce-
ment learning models that better explain human learning than
traditional models (95).

Finally, a notable area of progress in automated model dis-
covery is the analysis of high-dimensional datasets, such as fluid
dynamics captured in video format, through reduced-order
modeling. This process involves learning a low-dimensional
representation of the dynamics inherent in complex data and
then decoding the governing equations of these latent dynam-
ics (105–108). Similar approaches were developed to automate
the discovery of neural data embeddings correlating with be-
havioral dynamics (109). These approaches promise to extend
the reach of automated model discovery to high-dimensional
naturalistic datasets. beyond experimental control.

Generative AI and LLMs. Generative AI and LLMs offer paths
toward automating scientific practices that have historically
been challenging due to their computational complexity and
qualitative nature (8, 16, 91, 110). Among these are the synthesis
and integration of literature, and documentation of findings.

Researchers argued that LLMs show promise in enhancing
literature reviews, a task currently limited by the cognitive con-
straints and language barriers of human scientists (111, 112).
Whereas humans may only be able to parse and integrate
a few hundred articles into a literature review—the scope of
which is heavily influenced by the expertise and biases of the
researcher—LLMs may accomplish literature synthesis in the
order of thousands or millions of articles. Critically, LLMs can
take into account articles written in different languages, thus
helping to counter the dominance of Western perspectives in
scientific literature. Thus, LLMs can assist in extending or even
bypassing human researchers’ cognitive limitations. A notable
application of LLMs for the purpose of literature synthesis
is Elicit, which utilizes LLMs trained on paper abstracts to
support and help researchers extract relevant information
from the scientific literature (112). Another instance of such
assistance is an LLM-based “co-scientist” for chemical research,
which improved the planning of chemical syntheses based on
information available on the internet, and aided in the navi-
gation of extensive hardware documentation (8). Additionally,
BrainGPT—an LLM fine-tuned to the neuroscience literature—
demonstrated the capability to outperform human experts in
predicting the results of neuroscience experiments (113).

Combined with their capability for literature synthesis, LLMs
can foster the discovery of new research directions and hy-
potheses (91). Along these lines, LLMs have the potential to
expand experimental design spaces, addressing a common
bottleneck in automated scientific practice. While traditional
automated experimentation is confined to researcher-defined
variables (cf. Fig. 2), LLMs could identify novel experimental
variables of interest, thus broadening the scope of scientific
inquiry. However, it can be argued that LLMs risk rediscovering
already known hypotheses and experiments (18).

Once experiments are designed, LLMs may aid in the
balanced documentation and communication of the research
study, including the automated documentation of research
code (114, 115). Apart from aiding in the construction of
research articles, LLMs can enable automated translation

into multiple languages. This advancement is particularly
beneficial for nonnative English speakers and is an example
of how automation and AI can address ethical challenges in
science. Nevertheless, literature reviews conducted by human
scientists serve not only to synthesize knowledge but also
to build and refine the conceptual frameworks of evolving
scientists—a process that is critical to scientific training and that
is challenged by the overuse of LLMs for literature synthesis.

Future Challenges

Despite recent advances and opportunities for the automation
of science, there remain substantial obstacles. This section
examines technological bounds rooted in four bottlenecks
(cf. Fig. 1): limited availability and quality of data, intractable
computational complexity of certain scientific tasks, lack of
required hardware, and subjectivity in assessing the outputs
of scientific tasks. These bottlenecks highlight why barriers to
automation remain difficult to surmount in the basic sciences
(as opposed to engineering), at least with the technologies
and methodologies currently at our disposal. Addressing these
challenges will require significant interdisciplinary efforts to
identify solutions that enable automation beyond a few selected
domains of scientific inquiry.

Limited Availability and Quality of Inputs. Prior applications of
computational discovery, such as in chemistry (5, 7, 116) and
materials science (9, 10), relied on standardized formats for
both data and scientific hypotheses that are easily parsed by
machine learning algorithms. However, most tasks of scientific
practice rely on a diversity of representations for scientific
knowledge. For example, computational models in the natural
sciences are expressed in various formats, such as equations
embedded in scientific articles or computer code written in dif-
ferent programming languages. Without standardization across
disciplines, automated systems face significant challenges in
drawing parallels or applying concepts from one domain to
another. Efforts to standardize the representation of scientific
models and other forms of scientific knowledge promise to
ease the automation of scientific practices relying on such
knowledge (117). However, even if data are standardized and
widely available, ensuring their quality remains critical. For
instance, literature synthesis enabled by LLMs may be unfruitful
or even misleading if fraudulent or unreproducible papers
are included as inputs to these models. Therefore, robust
quality control measures must accompany standardization
efforts to maintain the integrity and usefulness of automated
systems.

