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A B S T R A C T

Considering the challenges faced by current global grid-based route planning methods, including 
vessel navigability underestimation and high computational demands for fine grid configuration, 
this study introduces an innovative approach to the grid generation of a global maritime network 
for automatic vessel route planning. By leveraging global Automatic Identification System (AIS) 
data, the methodology focuses on advanced trajectory segmentation, waypoint detection, clus
tering algorithms, and route searching. A novel spatiotemporal approach is proposed to facilitate 
effective trajectory segmentation despite data discontinuities. The Pruned Exact Linear Time 
(PELT) algorithm is employed to identify waypoints, managing their quantity during heading 
instability. To recognize crucial berthing areas in ports and strategic waypoint zones at sea, a 
customized KNN-block adaptive Density-Based Spatial Clustering of Applications with Noise 
(CKBA-DBSCAN) is developed to address the challenges of varying density clustering parameters 
and high computational costs. Lastly, the double-layer network matching technique, which starts 
with grid-based route planning and refines to the final navigable and smoothed route, uniquely 
integrates data-driven and model-based strategies. Rigorous testing with a year’s worth of global 
AIS data demonstrates high efficiency in planning navigable routes for various vessel types on 
worldwide voyages. The results underscore the practicality of the proposed approach in real- 
world route planning and maritime shipping network development. Remarkably, the methodol
ogy achieves a minimum 17.08 % reduction in time for global route generation. This hybrid 
approach, which integrates the strengths of both data-driven and model-based methods, signifi
cantly enhances vessel scheduling and routing efficiencies, showcasing its superior performance 
in comparative studies and its potential for widespread adoption in the maritime industry.

1. Introduction

The maritime transport sector plays a vital role in the global economy, facilitating the movement of goods and commodities across 
the world’s oceans (UNCTD, 2022; Zhang et al., 2025). For the sector to succeed, efficient and safe shipping operations are essential, 
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with route planning emerging as a critical function (Tran et al., 2023; Liu et al., 2024). Effective route planning involves identifying the 
most suitable navigable routes between the designated berthing points (Dong et al., 2021; Du et al., 2022; Wang et al., 2022a). This 
process is instrumental in addressing several challenges that often arise during shipping operations, such as high fuel costs, carbon 
emissions, shipping delays, and security risks like piracy (Lehtola et al., 2019). Moreover, route planning can also aid in evaluating the 
accessibility and complexity of maritime shipping networks on a global scale (Xu et al., 2020), as shown in Fig. 1.

By identifying navigable and smoothed routes between regions, a comprehensive analysis of maritime shipping networks can be 
performed, enabling the identification of areas that require shipping network optimisation, aiming to improve the overall efficiency 
and functionality of maritime transportation (Liu et al., 2023c; Xu et al., 2020). Consequently, route planning can assist in improving 
the capacity and resilience of global maritime shipping networks, ensuring they can meet the growing demand for transportation 

Nomenclature

Variable Definition
AIS Automatic Identification System
KNN The k-nearest neighbours
DBSCAN Density-Based Spatial Clustering of Applications with Noise
CKBA-DBSCAN Customized KNN-block adaptive DBSCAN
PELT Pruned Exact Linear Time
A* A star
Nstop The number threshold for the continuous berthing point
tstop The cumulative berthing duration
Tstop The threshold for the continuous berthing duration
dstop The cumulative spatial distance
taj The time interval between adjacent point
Tconn The longest continuous time interval
daj The spatial distance between adjacent point
Dstop The spatial distance threshold between berthing points
Dconn The maximum distance between consecutive adjacent points
Smin The minimum sailing speed threshold
Dk The spatial distance threshold of kth neighbor
minPts The minimum number that become core objects in DBSCAN
ε The neighborhood radius threshold in DBSCAN
M The clustering metric index
Sbp The set of berthing points
di,i The average distance from ith point to other points within the same cluster
di,e The average distance from ith point to other points in other clusters
x The proportion of anomalies to all data
α The coefficient of proportion
Dbel The distance threshold for a point to be considered within a berthing area
pi

center The centroid of the berthing area areai
bt

bi
o The boolean value representing whether point po is within areai

bt
Tk The kth trajectory
pl

k The lth point in trajectory Tk

NCpl
kpl+1

k
The navigation course from pl

k to pl+1
k

lonpl
k

The longitude of the lth point in trajectory Tk

latpl
k

The latitude of the lth point in trajectory Tk

Y The time sequence
c(ytjtj+1 ) The sum of fitting losses
arean

wp The nth waypoint area
I The for assessing waypoint detection performance
n The number of detected waypoints
To The original trajectory for waypoint detection
Tw The waypoint-connected trajectory
noden The nth node in network
f(n) The comprehensive priority of node n
g(n) The cost of node n from the starting node
h(n) The estimated cost of node n from the ending node
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services (Alderson et al., 2019). Based on this context, the paper proposes a data-driven and model-based approach for extracting 
maritime shipping network data and automating global vessel route planning. This approach utilizes historical route records to extract 
maritime shipping network data and generate optimal routes. By leveraging data and models, the proposed approach aims to enhance 
the effectiveness of global maritime shipping networks, improve operational efficiency, and ensure safer and more reliable shipping 
operations (Dui et al., 2021; Jiang et al., 2021).

1.1. Literature review

Traditionally, vessel route planning has been a manual process conducted by the vessel’s crew, relying on various documents and 
archival records of vessel routes. While these qualitative methods are deeply rooted in tradition, they exhibit notable limitations, 
particularly in regions with sparse historical navigational data or when detailed planning is necessary for complex port-to-port routes 
(Zhang et al., 2021a).

In contrast, the modern shipping industry increasingly adopts more advanced algorithms and intelligent navigation decision- 
making systems for weather routing and multi-objective route optimisation (Tsou & Hsueh, 2010; Wang et al., 2020a; Zhao et al., 
2021; Zhang et al., 2024; He et al., 2024). Dynamic programming (DP), first proposed by Bellman (1952), exemplifies development 
and application in maritime contexts for these purposes (Meng & Wang, 2011; Papageorgiou et al., 2015; Wang et al., 2021). Addi
tionally, intelligent navigation decision-making methods like machine learning (ML) and reinforcement learning (RL) offer dynamic 
adaptability and superior path rationality (Wang et al., 2020b). Chen et al. (2019) utilized tabular RL algorithms for real-time optimal 
route selection, adapting to dynamic maritime conditions. To address path planning in extensive state space scenarios, Li et al. (2021)
and Gao et al. (2022) applied Deep Q Network (DQN) and Dueling DQN, respectively. Despite their advancements, RL algorithms 
require extensive training and computational resources, limiting their application to confined maritime areas. Moradi et al. (2022)
designed the state as a multidimensional column vector to guide action exploration and reduce learning time, facilitating RL appli
cation in large-scale maritime environments. However, effectively applying algorithmic search-based methods or intelligent decision- 
making support methods across diverse and general scenarios remains a significant challenge.

Grid-based graph search algorithms form the cornerstone of algorithmic search-based methods and intelligent navigation decision- 
making support methods for weather routing and multi-objective route optimisation. These algorithms partition the maritime area into 
discrete segments and temporal stages, utilizing either a dynamic or a predefined static grid system. By integrating weather and 
environmental factors at the optimisation objective level, these algorithms offer robust solutions to route planning challenges. This 
study aims to advance these methods by focusing on the grid generation of a global maritime network for automatic vessel route 
generation. The following sections present a comprehensive review of existing grid and route generation methods, highlighting the 
importance of the proposed approach and its potential impact on the maritime industry.

Dynamic grid-based methods conduct route searches iteratively, updating based on the vessel’s current position and navigating the 
vessel toward its destination. At each time stage, waypoints are generated from the current step; thus, the grid is updated iteratively, 
and the route is adjusted accordingly until the destination is reached. A notable example is the isochrone method, which involves 

Fig. 1. The schematics of interactions between global vessel route planning and maritime shipping network (Container ships).
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contours representing the furthest waypoints reachable in a defined time stage from different directions. It was initially introduced by 
James (1957) and later adapted by Hagiwara (1989). However, one drawback, known as the “isochrone loop”, occurs when the 
number of isochrones increases, potentially leading to impractical outcomes (Wang et al., 2022b; Poulsen et al., 2022). In recent years, 
more sophisticated methods have been developed for vessel routing. For instance, Zhang et al. (2021a) introduced an enhanced ant 
colony optimisation (ACO) algorithm to tackle the multi-objective vessel weather routing optimisation challenge, while Zhang et al. 
(2022) proposed a three-dimensional ACO algorithm for ice routing. Similarly, Xin et al. (2019) and Ma et al. (2021) have applied 
advanced genetic algorithms (GA), and Szlapczynska and Smierzchalski (2007), along with Lin et al. (2021), have incorporated multi- 
objective evolutionary algorithms (EA) in voyage planning. Additionally, to reduce fuel consumption while considering weather 
conditions, Wei et al. (2023) employed digital twin framework in decision-making, and both Chen et al. (2019) and Moradi et al. 
(2022) have utilised reinforcement learning techniques. These complex algorithms enable finer control over multiple parameters and 
facilitate frequent adjustments throughout the voyage planning process. However, the high computational demands and the necessity 
for continuous adjustments in navigational settings may render these advanced optimisation systems impractical for real-world 
maritime operations (Turna, 2023). Specifically, ocean-going vessels, which are generally large and heavily laden, may not be able 
to adapt quickly to the dynamic sailing conditions prescribed by these dynamic grid-based methods. This is because these methods 
underestimate vessel navigability. Additionally, frequent alterations in sailing status—such as speed, heading, and power—generated 
by these current algorithms necessitate continuous manoeuvring, leading to distorted trajectories resembling serpentine patterns, 
which in turn can increase fuel consumption, elevate emissions, and escalate operational risks.

