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A B S T R A C T

The stabilisation of deep excavations using columnar inclusions introduces three-dimensional (3D) complexities
into design calculations. Often the intricate nature of the wall-soil-column interaction is simulated using
simplified averaging techniques based on elasticity theory. This paper introduces a numerical technique to
accurately describe the nonlinear elastoplastic response of both stabilised and natural soft clay for the case of
excavations stabilised with deep-mixed columns. The technique allows mapping the 3D problem into a plane-
strain (2D) counterpart by replacing the composite material made of natural clay and a region of overlapping
deep-mixed columns with an equivalent homogenised material. The stress–strain response of the homogenised
continuum is computed with a volume averaging technique (VAT) based on the volume fraction of each
component (i.e. clay and column). The technique is implemented into a 2D finite element code enabling an
effective representation of the behaviour of each constituent represented by advanced elastoplastic material
models. After presenting the theoretical background and implementation procedure, the proposed method
was verified against the results from the 3D calculations. The technique emerges as an efficient tool for the
numerical analysis of stabilised deep excavations since it allows for plane strain analysis to yield results akin
to computationally expensive 3D analysis. Thus, the method can significantly reduce the computational costs
and can facilitate the easier incorporation of sensitivity studies.
1. Introduction

Ground improvement techniques using columnar inclusions (e.g.
stone columns and lime-cement (LC) columns) are widely employed
in soft clays to reduce settlements and increase the stability due to
their ability to enhance the soil properties 𝑖𝑛 𝑠𝑖𝑡𝑢. In the numerical
analysis, to account for the three dimensional (3D) nature of the
stabilised clay with the inclusions, and the complexity of column and
soil interaction, the stabilised region can be represented by a composite
material consisting of two components. When simplifying the macro-
scopic heterogeneous structure, the composite material can be regarded
as an anisotropic homogeneous continuum (Hill, 1963; Hashin, 1983;
Canetta and Nova, 1989; Anglade et al., 2023). The homogenised
soil can then be modelled with an equivalent material by averaging
the constitutive behaviour of the surrounding soil and columns based
on their volume fractions (i.e. the volume occupied by each con-
stituent). The resulting equivalent material represents a stabilised soil
in which the inclusions are uniformly and homogeneously distributed.
The homogenisation procedure can be formulated employing different
constitutive soil models for the 𝑖𝑛 𝑠𝑖𝑡𝑢 soil and the inclusions provided
that local equilibrium and kinematics within the homogenised medium

∗ Corresponding author.
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are satisfied for both elastic and elasto- or visco-plastic conditions.
The homogenisation technique has been primarily utilised for the

analysis of fractures in porous media (e.g. Dvorak and Zhang, 2001;
Levasseur et al., 2011; Bharali et al., 2021) and for the analysis of
laminated structures with fibres (e.g. Dvorak and Bahei-El-Din, 1979;
Hashin, 1983; Idesman et al., 1996; van der Sluis et al., 1999). In the
geotechnical field, the technique has been employed in numerical anal-
yses, with a particular focus on the foundation of embankments (i.e.
Schweiger and Pande, 1988; Canetta and Nova, 1989; Lee and Pande,
1998; Omine et al., 1998; Jellali et al., 2005; Vogler, 2009; Omine et al.,
2017). These numerical analyses aimed to find a way to improve the
stability of soil beneath railway and highway structures while taking
into account the volume fractions of the inclusions.

The success of the homogenisation technique in accurately reflect-
ing the stabilised soil response relies heavily on fulfilling the local
mechanical balance conditions and maintaining the continuity of the
kinematics of the strain field at the interface between the columnar
inclusions and 𝑖𝑛 𝑠𝑖𝑡𝑢 soil. Notably, the stress–strain response of the
stabilised clay in deep excavations is significantly influenced by 3D
effects which may not be adequately captured by a two-dimensional
https://doi.org/10.1016/j.compgeo.2025.107095
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(2D) numerical analysis (Zdravkovic et al., 2005; Finno et al., 2007).
Although 3D simulations offer a more accurate representation of field
response, they are more time-consuming, computationally expensive,
and less readily available than 2D analysis tools.

Applying homogenisation technique to stabilised deep excavations
has not been investigated yet, as first, the equilibrium and continuity
constraints of the equivalent continuum need to be identified. There-
fore, in this study, the distinct nonlinear stress–strain responses of
the constituents of the LC columns and soft clay are investigated by
performing a fully coupled 3D consolidation calculation. Based on this
analysis, the local equilibrium and kinematic constraints are identified
and used to develop a volume averaging technique (VAT) for a corre-
sponding 2D analysis. The adopted VAT follows a similar methodology
described in Lee and Pande (1998), Vogler and Karstunen (2008)
nd Vogler (2009) but account for the different boundary conditions.

The technique allows for the use of different advanced soil models
representing the clay and column materials, respectively, providing
computational efficiency while capturing results that are comparable
o those of 3D simulations.

Our main contribution lies in the analytical establishment of the
equilibrium and continuity constraints within soft clay and deep-mixed
columns for a case of braced excavation, and in successfully applying
the developed theory to a boundary value problem in plane strain
conditions. Specifically, the method is implemented in a way that
restores equilibrium as well as maintains the continuity of kinematics
while using different advanced constitutive models. Consequently, the
technique eliminates the need for 3D models and the associated com-
utational costs, making it particularly advantageous for modelling a
arge number of columns arranged in a periodic grid.

2. Computational framework of the volume averaging technique
for deep excavations

To calculate the overall response of a deep excavation stabilised
ith deep-mixed columns using a homogenisation technique, the

tresses and strains within the stabilised region were assumed to be
istributed across the columns and soft clay, based on their respective
olume fractions. The technique involves computing the equivalent
tress and strain increments (𝛥𝜎𝑒𝑞 and 𝛥𝜀𝑒𝑞) in the equivalent ho-
ogenised material using the volume fraction of the soft clay and

olumns, denoted as 𝛺𝑠 and 𝛺𝑐 , respectively. The computation is given
y Eqs. (1)–(3) :

𝛥𝜎𝑒𝑞 = 𝛺𝑠𝛥𝜎
𝑠 +𝛺𝑐𝛥𝜎

𝑐 (1)

𝛥𝜀𝑒𝑞 = 𝛺𝑠𝛥𝜀
𝑠 +𝛺𝑐𝛥𝜀

𝑐 (2)

𝛥𝜎𝑒𝑞 = 𝐷𝑒𝑞𝛥𝜀𝑒𝑞 (3)

Here, 𝐷𝑒𝑞 denotes the stiffness matrix of the equivalent material,
which is a function of volume fraction and the stiffness matrices of
the constituents. The volume fractions of 𝛺𝑐 and 𝛺𝑠 can be defined
for evenly distributed columns without overlapping using Eqs. (4) and
5), respectively.

𝛺𝑐 = 𝜋
𝑟2𝑐
𝑠2𝑐

(4)

𝛺𝑠 = 1 −𝛺𝑐 (5)

where the column radius is 𝑟𝑐 and the column spacing is 𝑠𝑐 . Alterna-
ively, in the case of overlapping columns, the column area can be
alculated by simplifying the geometry into a rectangular form, as

demonstrated in Fig. 1. Through the application of averaging rules,
hile simultaneously satisfying the predefined local equilibrium and
inematic conditions, it becomes possible to determine the equivalent
tiffness matrix through analytical means. In this study, the prescribed
ocal equilibrium and kinematic conditions are established based on a
D simulation of an excavation.
 i

2 
Table 1
Construction stages used in the FE analysis.

Phase number Phase Time interval [days]

0 Initial state –
1 Installation of SPW 20
2 LC column installation 30
3 Excavation to −2 level 10
4 Excavation to −5 level 10

The following Sections 2.1 and 2.2, describe the 3D benchmark
model and the constitutive models utilised in the numerical simula-
ions. The 3D benchmark simulation consists of a numerical analysis

of a stabilised braced excavation taking into account transient flow for
an arbitrary consolidation period. The parameters for the constitutive
models were calculated and calibrated based on extensive laboratory
testing data for both the stabilised clay, using the dry soil mixing
method (DSM), and the natural clay. The laboratory test data relate to
an excavation site in Gothenburg, Sweden (Bozkurt et al., 2023). The
alibrated parameters were used to simulate a simplified excavation
roblem to represent soil behaviour under field conditions.

2.1. Numerical model of a deep excavation

The numerical analysis involved the simulation of a 5 m deep
braced excavation stabilised with LC columns. The benchmark analysis
employed a 3D model combined with a fully coupled consolidation
analysis. Finite element analysis (FEA) was performed using PLAXIS 3D
version 23). The braced excavation was assumed to be supported by
 15 m long sheet pile wall (SPW), complemented by a single row of
truts spaced at 5 m intervals. The deep-mixed columns were installed

along the first 10 m of the passive side of the excavation.
The construction sequence is detailed in Table 1. Preceding the

installation of LC columns, SPW was put in place. Subsequently, along
the passive side of the excavation, LC columns were constructed. The
columns were formed using double overlapping DSM columns, each
with a diameter of 70 cm, arranged in a square grid pattern with a
spacing of 2.5 m and a 20 cm overlap. Struts were installed at level
−0.8 as the soil was excavated to level −2.