Computational Complexity. One of the fundamental bottle-
necks in the automation of scientific practice lies in the com-
putational complexity of many scientific tasks. For example,
complexity analyses within the realm of cognitive science
indicate that scientific discovery in cognitive science may be
computationally intractable in principle, even with unlimited
availability of data (118). These theoretical results suggest that
uncovering a definitive “ground-truth” theory may be beyond
the reach of computation.

One potential critique of leveraging computational meth-
ods for scientific discovery hinges on the incomplete com-
prehension of the cognitive processes, and the concomi-
tant computational complexity underlying it. One may argue
that without a full grasp of how humans tackle scientific
inquiries, designing algorithms capable of similar feats seems
implausible. However, at least two counterarguments challenge
this perspective. First, replicating natural processes is not a
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prerequisite for solving problems. For instance, modern air-
planes achieve superior lift not by emulating the flapping
motion of birds but through aerodynamically efficient designs.
Second, a deep understanding of cognitive phenomena is not a
strict requirement for automation, as evidenced by the capabil-
ities of LLMs to produce coherent natural language sequences
without humans having a complete scientific understanding of
language generation. Nonetheless, this gap in understanding
underscores the importance of implementing robust evaluation
methods to ensure accuracy and mitigate any potential negative
impacts of automating scientific processes.

Hardware Engineering. The advancement of automated sci-
ence is significantly hindered by current limitations in lab-
oratory robotics and hardware engineering. For instance,
executing complex biological or physics experiments remains
challenging. Moreover, while robotic automation has been
successfully implemented in certain areas, such as with the
robot scientist concept (1, 2, 101, 119), its application is primarily
limited to clearly defined engineering problems. Yet, even well-
defined engineering problems must manage the noise and
variability inherent in the data collected by sensors, which can
dramatically affect the reliability of scientific outcomes. There-
fore, while progress has been made in automating scientific
practice, developing more sophisticated hardware to handle
complex, noisy data is crucial for its broader adoption and
effectiveness.

The automation of hardware tasks in scientific practice is also
hindered by the need for highly specialized equipment, leading
to significant capital expenditures, often exceeding millions of
dollars. Such custom-built hardware is typically field-specific
and lacks versatility for reuse in other scientific domains. This
challenge is evident in the limited cross-utilization of hardware
between disciplines, as seen in the relatively small amount of
equipment that materials scientists have been able to adapt
from the more heavily automated field of drug discovery.
Addressing this issue requires a strategic approach where, for
each scientific field, scientists identify and develop a core set
of automated hardware that can deliver the greatest impact.
This not only involves designing equipment that meets the
unique needs of each field but also balancing specificity with
adaptability, to maximize utility and cost-effectiveness.

Subjective Goals of Scientific Tasks. More than in engineering,
practices in basic science are inherently subjective in how the
outcomes of those practices are evaluated. This challenge is
particularly evident in developing AI capable of generating novel
and impactful scientific ideas. Novelty and impact involve a high
degree of subjectivity and variability, making it difficult for these
systems to replicate human judgment in the space of scientific
inquiry (16). This issue is compounded by the personal aspect of
scientific practice. The selection of scientific projects is guided
by the personal experience and perspective of human scien-
tists. Diversity in such perspectives paired with interdisciplinary
exchange can lead to a greater diversity of ideas in human
scientific systems (120)—a dimension that AI currently cannot
emulate without explicit instruction. Furthermore, the lack of
standardized solutions in many scientific areas means that
automating these tasks risks constraining exploration, which
is vital for scientific advancement.