Therefore, algorithms that offer high computational efficiency and simplified vessel navigation controls, such as predefined static 
grid-based methods, continue to be widely employed in voyage planning. Notably, two prominent algorithms that utilize static grid 
systems are Dijkstra’s algorithm (Dijkstra, 1959) and the A* algorithm (Hart et al., 1968), both of which have been effectively used to 
plan vessel routes. The Dijkstra algorithm, for example, has been adapted to accommodate variations in speed for weather routing 
(Wang et al., 2019) and to facilitate simultaneous route planning (Ma et al., 2020; Charalambopoulos et al., 2023). Park and Kim 
(2015) implemented the A* algorithm alongside a staged speed scheduling method to optimise fuel consumption while considering 
environmental conditions, which can be used for vessel route optimisation. Similarly, Bentin et al. (2016) applied the A* algorithm on 
a bulk carrier, effectively reducing fuel consumption by incorporating the wind-assisted propulsion system (WASP). Additional ap
plications of the A* algorithm in route planning have been explored by Pennino et al. (2020), Shin et al. (2020), and Grifoll et al. 
(2022), Xu et al. (2024). These algorithms are advantageous for their ease of implementation in both single and multiple objective 
voyage optimisations. However, the effectiveness of the optimisation results and the computational load of static grid-based methods 
heavily depend on the grid configuration—specifically, factors such as the resolution of the grid, the number of nodes, and the extent of 
the search area covered by the grid. Based on the above, static grid-based methods face difficulties in generating smoothed vessel 
routes, often resulting in the vessel’s inability to accurately track the planned path at sea (Funk, 2017; Zhou et al., 2019).

Hence, in recent years, data-driven methods have emerged using AIS data that records both dynamic and static information on 
vessel navigation to construct potential navigable area and static grid system (Liu et al., 2023a; Wang et al., 2022b). It is implemented 
in two ways based on whether a maritime shipping network is constructed (Andersson & Ivehammar, 2017; Zhang et al., 2019; Zhang 
et al., 2018; Bläser et al., 2024). Without a maritime shipping network, navigable area and grid system can be performed by analysing 
vessel trajectories and recognising vessel states, dividing the operational areas into grids, and constructing a corresponding directed 
graph (Cai et al., 2021; Kaklis et al., 2024; Liu et al., 2023b; Naus, 2019; Li et al., 2022). However, this method encounters limitations 
in regions with complex navigation patterns. Alternative approaches, such as grid division, have addressed these complexities. Within 
the grid division method, navigable routes can be generated by detecting and recognising route points for vessel manipulation 
behaviour and then constructing grid system and maritime shipping networks. This method has been used by Varlamis et al. (2020)
and Filipiak et al. (2020) in local waters and by Yan et al. (2020), Liu et al. (2023b), and Bläser et al. (2024) in global open water 
scenarios. However, most of these studies lack a detailed description of the method for generating the connection attributes of static 
grid system, making it challenging to apply to navigable routes between all areas from a global perspective.

Current, the main methods for identifying route waypoints are threshold detection (Zhao & Shi, 2019) and trajectory compression 
(Yan et al., 2022; Bläser et al., 2024; Ji et al., 2022; Truong et al., 2020). The application of threshold detection in maritime navigation 
faces significant challenges. Firstly, it is challenging to establish a unified parameter for identifying route points across scenarios with 
multiple vessels. This complexity arises due to the variability in vessel movements and patterns. Secondly, there is often an over- 
detection of waypoints in areas of high vessel convergence, such as near ports or busy shipping lanes. This leads to an excessive 
number of waypoints being identified, which can complicate navigation and route planning. Additionally, the issue of a non-uniform 
threshold is also present in trajectory compression algorithms, as highlighted by Tang et al. (2021). This inconsistency in the threshold 
makes it difficult to apply a standardized approach across different maritime scenarios. For constructing waypoint areas, density 
clustering methods like DBSCAN and Ordering Points to Identify the Clustering Structure (OPTICS) are commonly used. However, 
these methods struggle in open water areas where the distribution density of waypoints varies significantly. This variation highlights 
the unreliability of networks constructed using unified parameters and underscores the need for a parameter-adaptive clustering to 
ensure accurate identification of nodes in the networks (Bläser et al. 2024).

1.2. Research gaps and contributions

Several research gaps remain to be addressed in the area of predefined static grid-based route planning methods. Current models 
often lack the flexibility and scalability necessary for application across various sailing regions and scenarios, primarily due to the 
underestimation of vessel navigability. These methods require significant computational resources, as optimised routes depend heavily 
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on grid configuration. Achieving optimal routes necessitates a high resolution of the grid, a large number of nodes, and extensive 
coverage of the search area, complicating real-time route planning, particularly in large-scale shipping operations.

Implementing data-driven methods to construct potential navigable areas and static grid systems introduces additional challenges. 
For instance, identifying route waypoints and building maritime shipping networks for global navigable area identification remain 
unresolved. Most current methods focus predominantly on local or regional waters, leaving a noticeable gap in research on global route 
planning, which is crucial for extensive maritime operations. Moreover, there is a lack of consensus on generating connections between 
nodes, such as berthing areas at ports and waypoint areas at sea, in the construction of maritime shipping networks for grid generation 
in route planning. Existing methods for identifying route waypoints also suffer from parameter standardisation issues, making 
application across different areas challenging.

Therefore, there is an urgent need for more comprehensive evaluation metrics to assess the effectiveness and reliability of globally 
generated vessel routes. These metrics would help refine existing methodologies and ensure they meet the operational demands of the 
modern maritime shipping industry.

This study proposes an innovative approach to grid generation of global maritime network for automatic vessel route planning 
utilising AIS data. This approach synergistically combines data-driven methods for navigable area grid generation and static grid-based 
route planning method to develop highly efficient and reliable global route planning systems, specifically for large-scale shipping 
operations. The proposed method addresses several shortcomings of existing research in this field and the specific contributions are 
summarized in the following three aspects: 

• Introduces a novel approach to grid generation of global maritime network for automatic vessel route planning by leveraging AIS 
data. The approach combines data-driven methods for generating navigable area grids and static grid-based route planning, 
enhancing the flexibility, scalability, and efficiency of global maritime operations. This method addresses the previous research gap 
concerning the lack of comprehensive global route planning systems.

• Presents a new trajectory segmentation method that efficiently divides berthing and non-berthing segments based on spatial and 
temporal distances between waypoints. Additionally, it introduces a waypoint identification method using CKBA-DBSCAN clus
tering algorithm. These methods surpass the limitations of existing models in identifying and constructing navigable waypoints, 
significantly improving the accuracy and applicability of route planning.

• Extends the search space for navigable routes through the integration of maritime shipping networks with grid networks, using the 
A* algorithm. This not only addresses the challenges of limited network accessibility but also enhances the reliability of the route 
planning system. This contribution specifically tackles the previously unaddressed issue of effectively connecting nodes like 
berthing areas and waypoints in maritime shipping networks.

The proposed methods effectively address the challenges of global route planning by providing a reliable and efficient method for 
identifying navigable waypoints and constructing maritime shipping networks. By combining data-driven methods for constructing 
potential navigable areas and static grid systems and static grid-based A* algorithm for route planning, the proposed approach pro
vides a comprehensive and effective solution to global vessel route planning, which can significantly improve the efficiency, safety, 
and cost-effectiveness of shipping and has the potential to be applied in practical maritime transportation systems.

2. Methodology

The framework of the proposed method is shown in Fig. 2. The steps of implementing the data-driven and model-based vessel route 
planning method are summarized as follows:

Step I: AIS data preprocessing and vessel trajectory segmentation
Historical voyage records are acquired from AIS by identifying the berthing points. This study proposes a spatiotemporal meth

odology to achieve this on a global scale. This method facilitates the identification of berthing points through a combination of spatial 
and temporal distance analysis, enabling effective trajectory segmentation in multi-class scenarios. Once the berthing points have been 
identified, it becomes feasible to extract global trajectory segments. These segments can then be utilised to develop a global vessel 
route matching model and maritime shipping network.

Step II: Data-driven global vessel route matching method
This method utilises the berthing points information of each segment to identify berthing areas through a CKBA-DBSCAN clustering 

algorithm, which demonstrates better applicability than the traditional DBSCAN clustering in scenarios with significant variations in 
the density of points across different regions in large waters. Building upon this, an effective route matching method is also utilised to 
extract historical vessel trajectories with the same origin and destination points.

