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Abstract—Traffic in backbone networks is characterized by
strong seasonality, with clear patterns visible in various services
and applications based on their usage throughout the day. Data-
driven networks can learn these patterns to manage resources
more efficiently as they become increasingly saturated. In this
paper, we explore the benefits of traffic prediction and grooming
across different traffic patterns. To achieve this, we simulate
network operations using uniform sets of time-varying connection
requests, where all demands in a simulation share the same traffic
pattern related to a specific network-based service or application.
Our goal is to thoroughly evaluate the robustness of the proposed
techniques across diverse scenarios. The results will facilitate
the design of future application-aware algorithms for the most
efficient handling of each traffic pattern.

Index Terms—multilayer network, application–aware network,
machine learning.

I. INTRODUCTION

Multilayer application-aware networks are an emerging
approach in the current trend of building new, data-driven
network optimization algorithms [1], [2]. With the significant
advancements in network telemetry, vast amounts of measure-
ments and information are now being collected [3], [4]. This
data can be analyzed to identify patterns and enhance network
operations through gained insights. Moreover, networks can
utilize these learned patterns to dynamically self-optimize
according to changing traffic conditions, which is a key aspect
of intent-based networking [5], [6].

Traffic in backbone networks is a collection of numerous
smaller connections of various types. With the growing popu-
larity of network-based services and applications, a substantial
portion of this traffic comes from data centers. Thanks to the
aggregation of connections and the separation of data centers,
clear daily and long-term trends and patterns for each service
can be identified (e.g., see [7]). These patterns can be learned
by machine learning (ML) algorithms, and the insights gained
can enhance the development of new, intelligent algorithms
through the use of traffic forecasting and other techniques [8],
[9]. The possible applications of the traffic type identification
and differentiation include traffic scheduling or downgrading
non-crucial connections [10], [11].

As newly deployed solutions must be thoroughly tested
before being applied in real-world networks, their functionality
is first evaluated using simulators or network digital twins
[12], [13]. During this process, multiple metrics of interest

are collected to further refine the developed approaches and
conduct a "what-if" analysis. These experiments often reveal
intriguing dependencies and inspire new ideas.

In this paper, as the main contribution and novelty, we
examine how various traffic patterns impact the performance of
multilayer networks aided by artificial intelligence. To achieve
this, we simulate network operations under uniform sets of
requests, each containing demands corresponding to a specific
popular network-based service or application. We explore the
effects of changing traffic patterns across various metrics
to quantify the benefits of utilizing traffic prediction and
grooming. We repeat our investigation on two large topologies
and reveal common and diverse trends. The obtained results
shed light on in which cases traffic prediction and grooming
give the clearest benefits and can be a guideline for creating
new application-aware approaches.

The remainder of this paper is organized as follows. Sec-
tion II describes the network and traffic model together with
the multilayer network optimization algorithm. Section III
provides an overview of our simulation setup and Section IV
discusses the results we obtained. Finally, Section V concludes
this work.

II. NETWORK MODEL AND ALLOCATION ALGORITHM

In this Section, we provide the overview of our network and
traffic model, and describe the routing and resource allocation
(RSA) algorithm we use.

We consider a two-layer network model with a physical
Elastic Optical Network (EON) topology at the bottom and
a virtual packet (IP) layer at the top. The upper layer is
a virtual topology of lightpaths set up in the physical network.
The layers are optimized jointly, exchanging information about
the free and used bandwidth, and enabling traffic grooming.
The connection requests to be provisioned are characterized
by their source and destination nodes and a series of bitrates
varying throughout time. The main assumptions of our net-
work model are illustrated in Fig. 1. For more details see [14].

The dynamic traffic model comprises time-varying connec-
tion requests or intents. Each request represents a bandwidth
demand of a network-based service or application having
a unique daily traffic pattern. We assume multiple requests per
each node pair. All of the requests are active in the network



Fig. 1: Overview of the network model and traffic grooming
as in [14].

during the entire duration of the simulation, but their bitrate
changes. More details will be provided in Section III.