Moreover, interpretation of data patterns and hypothesis
generation often necessitates human judgment to translate
statistical regularities into meaningful scientific interpretations.
Techniques like topic modeling, while effective in identifying text
co-occurrence patterns, require human insight to align these
patterns with relevant scientific constructs (121). The role of

human judgment is perhaps best exemplified in serendipitous
discovery, often stemming from unexpected failures or results.
For example, Alexander Fleming’s discovery of penicillin began
with the accidental contamination of a Petri dish. Instead of
discarding it, his observation of the bacteria being killed by
the mold led to the development of the first antibiotic. These
aspects highlight the crucial role of human judgment in scientific
discovery.

Implications

Although the automation of science currently faces significant
limitations, the extent to which it will evolve in the mid- to long-
term remains an open empirical question. As advancements
in hardware and algorithms continue, the range of practices
subject to automation is likely to expand. In this section, we
explore the practical and ethical consequences of this trend.

Practical Implications.
The role of human scientists and the paradox of automation.
The advancement of automation in scientific practice raises
considerations regarding the future role of human scientists.
On the one hand, it can be argued that automation reduces
the need for human involvement. Scientific discovery systems
may become able to monitor themselves and tune themselves
to optimal performance—potentially excluding humans from
the scientific discovery loop. On the other hand, it can ar-
gued that the greater the efficiency of an automated system,
the more vital the role of human oversight (122). A critical
assumption underlying this “paradox of automation” is that
automation is not perfect; the potential for accumulating
errors necessitates human intervention. If automation were
flawless, human oversight would be unnecessary, and the
paradox would not exist. However, for tasks with sufficient
complexity and uncertainty, this paradox suggests that, in highly
automated environments, human contributions, though less
frequent, are more critical. This may specifically apply to tasks
that demand subjective assessment or the synthesis of complex
data, such as reviewing scientific literature, as well as high-level
responsibilities such as strategic allocation of funds for scientific
inquiry.

Even in the absence of subjective assessment, there are
inherent risks associated with automation. For instance, an
error within an automated system can lead to a cascade of
compounded errors, persisting and potentially amplifying until
the system is either corrected or deactivated. This may be par-
ticularly problematic for automation methods whose decision-
making processes are not completely predictable, as is the case
for many machine learning algorithms. This unpredictability
raises the issue of responsibility for unintended consequences
such as injuries. Given the potential severe legal and financial
implications of compounding errors in automation, the involve-
ment of human scientists, even in areas where automation is
technically feasible, may prove to be more efficient, practical,
and safe in the near future. Thus, the paradox of automation
underscores the lasting importance of human expertise and
the need for a balanced approach that combines automated
systems with human judgment.
Research training. With increased automation of science, there
arises a need to reevaluate and adapt scientific education. This
new landscape calls for training that encompasses not only
traditional scientific knowledge but also skills for effectively
working alongside automated scientific discovery systems. For
instance, obtaining valuable outputs from LLMs is becoming
an essential skill. Moreover, scientists will need to develop
competencies in understanding and evaluating the functioning
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and outputs of automated systems, as is already demanded for
statistical software (47). This shift implies a growing demand
for engineers, scientists, and technicians proficient in advanced
STEM skills.
Research evaluation. The current pace of science is primarily
determined by our capacity to carry out the research itself.
Laboratory studies in fields like biology and chemistry can
take years, contrasting with the relatively quick peer review
process. However, if advancements in automation enable re-
search to be conducted and documented several magnitudes
faster (91), this could lead to a substantial increase in the
rate of research article submissions. Such a scenario would
further strain the already pressured peer review system. One
potential solution could be the automation of peer review,
possibly through the use of LLMs; however, this approach has
already faced restrictions and bans in certain contexts due to
concerns about its efficacy, reliability, and confidentiality (123).
Another potential solution is for journals to require that articles
generated by automated systems be accompanied by critical
evaluations from corresponding human authors. This ensures
that human researchers retain comprehension and oversight of
what is being submitted while also serving as initial reviewers
of the work generated by their automated systems. Either way,
this shift would necessitate a reevaluation of the peer review
process, ensuring it remains rigorous and effective in the face
of increased scientific productivity.
Scientific methods. The automation of scientific practice has the
potential to bring about a shift in scientific methods that goes
beyond mere acceleration of scientific discovery. As discussed
above, the use of machines for scientific discovery allows us to
move beyond the cognitive and physical constraints inherent
to human scientists (19). Consider, for example, the principle of
parsimony in the construction of scientific models. Traditionally,
parsimonious models have been favored for their superior
generalization, ease of interpretation, and communicability
among human scientists. However, as discussed in ref. 21,
recent studies suggest that highly complex models can, under
certain conditions, surpass the generalization capabilities of
simpler ones (124), leading to unprecedented advances in
scientific research (e.g., for 3D protein folding (6) or material
discovery (9)). Moreover, as explored in ref. 21, the devel-
opment of such complex models is often a prerequisite for
discovering successful parsimonious models (e.g., refs. 125–
127). This ability of machines to explore and develop models
with a level of complexity beyond what is readily interpretable
by humans opens up new avenues for scientific progress,
less constrained by human cognitive limitations. However, as
discussed above, for basic science, there is epistemic value in
human understanding that may outweigh the predictive power
of AI scientists.