Step III: Model-based global vessel route generation
A model-driven approach is used to generate a global vessel route. To address the challenge of standardising parameters for heading 

threshold detection and trajectory compression detection of waypoints in large water bodies, change point detection is employed to 
identify waypoints. Based on this, berthing areas and waypoint areas are constructed as nodes and connected by navigable routes based 
on historical sailing trajectories. Those nodes and routes form the global maritime shipping network, and the A* algorithm is employed 
to generate vessel routes on this network.

Step IV: Data-driven and model-based vessel route planning method
A vessel route planning method is developed by adapting both data-driven and model-based approaches. Specifically, a global grid 

network method is employed to integrate these two approaches, resulting in the proposed double-layer network method for vessel 
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route planning, and enhancing the probability of route searching. To evaluate the performance of the proposed method, a comparative 
study between the data-driven, model-based, and double-layer networks is conducted under various scenarios.

2.1. Vessel trajectory segmentation

Vessel trajectory segmentation is a critical step in analysing and understanding vessel moving voyages, which can help the 
development of an end-to-end navigable route database and the identification of network nodes. In the following sections, we 
introduce the schematic of vessel trajectory segmentation using AIS and a novel segmentation method accounting for spatiotemporal 
features.

2.1.1. Scenario analysis of vessel trajectory segmentation
Vessel trajectory segmentation involves dividing a complete vessel trajectory into multiple continuous segments, with each 

segment representing the “berth-voyage-berth” pattern of vessel movement. Therefore, by identifying AIS data points corresponding to 
the berthing behaviour within the trajectory, the segmentation process can be effectively executed to obtain the desired results. One 

Fig. 2. The flowchart of data-driven and model-based methods for automatic global vessel route planning with AIS data.
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widely used method for vessel trajectory segmentation relies on the time interval of vessel points using AIS dynamic information. 
However, in practical applications, other factors may also influence the trajectory segmentation results. Fig. 3 illustrates two types of 
segmentation (three scenarios). For example, considerable time intervals or significant spatial distances between adjacent points can 
hinder the identification of intermediate voyage processes, leading to non-berthing segmentation. Consequently, the final segmented 
trajectory should consist of two distinct types of berthing segmentation resulting from berthing behaviour and non-berthing seg
mentation resulting from moving behaviour with long periods of missing data.

To distinguish between different types of trajectory segmentation, Table 1 summarizes the characteristics of segmentation points in 
various scenarios from AIS data. Berthing segmentation requires analysing the spatiotemporal characteristics of consecutive AIS 
points. Specifically, if the starting position of the k-th trajectory segment is within the same area as the ending position of the (k-1)-th 
segment, it is classified as a spatially continuous berthing segmentation, as depicted in Fig. 3(a). Otherwise, it is considered a spatially 
discontinuous berthing segmentation, as shown in Fig. 3(b). In the latter scenario, a considerable spatial and temporal distance exists 
between the two adjacent points, indicating that they correspond to different journeys with likely different destinations (Yin et al., 
2022; Zhang et al., 2020). For non-berthing segmentation, as illustrated in Fig. 3(c), if the last point of k-th trajectory segment and the 
first point of the(k + 1)-th segment are both in a navigation state, and there is a long temporal gap and significant spatial distance 
between them, these two segments are considered parts of the same journey if the destination remains unchanged. Conversely, if the 
destination differs, it implies missing data between the two separate journeys (Zhang et al., 2021b).

In the case of berthing segmentation, the number of consecutive AIS points, combined with their spatiotemporal distances, serves as 
a key characteristic to determine the presence of a berthing state. Whether a trajectory contains points in a berthing state depends on 
whether the vessel has turned off its AIS equipment after entering the port area. If the vessel continues to transmit data while in a 
berthing state, the trajectory that containing a large number of data points will mostly be in the berthing state, with the location 
remaining relatively unchanged and the time intervals between points being relatively uniform. Conversely, if the vessel turns off the 
AIS equipment immediately after entering the port area, there will be no trajectory points in the berthing state. A considerable time 
interval will exist between the two points corresponding to turning on and off the AIS equipment.

2.1.2. Vessel trajectory segmentation based on spatiotemporal features
Based on the above analysis, this study proposes a trajectory segmentation method based on the temporal and spatial distance 

between AIS points, building upon the vessels berthing identification method proposed by (Huang et al., 2021). They determined the 
berthing points for trajectory segmentation by setting conditions for both the minimum number of berthing points and the minimum 

Fig. 3. Vessel trajectory segmentation encompasses three distinct scenarios: (a) spatially continuous berthing segmentation, (b) spatially discon
tinuous berthing segmentation, and (c) non-berthing segmentation.

Table 1 
Characteristics of Berth/ Non-Berthing Segmentation Points.

Segmentation type Temporal features Spatial features Voyage information

Spatially Continuous Berthing 
Segmentation

1. Total large time interval. 
2. Spatially continuous berthing segments have small 
time intervals between adjacent points. 
3. Spatially continuous berthing segments have larger 
time intervals between non-adjacent. points.

Spatial position remains relatively 
unchanged.

Consistent or inconsistent 
destination.

Spatially Discontinuous 
Berthing Segmentation

1. Non-continuous time intervals. 
2. Small time intervals between other berthing points.

Large spatial distance between 
adjacent berthing points.

Different destinations.

Non-Berthing Segmentation Non-continuous time intervals. Large spatial distance between 
adjacent non-berthing points.

Consistent or inconsistent 
destination.
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berthing duration, which, however, cannot be applied to the situations where the number of berthing points is limited due turning off 
the AIS equipment immediately after vessel berthing. Additionally, in scenarios where voyage data is missing between two vessel 
points (under berthing or moving status), trajectory segmentation cannot be achieved. Therefore, their method is only applicable to 
berthing identification in scenarios with continuous AIS data in local area and cannot be used in scenarios where continuous AIS data 
cannot be guaranteed in larger-scale waters.

Algorithm 1 summarises the process of the proposed method, and the rules are specified as follows. (a) If the number of consecutive 
berthing points is no less than the minimum number Nstop of consecutive berthing points required to define a berthing phase, the 
segment is classified as spatially continuous berthing segmentation. (b) If the cumulative berthing duration tstop of consecutive berthing 
points exceeds the minimum duration Tstop to define a berthing phase, and the cumulative spatial distance dstop does not exceed the 
distance travelled at the minimum sailing speed Smin during tstop, the segment is categorised as a spatially continuous berthing seg
mentation. Conversely, if dstop exceeds this navigation distance, the segment is considered a spatially discontinuous berthing seg
mentation. (c) If the time interval taj adjacent points with exceeds the maximum allowable continuous time interval Tconn, and the 
spatial distance dajexceeds the distance travelled at Smin during taj, it is classified as a non-berthing segmentation. (d) All other scenarios 
are not considered for trajectory segmentation and are treated as part of a continuous trajectory. For instance, if the time interval taj 

between adjacent points exceeds Tconn but does not exceed Tstop, and the spatial distance daj does not exceed the distance travelled at 
Smin during that time period, it indicates a brief berthing state and is considered as a part of a single segment.

There are four parameters to be determined in the abovementioned rules, namely Nstop, Tstop, Smin, and Tconn. Notably, a point is 
considered a berthing point relative to the previous one if the distance between them does not exceed Dstop rather than its status data. 
Additionally, the maximum allowable continuous distance Dconn can be derived more easily from historical data than Tconn. Once Dconn 
is determined, Tconncan be calculated as Tconn = Dconn/Smin. Consequently, the five parameters to be determined are Nstop, Dstop, Tstop, 
Smin and Dconn. These parameters can be estimated through statistical analysis of AIS data, as detailed in Section 3.1.

2.2. Data-driven global vessel route matching method

For vessel route planning, when provided with a set of origin and destination, the simplest approach to search historical navigation 
trajectories is by employing a route search algorithm that can identify navigable routes between these specified locations. To achieve 
this, the given origin and destination should be spatially classified to determine their respective regions. Once the classification is 
completed, the algorithm can then identify the navigable routes between the corresponding berthing areas. As described in Section 2.1, 
all berthing points are already obtained and can be clustered to obtain the required berthing areas for this specific purpose.