In the 3D FEA, the grid of LC columns was simplified to a rectan-
gular form, and columns and soft clay were simulated using different
clusters of material, as demonstrated in Fig. 1. First, a special in-
estigation into mesh dependency was performed, focusing on mesh
efinement around the excavation area where high-stress gradients
re expected due to the presence of structural elements, such as LC
olumns, struts and SPW. The study resulted in a final mesh that
onsists of 42,294 ten-noded tetrahedral elements with each element
ncorporating 4 Gaussian integration points and 67,835 nodes for the
D model. The finalised excavation geometry is presented in Fig. 1.

Standard fixities were applied as displacement boundary conditions.
The hydraulic boundary at the bottom was modelled as impermeable.
Additionally, SPW was assumed to be impermeable, preventing any
seepage through the wall.

In the subsequent numerical analyses, to simulate the stress–strain
esponse of the soft clay and the deep-mixed columns, the S-CLAY1S

(Koskinen et al., 2002; Karstunen et al., 2005) and MNhard (Benz et al.,
2008) constitutive models were utilised, introduced in the following
section.

∙ S-CLAY1S model for soft clay
The S-CLAY1S model (Koskinen et al., 2002; Karstunen et al., 2005)

is a critical state model that was developed to describe the behaviour of
normally consolidated and lightly overconsolidated natural clays in the

et side of the critical state line. The model is an extension of the S-
LAY1 model (Wheeler et al., 2003), to account for the destructuration

resulting from the degradation of interparticle bonding. The model
ncorporates the influence of the initial (inherent) anisotropy and the
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Fig. 1. 3D numerical model of the deep excavation.

evolution of anisotropy defined by an inclined yield surface. The effects
of bonding and destructuration are modelled by using the concept
of intrinsic yield surface (Gens and Nova, 1993). The intrinsic yield
surface describes the imaginary yield surface of the same soil with
the same void ratio at a state where all bonding is removed. The S-
CLAY1S model formulation does not include strain rate effects which
were later on incorporated into the formulation of the Creep-S-CLAY1S
model by Sivasithamparam et al. (2013, 2015) and Gras et al. (2018) to
enable simulating the strain rate-dependency of natural clay response.

In this research, the lightly overconsolidated soft clay was repre-
sented by the S-CLAY1S model. In triaxial stress states, the yield surface
of the S-CLAY1S model is expressed by Eq. (6) and is illustrated in
Fig. 2.

𝑓 = (𝑞 − 𝛼 𝑝′)2 − (𝑀2 − 𝛼2)(𝑝′𝑚 − 𝑝′)𝑝′ = 0 (6)

where 𝑞 = (𝜎′1−𝜎′3) is the deviatoric stress and the mean effective stress
𝑝′ = (𝜎′1 + 2𝜎′3)∕3, 𝑀 is the stress ratio at the critical state and 𝛼 defines
the orientation of the surface. The initial isotropic preconsolidation
pressure, 𝑝′𝑚 can be related to the size of the intrinsic yield surface,
𝑝′𝑚𝑖 through the amount of bonding, 𝜒 (in Eq. (7)).

𝑝′𝑚 = (1 + 𝜒)𝑝′𝑚𝑖 (7)

The three hardening laws used in the model define the changes in
the size of the intrinsic yield surface, the progressive loss of bonding
and the rotation of the yield surface due to plastic straining. The
generalised formulation of the model in 3D stress space is presented
in Appendix A.

The values for the model parameters were selected following a prior
study by Bozkurt et al. (2023), using several CAUE/CADE (anisotropi-
cally consolidated undrained/drained triaxial tests in extension) and IL
(incrementally loaded oedometer) tests performed on natural clay sam-
ples. The calibration of the model parameters was conducted through
numerical simulations of the laboratory tests (see Appendix C) fo-
cussing on extension side, aiming to ensure the application of realistic
parameters for the numerical analysis of a stabilised excavation in soft
natural clay. The parameters employed in the simulations are given in
Table 2.

The vertical and horizontal hydraulic conductivities along the soil
profile are assumed to be of the same order (𝑘𝑣 = 𝑘ℎ), approximately
0.75 × 10−4 m/day, along with a permeability change index, 𝑐𝑘 of 0.27
(𝑐𝑘 = (𝑒0 − 𝑒)∕ log(𝑘0∕𝑘), where 𝑘0 denotes the hydraulic conductivity
corresponding to 𝑒 and 𝑘 is the current hydraulic conductivity at the
0

3 
Fig. 2. Yield surface of S-CLAY1S model in triaxial stress space.

Fig. 3. MNhard soil model in triaxial stress states.

current void ratio, 𝑒).
∙ MNhard model for LC columns
The Matsuoka–Nakai Hardening material model (MNhard) (Benz

et al., 2008) has a comparable formulation with the widely known
Hardening Soil model (HS) (Schanz, 1998; Schanz et al., 1999). How-
ever, unlike HS, the MNhard model does not account for volumet-
ric hardening and employs the Matsuoka–Nakai (MN) failure crite-
rion (Matsuoka and Nakai, 1974; Matsuoka, 1976), instead of the
Mohr–Coulomb criterion. The MN failure criterion uses the concept
of the average of mobilised planes (SPM, ’spatially mobilised plane’)
in three-dimensional stress space (Matsuoka and Nakai, 1982, 1985).
The validity of the MN failure criterion has been evidenced through its
success in accurately predicting soil failure, where intermediate stress
differs from both minor and major stresses, in element tests, as well as
in boundary value problems (Nakai and Matsuoka, 1983). The shear
hardening during triaxial primary loading is described by the yield
function in Eq. (8) (see Fig. 3).

𝑓𝑠 =
3
4
𝑞𝑎
𝐸′
50

𝑞
𝑞𝑎 − 𝑞

− 3
2

2𝑞
𝐸′
𝑢𝑟

− 𝛾𝑝𝑠𝑠 𝑎𝑛𝑑 𝑅𝑓 =
𝑞𝑓
𝑞𝑎

< 1.0 (8)

where 𝐸′
50 and 𝐸′

𝑢𝑟 represent the secant and unloading-reloading stiff-
nesses, while 𝛾𝑝𝑠𝑠 describes the accumulated deviatoric plastic shear
strain (𝛾𝑝𝑠𝑠 = 3∕2𝜀𝑝1) (Benz et al., 2008). The yield locus expands with
plastic shear strains resulting from deviatoric loading until the MN
failure surface is reached. qa is the asymptotic deviatoric stress, as
defined in the original hypoplastic Duncan–Chang model, which was
later extended to the elastoplastic HS model by Schanz (1998). qf is the
deviatoric stress at failure and Rf is the failure ratio. A brief description
of the model is presented in Appendix B.

The model incorporates an effective minor stress-dependent stiffness
as per Eq. (9).

𝐸′
50 = 𝐸′

50
𝑟𝑒𝑓

(

𝜎′3 + 𝑐
′ cot 𝜙′

𝑟𝑒𝑓

)𝑚

(9)

𝜎′ + 𝑐′ cot 𝜙′
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Table 2
S-CLAY1S model parameters for soft clay.

Type Definition Value [–]

𝜅, slope of the swelling line 0.02
Stiffness 𝜆𝑖, slope of the intrinsic normal compression line 0.2

𝜈′, Poisson’s ratio 0.2

Strength 𝑀 , stress ratio at critical state 1.10

Anisotropy 𝜇, absolute effectiveness of rotational hardening 50
𝛽, relative effectiveness of rotational hardening 0.64

Destructuration 𝑎, absolute rate of destructuration due to volumetric strain 12
𝑏, relative rate of destructuration due to shear strain 0.4

Initialisation 𝑒0, initial void ratio 1.90
𝛼0, initial anisotropy 0.42
𝜒0, initial amount of bonding 6
OCR, overconsolidation ratio (–) 1.20
𝐾0, coefficient of earth pressure at rest 0.54
m
a

c
R

𝛥

𝛥

i

t
V
E

d
i

a

Table 3
MNhard soil parameters for lime-cement columns.
𝛾𝑛 (kN/m3) 𝐺𝑟𝑒𝑓

50 (kPa) 𝐺𝑟𝑒𝑓
𝑢𝑟 (kPa) 𝑝𝑟𝑒𝑓 (kPa) 𝑚 𝜙′ (◦) 𝑐′ (kPa) 𝜈′

17 28 000 75 000 100 0.65 37 20 0.25

where 𝐸′
50
𝑟𝑒𝑓 is a reference secant modulus corresponding to a reference

tress 𝜎′𝑟𝑒𝑓 , 𝜎′3 is the minor effective stress, and the exponent of 𝑚 is a
odel parameter that reflects the stress-dependency of the stiffness of

he material.
The unloading and reloading is assumed to be purely elastic. The se-

ant unloading-reloading modulus is analogously expressed by Eq. (10).
The shear modulus can be defined by elasticity theory with the effective
Poisson’s ratio, 𝜈′ and 𝐸′

𝑢𝑟.