In this work, we aim to simulate and evaluate the network
operation under various types of traffic. To this end, we
use our recent multilayer RSA algorithm proposed in [14].
The base version, multilayer (MLTL), assumes a separate
lightpath for each connection request to accommodate its
bitrate changes throughout the day. In case of a bitrate increase
over the lighpath capacity, a new lighpath is established for
this connection. The lightpaths are established in the optical
network using a heuristic that sorts the k = 10 shortest
paths according to the lowest-possible slot assignment of a
potential channel. According to our previous experiments, such
an approach allows provisioning up to 20% more traffic than
the conventional sorting of candidate paths by their length.
Moreover, it spreads the load in the network more evenly to
avoid congestion. For spectrum assignment we use the well-
known First Fit heuristic, recently proven as universal [15].

Our algorithm modification, multilayer with grooming
(MLTL_G), adds traffic grooming [16] and routing in the IP
layer. In particular, for any initially allocated or reallocated
request, if there is a direct lightpath from its source to
its destination with enough spare bandwidth, the request is
added into it. In turn, multiple requests can share resources
resulting in considerable savings. Moreover, k = 3 shortest
paths in the top layer sorted by the number of hops are
also considered. According to our previous experiments, this
number of candidate paths balances virtual path length and
resource utilization.

The algorithms make their allocation and grooming deci-
sions using the expected bitrate within the upcoming period

with a granularity of 5 minutes. As in [14], we create traffic
forecasts for each connection request using its month-long
history. Our model, based on previous work [17], makes the
predictions using a linear regression model built around the
relationship between the current traffic and its samples in
significant past points in time – a day and a week before.

III. EXPERIMENTAL SETUP

In this Section, we report the setup of our experiments.
We perform computer simulations to evaluate the network
performance thoroughly using the algorithm described above.
In our experiments, we consider two large topologies with
diverse characteristics, illustrated in Fig. 2 and available in
the SNDLib library [18]. We assume the Ciena Wavelogic 5
Extreme transceiver with its specifications as provided in [19].

Fig. 2: Considered network topologies: Euro28 with 28 nodes
and 82 links (left) and US26 with 26 nodes and 84 links (right).

For a thorough evaluation, we generate multiple semi-
synthetic datasets using the Traffic Weaver package [20]. We
select seven diverse traffic patterns provided in the Sandvine
report [7] plotted in Fig. 3. To test the network performance
under a traffic pattern, we generate five sets of requests sharing
the traffic pattern and differing bitrate for each topology. In
other words, each dataset contains 1000 requests of the same
traffic pattern, having a bitrate scaled to the 50–100 Gbps
range with a uniform distribution. The network operation is
simulated for various traffic loads, which is increased by
increasing the number of active connection requests. The
results contain values averaged over simulations using requests
of the same type.
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Fig. 3: Considered traffic patterns from the Sandvine report
[7] prepared using the Traffic Weaver [20].
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Fig. 4: BBP for request type messaging. US26 topology (left)
and Euro28 topology (right).
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Fig. 5: BBP for request type social media. US26 topology
(left) and Euro28 topology (right).

IV. RESULTS

In this Section, we discuss the results we obtained. First,
let us investigate the advantages coming from using traffic
grooming and how they differ between topologies and traffic
patterns. To this end, we consider the Bandwidth Blocking
Probability (BBP) metric, describing the ratio of blocked to
total bandwidth. The results from this part are plotted in Fig. 4
– Fig. 10. As expected, employing traffic grooming results in
vastly reduced BBP. However, the advantages differ between
the test cases.

The first overall trend visible there is the difference between
the appearance of the first blocking events for the MLTL_G
algorithm compared to the baseline MLTL. It comes at a much
higher traffic load in the case of the US26 topology compared
to Euro28. In turn, the advantages of employing traffic groom-
ing are more profound in the more spread-out topology, regard-
less of the traffic type. Furthermore, under traffic loads, which
results in some blocking in both algorithms, the differences
between them are once again more significant in the case of
US26. As revealed in our previous study [21] comparing the
impact of node restrictions in those two networks, Euro28 is
more dense, and its crucial nodes for connection provisioning
lie close to each other and get congested fast. Thus, it is
essential to use any mechanisms that utilize the available
resources in the best possible way.