Algorithm 1: Trajectory Segmentation Method Based on Spatial and Temporal Distance of Vessel Points

Input: AIS data, Dstop Dconn Smin, Nstop, Tstop 

Output: Trajectory segment set Uts.
1: Generate an empty trajectory data Uts 

2: Calculate the maximum allowable continuous time interval Tconn = Dconn/Smin 

3: for AIS data Ti of vessel i do 
4: Generate an empty list of segmentation points Lsepe and an empty temporary list of segmentation points Lsus sepe 

5: Add the first point p1 in Ti to Lsus sepe and initialize pstop to p1.  
6: for the second point pi to the last point in Ti do 
7: Calculate the spatial distance dstop and time interval tstop between pi and pstop 

8: Calculate the spatial distance daj and time interval taj between pi and pi− 1 

9: if daj < Dstop then 
10: Add pi to Lsus sepe 

11: continue 
12: Return the number lstop of points in Lsus sepe 

13: if lstop ≥ Nstop or tstop ≥ Tstop then 
14: if dstop ≤ Smin*tstop then 
15: Mark the points in Lsus sepe as spatially continuous berthing segmentation points 
16: else 
17: Mark the points in Lsus sepe as spatially discontinuous berthing segmentation points 
18: else if taj ≥ Tconn and daj ≥ Smin*taj then 
19: Mark the points in Lsus sepe as non-berthing segmentation points 
20: Add the points in Lsus sepe to Lsepe 

21: Clear Lsus sepe 

22: Set pi as pstop 

23: Divide the trajectory Ti according to Lsepe to obtain the segmentedtrajectory Ui
ts 

24: Add Ui
ts to Uts 

25: Clear Lsepe 

26: Return Uts

2.2.1. Vessel berthing point clustering
In the context of point clustering-based berthing area identification, where the number of berthing areas cannot be determined in 

advance due to variability and temporary berthing, density clustering is chosen as the preferred method. However, global water areas 
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may exhibit variations in berthing point density, leading to inconsistent clustering parameters for density clustering. Additionally, 
density clustering incurs higher computational costs, making it challenging to process all points simultaneously, especially when 
numerous berthing points are involved. To address these issues, it is necessary to partition the research water area and implement an 
adaptive hyperparameter selection strategy (Xin et al., 2024).

In response to these challenges, this study proposes a CKBA-DBSCAN clustering approach. Given that berthing points are typically 
concentrated, a KNN filtering method is first applied. A berthing point is considered valid and contributes to berthing area identifi
cation only if its distance to its k-th neighbor is less than a predefined threshold Dk. Subsequently, the entire water area is then divided 
into grids, with activated grids defined as those containing at least one valid berthing point identified through the KNN filtering 
process. The depth-first search is then employed to group adjacent activated grids into blocks. Following this, adaptive DBSCAN 
clustering is applied on each block for berthing area identification.

DBSCAN clustering involves the neighbourhood radius threshold ε and the minimum number of points minPts. Although these two 
parameters are coupled and usually adjusted together to find the appropriate cluster structure, adaptively determining both param
eters simultaneously need high computational effort. Therefore, the value of minPts is initially determined based on existing literature 
(Li et al., 2021), focusing on ensuring a sufficient density of points to form a valid berthing area. To make ε adaptive for each block, an 
improved Silhouette score M is proposed to determine the optimal value for each block, as expressed in Equation (1). 

M =

∑
i∈Sbp

(
(di,e − di,i)/max

{
di,i, di,e

} )

⃒
⃒Sbp

⃒
⃒

− eα(x− 1) (1) 

where di,i and di,e donate the average distance from the i-th sample to all other points within the same cluster and the average distance 
from the i-th sample to all points in other clusters, respectively. Sbp represent the set of berthing points, with 

⃒
⃒Sbp

⃒
⃒ indicating the set 

length. x represents the proportion of anomalies to all data, and α represents the coefficient of proportion. The first component of 
Equation (1) is derived from the Silhouette score. This choice reflects the observation that normal berthing points should be distributed 
across different port anchorages, with distances between points in the same category significantly smaller than those between points in 
different categories. The second component introduces a penalty term designed to reduce the likelihood of erroneously classifying a 
substantial portion of points as anomalies when relying solely on the Silhouette score. By defining a specific range for the ε values and 
performing clustering with varying ε values within this range, the clustering results are evaluated using Equation (1). The optimal ε is 
then determined based on the clustering metric index results.

After completing the clustering for berthing points, the centre of each cluster is taken as the centre of the corresponding berthing 
area, while the maximum distance from the centre to any points within the cluster is calculated as the radius of the berthing area. 

Finally, all berthing areas 
{

area1
bp, area2

bp,⋯, arean
bp

}
are obtained.

2.2.2. Navigable routes matching
Once the berthing areas are identified, the original trajectories are categorised based on the berthing areas where their starting and 

ending points are located. Using this information, a navigable route database is constructed to store all historical trajectories between 
pairs of berthing areas. For the intended search route’s origin and destination, the corresponding berthing areas are determined by 
calculating their proximity to the identified berthing areas. The navigable routes between these two berthing areas are then retrieved 
from the navigable route database. If multiple historical trajectories exist between the same pair of berthing areas, the selection of the 
navigable route can be based on predefined criteria, such as the shortest distance or the highest frequency of use.

2.3. Model-driven global vessel route generation method

The effectiveness of route planning based on trajectory matching depends on the presence of navigation trajectories between the 
target areas. However, in cases where historical sailing trajectories are unavailable, navigable routes can still be generated by iden
tifying waypoints within the target water area and considering the connections between these points through the extraction of a global 
maritime shipping network.

2.3.1. Waypoint identification based on change point detection
Navigation areas refer to specific areas of the ocean or waterways that are designated for shipping routes. To identify navigation 

areas, it is essential to locate navigation points from historical sailing data to construct these areas. This study introduces a waypoint 
detection approach aimed at identifying navigation points.

Before detecting waypoints, the course sequence of a trajectory needs to be obtained first. Although AIS data provides the vessel 
course over ground, this value represents only the vessel’s instantaneous state. Given the k-th trajectory data Tk = (p1

k ,p
2
k ,⋯,pL

k), the 
course from point pl

k to pl+1
k is calculated using Equation (2) (Yan et al., 2020). 

NCpl
k ,p

l+1
k

= acrtanc
sin

(
xpl+1

k
− xpl

k

)

cos
(

ypl
k

)
× tan

(
ypl+1

k

)
− sin

(
ypl

k

)
× cos(xpl+1

k
− xpl

k
)

(2) 

where (xpl
k
, ypl

k
) and (xpl+1

k
, ypl+1

k
) represent the location of points pl

k and pl+1
k , respectively. This yields the corresponding navigation 
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course sequence (NCp1
k p2

k
,⋯,NCpl

kpl+1
k
,⋯,NCpL− 1

k pL
k
).

Building on this, the Pruned Exact Linear Time (PELT) algorithm, a robust change point detection method, is employed to identify 
waypoints. Change point detection can be formulated as finding a feasible partition Λ for sequence Y that minimizes the sum of fitting 
losses c(ytjtj+1 ) for each time segment and a penalty factor pen(Λ) that considers the complexity of the partition, as expressed in Equation 
(3). 

min
Λ

{
∑J

j=0
c(ytjtj+1 )+ pen(Λ)

}

(3) 

With this concept, the PELT algorithm (Killick et al., 2012) is utilised to optimally detect the unknown number of change points, 
making it suitable for large-scale vessel trajectories of varying lengths and shapes.

Finally, a metric I is introduced to evaluate the performance of waypoint detection and facilitate comparisons across different 
methods, as defined in Equation (4). 

I = n*log(Hausdorff(To,Tw)) (4) 

where n represents the number of waypoints, to and tw denote the original trajectory and the waypoint-connected trajectory, 
respectively. The Hausdorff() distance quantifies the similarity between the two trajectories. This metric is designed to minimise the 
number of waypoints while maintaining a high degree of similarity to the original trajectory. A lower value of I indicates better 
performance in terms of both waypoint detection efficiency and trajectory fidelity.

2.3.2. Global maritime shipping network generation

The waypoints are grouped using CKBA-DBSCAN clustering to identify the waypoint areas 
{

area1
wp, area2

wp,⋯, arean
wp

}
. Notably, 

unlike berthing point processing, waypoint clustering considers both the spatial distance and the direction feature (Bläser et al., 2024). 

Suppose we have the waypoint sequence 
(

w1
k ,⋯,wj

k,⋯,wJ
k

)
of the k-th trajectory, Equation (2) is applied to calculate the course 

values, with the course set to 0 for the initial waypoint w1
k . Based on this, the directional characteristics consist of two components: the 

navigation course NCwj− 1
k ,wj

k 
from wj− 1

k to wj
k and the navigation course NCwj

k ,w
j+1
k 

from wj
k to wj+1

k . Therefore, a comprehensive distance is 

calculated by integrating spatial dissimilarity and course dissimilarity among the waypoints. The waypoint areas and berthing areas 

are then combined to form the set of nodes 
{

node1
, node2

,⋯, noden
}

in the shipping network. The arcs between network nodes are 

extracted from the trajectory data. Specifically, when a trajectory departs from the node nodei and reaches the node nodej, it indicates 
the existence of a connecting arc between nodei and nodej. If multiple connecting arcs exist between the same pair of nodes, the shortest 
trajectory is selected as the connecting arc. Finally, after determining the sets of nodes and the corresponding connecting arcs, a 
directed graph of the shipping network is constructed.