Another consequence of automation concerns the ways in
which empirical research is conducted. For example, automated
systems can hypothesize and experiment in design spaces far
beyond the reach of human cognitive capabilities (9, 119).
Furthermore, the ability to collect large amounts of data
cheaply may obviate frequent iterations between hypothesis
generation, experimental design, and data collection. Instead,
with the availability of large datasets, the problem of scientific
discovery can be transformed into a model discovery problem
more amenable to machine learning (11, 94, 128). However, it
is important to recognize that the success of a one-time large-
scale data collection hinges on a well-defined experimental
design space and the stability of the system under study, as con-
stant changes in the system can undermine the effectiveness of
this approach. Accordingly, adaptive experimental design may
be needed to identify suitable design spaces (58).

Ethical Implications.
Biases. While human biases influence every aspect of scientific
work, automated systems are not immune to bias. They can
inherit biases from their creators, the construction process,
the data they use, and their training format (129). Examples
include discriminatory biases in facial recognition technology
(130), unrepresentative sampling in psychological experiments
(116), and discrimination in automated participant recruitment
processes (131). Moreover, automated literature reviews do
not escape the biases inherent to the existing literature. These
biases can be democratized and exacerbated by the pace of
these systems, especially when they are uninterpretable or
operate as “black boxes.” However, a potential advantage is
that biases in automated systems may be easier to correct
than in humans, such as by using more diverse data, or by
aligning automated systems with societal norms.
Value alignment and responsibility. The risk of harmful biases
and outcomes of automated processes call for their value align-
ment with broader societal norms. This is particularly crucial
as automation could potentially ease the path for malevolent
entities to conduct research detrimental to society, such as
developing chemical or biological weapons. Such outcomes
underscore the necessity of ethics dedicated to addressing
these issues, ensuring that automated scientific advancements
align with human values.

Consequences of automation also bring about the issue of
responsibility: if a scientific discovery that affects the wider
society is based on an automated process, who is responsible?
The accountability for effects arising from harmful scientific
practice remains ambiguous-whether it lies with the system’s
creator, its user, or the implementer of societal changes
based on the system’s output. This issue parallels broader
debates in AI, such as liability in self-driving car accidents or
the creation of automated artwork. Additionally, the potential
misuse of powerful systems (e.g., a system suggesting harmful
drug treatments) necessitates robust safeguards. The same
applies to potential violations of data privacy. When automated
systems generate contentious theories or design ethically ques-
tionable experiments, human oversight and responsibility are
imperative. Importantly, ethical guidelines are often formulated
by the institutions developing the systems (132), highlighting
the need for an external framework that can hold institutions
accountable.

Conclusion

While the automation of scientific practice is currently confined
mostly to well-defined engineering and discovery problems,
there is the potential for automation to pervade a large part
of scientific practice. We suggest that this trend represents
not merely a series of quantitative changes, such as increased
efficiency or precision in science, but brings about a funda-
mental shift in the conduct of science. The integration of AI
into scientific practice has the potential to overcome human
cognitive limitations, thereby expanding our capabilities for
discovery. Yet, this advance is not without challenges—data
availability, computational complexity, engineering demands,
and subjectivity of scientific task goals mark the technical
boundaries of current automatability. Furthermore, normative
goals of science—anchored on societal values—potentially
make complete automation of scientific practice neither de-
sirable nor feasible. Finally, this qualitative shift comes with
practical and ethical challenges that call for interdisciplinary
and collective efforts from researchers, policymakers, and the
broader community to navigate the future of science.
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