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Abstract

The heating system of a building could significantly impact the aggregated electricity peak load. It is in the interest of the
distribution system operators (DSOs) to both know what type of heating system that is connected to the grid, and the impact of
end-users changing their heating system. Focusing on the transition from non-electric heating systems to heat pumps, this paper
investigates its impact on peak load consumption. A state-of-the-art heating type classification method using smart meter data
and deep learning was used to first classify the heating types of single-family dwellings. Building upon previous work, a multi-
label approach was adopted with the classifier to accommodate buildings with multiple heating sources. To assess the impact
of heating system changes, smart meter data were substituted with data from similar buildings equipped with heat pumps. This
process was repeated for statistical confidence. A geographical analyses identify areas susceptible to a large peak load increase,
demonstrating the practical application.

1 Introduction

In the scenario where buildings with non-electric heating sys-
tems transition to electricity-based heating systems, particu-
larly heat pumps, there is a potential increase in electricity
peak consumption, which could lead to bottlenecks in the grid.
Hence, it is crucial for the distribution system operator (DSO)
to monitor their customers’ heating types to analyse any poten-
tial change in peak load. However, customers are often not
obligated to notify the DSO about the heating system they
use. On the other hand, a vast amount of data collected from
smart meters presents a significant opportunity to automat-
ically classify heating types without individually contacting
customers.

Various approaches have been employed to classify the heat-
ing systems of buildings using smart meter measurements,
including supervised [1–3] or unsupervised [4] machine learn-
ing. References [1–4] utilise conventional machine learning
algorithms that rely on pre-defined features, whereas the deep-
learning approach in [5] employs automatic feature extraction.
One of the primary benefits of the deep-learning approach is
its independence from expert-defined features, along with its
demonstrated improvement in classification performance.

The impact on peak load in the electrical grid due to a
change in heating type could be estimated using a bottom-
up approach, e.g. with a building-stock model as in [6]. The
main advantage of such an approach lies in its full control over
the model and the various components affecting electrical con-
sumption. However, its main challenge is the requirement for

detailed consumer information on a local scale, including ther-
mal characteristics, heating type usage, appliance usage, etc.
Additionally, capturing end-user behaviour can be challeng-
ing. Nonetheless, it can serve as an efficient tool for evalu-
ating different demand-side management schemes and future
scenarios.

This paper aims to first extend the analysis of the proposed
deep-learning classifier for heating types in [5] by considering
all heating types, and secondly, to estimate and analyse how
aggregated electricity peak consumption changes if consumers
switch their heating systems from non-electric heating (NEH)
to heat pumps. The main contributions of this paper include:

• Adapting the deep-learning framework in [5] to handle a
mixture of heating types.

• Further evaluating the deep-learning framework by consid-
ering all heating types and assessing its impact on peak load
estimation.

• Estimating peak load by replacement using smart meter data
from buildings of similar types.

2 Methodology

2.1 Heating Type Classification by Deep Learning

In this paper, we further evaluate the method proposed in [5] by
considering six different types of heating systems and single-
family dwellings (SFDs) with more than one heating system.
The hierarchical LSTM-based network proposed therein offers
an effective means of automatic feature learning from smart



meter measurements and weather data to identify the installed
heating type. An overview of the main modules is summarised
in Fig. 1. The sequential data undergoes initial processing
before being passed to the deep-learning network. In addition,
we also include the heated area to improve the classification
performance. Subsequently, two LSTM layers encode the com-
plete multivariate time series into a single feature vector, which
is then utilised for classifying heating types via a regular feed-
forward neural network layer. Further details can be found in
[5].

Fig. 1 Main modules of the deep-learning based network for
heating type classification.

The method was evaluated on multiclass classification
including three of the most common heating types; district
heating (DH), exhaust air heat pump (EAHP), and direct elec-
tric heating (DEH). In this paper, we extend the analysis
to cover all SFDs, where six groups of heating types were
considered: NEH, ground source heat pump (GSHP), EAHP,
air-to-water heat pump (AWHP), air-to-air heat pump (AAHP)
and DEH. It’s worth noting that NEH includes DH and heating
types based on burning fuels. Since buildings may utilise multi-
ple heating types, we propose a slight adaptation of the model.
Specifically, we suggest a multi-label approach to utilise the
distribution of heating types within each SFD to gain addi-
tional information during the training process for capturing
the primary heating type. Otherwise, the use of other heating
types is unaccounted for, potentially affecting the classification
performance.