Fig. 4. Schematic diagram of double-layer network matching for searching navigable paths.
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2.3.3. Vessel route generation using A* algorithm
Given the search origin and destination, and the determination of their corresponding nodes, we adopt the A* algorithm for route 

planning in the constructed shipping network. The A* algorithm utilises a heuristic function to guide the search towards the goal state, 
which leads to faster convergence to the optimal solution, as shown in Equation (5). 

f(n) = g(n)+ h(n) (5) 

where g(n) represents the actual cost from the starting point to node n, which is obtained by summing the losses on the arcs from the 
starting point to node n as 

∑n
i=1gi(i+1). The loss on an arc from node i to node i+1 is denoted as gi(i+1). h(n) represents the estimated cost 

from node n to the node where the ending point is located. Consequently, f(n) denotes the total estimated cost of node n.

2.4. Data-driven and model-based vessel route planning method

Based on the shipping network described above, searching for navigable routes ensures the discovery of paths within the existing 
navigation network. However, the network’s accessibility is limited since node connections in the shipping network are derived solely 
from trajectories. This can result in some unreasonable connections in the generated route. To address this, this study further proposes 
a navigable route planning approach based on a double-layer network matching method, as depicted in Fig. 4. The fundamental 
concept is to create routes using a grid network, and if a grid node is not a waypoint area, the vessel does not need to manoeuvre in that 
specific grid area. The trajectory generated by the grid network connects the centres of each grid, and reconnecting the waypoints 
avoids the requirement of smoothing the trajectory. By searching for navigable routes based on the grid network, the accessibility of 
the shipping network is expanded while minimising route loss to a greater extent.

The specific steps of the navigable route planning based on the double-layer network matching are as follows. To ensure better 
alignment between the two networks, the water area is first divided into grids identical to Section 2.2.1, with each grid treated as a 
node. Following this, the connections between grid nodes are constructed using trajectories to generate a grid network. After deter
mined the grids that origin and destination belong to, the navigable route planning is performed using the grid network and the A* 

algorithm. The resulting path 
{

node1
, node2

,⋯, nodek
}

from the grid network is then mapped to the shipping network to form a new 

node set 
{

node1ʹ
, node2ʹ

,⋯, nodekʹ}
. If the origin or destination cannot be matched to a node in the shipping network, the corre

sponding labels from the grid network is added to the new node set, and the final route is generated using this updated node set.

3. Case studies and discussions

The experimental analysis uses the 2018 global dry bulk carrier AIS data as a case study, comprising approximately 50 million AIS 
data points, as illustrated in Fig. 5. Two key factors motivate the focus on dry bulk carriers as the main research subject. Firstly, in 
contrast to container vessels, dry bulk carriers predominantly engage in transporting goods directly from the origin port to the 
destination port. This operational characteristic makes the route planning for dry bulk carriers more straightforward, focusing pri
marily on point-to-point transportation without the complexities of multiple stops, significantly simplifying identifying direct navi
gation routes while searching for feasible paths. Secondly, dry bulk carriers transport goods to diverse regions worldwide, thereby 
expanding the scope of route planning possibilities.

Fig. 5. Distribution of global bulk carrier and dry cargo vessel AIS data in 2018. (Data Source: seasearcher)
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Table 2 presents the content of the experimental dataset after each processing step. In the waypoint area recognition phase, not all 
segmented trajectories are utilised. If a vessel trajectory only operates within local waters (defined as having a range of less than 2◦ in 
both longitude and latitude directions), its waypoints are generally meaningless for route searching. Additionally, if a trajectory is 
lengthy but contains too few points, it indicates incomplete trajectory information, making it challenging to accurately identify 
waypoints. These trajectories are also excluded. Ultimately, the number of segmented trajectories is reduced from 489,395 to 108,944, 
but this reduction only account for a 12 % decrease in the total number of AIS points, indicating that the vast majority of trajectory data 
is retained.

Table 2 
Dataset description after each processing step.

Processing step Dataset content Data content Data volume

1 / Raw AIS data [IMO, date and time, location, SOG, COG, navigation 
status]

48,229,527

2 Trajectory segmentation Segmented trajectories [IMO, date and time, location, SOG, …, trajectory label] 45,804,039
3 Berthing area recognition Valid berthing points [location, grid label] 6,949,260

Berthing areas [area label, center location, radian] 2,221
Trajectories among areas [IMO, …, trajectory label] 19,184,389

4 Waypoint area 
recognition

Segmented trajectories for waypoint 
identification

[IMO, …, trajectory label] 40,329,976

Valid waypoints [location, grid label] 373,243
Waypoint areas [area label, center location, radian] 2,588

5 Arc extraction Arcs [start area, end area, arc trajectory information] 286,707

Fig. 6. Determination of vessel trajectory segmentation parameters: (a) statistical distribution of spatial intervals between all vessel points; (b) 
statistical distribution of vessel navigation speed; (c) statistical distribution of spatial distance between continuous berthing points; (d) statistical 
distribution of time intervals between continuous berthing points; (e) statistical distribution of stay duration under different continuous berthing 
points; (f) statistical proportion of different continuous berthing point scenarios.

L. Liu et al.                                                                                                                                                                                                              Transportation Research Part C 171 (2025) 105015 

12 



3.1. Vessel trajectory segmentation

3.1.1. Segmentation parameter determination
According to Algorithm 1, the first step is to determine the five parameters through statistical analysis, as illustrated in Fig. 6. Fig. 6

(a) shows the statistical distribution of the spatial distances between all adjacent AIS points. The results indicate that most spatial 
distances fall within 15 km, with the 98th percentile distance of 19.72 km selected as the value of Dconn. To determine the value of Tconn, 
the speed of points under navigation status is analysed, as presented in Fig. 6(b). The sailing speed is primarily distributed between 3 
and 15knots, and a sailing speed of 3knots is selected as Smin. Consequently, Tconn at this speed is calculated to be 213 min.

AIS Points with statuses of “At anchor” and “Moored” are used as preliminary berthing points to determine parameters related to 
berthing identification. These points are not directly regarded as definitive berthing points, as the status information cannot be 
guaranteed to be completely accurate (as shown in Fig. 8). The value of Dstop is determined to be 0.51 km based on the statistical 
distribution of spatial distances between these adjacent points, as shown in Fig. 6(c). To determine Nstop, Fig. 6(f) displays the dis
tribution of the number of consecutive berthing points, which exhibits significant variations and lacks distinguishing characteristics 
that can differentiate temporary berthing from long-term berthing. To address this, further statistical analysis is conducted on the 
berthing duration under various scenarios with different berthing points, ranging from 0 to 2000 min, as shown in Fig. 6(e). The results 
indicate that the proportion of the first peak decreases significantly when Nstop exceeds 7, suggesting the possibility of vessel tran
sitioning from temporary to long-term berthing. In combination with Fig. 6(d), which shows that most berthing points have a time 
interval of 60 min, seven consecutive berthing points correspond to a time interval of 420 min. Additionally, the first peak value (546 
min) is identified in the curve labelled 7 in Fig. 6(e). Accordingly, Nstop is set to 7, while Tstop is set to 546 min.

3.1.2. Comparison of trajectory segmentation methods
Using these parameters, trajectory segmentation is conducted. Fig. 7 compares the segmentation results using different methods. In 

Fig. 7(a), AIS devices shut down at the onset of berthing without returning data, rendering Huang’s method (Huang et al., 2021) 
incapable of identifying these discontinuous berthing data. Although a common method involving a larger time interval threshold can 
mitigate this issue (Liu et al., 2023c), the relatively smaller time intervals between adjacent points in continuous berthing still 
necessitate consideration of the number of berthing points to segment the trajectory; otherwise, it may be considered as a single 
trajectory, as shown in Fig. 7(b). Finally, for AIS data collected by satellites, data loss is frequent, and without considering non-berthing 
segmentation, trajectories may traverse land, as shown in Fig. 7(c). In contrast, the proposed method successfully segments the tra
jectories in these scenarios, as demonstrated in Fig. 7(d), 7(e), and 7(f). This highlights the proposed method’s specific advantage in 
accurately segmenting trajectories despite data discontinuities and data loss, making it highly effective for diverse and challenging 
scenarios.

Fig. 7. Trajectory segmentation comparison of between different methods.
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3.1.3. Analysis of segmentation point distribution
The algorithm and thresholds described above are employed to identify berthing and non-berthing segmentation points, resulting 

in 489,395 segmented vessel trajectories based on berthing and non-continuous trajectory segmentation. The distribution of the 
408,950 non-berthing segmentation points that are depicted in Fig. 8(a) is primarily located along major shipping routes. It is found 
that 98.17 % of them are in the “under way” navigation status. The distribution of the 7,094,086 berthing segmentation points, 
depicted in Fig. 8(b), is significantly higher than that of non-berthing segmentation points, with most concentrated near the coastline. 
A small number of berthing segmentation points are also distributed along shipping routes, due to prolonged anchorage periods during 
the voyage. Among the berthing segmentation points, 47.46 % and 45.43 % are found to be in “moored” and “at anchor” status, 
respectively, while 6.47 % of the data are in “under way” navigation status. This can be attributed to the fact that when a vessel is 
identified as being in berthing status, but the data does not return to the berthing status.