𝐸′
𝑢𝑟 = 𝐸′

𝑢𝑟
𝑟𝑒𝑓

(

𝜎′3 + 𝑐
′ cot 𝜙′

𝜎′𝑟𝑒𝑓 + 𝑐′ cot 𝜙′

)𝑚

(10)

The values for the model parameters of the LC columns, detailed
in Table 3, were derived based on CAUE tests performed on both
laboratory-mixed and field-mixed samples, as outlined in Bozkurt et al.
(2023). The calibration of the MNhard model parameters, using
undrained triaxial test results, was with the SoilTest facility in the
PLAXIS 2D FE code. The permeability of the LC columns was computed
from IL tests, and the values were close to those of the natural clay
as presented in Section 2.1. This study adopts the same soil model
parameters for the LC columns using the MNhard model as in Bozkurt
et al. (2023).

2.2. Stress–strain response of LC columns and natural clay

The distinct responses of the soft natural clay and the LC columns
ithin the stabilised region were examined separately by analysing

stress–strain distribution in the clay/column system using a 3D model.
The global coordinate system is set up with 𝑥 and 𝑦 as the horizontal
directions and z as the vertical direction. Throughout the paper, the
geotechnical engineering sign convention is used. Compressive stresses
and contractive strains are denoted by a positive sign, while a negative
sign corresponds to tensile stresses and expansive strains.

The responses of the clay and columns were described by different
constitutive models employing the S-CLAY1S and MNhard models,
respectively. The high rigidity of the column compared to the nat-
ural clay, and the use of different constitutive soil models resulted
n different stress paths within each material. In the 3D analysis, the

stress–strain response of the constituents was investigated at represen-
tative locations projected onto the plan view shown in Fig. 4, in the
final excavation phase over a 70-day consolidation period (see Table 1).
The sampling points are taken from the midsection, and the stress–
strain responses of the clay and stabilising materials are plotted at the
final excavation stage along the stabilised region (depths −5 to −10) in
4 
Fig. 5.
Based on the results of the simulation, the stress and strain incre-

ents within the clay and columns are analogous in some directions
s illustrated in Figs. 5(a)–5(f). Thus, based on the 3D FEA, the stress–

strain equality conditions between each constituent were generalised to
evaluate the response of the equivalent material. The horizontal stress
increment (𝛥𝜎𝑦𝑦) perpendicular to the plane direction and shear stress
increments (𝛥𝜏𝑥𝑦 and 𝛥𝜏𝑦𝑧) were found to be comparable between the
clay and columns as illustrated in Fig. 6. The stress equality in the
lay/column system leads to a uniform stress distribution following
euss assumptions (Reuss, 1929) in stated directions in Eqs. (11)–(13).

𝛥𝜎𝑒𝑞𝑦𝑦 = 𝛥𝜎𝑐𝑦𝑦 = 𝛥𝜎𝑠𝑦𝑦 (11)

𝜏𝑒𝑞𝑥𝑦 = 𝛥𝜏𝑐𝑥𝑦 = 𝛥𝜏𝑠𝑥𝑦 (12)

𝜏𝑒𝑞𝑦𝑧 = 𝛥𝜏𝑐𝑦𝑧 = 𝛥𝜏𝑠𝑦𝑧 (13)

Similarly, analogous kinematic conditions were projected for the
ncrements of vertical strains (𝛥𝜀𝑧𝑧), horizontal strains (𝛥𝜀𝑥𝑥) and shear

strains (𝛥𝛾𝑧𝑥) in both the column and clay materials considering perfect
bonding (in Fig. 7). The generalised equal strain increments within
he homogenised clay calculated using the 3D simulation align with
oigt (Voigt, 1889) assumptions in specific directions as given in
qs. (14)–(16).

𝛥𝜀𝑒𝑞𝑥𝑥 = 𝛥𝜀𝑐𝑥𝑥 = 𝛥𝜀𝑠𝑥𝑥 (14)

𝛥𝜀𝑒𝑞𝑧𝑧 = 𝛥𝜀𝑐𝑧𝑧 = 𝛥𝜀𝑠𝑧𝑧 (15)

𝛥𝛾𝑒𝑞𝑧𝑥 = 𝛥𝛾𝑐𝑧𝑥 = 𝛥𝛾𝑠𝑧𝑥 (16)

Additionally, for the same cross-sections, the horizontal and vertical
eformation distributions in the clay and the LC columns within the
mproved zone were compared, as shown in Fig. 8. The sampling points

along the 𝑧-axis at depths between −5 and −10 were investigated (see
Fig. 4).

The local equilibrium and compatibility conditions of the
homogenised medium consisting of deep-mixed columns and in situ nat-
ural clay were thus derived through the 3D analysis. The fundamental
ssumptions that form the basis of the homogenisation method for an

excavation case based on the analysis are proposed as:

∙ Columns are homogeneously and uniformly distributed over the
reinforced region in the passive side of the excavation

∙ The vertical strains, horizontal strains (in the horizontal plane
direction) and shear strains (angular strain in the vertical plane)
in both the column and 𝑖𝑛 𝑠𝑖𝑡𝑢 clay are equal, so no slippage is
allowed

∙ The continuity of the horizontal stress (in the out-of-plane di-
rection) and of the shear stresses (in vertical and horizontal
directions) between the clay and the columns are ensured



S. Bozkurt et al.

Fig. 4. Sampling locations in the 3D FEA: (a) 3D view; (b) plan view.

Fig. 5. Stress–strain increments in the clay/column system at the final excavation stage in the 3D FEA.
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Fig. 6. Generalised equal stress increments in clay/column system: (a) horizontal stress
increment, 𝛥𝜎𝑦𝑦 and shear stress increment, 𝛥𝜏𝑥𝑦; (b) shear stress increment, 𝛥𝜏𝑦𝑧.

Fig. 7. Generalised equal strain increments in clay/column system: (a) horizontal
train, 𝛥𝜀𝑥𝑥; (b) vertical strain, 𝛥𝜀𝑧𝑧; (c) shear strain, 𝛥𝛾𝑧𝑥.

∙ The columns are placed vertically

3. Constitutive modelling of the equivalent continuum

The construction of the elastic constitutive matrix of the equivalent
aterial, 𝐃𝐞𝐪 describing the behaviour of the stabilised clay system

equires the full 6*6 elastic stiffness matrix, 𝐃 of the column and
the natural clay. Since the formulation of the S-CLAY1S model, im-
plemented in PLAXIS 2D by Wiltafsky (2003) (and all soil models
in PLAXIS are done with 3D in mind), the integration of the system
f nonlinear equations includes all tensorial components. 𝐃𝐞𝐪 can be
alculated using Eq. (17), for a plane strain analysis. The global co-
rdinate system in a 2D analysis in PLAXIS defines 𝑥 and z as the
orizontal directions, while 𝑦 indicates the vertical direction (Hence,
hen employing established relationships for VAT in 3D analysis with
LAXIS, it becomes necessary to invert the definitions of the 𝑦 and z
xes).

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑧𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑒𝑞

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐷11 𝐷12 𝐷13 𝐷14 𝐷15 𝐷16
𝐷21 𝐷22 𝐷23 𝐷24 𝐷25 𝐷26
𝐷31 𝐷32 𝐷33 𝐷34 𝐷35 𝐷36
𝐷41 𝐷42 𝐷43 𝐷44 𝐷36 𝐷46
𝐷51 𝐷52 𝐷53 𝐷45 𝐷37 𝐷56
𝐷61 𝐷62 𝐷63 𝐷46 𝐷38 𝐷66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑒𝑞

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑧𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑒𝑞

(17)

𝐃𝐞𝐪 can be determined analytically by using the volume fraction of
each constituent and the predefined kinematic and continuity condi-
ions obtained from the full 3D analysis. The volume fractions of the
olumn and clay, are denoted by 𝛺𝑐 and 𝛺𝑠, respectively. The stress

and strain increments of the homogenised material (∆𝝈𝐞𝐪 and ∆𝜺𝐞𝐪)
are computed by using 𝛺𝑐 and 𝛺𝑠 (refer to Eq. (5)). The subscripts of

and 𝑠 indicate the column and soft clay, respectively. The stiffness
atrices of the constituents are denoted as 𝐃𝐜 and 𝐃𝐬, respectively.

The strain increment of the homogenised material can be estab-
ished in terms of the strain increments in the clay and columns,
 i

6 
considering the volume fraction of each constituent in Eqs. (18)–(19).
hen the stress increments in homogenised media are expressed in

terms of effective stresses, the ratio of the clay and column strain
increments to the equivalent strain increment can be incorporated into
formulae using the structural matrices 𝐒𝐬𝟏 and 𝐒𝐬,𝐜𝟏 as a function of 𝛺𝑠,
𝛺𝑐 , 𝐃𝐬 and 𝐃𝐜 (Eq. (20), for details see Appendix D).

(∆𝝈𝐞𝐪)′ = Ω𝐬(∆𝝈𝐬)′ +Ω𝐜(∆𝝈𝐜)′ (18)
𝐞𝐪∆𝜺𝐞𝐪 = Ω𝐬𝐃𝐬∆𝜺𝐬 +Ω𝐜𝐃𝐜∆𝜺𝐜 (19)
𝐞𝐪∆𝜺𝐞𝐪 = Ω𝐬𝐃𝐬𝐒𝐬𝟏∆𝜺𝐞𝐪 +Ω𝐜𝐃𝐜𝐒𝐜𝟏∆𝜺𝐞𝐪 (20)

Consequently, the generalised expression for the equivalent stiffness
atrix 𝐃𝐞𝐪 yields Eq. (21).