In the multiclass approach, each instance is assigned a
unique heating type label y, e.g. yi = [1, 0, 0, 0, 0, 0] for the ith

sample/customer. In the multi-label approach, multiple heating
types can be assigned, e.g. yi = [0.7, 0, 0, 0, 0.3]. We consider
a linear combination of heating types based on annual electric-
ity usage obtained from the energy declaration [7], e.g. 70%
NEH and 30% DEH. This flexibility is an advantage of the
neural network-based model over conventional machine learn-
ing methods, such as k-nearest neighbours (k-NN) and support
vector machines (SVM) [1, 3, 8], which do not naturally handle
multi-label data.

In addition, to handle imbalance between the different cat-
egories during the training process, the classes are weighted

according to:

wc =

∑C

c=1

∑Ntrain

i=1 yi,c

C
∑Ntrain

i=1

(1)

where wc is the weight for class c, C the number of classes,
Ntrain the number of training samples.

2.2 Peak Load Estimation Based on Replacement

In this paper, we propose a simplistic approach to estimating
a change in the peak load resulting from a change in heating
types by substituting smart meter data from SFD of similar
types within nearby geographical locations. The rationale is
that geographically close buildings from the same building
period, and with similar size, have similar building characteris-
tics. At the same time, it is based on actual measurement data
which offers the ability to capture coincidence in the electric-
ity consumption between consumers of similar and different
categories without the need to model it explicitly. This pro-
cess can be repeated for statistical confidence. However, this
approach has two main drawbacks. Firstly, it is limited by
data availability; while we can replace smart meter data with
that of consumers from nearby areas, we cannot analyse the
entire region if there is a lack of data outside this region.
Secondly, it cannot be used for different demand-side manage-
ment tools that alter the electricity consumption profile as it
uses historical measurements. Nevertheless, it can provide an
estimation of peak load using only a few parameters: build-
ing year, heated area, heating type, geographical location, and
smart meter measurements.

The nearest neighbour that falls outside the analysed area
should fulfil the following criteria:

|Yi − Yj | ≤ 5 years (2)∣∣Atemp
i −Atemp

j

∣∣ ≤ 10m2 (3)

where Y represents the construction year, Atemp denotes the
heated area, i denotes the index of the SFD changing heating
type, and j denotes the index of the nearest neighbour. If there
are no buildings within the heated area criteria, the criteria are
relaxed. The smart meter measurements are linearly scaled to
match the heated area of the building.

3 Results

3.1 Experimental Data Description

The dataset comprises of hourly smart meter measurements
[9] and weather data [10] from a Swedish city in 2016. Addi-
tionally, building characteristics (construction year and heated
area) and the usage of heating types were collected from the
buildings’ energy declarations. Table 1 displays the number
of SFDs with various mixes of heating types. Here, the pri-
mary heating type is defined as the most energy-intensive on
an annual basis among the six listed categories. It’s important
to note that SFDs might have more than two heating types,
which is not reflected in the table. SFDs with two successive



missing values were linearly interpolated. If three or more suc-
cessive missing data points were encountered, the SFD was
excluded from the analysis, as interpolating data over a larger
span was beyond the scope of this paper. Consequently, 7585
SFDs remained, representing 14.3% of the SFDs in the city in
2016 [11].

Table 1 Number of buildings according to the primary and
secondary heating types in the data set.