Fig. 8. Heatmaps of trajectory segmentation points. (a) trajectory-discontinuous non-berthing segmentation points; (b) berthing segmenta
tion points.
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3.2. The features extraction of the global maritime shipping network

3.2.1. Berthing area identification
After obtaining the berthing points as shown in Fig. 8(b), KNN-based point filtering is employed to remove 144,826 invalid berthing 

points with k = 15 and Dk = 0.51 km according to Fig. 6(c). The global waters are divided into 1800*900 grids with a grid size of 0.2◦. 
Since the grid division scheme is uniformly applied for constructing berthing areas, waypoint areas, and grid networks, it should not be 
too fine, as this may impede effective clustering into valid blocks. Conversely, if the grid is too coarse, it may fail to adequately capture 
the complexities of restricted and coastal waterways. A grid size of 0.2◦ is chosen because it corresponds to approximately 22 km at 
latitude and ranges from 15 km to 22 km at varying longitudes. According to Fig. 6(a), the distances between consecutive neighbouring 
points typically do not exceed 15 km, making the 0.2◦ grid appropriate for ensuring that trajectory points remain within a single grid. 
This continuity is vital for forming cohesive waypoint areas and enabling smoother arcs within the grid networks. Based on this, the 

Fig. 9. Distribution of estimated berthing areas and the matching results with actual ports and anchorages. (a) distribution of estimated berthing 
areas; (b) the matching results with actual ports and anchorages.

L. Liu et al.                                                                                                                                                                                                              Transportation Research Part C 171 (2025) 105015 

15 



approach mentioned in Section 2.2.1 is used to obtain 1,135 block areas.
To achieve effective clustering, the ε value is set within a range of 1,000 m to 5,000 m, based on two considerations. Firstly, ac

cording to Fig. 6(c), the distance between berthing points generally does not exceed 0.51 km. Taking into account the possible drifts, 
the lower limit was set to 1,000 m. Secondly, to prevent anchor areas and operation berthing areas from being grouped together due to 
an excessively large upper limit, the upper limit is restricted at 5,000 m. With minPts = 15, adaptive DBSCAN clustering is performed 
on each block area, resulting in 2,221 berthing areas, as shown in Fig. 9(a). The berthing points forming these berthing areas account 
for 96.79 % of all berthing points.

To further validate the identification results of berthing areas, global ports and anchorages date are extracted from the Seasearcher 
website,1 including information on area categories, names, and location. Since the precise latitude and longitude of the given areas 
cannot be obtained, an assumed distance threshold of dport = 20km is applied. A berthing area is considered a match with an actual 
location if the distance from its centre to a port or anchorage did not exceed dport. As a result, 1,470 berthing areas are matched with 
ports, 610 are matched with anchorages, and 141 cannot be matched, as illustrated in Fig. 9(b). Most of the berthing areas are suc
cessfully matched with actual ports or anchorages, demonstrating the effectiveness of the berthing point identification method and the 
adaptive clustering method to some extent.

3.2.2. Construction of navigable routes database
Subsequently, vessel trajectories are matched with identified berthing areas, resulting in obtain 293,721 historical trajectories 

between berthing areas. From this dataset, the shortest trajectory for each pair of berthing areas is selected, forming a navigable route 
database comprising 20,943 routes, as shown in Fig. 10. These trajectories serve as a foundation for data-driven vessel route matching.

3.3. Waypoint identification and shipping network generation

3.3.1. Comparison of waypoint identification approaches
To validate the reliability of the waypoint detection algorithm in waypoint identification, Fig. 11 presents a comparison of the 

results obtained using threshold detection (Liu et al., 2023c), local outlier factor anomaly detection, DP trajectory compression 
detection (Wei et al., 2020; Zhang et al., 2018), and waypoint detection on the same trajectory. It is evident that threshold detection 
yields excessive waypoints and may misidentify intermediate turning points as waypoints. Although local outlier factor detection and 
DP trajectory compression detection reduce the number of detected waypoints, it may also mistakenly identify intermediate turning 
points as waypoints and fail to identify some actual turning points. In contrast, the waypoint detection algorithm performs better in 
identifying waypoints. It avoids designating all points as waypoints when the heading is unstable and effectively controls the number 
of detected waypoints. According to Equation (4), the results indicate that threshold detection achieved a score of 308, local outlier 
factor detection scored 161, DP trajectory compression attained a score of 136, and the proposed method reached a score of 80, further 
demonstrating its superiority. Therefore, the PELT algorithm is employed to identify waypoints for all segmented trajectories As a 
result, a total of 430,007 waypoints are obtained.

Fig. 10. Trajectory map between different estimated berthing areas.

1 LIoyd’s List Intelligence: https://www.lloydslistintelligence.com/.
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3.3.2. Waypoint area identification
The CKBA-DBSCAN clustering method is still used for waypoint area identification. Fig. 12 illustrates the waypoint distribution 

before and after KNN filtering. Due to the absence of fixed shipping channels and the unique behaviour of vessels, certain regions 
where only a small number of vessels perform manoeuvres fail to form conventional waypoint areas, as shown in Fig. 12(a). Retaining 
these waypoints also result in the majority of grid cells being considered active and connected together after the water area is par
titioned, making it difficult to effectively form blocks. Consequently, the KNN algorithm is employed for waypoint filtering, with the 
value of k set to 15, representing the minimum number of waypoints required to form a waypoint area. Considering the characteristics 
of effective waypoint aggregation, a curve showing the relationship between the distance threshold and the proportion of remaining 
waypoints is plotted. Based on the growth rate variation, the distance threshold is set to 30,000 m. After filtering, 373,243 waypoints 
remain, as showed in Fig. 12(b).

The global waters are divided into 1800*900 grids, and 1,145 valid block areas are obtained. For the adaptive DBSCAN clustering, 
with minPts set to 15, the ε value range is defined as [0.01, 0.2] after normalising both directional and spatial distance using min–max 
normalisation and computing their weighted sum. Fig. 13 presents the results of adaptive clustering and fixed-parameter clustering of 
waypoints within different blocks. In Fig. 13(a), the optimal ε value for Block 362 is 0.14. With this parameter, two effective clusters 

Fig. 11. Comparison of different methods for detecting waypoints. (a) detection result based on a heading difference threshold of 10 degrees; (b) 
detection result of local outlier factor anomaly detection; (c) detection result of the DP compression algorithm with a distance threshold of 10 km; 
(d) detection results of the waypoint detection by the PELT algorithm.
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are obtained, while a significant number of waypoints in Block 224 are classified into the three cluster under the same parameter 
setting. Conversely, the optimal epsilon for Block 224 is 0.01. With this parameter, a total of 66 effective clusters are obtained, but none 
of the waypoints in Block 362 can form a waypoint area using this parameter. This indicates the difficulty in unifying clustering 
parameters for such large-scale water bodies with significant differences in waypoint density among regions. And the proposed method 
effectively addresses this challenge by employing block-specific parameters, ensuring accurate and efficient clustering across diverse 
maritime regions. Additionally, the vessel course characteristics of waypoints mean that spatially close points may still be assigned to 
different clusters. For instance, in Fig. 13(c), clusters 1 and 3 are separated from cluster 2, and in Fig. 13(f), clusters that are close or 
even overlapping are distinguished.

After performing block adaptive clustering on all waypoints, 2,588 waypoint areas are identified. These waypoints accounted for 
81.6 % of the recognised waypoints. However, some trajectories have too few points to form a waypoint region in the identified region, 
while in other cases, a vessel’s manoeuvring behaviour in a local area causes it to deviate from other vessels on the same route, making 
it difficult to form a waypoint region. Fig. 14(a) shows that the waypoint areas are mainly distributed near the coastline and on the 
main shipping routes. Although the change point detection method avoids the problem of recognising too many trajectory points close 
to ports as waypoints using a threshold detection method, multiple vessels still exhibit turning behaviours when approaching these 
areas.

3.3.3. Construction and analysis of the maritime shipping network
The nodes of the shipping network are derived by merging the berthing areas and waypoint areas, while the trajectory segments are 

Fig. 12. Waypoint distribution. (a) raw waypoint distribution; (b) KNN-filtered waypoint distribution.
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utilised to generate connecting arcs between nodes. Finally, the shipping network is constructed, as shown in Fig. 14(b). For navigation 
routes with very few trajectories, where the number of waypoints on the trajectories is insufficient to form waypoint areas, these 
waypoints are treated as general navigation points. It can also be seen that the trajectories between nodes have a certain degree of 
overlap, leading to nodes on the same route being covered by other trajectories. This is because trajectories on different routes may 
exhibit different patterns when passing through the same area.

We further analyse the shipping networks, as shown in Fig. 15, where the values indicated by the colour bar represent the degree of 
nodes or the number of arcs between nodes. Fig. 15(a) displays the distribution of nodes with different degrees. Nodes with higher 
degrees are mainly distributed near the coastline, and dry bulk cargo vessels prefer the Cape of Good Hope route instead of the Suez 
Canal route combined with the further analysis of Fig. 15(b). It also can be found from Fig. 15(b) that dry bulk cargo shipping primarily 
operated around East Asia, Australia, and Brazil.