𝐃𝐞𝐪 = 𝛺𝑠𝐷
𝑠𝑆𝑠1 +𝛺𝑐𝐷

𝑐𝑆𝑐1 (21)

where, the structural matrices 𝐒𝐬𝟏 and 𝐒𝐜𝟏 are computed separately to
calculate the strain increments of the individual components. The full
derivation of the constitutive equations for the equivalent material is
presented in Appendix D.

𝐒𝐜,𝐬𝟏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
𝑆31 𝑆32 𝑆33 𝑆34 𝑆35 𝑆36
0 0 0 1 0 0
𝑆51 𝑆52 𝑆53 𝑆54 𝑆55 𝑆56
𝑆61 𝑆62 𝑆63 𝑆64 𝑆65 𝑆66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22)

3.1. Numerical scheme of the volume averaging technique

The volume averaging technique (VAT) was implemented into the
LAXIS 2D FE code as a user-defined soil model (UDSM). Initially,
𝐞𝐪 of the averaged material is established based on the analytical
xpression in Eq. (21) using the elastic parameters specified by the

MNhard and S-CLAY1S models for the column and clay materials,
respectively. Subsequently, the finite element code assembles the global
elastic material stiffness matrix (𝐊𝐄) and computes the incremental
nodal displacement vector over the whole discretised volume (𝜟𝒖)
based on the incremental nodal load vector (∆𝐑𝐄). Utilising the deriva-
tives of the shape functions (𝐁), the strain increment vector (𝜟𝜺) of the
averaged material is then calculated at Gauss points.

After determining the strain increment acting on the overall ho-
mogenised material, it is further decomposed into a column strain
increment (𝜟𝜺𝒄) and a soft clay strain increment (∆𝜺𝐬). The subdivision
operates under the assumption of perfect elasticity, using the structural
matrices 𝐒𝐬𝟏 and 𝐒𝐜𝟏, in Eq. (21). These are assembled assuming elastic

aterial response (𝐃𝐬 and 𝐃𝐜). Following the strain increment subdi-
vision, the stress integration routines of the S-CLAY1S and MNhard
models are called to calculate the corresponding stress increments in
the natural clay and mixed columns, respectively. Both models are
implemented using standard return mapping schemes (Sloan, 1987;
Borst and Heeres, 2002). The implementation in this paper follows
the ideas in Vogler (2009). However, the stress corrections in the
eturn algorithm had to be reformulated to incorporate the stress–
train distributions of the individual materials for the case of a braced
xcavation, instead of an embankment problem, as illustrated in Fig. 9.

Upon the computation of the stress increments, the local equilib-
rium as introduced in Section 2.2 is checked. If equilibrium is achieved,
the effective stress and state parameters of the equivalent material are
stored as the updated stress state by the PLAXIS calculation kernel.

owever, if equilibrium is not achieved, all state variables and stress
tates revert to their previous values, initiating a subiteration scheme.
he scheme involves calling both material routines again with different
train increments. Thereafter, to impose the local equilibrium identified

in the 3D analysis, the stress difference between the column and clay
s added to the column material. The procedure is illustrated in Fig. 9.
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Fig. 8. Comparison of the displacement profiles in the clay and column materials at the final excavation stage along the depths between −5 to −10: (a) horizontal displacements;
(b) vertical displacements.

Fig. 9. Solution routine of VAT.
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Initially, the out-of-balance stress, (𝜟𝝈)𝒄 𝒐𝒓, causing equilibrium vi-
olation, is computed to restore local balance in the z, yz, and zx
directions, as described in Eqs. (23).
(𝜟𝝈𝒄

𝒛𝒛)
𝒄 𝒐𝒓 = (𝝈𝒔

𝒛𝒛)
′ − (𝝈𝒄

𝒛𝒛)
′

(𝜟𝝉𝒄𝒚 𝒛)𝒄 𝒐𝒓 = (𝝉𝒔𝒚 𝒛) − (𝝉𝒄𝒚 𝒛)
(𝜟𝝉𝒄𝒛𝒙)

𝒄 𝒐𝒓 = (𝝉𝒔𝒛𝒙) − (𝝉𝒄𝒛𝒙)
(23)

The stresses in the x- and 𝑦-directions within the two individual
materials are independent. However, recovering the stress state in the
out-of-plane direction (z) necessitates correcting the stresses in the
horizontal (x) and vertical (y) directions. Given the strain equality in
the 𝑥 and 𝑦 axes, the 6*6 compliance matrix yields a stress correction
of the same magnitude. The correction in the 𝑥 and 𝑦 directions can be
achieved by scaling the component in the 𝑧-direction by ( 𝜈′

1−𝜈′ ), where
𝜈′ is the Poisson’s ratio of the column material. The scaling serves as
an approximation in the calculation of the balance equations, therefore
using 𝜈′ of clay instead would not affect the results.

(𝜟𝝈𝒄
𝒙𝒙)

𝒄 𝒐𝒓 = (𝜟𝝈𝒄
𝒚 𝒚)𝒄 𝒐𝒓 = (𝝂′∕(𝟏 − 𝝂′))(𝜟𝝈𝒄

𝒛𝒛)
𝒄 𝒐𝒓 (24)

The individual components of (𝜟𝝈)𝒄 𝒐𝒓 are linked to the strain incre-
ments of individual materials. The strain equality in the xy direction
implies that (𝜟𝝉𝒙𝒚)𝒄 𝒐𝒓 should remain unchanged. Finally, the remaining
correction stress component is given in Eq. (25).

(𝜟𝝉𝒄𝒙𝒚)
𝒄 𝒐𝒓 = 𝟎 (25)

The respective volume fractions of 𝛺𝑠 and 𝛺𝑐 are employed to
apportion the stress difference to the clay and column materials. The
total stress increment applied upon the equivalent material remains
equal to that of the individual materials in the z, yz, and zx directions.
Thus, adjusting the strain increments in these directions within each
material, 𝜟𝜺𝒄 and 𝜟𝜺𝒔, is achieved using the elastic compliance matrix
of the column material through Eqs. (26)–(28).

𝜴𝒔𝜟𝜺𝒔 +𝜴𝒄𝜟𝜺𝒄 = 𝟎 (26)

𝜟𝜺𝒄= 𝜴𝒄𝑫𝒄
𝒆
−𝟏(𝜟𝝈𝒄 )𝒄 𝒐𝒓 (27)

𝜟𝜺𝒔= −𝜴𝒄
𝜴𝒔

𝜟𝜺𝒄 (28)

The correction of the stresses is incorporated into the strain in-
crements of both materials for the subsequent internal iteration, and
the individual constitutive laws for both materials are invoked. The
averaging scheme leads to the convergence of the stress state of the two
constituents towards internal equilibrium in the subsequent iterations.
The solution routine ensures the satisfaction of the kinematic condi-
tions and maintains local equilibrium throughout the entire volume
averaging process.

4. Verification of the homogenisation technique

The performance of VAT as implemented above is verified by sim-
ulating the deep excavation stabilised with deep-mixed columns for
plane strain conditions. The 2D FE simulation using VAT produces a
final mesh comprising 1138 15-noded triangular elements, totalling
9382 nodes. Each element incorporates 12 Gaussian integration points.

To examine the response of the stabilised clay, the stress–strain
distribution of the clay/column system was investigated using discrete
columns in the 3D model, while in the 2D plane strain analysis VAT was
employed. Sampling points were chosen from comparable locations in
the final excavation stage for both simulations (see Fig. 4), following
the same construction schedule (see Table 1). The resulting stress–strain
distribution of the individual materials, calculated by the 2D analysis,
8 
Fig. 10. 2D numerical model of a deep excavation with VAT.

was then compared to that of the 3D analysis. Furthermore, the pre-
dicted horizontal displacements of the SPW and the displacements in
the excavation area computed by the 2D and 3D analyses were also
examined.

In Figs. 1 and 4, the dimensions of the 3D model are provided; the
excavation has a width of 10 m and a length of 14.25 m. Additionally,
there is a repeating pattern of 70 cm diameter columns with a 20 m
overlap that form a square grid with outer and inner dimensions of
2.5 m and 1.3 m, respectively.

In the 2D simulation to represent the stabilised clay, two regions are
defined based on the overlapping LC column arrangement in the out-
of-plane direction (refer to Figs. 1 and 10). VAT is utilised in specific
regions where both the clay and column materials co-exist, based on
the 3D model. The volume fraction of the columns, 𝛺𝑐 in zones due to
the mutual existence of the clay and column materials corresponds to
0.64 (𝛺𝑐 = (14.25 × 1.3 − 4 × 1.32)∕(14.25 × 1.3)). In contrast, in regions
where the LC columns are the only material present in the out-of-plane
direction, the MNhard model was used to represent the whole region.
These two regions in the 2D simulation are illustrated in Fig. 10.