Secondary heating type

NEH GSHP AWHP EAHP AAHP DEH

Primary
heating

type
(%)

NEH 1666 1 0 33 56 754

GSHP 103 539 2 8 13 213

AWHP 32 0 160 1 17 121

EAHP 100 1 1 537 18 239

AAHP 9 2 2 6 8 431

DEH 159 10 10 139 723 1471

3.2 Classification of Heating Type

The classification of primary heating types was carried out by
incorporating the proposed multi-label approach. Six types of
heating were considered: NEH, DEH, and four types of heat
pumps: GSHP, AWHP, EAHP, AAHP. The consumer set was
divided into a 60%/20%/20% train/validation/test set, ensur-
ing an equal distribution of primary heating types across each
set. The split was resampled to get an average generalisation
performance. This involved dividing the dataset into five equal
folds, with each fold being tested once, and the remaining data
being split into training and validation. Notably, the model was
retrained and reevaluated for each fold. Model hyperparameters
were determined through a grid search over selected hyperpa-
rameters, with the combination yielding the highest averaged
f1-score on the validation set across all six categories being
selected. Further details on the hyperparameters are available
in [5].

The performance on the test set for each heating type is
depicted in Table 2 and Table 3. It can be observed that the per-
formance decreased compared to the analysis in [5], which is
understandable given the dataset includes more heating types
and the added complexity of classifying SFDs with a mix of
heating types. Nonetheless, the precision and recall demon-
strate that the categories are to some extent distinguishable,
even though misclassification occurs. The model showed high
precision and recall for NEH. The model was however not able
to distinguish AAHP from DEH. This could be attributed to
buildings with AAHP being reliant on DEH for domestic hot
water production, but also due to reduced coefficient of perfor-
mance (COP) with decreasing outdoor temperature. Addition-
ally, misclassifications between the two types of waterborne
heat pumps (GSHP and AWHP) suggest similarities in their
characteristics. On the other hand, more training samples of
AWHP could possibly increase the precision and recall of

this class. Moreover, misclassifications of EAHP, GSHP and
AWHP as DEH may be attributed to a higher energy intensity
of these samples, possibly due to supplementary electric heat-
ing or poor efficiency of the heat pump. This should be further
investigated.

Table 2 Confusion matrix of the test performance using the
proposed deep-learning framework. Values are averaged ±
standard deviation over five runs normalised to the class size.

Predicted heating type (%)

NEH GSHP AWHP EAHP AAHP DEH

Actuald

heating
type
(%)

NEH
89.8
±1.2

4.1
±0.8

1.0
±0.6

1.2
±0.5

0.3
±0.2

3.7
±1.0

GSHP
3.1
±0.8

63.9
±2.8

13.3
±4.7

7.7
±0.8

0.5
±0.4

11.5
±2.7

AWHP
1.8
±1.5

23.2
±10.9

44.7
±8.7

11.8
±3.5

0.3
±0.6

18.1
±4.0

EAHP
0.4
±0.4

6.5
±1.0

5.7
±2.3

68.6
±2.4

0.2
±0.4

18.5
±2.1

AAHP
1.7
±0.9

7.9
±2.4

3.1
±1.3

5.9
±2.3

1.1
±0.0

80.4
±1.4

DEH
2.4
±0.6

8.3
±1.0

5.3
±2.3

8.4
±2.0

1.3
±0.8

74.2
±2.9

Table 3 Test performance of the deep-learning classifier using
multi-label targets. All performance values in the table are aver-
aged ± standard deviation over five runs*.

Heating
type

Precision
(%)

Recall
(%)

F1−score
(%)

Total accuracy
(%)

NEH 95.6± 1.0 89.8± 1.3 92.6± 0.1

GSHP 54.1± 3.7 63.9± 2.8 58.5± 2.4

AWHP 31.2± 5.6 44.7± 8.7 36.2± 4.7 71.8± 1.3

EAHP 62.2± 2.7 68.6± 2.4 65.2± 1.8

AAHP 10.7± 3.6 1.1± 0.0 2.0± 0.1

DEH 70.3± 1.3 74.2± 2.9 72.2± 1.8

* By dataset re-partitions, followed by re-training and re-testing.

3.3 Peak Load Estimation

The peak load analysis focuses on the impact of NEH con-
sumers transitioning to heat pumps. As NEH systems as the
main heating type often are distributed via a water-borne sys-
tem, we consider the transition to heat pumps with the same
type of heat distribution, i.e. GSHP or AWHP. The anal-
ysis entails aggregation of randomly selected consumers of
the considered heating types, and conducting geographical
analyses.