3.3.4. Development of the grid network
To generate the grid network, the global water areas are also divided into 1800*900 grid system. Trajectory segments are then 

serialised into grid sequences, with grid connectivity determined by each pair of adjacent points within the segments. Furthermore, the 
directionality of the segments is preserved, ensuring that the grid network remains a directed graph.

3.4. Comparison studies

3.4.1. Comparative analysis of navigable route generation
This study compares navigable routes generated by three different methods: the trajectory searching method, the maritime 

shipping network method, and the double-network matching method. Initially, the analysis focuses on scenarios where navigable 
routes are identified through trajectory matching. Fig. 16 compares navigable route planning results in two distinct trajectory sce
narios. The authors observe that in Fig. 16(a), the path generated based on the double-layer network matching mainly aligns with the 
path generated by the shipping network, whereas the trajectory searching result is longer than the former two. In Fig. 16(b), the routes 
generated based on the shipping network and the double-layer network matching are substantially similar, but they significantly differ 
from the trajectory searching result.

Table 3 provides a detailed route planning results across two scenarios. From the perspective of time complexity, the trajectory 
matching method yields results quickly as it only requires data matching. In contrast, double-layer networks searching approach 
involves a search process at the grid network level before proceeding to matching the maritime shipping network, leading to signif
icantly longer computation times. However, in terms of route length, the network-based search demonstrates superior performance, 
underscoring the potential of the proposed method for application in route planning. Nonetheless, this advantage may partly arise from 
the limitation of not accounting for the influence of weather conditions.

Furthermore, when navigable routes cannot be found through trajectory searching, the shipping network and double-layer network 

Fig. 13. Comparison of clustering results under different ε. (a) clustering index curve for Block 362; (b) adaptive clustering results for Block 362; (c) 
clustering results for Block 224 under optimal parameters for Block 362; (d) clustering index curve for Block 224; (e) clustering results for Block 362 
under optimal parameters for Block 224; (f) adaptive clustering results for Block 224.
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matching can be used to generate navigable routes. As shown in Fig. 17(a), the berthing area in the maritime shipping network are 
considered searchable intermediate nodes, resulting in local anomalies in the generated path. Conversely, the path generated using the 
proposed double-layer network matching is found to be superior. Additionally, due to limited historical trajectories, the searchable 
path range of the shipping network is constrained, as illustrated in Fig. 17(b). Nevertheless, the double-layer network matching can 
still successfully obtain a navigable route between the starting and ending points.

To verify the effectiveness of the proposed method for other types of vessels, the container vessel AIS data from 2021 is used to 
construct the maritime shipping networks and perform route planning, as shown in Fig. 18. The diversity of the original trajectories 
leads to a certain degree of instability in trajectory searching methods, resulting in navigable paths that may not be the shortest. 
Similarly, methods based on maritime shipping networks can yield abnormal results due to the limited accessibility of nodes generated 
from trajectories and the treatment of berthing areas as intermediate nodes. In contrast, the paths obtained through double-layer 
networks are more optimal. The network construction process and path search method using container vessel AIS data further vali
date the effectiveness of the proposed framework and methods.

3.4.2. Comparative analysis of route planning performance
To demonstrate the effectiveness of the proposed method, Table 4 further compares the route planning results from the same 

departure port to different destination ports using various methods. These methods include existing route planning software and 
current trajectory searching techniques. Specifically, the existing voyage optimisation tool is employed to generate port-to-port 
connections. This tool automatically optimises routes by taking into account vessel navigation requirements and channel 

Fig. 14. Results of waypoint area recognition and estimated maritime shipping network. (a) results of waypoint area recognition; (b) estimated 
maritime shipping network.
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Fig. 15. Analysis of maritime shipping networks. (a) network node degree analysis; (b) network link frequency analysis.

Fig. 16. Comparison between original trajectories and network-based generated routes. (a) short-distance shipping scenario; (b) long-distance 
shipping scenario.
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restrictions, based on the input of departure and destination port information. Fig. 19 includes five globally representative shipping 
routes. The results of global route planning indicate that the method proposed in this study can efficiently and rapidly generate and 
plan these routes. 

• Route 1: Shanghai Port to Shantou Port. This route connects the bustling metropolis of Shanghai, one of China’s major economic 
centres and seaports, with Shantou Port, located in Guangdong Province. Shantou Port serves as an important gateway for trade in 
the South China Sea region, facilitating the transportation of goods and materials to and from southern China.

• Route 2: Shanghai Port to Port of Singapore. This route links Shanghai Port, a key hub for international trade and commerce in 
East Asia, with the Port of Singapore, one of the world’s busiest and most strategically located ports. The Port of Singapore serves as 
a crucial transhipment hub, connecting major shipping routes between Asia, Europe, and the rest of the world.

• Route 3: Shanghai Port to Port of Cape Preston. This route connects Shanghai Port with the Port of Cape Preston, located in 
Western Australia. The Port of Cape Preston primarily serves the iron ore mining industry in the Pilbara region, facilitating the 
export of iron ore to global markets, particularly to Asia.

• Route 4: Shanghai Port to Port of Itaguaí. This route connects Shanghai Port with the Port of Itaguaí, situated in Rio de Janeiro, 
Brazil. The Port of Itaguaí is a major port for the export of iron ore and other commodities, serving as a crucial link in Brazil’s 
maritime trade network and facilitating trade with international markets.

• Route 5: Shanghai Port to Port of Rotterdam. This route connects Shanghai Port with the Port of Rotterdam, Europe’s largest and 
busiest seaport located in the Netherlands. The Port of Rotterdam serves as a vital gateway for European trade, handling a diverse 
range of cargo including containers, bulk goods, and petroleum products, and facilitating trade between Europe and the rest of the 
world.

Route planning results based on maritime shipping networks are excluded from this comparison due to potential anomalies. Table 4
demonstrates the superior route searching speed of the proposed method, especially when historical trajectories are available, 
resulting in significantly faster route searches. Table 4 also highlights that those longer routes do not necessarily result in slower search 
speeds. For example, the journey from Shanghai Port to the Port of Itaguaí is longer than to the Port of Rotterdam, yet the search time is 
shorter. This discrepancy is attributed to the complexity of maritime environments traversed, where routes passing through open 
waters require less time for searching compared to those navigating through complex maritime passages such as the Malacca Strait and 
the Suez Canal.

More specifically, the proposed method, utilising double-layer networks searching, consistently achieves significantly lower 
searching times compared to software searching. For example, from Shanghai Port to Shantou Port, the searching time is reduced from 
over 480 s to just 0.75 s, showcasing a remarkable improvement in efficiency. Additionally, the proposed method consistently 

Table 3 
Comparison of route planning results across two scenarios in Fig. 16 using different methods.

Route planning methods Searching time (s) Route length (km)

(a) trajectory matching <0.001 7255.6
maritime shipping network searching 1.625 6844.3
double-layer networks searching 15.945 6963.6

(b) trajectory matching <0.001 22231.1
maritime shipping network searching 59.498 17045.7
double-layer networks searching 283.053 16854.3

Fig. 17. Route generation in the absence of historical sailing trajectories. (a) scenarios for generating navigable routes by both maritime shipping 
networks and double-layer networks; (b) scenarios for generating navigable routes only using double-layer networks.
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produces optimized route lengths compared to software searching. For instance, from Shanghai Port to Shantou Port, the route length 
is reduced from 1279.1 km to 1137.9 km, indicating more efficient route planning with the proposed method. Moreover, the proposed 
method demonstrates consistent performance across different destination ports, consistently outperforming software searching in 
terms of searching time and route length optimisation. This suggests the robustness and reliability of the proposed method in various 
scenarios, enhancing its applicability in diverse maritime contexts.

3.5. Discussions and implications

This study presents a novel approach to grid generation for the global maritime network, designed to facilitate automatic vessel 
route planning by leveraging AIS data. The primary contribution of this research lies in the innovative use of historical big data to 
construct a structured grid representation of the global maritime network. Building upon this foundation, the proposed route planning 
methodology enhances the accessibility and usability of the network, enabling more efficient and reliable route planning for large- 
scale maritime operations.

Fig. 18. Route searching and planning generation based on the container vessel AIS data. (a) local navigable path search with original trajectories; 
(b) short-distance navigable path search with original trajectories; (c) long-distance navigable path search with original trajectories; (d) short- 
distance navigable path generation without original trajectories; (f) long-distance navigable path generation without original trajectories.
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From a theoretical perspective, this study offers significant contributions to the efficient and accurate processing of large-scale AIS 
data. First, the proposed spatiotemporal segmentation approach proves highly effective in addressing diverse vessel trajectory seg
mentation scenarios. By reducing reliance on predefined segmentation parameters, this method achieves greater flexibility and 
adaptability, paving the way for broader applications in vessel itinerary analysis. Second, the integration of change-point detection to 
account for vessel heading variations marks an advancement over traditional threshold- and compression-based methods, providing a 
robust framework for identifying vessel behavior. By converting feature data into time series representations, this method expands its 
applicability to the motion analysis of both vessels and other vehicular systems. Third, complementing existing parallel processing 
methods for large-scale AIS data management (Li et al., 2024), the study introduces a block-based adaptive processing strategy that 
effectively addresses the challenges posed by extensive and heterogeneous datasets. This approach demonstrates exceptional adapt
ability across varying maritime regions, making it particularly suitable for global-scale data-driven maritime research and practical 
applications.