Let us now focus on the differences between traffic types. As
illustrated in Fig. 3, some patterns, including TikTok or Zoom,
contain large spikes within the day’s span. Their influence is
reflected in the results. In particular, the difference between
BBP achieved with and without traffic grooming appears to
be the smallest compared to the remaining tested patterns. We
may suspect that the enormous changes in bitrate result in
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Fig. 6: BBP for request type video. US26 topology (left) and
Euro28 topology (right).
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Fig. 7: BBP for request type YouTube. US26 topology (left)
and Euro28 topology (right).

frequent reallocations and, thus, many lightpath configuration
changes that may cause fragmentation. The additional con-
nection requests that all momentarily increase in bitrate create
the need for additional channels to be created, which, under
higher loads, might be impossible due to the lack of available
resources.

For a better illustration of the network performance with
various traffic types, we now present the results of a second
metric – accepted traffic assuming BBP of 1%. We calculated
it as a linear approximation of the traffic load between the
first BBP over 1% and the last BBP under 1%. Contrary to
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Fig. 8: BBP for request type Zoom. US26 topology (left) and
Euro28 topology (right).
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Fig. 9: BBP for request type Snapchat. US26 topology (left)
and Euro28 topology (right).
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Fig. 10: BBP for request type TikTok. US26 topology (left)
and Euro28 topology (right).

TABLE I: Accepted traffic [Tbps] assuming 1% BBP – average
over 180 simulations per traffic type; Euro28 topology.

traffic type MLTL MLTL_G

messaging 40.35 57.15
social media 40.35 49.95
video 37.65 52.05
YouTube 37.65 59.55
Zoom 39.45 54.45
Snapchat 38.55 57.15
TikTok 40.35 55.05

the previously discussed measure, accepted traffic should be
maximized. The results are presented in Tab. I and Tab. II.
The trends align with our discussion above, numerically pre-
senting the great advantages of utilizing traffic grooming for
diverse types of time-varying connection requests; the amount
of traffic accepted in the network drastically increases after
employing traffic grooming. The differences in both topologies
are the smallest for the least fluctuating social media traffic,
and the advantages increase for more time-variable traffic
types.

Finally, let us discuss the advantages of using the knowledge
coming from traffic prediction. To this end, we calculated the
Bandwidth Blocking in Established Lightpahts (BBEL) ex-
pressed in Gbps. This measure describes the portion of bitrate
that was blocked due to the lack of prior knowledge about
the upcoming traffic and making incorrect assumptions about
it (in particular, prediction errors in case of prediction-guided
methods). Suppose a request needs reallocation and is expected
to have a bitrate of 42 Gbps in the forthcoming period. There
is a fitting lightpath with 45 Gpbs free bandwidth. In such

TABLE II: Accepted traffic [Tbps] assuming 1% BBP –
average over 180 simulations per traffic type; US26 topology.

traffic type MLTL MLTL_G

messaging 49.65 75.75
social media 51.45 64.65
video 48.15 70.05
YouTube 49.05 76.95
Zoom 48.15 72.45
Snapchat 49.05 74.25
TikTok 49.65 72.45

TABLE III: BBEL [Gbps] – average over 180 simulations per
traffic type. MltL_G algorithm, Euro28 topology.

traffic type conventional with prediction

messaging 4744.54 16.25
social media 3934.36 27.71
video 4881.10 25.15
YouTube 6046.16 13.67
Zoom 20769.72 13.25
Snapchat 10510.41 13.37
TikTok 19581.54 11.94

a case, the algorithm performs traffic grooming and adds the
request to the channel. However, suppose that the actual bitrate
of this request in the next period has grown to 50 Gbps. In this
case, the "additional" 5 Gbps is blocked due to the erroneous
assumptions (e.g., prediction or any other future bandwidth
assumption policy).