3.3.1 N Aggregated Customers: Fig. 2a shows the peak load
of 50 randomly selected aggregated SFDs with NEH, replaced



(a) (b)

Fig. 2 Aggregated peak load of randomly selected SFD,
repeated 100 times for statistical confidence. a) shows N =
50 aggregated SFD with NEH as the primary heating type,
replaced by SFD with either GSHP or AWHP. The share of
customers indicates the number of customers with heat pumps.
b) shows the results of N aggregated customers of each cate-
gory. The shaded area represents the 95% confidence interval.

by SFDs of similar type with GSHP or AWHP, repeated 100
times for statistical confidence. The analysis considers both
energy declaration categories and classifications from the deep-
learning model. All SFD are re-categorised based on the model
obtained from the training and validation set, repeated for
all folds. A linear trend can be seen as the proportion of
heat pumps increases, nearly tripling the peak load. Addition-
ally, there is only a minor difference between the categories
extracted from the energy declaration and the predicted cat-
egories from the classification. The difference diminishes as
the number of heat pumps increases. Initial deviations may be
attributed to the model classifying some NEH samples as heat
pumps or DEH. Given the model’s high classification rate with
NEH, this suggests that misclassified samples are likely more
energy-intensive than typical NEH buildings, possibly due to a
change in heating system, or the usage of supplementary heat-
ing. Notably, previous analyses have indicated that some SFD
has changed the heating system since the energy declaration
was issued [5], indicating that some energy declarations may
be outdated.

Due to the coincidence factors being more or less con-
stant (see Fig. 2b ), the results (aggregated peak/N customers)
would look similar for various numbers of aggregated cus-
tomers, with deviations apparent only for a small number of
aggregated customers (N<15). Furthermore, no significant dif-
ference exists between coincidence factors for the class label
taken from the energy declaration, and those from classifi-
cations with deep-learning, suggesting that misclassifications
may not significantly impact post-analysis results.

3.3.2 Geographical Analysis: A geographical analysis was
conducted to assess the impact of a scenario in which all
buildings with NEH transition to either GSHP or AWHP. This
analysis demonstrates the practical application of heating type

classification. Predictions based on the classifier were utilized,
with the estimated peak loads averaged across the different
data splits. The results are comparable to using class cate-
gories directly from the energy declaration, which indicates the
usefulness of the classification on consumers with unknown
heating type. Fig. 3a displays the geographical distribution
SFDs, while Fig. 3b illustrates the share of NEH as the primary
heating type. It’s important to note that this analysis covered
only 14.3% of the total number of SFDs in the area [11]. This
due to limitations in past years’ collected measurements. For
comprehensive coverage, all SFD should undergo classifica-
tion utilising smart meter measurements. Furthermore, Fig. 3c
depicts the original aggregated peak load of the areas, whereas
the new peak estimated by replacing smart meter measure-
ments from similar SFDs can be observed in Fig. 3d. This
estimation aids in identifying areas at risk of increased peak
load due to SFDs transitioning from NEH to heat pumps. In
general, it can be seen that the peak load increase is propor-
tionate to the share of heat pumps, as depicted in Fig. 3b.
However, variations may occur depending on the coincidence
factor between consumers, which can be influenced by the
category, as shown in Fig. 2b.

4 Conclusion

This paper evaluates a deep-learning model for heating type
classification and its impact on peak load. Specifically, the
study analyses the effects of single-family households (SFDs)
transitioning from non-electric heating (NEH) to heat pumps
by replacing smart meter data from similar types of SFD. It was
observed that the classification performance decreased com-
pared to the previous analysis, likely due to the dataset’s inclu-
sion of more heating types and the complexity of SFDs with
multiple heating sources. However, precision and recall met-
rics suggest that the categories remain partially distinguishable,
despite instances of misclassification. The peak load analysis
reveals only a minor difference between true and predicted
class labels, indicating that the classification model effectively
groups similar types of buildings. This underscores the appli-
cation of the classification model. Future work will involve
further analysis of misclassified samples and comparison of
peak load estimation with replacement versus a bottom-up
approach.
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