A comparison between the 2D and 3D simulations was made using
the 3D global coordinate system, where the axis definitions in the 2D
analysis by PLAXIS were inverted to ensure consistency (see Fig. 11).
In Fig. 11, 𝑥 and 𝑦 define the horizontal directions, while z represents
the vertical direction. The effective stresses in the horizontal (in-plane)
and vertical directions were averaged within the column and 𝑖𝑛 𝑠𝑖𝑡𝑢 clay
materials based on their fractions, as shown in Figs. 11(a) and 11(c). In
2D plane strain conditions, shear stresses in the out-of-plane direction
correspond to zero; therefore, the stress equality can be captured only
in the out-of-plane direction for the 2D simulation. The stress equality
obtained through the 2D analysis using VAT is in good agreement with
the 3D analysis, as can be seen in Fig. 11(b). The minor differences
in stresses computed between the 2D and 3D simulations result from
stress interpolation (from Gauss points in different locations in 2D and
3D), and are expected particularly near material transition zones with
differing element stiffness matrices.

The horizontal and vertical displacements in the stabilised excava-
tion area were compared between the 2D and 3D simulations in the
final excavation stage. The displacement contours calculated by the 2D
simulation using VAT, along with those from the 3D simulation, can be
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Fig. 11. Comparison of the stress distribution within the column and clay materials in
he 2D and 3D simulations in the final excavation stage: (a) horizontal effective stress,
′
𝑥𝑥 in plane axis; (b) horizontal effective stress in the out-of-plane, 𝜎′𝑦𝑦; (c) vertical

ffective stress, 𝜎′𝑧𝑧.

seen in Figs. 12(a)–12(d). The horizontal displacements computed from
he 2D and 3D simulations are of the same order (depicted in Figs. 12(a)

and 12(c)), with a maximum horizontal displacement of 13 mm. The
aximum vertical displacement computed by the 2D simulation is

pproximately 32 mm (in Fig. 12(d)), whereas the 3D simulation yields
a slightly higher maximum heave, approximately 35 mm (in Fig. 12(b)).

Additionally, the displacement profile of the SPW predicted by
he 2D simulation using VAT was compared to the results of the 3D
9 
simulation (Figs. 13(a) and 13(b)). Achieving an identical displacement
profile between 2D and 3D simulations is highly unlikely. While the
2D analysis using VAT resulted in a marginally smaller maximum
heave than the 3D simulation, the method yielded stress and hori-
zontal displacement profiles that closely resemble the 3D results, thus
demonstrating that the method is capable of modelling the system
erformance in Serviceability Limit State.

All analyses were performed on a standard laptop PC with an i5-
1345U processor, frequency of 1.2/4.7 GHz (Base/Turbo), and 16 GB
f memory. UDSM routines were coded in Intel® Fortran Compiler. The

global nonlinear equations are solved for a default tolerated error of 1%
argin PLAXIS Scientific Model (2023). The average computation time

for the 3D analysis corresponded to 1.5 h, while the 2D simulation with
VAT had a significantly shorter elapsed time of approximately 1 min.

5. Conclusions

A volume averaging technique (VAT) was implemented into PLAXIS
D finite element code for numerical analysis of deep excavations
tabilised with lime-cement (LC) columns in soft clay. The distinct
tress–strain responses of the soft clay and the columns were repre-
ented through an equivalent material based on the volume fraction
f each constituent. The fundamental equations of the equivalent con-
titutive law were established using strain compatibility and stress
quilibrium conditions, identified from a reference case with fully
oupled 3D consolidation analysis.

The soft clay was modelled using the anisotropic S-CLAY1S soil
model, whereas the columns were simulated using the MNhard model.

he stress–strain response of the system of stabilised and natural clay as
ell as the horizontal displacement profile of the SPW were simulated

hrough the 2D analysis using the VAT. The results of the 2D analysis
ere verified against the 3D results. Employing the VAT provided a

lose resemblance to the 3D model in terms of quantifying the stresses
nd displacements within the stabilised region, with good agreement
n the displacement profile of the SPW. Thus, the system response was
ell captured with a fast 2D simulation.

The VAT has proven to be a powerful tool for the numerical analysis
f stabilised deep excavations with a significant number of columns
nstalled in a periodic grid pattern. By employing this technique, it
ecomes possible to capture 3D effects in a 2D plane strain analysis.
he proposed method eliminates the need to use numerous soil clusters,
hereby reducing the computational cost associated with discretising
he geometry. Consequently, the VAT enables efficient incorporation
f sensitivity analyses.

The current implementation of the VAT relies on the assumption
f similar permeability between soft clay and LC columns, which is
ased on field evidence when using the dry soil mixing method in
candinavian clay (Bozkurt et al., 2023). A potential future extension of
he technique could involve accounting for varying hydraulic conduc-
ivity in soft clay and deep-mixed columns (Lorenzo and Bergado, 2006;

Baker, 2017). The possible installation effects of columnar inclusions
cannot be modelled using the technique. However, these effects can
e implicitly considered by adjusting the stress–strain state through

the application of a prescribed external load or strain Schweiger and
Pande (1988), Tornborg et al. (2021), Bozkurt et al. (2023) and/or
can be explicitly accounted for by a constitutive soil model that can
escribe the volume change of deep-mixed columns during installation

and curing.
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Fig. 12. Displacement contours in the 2D and 3D simulations at the final excavation stage: (a) horizontal displacements, ux (3D) and (b) vertical displacements, uz (3D); (c)
horizontal displacements, ux (2D-VAT) and (d) vertical displacements, uy (2D-VAT).

Fig. 13. Comparison of the displacement profiles of the SPW in the 2D and 3D simulations: (a) excavation stage to the level −2; (b) excavation stage to the level −5.
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Nomenclature

Abbreviations

CAUC/E Anisotropically consolidated undrained triaxial
compression/extension test

CRS Constant rate of strain
DSM Dry soil mixing method
FEA Finite element analysis
LC Lime and cement
IL Incrementally loaded oedometer test
OCR Overconsolidation ratio
SPW Sheet pile wall
UDSM User-defined soil model
VAT Volume averaging technique

Greek letters
𝛼0 Initial anisotropy
𝛽 Relative effectiveness of rotational hardening
𝜒0 Initial amount of bonding
𝛥𝜀 Increments of strain
𝛥𝜀𝑐 Increments of strain in column material
𝛥𝜀𝑒𝑞 Increments of strain in equivalent material
𝛥𝜀𝑠 Increments of strain in clay material
𝛥𝑢 Incremental nodal displacement vector
𝛥𝜎 Increments of stress
𝛥𝜎𝑐 Increments of stress in column material
𝛥𝜎𝑒𝑞 Increments of stress in equivalent material
𝛥𝜎𝑠 Increments of stress in clay material
(𝛥𝜎)𝑐 𝑜𝑟 Out-of-balance stress between clay and columns
𝛾𝑝𝑠𝑠 Accumulated deviatoric plastic shear strain
𝛾𝑥𝑦 Shear total strain on the plane normal to the 𝑥-axis in

the direction of the 𝑦-axis
𝛾𝑦𝑧 Shear total strain on the plane normal to the 𝑦-axis in

the direction of the 𝑧-axis
𝛾𝑧𝑥 Shear total strain on the plane normal to the 𝑧-axis in

the direction of the 𝑥-axis
𝜅 Slope of the swelling line
𝛬 Viscoplastic multiplier
𝜆𝑖 Slope of the intrinsic normal compression line
𝜇 Absolute effectiveness of rotational hardening
𝜈′ Effective Poisson’s ratio
𝛺𝑐 Volume fraction of column
𝛺𝑠 Volume fraction of clay
𝜙′ Effective friction angle
𝜎′1 Major principal effective stress
𝜎′2 Intermediate principal effective stress
𝜎′3 Minor principal effective stress
𝜎′𝑥𝑥 Normal effective stress acting on the 𝑥-axis
𝜎′𝑦𝑦 Normal effective stress acting on the 𝑦-axis
𝜎′𝑧𝑧 Normal effective stress acting on the 𝑧-axis
𝜎′𝑟𝑒𝑓 Reference effective stress
𝜏𝑥𝑦 Shear effective stress on the plane normal to the 𝑥-axis

in the direction of the 𝑦-axis
𝜏𝑦𝑧 Shear effective stress on the plane normal to the 𝑦-axis

in the direction of the 𝑧-axis
𝜏𝑧𝑥 Shear effective stress on the plane normal to the 𝑧-axis

in the direction of the 𝑥-axis
𝜀1 Major principal total strain
𝜀2 Intermediate principal total strain
𝜀3 Minor principal total strain
𝜀𝑥𝑥 Normal total strain acting on the 𝑥-axis
𝜀𝑦𝑦 Normal total strain acting on the 𝑦-axis

Greek letters
𝜀𝑧𝑧 Normal total strain acting on the 𝑧-axis
11 
𝜀𝑒𝑣 Elastic volumetric strain
𝜀𝑝𝑑 Plastic deviatoric strain
𝜀𝑝𝑣 Plastic volumetric strain