In Tab. III and Tab. IV, we compare the performance of the
MLTL_G algorithm with and without the ML-based traffic
prediction. The latter is denoted in tables as "conventional"
and assumes that the traffic in the upcoming 5 minutes will
be the same as in the current moment. Contrarily, the former
case uses the predicted bitrate for the algorithmic decisions.
Interestingly, the differences between both approaches are
quite enormous, several orders of magnitude. This proves the
effectiveness of using prior knowledge about the upcoming
traffic for better provisioning. This is especially important as
both approaches resulted in the BBP and accepted traffic on
a comparable level, with a slight advantage towards the one
using predictions.

Between traffic types, there is an enormous difference in
the amount of blocked bandwidth between the highly- and
moderately fluctuating patterns. It is easily noticeable that
for traffic not drastically changing throughout the day, like
messaging or social media, the BBEL is around 4000 Gpbs.
However, it drastically increases by two orders of magnitude
with highly variable patterns, like Zoom or TikTok. Remark-
ably, those differences almost vanish after employing simple
traffic prediction models. Thus, similar to traffic grooming,
forecasting greatly benefits the performance of multilayer
networks with time-varying traffic. Once again, the gains differ
between specific types of connection requests.

Additionally, the knowledge from traffic prediction can be
utilized for advance reservation (AR). In the last set of results,
we discuss how much this process influences the network
operation. To this end, we once again consider the MLTL_G
algorithm with traffic prediction and its modification proposed
in [14] and denoted here as MLTL_G_AR. This version
checks the current bitrate trend of each request and, if it is
increasing, considers its 15-minute maximum for decision-
making to prevent frequent reallocations. In our testing, both
versions resulted in the BBP and accepted traffic on a similar
level with a slight advantage towards the regular MLTL_G,



TABLE IV: BBEL [Gbps] – average over 180 simulations per
traffic type. MltL_G algorithm, US26 topology.

traffic type conventional with prediction

messaging 4562.36 35.98
social media 3396.86 50.67
video 3657.20 24.14
YouTube 4584.80 27.42
Zoom 15441.89 14.44
Snapchat 9440.39 22.89
TikTok 16255.93 20.82

TABLE V: BBEL [Gbps] – average over 180 simulations
per traffic type. Comparison of the MltL_G and MltL_G_AR
algorithms, Euro28 topology.

traffic type MLTL_G MLTL_G_AR

messaging 16.25 14.54
social media 27.71 25.05
video 25.15 20.42
YouTube 13.67 10.78
Zoom 13.25 10.54
Snapchat 13.37 10.73
TikTok 11.94 9.22

and in Tab. V and Tab. VI, we report their BBEL. It is clear
how the AR results in a lower BBEL in all types of traffic.
Differences are, however, less spectacular than in the previous
sets of results. Therefore, the decision to utilize AR should be
taken individually for each connection request. Reserving the
resources in advance for some requests can potentially cause
the blocking of others. On the other hand, it mitigates the
effects of traffic prediction errors to a greater extent and, as
shown in [14], vastly decreases reallocation frequency.

V. CONCLUSIONS

In this paper, we investigated the impact of traffic type
on the performance of multilayer networks with time-varying
traffic. We conducted a broad experimental evaluation on two
representative topologies under multiple metrics. The results
revealed how the network operation changes with various
traffic patterns. The simulations explored the advantages from

TABLE VI: BBEL [Gbps] – average over 180 simulations
per traffic type. Comparison of the MltL_G and MltL_G_AR
algorithms, US26 topology.

traffic type MLTL_G MLTL_G_AR

messaging 35.98 32.06
social media 50.67 46.22
video 24.14 21.45
YouTube 27.42 21.07
Zoom 14.44 13.23
Snapchat 22.89 19.82
TikTok 20.82 18.96

using traffic grooming and different uses of traffic prediction
and how they change with changing traffic.

The study’s results are a great resource for the design of new
application-aware network optimization algorithms which we
plan to develop in the future.
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