From a practical standpoint, this study also delivers a robust route planning methodology tailored for long-distance oceanic 
navigation. Comparative experimental analyses between the proposed method and the existing voyage optimisation tool underscore 
the method’s advantages in significantly reducing computational time and optimizing route lengths. These benefits arise from the grid- 
based global maritime network constructed from historical vessel trajectories, which narrows the search area and enables rapid route 
identification. Unlike traditional methods that involve exhaustive exploration of all potential areas between ports, the proposed 
approach capitalizes on the predefined network structure to achieve faster and more efficient route planning.

Despite its demonstrated advantages in AIS data processing and route searching, opportunities remain for further refinement to 
enhance its practical applicability. Vessel maneuvering is inherently a continuous process, yet change-point detection typically isolates 
the most pronounced variation points within this process. Future research could focus on integrating change-point detection with 
complementary methods to capture the entire continuous maneuvering process comprehensively. Additionally, as observed in Fig. 16
(b) and 18(c), certain inconsistencies in search results arise from the inherent limitations of the maritime network’s connectivity, 
which is based on historical vessel trajectories. These limitations constrain the network’s accessibility, particularly in areas where 
connections between nodes are sparse or incomplete. Enhancing inter-node connectivity by leveraging the similarity of incoming and 
outgoing directional vectors, along with spatial relationships between nodes, could substantially improve the accessibility and 
robustness of the maritime network. Such improvements would, in turn, enhance the reliability and precision of the route planning 
results derived from the network.

4. Conclusions and future research

The study introduces an innovative method for integrating data-driven and model-based approaches to automatically vessel routes 
at a global level, considering all bulk carriers as main sample vessels. The integration method introduced accounts for: (1) a data 
mining model for trajectory segmentation, waypoint detection, and clustering of berthing points; (2) the development of a global 
maritime shipping network for vessel route planning from historical data; (3) the A* algorithm and a double-layer network matching 
method for generating the final navigable route for any global voyage. The method is demonstrated using data covering one year and 
considering all the worldwide operating bulk carriers. Key conclusions can be summarized as follows: 

• The innovative integration of data-driven and model-based approaches shows promise for global route planning. By combining the 
strengths of both methods, it offers a comprehensive solution (see Figs. 16 and 17).

• The vessel trajectory segmentation based on the spatiotemporal distance of vessel points takes into account the differences in 
spatiotemporal characteristics of trajectory points under different scenarios (Algorithm 1) and can better meet the needs of vessel 
trajectory segmentation in complex scenarios (berthing segmentation and non-berthing segmentation).

Table 4 
Comparison of route planning results from the same departure port to different destination ports under different methods.

Departure port Destination port Route planning methods Searching time (s) Route length (km)

Shanghai Port Shantou Port trajectory matching / /
double-layer networks searching 0.75 1137.9
software searching >480 1279.1

Port of Singapore trajectory matching <0.001 4062.3
double-layer networks searching 4.1 3961.0
software searching >480 4130.4

Port of Cape Preston trajectory matching <0.001 5305.8
double-layer networks searching 13.2 5905.6
software searching >480 6080.3

Port of Itaguaí trajectory matching / /
double-layer networks searching 152.3 20299.2
software searching >480 21006.9

Port of Rotterdam trajectory matching / /
double-layer networks searching 398.1 19137.6
software searching >480 19778.1
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Fig. 19. Comparison of global route planning using existing route planning software and current trajectory searching techniques. (a) Route 1: 
Shanghai Port to Shantou Port; (b) Route 2: Shanghai Port to Port of Singapore; (c) Route 3: Shanghai Port to Port of Cape Preston; (d) Route 4: 
Shanghai Port to Port of Itaguaí; (e) Route 5: Shanghai Port to Port of Rotterdam.
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• The proposed waypoint detection method based on the PELT algorithm is more effective at identifying global navigation points 
compared to the transitional threshold detection and anomaly detection methods.

• The CKBA-DBSCAN effectively constructs regions of stationary vessels and navigation points in large or even global water areas.
• Utilising global AIS data is effective for reconstructing detailed historical vessel routes, which enhances the development of data- 

driven route planning solutions.
• A new approach for navigable route search, utilising a double-layer network matching method, is proposed to enhance the effi

ciency of vessel route planning. This method broadens the accessibility between ports beyond just relying on the maritime shipping 
network. It also facilitates smoother route creation through grid networks, thereby increasing the probability of identifying the 
shortest route (Table 3).

• The proposed route planning method not only rapidly provides a global route, but also supplies suggested vessel kinematic in
formation (such as speed, course, heading, etc.) derived from the data-driven model.

Overall, the study concludes that the search for vessel navigable routes progressively expands from matching specific trajectories to 
exploring navigable routes based on the shipping network and a double-layer network approach. The developed method demonstrates 
versatility, catering to various requirements in navigable route planning, and offers substantial support for practical route planning 
and shipping network analysis. For future research, it is essential to acknowledge that the planned route determined by using the 
proposed method is a static route with vessel kinematic information. The methods employed in this study lack consideration for 
various factors that influence route planning, such as vessel characteristics and hydro-meteorological conditions. There is a need to 
develop customized shipping networks. This entails conducting subsequent investigations focusing on route optimisation and weather 
routing, taking into account specific vessel characteristics and prevailing weather conditions. By addressing these factors, the route 
planning process can be further refined to enhance safety and efficiency. Moreover, future efforts will explore the utilisation of his
torical trajectory data to identify secure navigation channels, followed by optimising fuel consumption and reducing pollution 
emissions by integrating vessel energy consumption models into the route planning framework.
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Bläser, N., Magnussen, B.B., Fuentes, G., Lu, H., Reinhardt, L., 2024. MATNEC: AIS data-driven environment-adaptive maritime traffic network construction for 
realistic route generation. Transp. Res. Part C Emerging Technol. 169. https://doi.org/10.1016/j.trc.2024.104853.

Bellman, R., 1952. On the theory of dynamic programming. Proc. Natl. Acad. Sci. 38 (8), 716–719. https://doi.org/10.1073/pnas.38.8.716.
Bentin, M., Zastrau, D., Schlaak, M., Freye, D., Elsner, R., Kotzur, S., 2016. A new routing optimization tool-influence of wind and waves on fuel consumption of ships 

with and without wind assisted ship propulsion systems. Transp. Res. Procedia 14, 153–162. https://doi.org/10.1016/j.trpro.2016.05.051.
Cai, J., Chen, G., Lützen, M., Rytter, N.G.M., 2021. A practical AIS-based route library for voyage planning at the pre-fixture stage. Ocean Eng. 236. https://doi.org/ 

10.1016/j.oceaneng.2021.109478.

L. Liu et al.                                                                                                                                                                                                              Transportation Research Part C 171 (2025) 105015 

26 

https://doi.org/10.1007/s12198-019-00204-z
https://doi.org/10.1007/s12198-019-00204-z
https://doi.org/10.1057/mel.2016.18
https://doi.org/10.1016/j.trc.2024.104853
https://doi.org/10.1073/pnas.38.8.716
https://doi.org/10.1016/j.trpro.2016.05.051
https://doi.org/10.1016/j.oceaneng.2021.109478
https://doi.org/10.1016/j.oceaneng.2021.109478


Chen, C., Chen, X., Ma, F., Zeng, X., Wang, J., 2019. A knowledge-free path planning approach for smart ships based on reinforcement learning. Ocean Eng. 189, 
106299. https://doi.org/10.1016/j.oceaneng.2019.106299.

Charalambopoulos, N., Xidias, E., Nearchou, A., 2023. Efficient ship weather routing using probabilistic roadmaps. Ocean Eng. 273. https://doi.org/10.1016/j. 
oceaneng.2023.114031.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math. 1 (1), 269–271. https://doi.org/10.1007/BF01386390.
Dong, L., Li, J., Xia, W., Yuan, Q., 2021. Double ant colony algorithm based on dynamic feedback for energy-saving route planning for ships. Soft. Comput. 25 (7), 

5021–5035. https://doi.org/10.1007/s00500-021-05683-8.
Du, W., Li, Y., Zhang, G., Wang, C., Zhu, B., Qiao, J., 2022. Ship weather routing optimization based on improved fractional order particle swarm optimization. Ocean 

Eng. 248. https://doi.org/10.1016/j.oceaneng.2022.110680.
Dui, H., Zheng, X., Wu, S., 2021. Resilience analysis of maritime transportation systems based on importance measures. Reliab. Eng. Syst. Saf. 209. https://doi.org/ 

10.1016/j.ress.2021.107461.
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