Miscellaneous

⟨⟩ Macaulay brackets

Roman capital letters
𝐵 Shape function
𝐷 Elastic constitutive matrix
𝐷𝑐 Elastic constitutive matrix of column material
𝐷𝑒𝑞 Elastic constitutive matrix of equivalent material
𝐷𝑠 Elastic constitutive matrix of clay material
𝐸′
50 Secant stiffness

𝐸′
𝑢𝑟 Unloading reloading stiffness

𝐺 Shear stress
𝐺𝑟𝑒𝑓50 Reference secant shear stress
𝐺𝑟𝑒𝑓𝑢𝑟 Reference unloading reloading shear stress
𝐾0 Coefficient of earth pressure
𝐾𝐸 Global elastic material stiffness matrix
𝑀 Stress ratio at critical state
𝑅𝐸 Nodal load vector
𝑅𝑓 Failure ratio of deviatoric stress
𝑆1 Strain redistribution matrix
𝑆𝑠 Structural matrix

Roman lower case letters
𝑎 Absolute rate of destructuration due to volumetric

strain
𝑏 Relative rate of destructuration due to volumetric strain
𝑐 Notation for column material
𝑐′ Effective cohesion
𝑐𝑘 Permeability change index
𝑒0 Initial void ratio
𝑒𝑞 Notation for equivalent material
𝑘 Hydraulic conductivity
𝑚 Extent of stiffness dependency
𝑝′ Mean effective stress
𝑝′𝑚 Initial mean effective stress at preconsolidation pressure
𝑝′𝑚𝑖 Size of the intrinsic yield surface
𝑞 Deviatoric stress
𝑞𝑎 Asymptotic deviatoric stress
𝑞𝑓 Deviatoric stress at failure
𝑟𝑐 Column radius
𝑠 Notation for clay material
𝑠𝑐 Column spacing
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Appendix A. S-CLAY1S model

The generalised formulation of the S-CLAY1S model (Koskinen
t al., 2002; Karstunen et al., 2005) in 3D stress space can be expressed

by using the following definitions. The yield surface equation in triaxial
tress space is given in Section 2.1.

𝑓3𝐷 = 3
2

(

{

𝜎′𝑑 − 𝑝
′𝛼𝑑

}𝑇 {

𝜎′𝑑 − 𝑝
′𝛼𝑑

}

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞2

−

⎛

⎜

⎜

⎜

⎜

⎝

𝑀2 − 3
2
{

𝛼𝑑
}𝑇 {

𝛼𝑑
}

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝛼2

⎞

⎟

⎟

⎟

⎟

⎠

×

(

𝑝′𝑚 − 𝑝′
)

𝑝′ = 0 (A.1)

where 𝑞2 = 3∕2
(

{

𝜎′𝑑 − 𝑝
′𝛼𝑑

}𝑇 {

𝜎′𝑑 − 𝑝
′𝛼𝑑

}

)

is the scalar value of the
modified deviatoric stress tensor, including anisotropy represented by
a deviatoric fabric tensor 𝛼𝑑 . 𝑞 = (𝜎′1 −𝜎′3) in triaxial stress space. Mean
effective stress is 𝑝′ = (𝜎′1+𝜎′2+𝜎′3)∕3 and the vertical tangent to natural
yield surface designates the size in the isotropic axis, 𝑝′𝑚. 𝑀 represents
the stress ratio at the critical state. The subscript scalar value of the
fabric tensor denotes 𝛼 defined as 𝛼2 = 3∕2 (𝛼𝑑𝑇 ∶ 𝛼𝑑

)

, which describes
the orientation of the model surfaces, as illustrated in triaxial stress
space in Fig. 2. The deviatoric stress tensor and deviatoric fabric tensor
re expressed by Eqs. (A.2) and (A.3).

𝜎′𝑑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎′𝑥 − 𝑝
′

𝜎′𝑦 − 𝑝
′

𝜎′𝑧 − 𝑝
′

√

2𝜏𝑥𝑦
√

2𝜏𝑦𝑧
√

2𝜏𝑧𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.2)

𝛼𝑑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
3

(

2𝛼𝑥 − 𝛼𝑦 − 𝛼𝑧
)

1
3

(

−𝛼𝑥 + 2𝛼𝑦 − 𝛼𝑧
)

1
3

(

−𝛼𝑥 − 𝛼𝑦 + 2𝛼𝑧
)

√

2𝛼𝑥𝑦
√

2𝛼𝑦𝑧
√

2𝛼𝑧𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

with 1
3
(

𝛼𝑥 + 𝛼𝑦 + 𝛼𝑧
)

= 1 (A.3)

Deviatoric and volumetric components of elastic strains can be
omputed as follows:

𝛥𝜀𝜈
𝑒 = 𝜅

(1 + 𝑒)𝑝′ 𝛥𝑝
′ and 𝛥𝜀𝑞𝑒 =

1
3𝐺

𝛥𝑞 (A.4)

Deviatoric and volumetric components of plastic strains can be com-
puted using the flow rule. For associated plasticity, the yield function
coincides with the plastic potential, thus.

𝛥𝜀𝜈
𝑝 = 𝛥𝛬

𝜕 𝑓
𝜕 𝑝′ and 𝛥𝜀𝑞𝑝 = 𝛥𝛬

𝜕 𝑓
𝜕 𝑞 (A.5)

The size of the intrinsic yield surface is assumed to be dependent
only on volumetric plastic strains, 𝜀𝑝𝑣.

𝛥𝑝′ =
(1 + 𝑒) 𝑝′𝑚𝑖 𝛥𝜀𝑝 (A.6)
𝑚𝑖 𝜆𝑖 − 𝜅 𝑣

12 
The evolution of the size of 𝑝′𝑚, corresponding to the current degree
of bonding (𝜒), and the degradation of bonding are calculated with
Eq. (A.7). The Macaulay brackets, ⟨⟩ are used to impose 𝛥𝜀𝑝𝑣 = 𝛥𝜀𝑝𝑣 for
𝛥𝜀𝑝𝑣 > 0 and 𝛥𝜀𝑝𝑣 = 0 for 𝛥𝜀𝑝𝑣 < 0.

𝛥𝜒 = −𝑎𝜒 (

⟨𝛥𝜀𝑝𝑣⟩ + 𝑏𝛥𝜀
𝑝
𝑑
)

and 𝑝′𝑚 = (𝑝′𝑚𝑖 + 𝛥𝑝′𝑚𝑖)(1 + (𝜒 + 𝛥𝜒)) (A.7)

The evolution of anisotropy is described with Eq. (A.8) in 3D stress
space.

𝛥𝛼 = 𝜇

[(

3𝜎′𝑑
4𝑝′

− 𝛼𝑑

)

⟨

𝛥𝜀𝑝𝑣
⟩

+ 𝛽

(

𝜎′𝑑
3𝑝′

− 𝛼𝑑

)

𝛥𝜀𝑝𝑑

]

(A.8)

Appendix B. MNhard model

The MNhard soil model (Benz, 2007) utilises shear hardening only.
The yield surface equation is given in Eq. (B.1). 𝛾𝑝𝑠𝑠 is the hardening
parameter and the plastic part of the objective shear strain measure
(𝛾𝑝𝑠 =

√

1
2 ((𝜀1 − 𝜀2)

2 + (𝜀2 − 𝜀3)2 + (𝜀3 − 𝜀1)2)).

𝑓𝑠 =
3
4
𝑞
𝐸′
50

1−sin𝜙𝑚
sin𝜙𝑚

1−sin𝜙𝑚
sin𝜙𝑚

− 𝑅𝑓
1−sin𝜙
sin𝜙

− 3
2

2𝑞
𝐸′
𝑢𝑟

− 𝛾𝑝𝑠𝑠 and 𝑅𝑓 =
𝑞𝑓
𝑞𝑎

< 1.0 (B.1)

The cone hardening functions can be written using the MNhard
ield criterion. Upon reaching the failure condition, the ratio of shear

stress to mean effective stress corresponds to the limiting value in
Eq. (B.2).

𝑠𝑖𝑛𝜙′
𝑚 =

√

√

√

√

√

√

9 − 𝐼1𝐼2
𝐼3

1 − 𝐼1𝐼2
𝐼3

(B.2)

The first, second, and third effective stress invariants are repre-
sented by 𝐼1, 𝐼2, and 𝐼3, respectively (in Eq. (B.3)).
𝐼1 = 𝜎𝑖𝑖

2 =
1
2
(

𝜎𝑖𝑗𝜎𝑖𝑗 − 𝜎𝑖𝑖𝜎𝑗 𝑗
)

𝐼3 =
1
6
(

𝜎𝑖𝑖𝜎𝑗 𝑗𝜎𝑘𝑘 + 2𝜎𝑖𝑗𝜎𝑗 𝑘𝜎𝑘𝑖 − 3𝜎𝑖𝑗𝜎𝑗 𝑖𝜎𝑘𝑘
)

(B.3)

The plastic potential to the cone-type yield surface is defined using
Eq. (B.4) with a non-associated flow rule.

𝑔 = (𝑝 + 𝑐 cot 𝜓)
6 sin𝜓𝑚
3 − 𝑠𝑖𝑛𝜓𝑚

(B.4)

where,

sin𝜓 ′
𝑚 =

sin𝜙′
𝑚 − sin𝜙′

𝑐 𝑣
1 − sin𝜙′

𝑚 sin𝜙′
𝑐 𝑣

≥ 0 (B.5)

sin𝜙′
𝑐 𝑣 =

sin𝜙′ − sin𝜓
1 − sin𝜙′ sin𝜓

(B.6)

Appendix C. Calibration of soil model parameters of soft clay

The S-CLAY1S soil model parameters were calibrated using high-
quality laboratory testing data obtained from a temporary excavation
site in Gothenburg, as described in Bozkurt et al. (2023). In the ref-
erence study, the model parameters of the soft clay were simulated
using Creep S-CLAY1S model. In this study, the calibration of the S-
CLAY1S model parameters using CADE and IL tests was carried out
through the single-point Gauss integration via the SoilTest facility in the
PLAXIS 2D FE code. Procedures proposed in Gras et al. (2017, 2018)
were followed, thus first deriving the values for standard parameters
from fall cone (sensitivity for initial amount of bonding), oedometer
nd triaxial tests, and using the ranges proposed by Gras et al. (2018)

for the non-standard parameters, which were then calibrated via lab
est simulations. The simulation of the laboratory tests can be seen in

Figs. C.14 and C.15.
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Fig. C.14. Simulation of CADE test using the S-CLAY1S model: (a) deviatoric stress, q and mean effective stress, p′; (b) deviatoric stress, q and axial strain, 𝜀𝑎.
𝐂

Fig. C.15. Simulation of IL test using the S-CLAY1S model.

Appendix D. Constitutive equations of the equivalent continuum

The continuity of the horizontal stress (in the out-of-plane direction)
etween the individual materials leads to independent strain distribu-
ion. Therefore, substituting compatibility conditions using Eq. (2) into

equilibrium conditions (Eqs. (11)–(13)) leads to the following forms.
(

𝐷𝑠
33 +𝐷

𝑐
33
𝛺𝑠
𝛺𝑐

)

𝛥𝜀𝑠𝑧 =
(

𝐷𝑐
31 −𝐷

𝑠
31
)

𝛥𝜀𝑒𝑞𝑥 +
(

𝐷𝑐
32 −𝐷

𝑠
32
)

𝛥𝜀𝑒𝑞𝑦 +𝐷𝑐
33
𝛥𝜀𝑒𝑞𝑧
𝛺𝑐

+
(

𝐷𝑐
34 −𝐷

𝑠
34
)

𝛥𝛾𝑒𝑞𝑥𝑦

−𝐷𝑠
35

𝛥𝛾𝑒𝑞𝑦𝑧
𝛺𝑠

−𝐷𝑠
36
𝛥𝛾𝑒𝑞𝑧𝑥
𝛺𝑠

+
(

𝐷𝑐
35 +𝐷

𝑠
35
𝛺𝑐
𝛺𝑠

)

𝛥𝛾𝑐𝑦𝑧 +
(

𝐷𝑐
36 +𝐷

𝑠
36
𝛺𝑐
𝛺𝑠

)

𝛥𝛾𝑐𝑧𝑥
(D.1)

13 
(

𝐷𝑠
55 +𝐷

𝑐
55
𝛺𝑠
𝛺𝑐

)

𝛥𝛾𝑠𝑦𝑧 =
(

𝐷𝑐
51 −𝐷

𝑠
51
)

𝛥𝜀𝑒𝑞𝑥 +
(

𝐷𝑐
52 −𝐷

𝑠
52
)

𝛥𝜀𝑒𝑞𝑦 −𝐷𝑠
53
𝛥𝜀𝑒𝑞𝑧
𝛺𝑠

+
(

𝐷𝑐
54 −𝐷

𝑠
54
)

𝛥𝛾𝑒𝑞𝑥𝑦

+𝐷𝑐
55

𝛥𝛾𝑒𝑞𝑦𝑧
𝛺𝑐

+
(

𝐷𝑐
53 +𝐷

𝑠
53
𝛺𝑐
𝛺𝑠

)

𝛥𝜀𝑐𝑧 +
(

𝐷𝑐
56 +𝐷

𝑠
56
𝛺𝑐
𝛺𝑠

)

𝛥𝛾𝑐𝑧𝑥 −𝐷
𝑠
56
𝛥𝛾𝑒𝑞𝑧𝑥
𝛺𝑠

(D.2)

(

𝐷𝑠
66 +𝐷

𝑐
66
𝛺𝑠
𝛺𝑐

)

𝛥𝛾𝑠𝑧𝑥 =
(

𝐷𝑐
61 −𝐷

𝑠
61
)

𝛥𝜀𝑒𝑞𝑥 +
(

𝐷𝑐
62 −𝐷

𝑠
62
)

𝛥𝜀𝑒𝑞𝑦 −𝐷𝑠
63
𝛥𝜀𝑒𝑞𝑧
𝛺𝑠

+
(

𝐷𝑐
64 −𝐷

𝑠
64
)

𝛥𝛾𝑒𝑞𝑥𝑦

−𝐷𝑐
65

𝛥𝛾𝑒𝑞𝑦𝑧
𝛺𝑠

+
(

𝐷𝑐
63 +𝐷

𝑠
63
𝛺𝑐
𝛺𝑠

)

𝛥𝜀𝑐𝑧 +
(

𝐷𝑐
65 +𝐷

𝑠
65
𝛺𝑐
𝛺𝑠

)

𝛥𝛾𝑐𝑦𝑧 +𝐷
𝑐
66
𝛥𝛾𝑒𝑞𝑧𝑥
𝛺𝑐

(D.3)

Through the rearrangement of Eqs. (D.1)–(D.3) into matrix form,
the expression in Eq. (D.4) for the 𝑖𝑛 𝑠𝑖𝑡𝑢 clay can be obtained.

𝜹∆𝜺𝐬 = 𝜶𝐬∆𝜺𝐞𝐪 + 𝜷𝐬𝜹∆𝜺𝐜 (D.4)

where the matrices of 𝜹, 𝜶𝐬, 𝜷𝐬, and the substituting components of 𝐂𝟏,
𝟐 and 𝐂𝟑 are computed in Eqs. (D.5)–(D.8), respectively.

𝜹 =
⎡

⎢

⎢

⎣

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎦

(D.5)

𝜶𝐬 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐷𝑐31−𝐷
𝑠
31

𝐶1

𝐷𝑐32−𝐷
𝑠
32

𝐶1

𝐷𝑐33
𝛺𝑐𝐶1

𝐷𝑐34−𝐷
𝑠
34

𝐶1

−𝐷𝑠35
𝛺𝑠𝐶1

−𝐷𝑠36
𝛺𝑠𝐶1

𝐷𝑐51−𝐷
𝑠
51

𝐶2

𝐷𝑐52−𝐷
𝑠
52

𝐶2

−𝐷𝑠53
𝛺𝑠𝐶2

𝐷𝑐54−𝐷
𝑠
54

𝐶2

𝐷𝑐55
𝛺𝑐𝐶2

−𝐷𝑠56
𝛺𝑠𝐶2

𝐷𝑐61−𝐷
𝑠
61

𝐶3

𝐷𝑐62−𝐷
𝑠
62

𝐶3

−𝐷𝑐63
𝛺𝑠𝐶3

𝐷𝑐64−𝐷
𝑠
64

𝐶3

−𝐷𝑠65
𝛺𝑠𝐶3

𝐷𝑠66
𝛺𝑐𝐶3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(D.6)

𝜷𝐬 =

⎡

⎢

⎢

⎢

⎢

0
(

𝐷𝑐
35 +𝐷

𝑠
35
𝛺𝑐
𝛺𝑠

) (

𝐷𝑐
36 +𝐷

𝑠
36
𝛺𝑐
𝛺𝑠

)

(

𝐷𝑐
53 +𝐷

𝑠
53
𝛺𝑐
𝛺𝑠

)

0
(

𝐷𝑐
56 +𝐷

𝑠
56
𝛺𝑐
𝛺𝑠

)

(

𝑐 𝑠 𝛺𝑐
) (

𝑐 𝑠 𝛺𝑐
)

⎤

⎥

⎥

⎥

⎥

(D.7)
⎢

⎣

𝐷63 +𝐷63 𝛺𝑠
𝐷65 +𝐷65 𝛺𝑠

0 ⎥

⎦
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⎡

⎢

⎢

⎢

⎣

𝐂𝟏

𝐂𝟐

𝐂𝟑

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

𝐷𝑠
33 +𝐷

𝑐
33
𝛺𝑠
𝛺𝑐

)

(

𝐷𝑠
55 +𝐷

𝑐
55
𝛺𝑠
𝛺𝑐

)

(

𝐷𝑠
66 +𝐷

𝑐
66
𝛺𝑠
𝛺𝑐

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(D.8)

Similarly, considering the equal stress distribution between each
constituent, varied strain increments in the columns can be calculated
using Eqs. (D.9)–(D.11).
(

𝐷𝑐
33 +𝐷

𝑠
33
𝛺𝑐
𝛺𝑠

)

𝛥𝜀𝑐𝑧 =
(

𝐷𝑠
31 −𝐷

𝑐
31
)

𝛥𝜀𝑒𝑞𝑥 +
(

𝐷𝑠
32 −𝐷

𝑐
32
)

𝛥𝜀𝑒𝑞𝑦 +𝐷𝑠
33
𝛥𝜀𝑒𝑞𝑧
𝛺𝑠

+
(

𝐷𝑠
34 −𝐷

𝑐
34
)

𝛥𝛾𝑒𝑞𝑥𝑦

−𝐷𝑐
35

𝛥𝛾𝑒𝑞𝑦𝑧
𝛺𝑐

−𝐷𝑐
36
𝛥𝛾𝑒𝑞𝑧𝑥
𝛺𝑐

+
(

𝐷𝑠
35 +𝐷

𝑐
35
𝛺𝑠
𝛺𝑐

)

𝛥𝛾𝑠𝑦𝑧 +
(

𝐷𝑠
36 +𝐷

𝑐
36
𝛺𝑠
𝛺𝑐

)

𝛥𝛾𝑠𝑧𝑥

(D.9)

(

𝐷𝑐
55 +𝐷

𝑠
55
𝛺𝑐
𝛺𝑠

)

𝛥𝛾𝑐𝑦𝑧 =
(

𝐷𝑠
51 −𝐷

𝑐
51
)

𝛥𝜀𝑒𝑞𝑥 +
(

𝐷𝑠
52 −𝐷

𝑐
52
)

𝛥𝜀𝑒𝑞𝑦 −𝐷𝑐
53
𝛥𝜀𝑒𝑞𝑧
𝛺𝑐

+
(

𝐷𝑠
54 −𝐷

𝑐
54
)

𝛥𝛾𝑒𝑞𝑥𝑦

+𝐷𝑠
55

𝛥𝛾𝑒𝑞𝑦𝑧
𝛺𝑠

+
(

𝐷𝑠
53 +𝐷

𝑐
53
𝛺𝑠
𝛺𝑐

)

𝛥𝜀𝑠𝑧 +
(

𝐷𝑠
56 +𝐷

𝑐
56
𝛺𝑠
𝛺𝑐

)

𝛥𝛾𝑠𝑧𝑥 −𝐷
𝑐
56
𝛥𝛾𝑒𝑞𝑧𝑥
𝛺𝑐

(D.10)

(

𝐷𝑐
66 +𝐷

𝑠
66
𝛺𝑐
𝛺𝑠

)

𝛥𝛾𝑐𝑧𝑥 =
(

𝐷𝑠
61 −𝐷

𝑐
61
)

𝛥𝜀𝑒𝑞𝑥 +
(

𝐷𝑠
62 −𝐷

𝑐
62
)

𝛥𝜀𝑒𝑞𝑦 −𝐷𝑐
63
𝛥𝜀𝑒𝑞𝑧
𝛺𝑐

+
(

𝐷𝑠
64 −𝐷

𝑐
64
)

𝛥𝛾𝑒𝑞𝑥𝑦

−𝐷𝑠
65

𝛥𝛾𝑒𝑞𝑦𝑧
𝛺𝑐

+
(

𝐷𝑠
63 +𝐷

𝑐
63
𝛺𝑠
𝛺𝑐

)

𝛥𝜀𝑠𝑧 +
(

𝐷𝑠
65 +𝐷

𝑐
65
𝛺𝑠
𝛺𝑐

)

𝛥𝛾𝑠𝑦𝑧 +𝐷
𝑠
66
𝛥𝛾𝑒𝑞𝑧𝑥
𝛺𝑠

(D.11)

Rearranging the above equations results in Eq. (D.12) for the
columns.

𝜹∆𝜺𝐜 = 𝜶𝒄∆𝜺𝐞𝐪 + 𝜷𝒄𝜹∆𝜺𝐬 (D.12)

The incremental stresses in the columns can be computed using the
matrices of 𝜹, 𝜶𝐜, 𝜷𝐜, and the substituting components of 𝐂𝟒, 𝐂𝟓 and
𝟔 defined as in Eqs. (D.5) and (D.13)–(D.15), respectively.

𝜶𝐜 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐷𝑠31−𝐷
𝑐
31

𝐶4

𝐷𝑠32−𝐷
𝑐
32

𝐶4

𝐷𝑠33
𝛺𝑠𝐶4

𝐷𝑠34−𝐷
𝑐
34

𝐶4

−𝐷𝑐35
𝛺𝑐𝐶4

−𝐷𝑐36
𝛺𝑐𝐶4

𝐷𝑠51−𝐷
𝑐
51

𝐶5

𝐷𝑠52−𝐷
𝑐
52

𝐶5

−𝐷𝑐53
𝛺𝑐𝐶5

𝐷𝑠54−𝐷
𝑐
54

𝐶5

𝐷𝑠55
𝛺𝑠𝐶5

−𝐷𝑐56
𝛺𝑐𝐶5

𝐷𝑠61−𝐷
𝑐
61

𝐶6

𝐷𝑠62−𝐷
𝑐
62

𝐶6

−𝐷𝑠63
𝛺𝑐𝐶6

𝐷𝑠64−𝐷
𝑐
64

𝐶6

−𝐷𝑐65
𝛺𝑐𝐶6

𝐷𝑐66
𝛺𝑠𝐶6

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(D.13)

𝜷𝐜 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
(

𝐷𝑠
35 +𝐷

𝑐
35
𝛺𝑠
𝛺𝑐

) (

𝐷𝑠
36 +𝐷

𝑐
36
𝛺𝑠
𝛺𝑐

)

(

𝐷𝑠
53 +𝐷

𝑐
53
𝛺𝑠
𝛺𝑐

)

0
(

𝐷𝑠
56 +𝐷

𝑐
56
𝛺𝑠
𝛺𝑐

)

(

𝐷𝑠
63 +𝐷

𝑐
63
𝛺𝑠
𝛺𝑐

) (

𝐷𝑠
65 +𝐷

𝑐
65
𝛺𝑠
𝛺𝑐

)

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(D.14)

⎡

⎢

⎢

⎢

⎣

𝐂𝟒

𝐂𝟓

𝐂𝟔

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

𝐷𝑐
33 +𝐷

𝑠
33
𝛺𝑐
𝛺𝑠

)

(

𝐷𝑐
55 +𝐷

𝑠
55
𝛺𝑐
𝛺𝑠

)

(

𝐷𝑐
66 +𝐷

𝑠
66
𝛺𝑐
𝛺𝑠

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(D.15)

Substituting Eq. (D.12) into (D.4) leads to the expression relating
he homogenised material strain and in situ clay strain.

𝜹∆𝜺𝐬 = 𝜶𝐬∆𝜺𝐞𝐪 + 𝜷𝐬𝜶𝐜∆𝜺𝐞𝐪 + 𝜷𝐬𝜷𝐜𝜹∆𝜺𝐬 (D.16)
14 
Eq. (D.16) can be simplified to Eqs. (D.17)–(D.18) using the 3*3
nity matrix I.

𝜹∆𝜺𝐬 =
(

𝐈 − 𝜷𝐬𝜷𝐜)−𝟏 (𝜶𝐬 + 𝜷𝐬𝜶𝐜)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑺𝒔

∆𝜺𝐞𝐪 (D.17)

𝜹∆𝜺𝐬 = 𝐒𝐬∆𝜺𝐞𝐪 (D.18)

The strain increments in the clay can then be expressed by Eq.
D.19), using the strain redistribution matrix, 𝐒𝐬𝟏 (Eq. (D.20)), substi-

tuting 𝐒𝐬.

∆𝜺𝐬 = 𝐒𝐬𝟏∆𝜺𝐞𝐪 (D.19)

where,

𝐒𝐬𝟏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
𝑆31 𝑆32 𝑆33 𝑆34 𝑆35 𝑆36
0 0 0 1 0 0
𝑆51 𝑆52 𝑆53 𝑆54 𝑆55 𝑆56
𝑆61 𝑆62 𝑆63 𝑆64 𝑆65 𝑆66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(D.20)

An analogous relation can be derived but for the incremental strains
in the columns through Eqs. (D.21)–(D.25).

𝜹∆𝜺𝐜 = 𝜶𝐜∆𝜺𝐞𝐪 + 𝜷𝐜𝜶𝐬∆𝜺𝐞𝐪 + 𝜷𝐜𝜷𝐬𝜹∆𝜺𝐜 (D.21)

𝜹∆𝜺𝐜 =
(

𝐈 − 𝜷𝐬𝜷𝐜)−𝟏 (𝜶𝐜 + 𝜷𝐜𝜶𝐬)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑺𝒄

∆𝜺𝐞𝐪 (D.22)

𝜹∆𝜺𝐜 = 𝐒𝐜∆𝜺𝐞𝐪 (D.23)

∆𝜺𝐜 = 𝐒𝐜𝟏∆𝜺𝐞𝐪 (D.24)

where,

𝐒𝐜𝟏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
𝑆31 𝑆32 𝑆33 𝑆34 𝑆35 𝑆36
0 0 0 1 0 0
𝑆51 𝑆52 𝑆53 𝑆54 𝑆55 𝑆56
𝑆61 𝑆62 𝑆63 𝑆64 𝑆65 𝑆66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(D.25)

Data availability

Data will be made available on request.
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