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Abstract

As the semiconductor industry is struggling with the slowdown in Moore’s Law
and the challenges of increased design complexity on a single chip, multi-chiplet
systems have become a promising alternative to large monolithic systems,
offering improved yields and lower costs. However, these chiplet-based archi-
tectures are susceptible to non-uniform memory access (NUMA) inefficiencies,
where remote memory access significantly hinders the system’s performance.
These performance bottlenecks are augmented by the high latency and limited
bandwidth of the inter-chiplet communication, thus compromising the overall
performance of multi-chiplet systems. While prior studies have thoroughly
examined the yield and cost benefits of multi-chiplet chips, their performance
relative to monolithic counterparts remains unexplored. This thesis delves into
a comprehensive performance analysis of multi-chiplet systems, comparing them
to traditional monolithic designs and evaluating their cost-performance trade-
offs. While multi-chiplet systems can drastically reduce recurring engineering
costs by nearly half, our analysis reveals that they may suffer performance losses
of up to one-third compared to monolithic systems due to these NUMA-related
overheads. To address the performance overheads, this thesis introduces MEM-
PLEX, a novel memory system explicitly designed for multi-chiplet NUMA
architectures. MEMPLEX combines data replication and migration strategies
to optimize data placement and improve data locality within the multi-chiplet
memory hierarchy. By allocating a portion of each memory node as a DRAM
cache and enabling migration based on access patterns and memory traffic,
MEMPLEX reduces the frequency of costly remote memory accesses, mitigates
performance overheads, and delivers substantial energy savings. The evaluation
on multi-programmed workloads from different benchmark suites demonstrated
that, compared to a multi-chiplet system with NUMA-aware data placement
and no support for DRAM caching or migration, MEMPLEX reduces remote
memory traffic by 80%, leading to a significant 44% dynamic memory energy
consumption. MEMPLEX also delivers up to 7% speedup (5% on average)
when 1

16 of each HBM is dedicated for caching in a 4-chiplet system, with
performance gains increasing up to 15% (10% on average) in 16-chiplet sys-
tems. Overall, this thesis provides insights into the design and optimization of
multi-chiplet architectures, paving the way for scalable and efficient systems in
the post-Moore’s Law era.
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Chapter 1

Introduction

In the multicore era, performance scaling effectively relies on integrating more
resources onto a chip. The shift occurred because Dennard scaling, which
had enabled frequency scaling, was constrained by power limitations. The
deceleration of Moore’s Law has intensified technology scaling challenges. Large
monolithic chips suffer from low yields and high costs, making them less viable.
Consequently, building chips from multiple smaller chiplets offers a better
cost-effective alternative, providing higher yields and better scalability [1–4].

3D-stacking technology initially involved stacking memory chips, such as
High Bandwidth Memory (HBM), and placing them closer to processing die
like GPUs [5] or vector engines [6]. This technology has evolved beyond simple
memory stacking to enable more complex and efficient chiplet systems, as
exemplified in AMD’s EPYC and RYZEN architectures [1]. However, despite
offering significant advantages in yield and cost, multi-chiplet systems introduce
new performance challenges. The size of multi-chiplet systems often necessitates
multiple non-uniform access memory (NUMA) nodes, leading to performance
bottlenecks that arise from varying memory access latencies. For instance,
early AMD EPYC and RYZEN chips connected CPU chiplets to DRAM via a
single I/O die, resulting in access latencies that varied by tens of nanoseconds,
depending on the DRAM controller being accessed [1]. Multi-chiplet systems
have advanced, incorporating more chiplets and complex memory systems, such
as in AMD’s MI300 [7] and Intel’s Sapphire Rapids [8], but the NUMA-related
inefficiencies remain a persistent challenge.

This thesis studies the overheads of remote memory access and inter-
chiplet communication in multi-chiplet systems and evaluates their impact
on system performance compared to traditional monolithic systems. It also
proposes solutions to mitigate these challenges in these increasingly prevalent
architectures.

The remainder of the introductory chapter is structured as follows: Sec-
tion 1.1 outlines the problem statement, followed by a discussion of the thesis
objectives and contributions in Section 1.2.
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Figure 1.1: Hypothetical System Configurations with 16 cores:
Monolithic vs. Multi-Chiplet vs. Ideal

1.1 Problem Statement

In recent years, chiplet architectures have gained attention as a solution to the
scaling challenges of traditional monolithic architectures. Multi-chiplet systems
offer a low-cost alternative, delivering higher yields and better scalability
compared to their monolithic counterparts [1–4]. However, the benefits of
chiplet-based systems come with trade-offs, particularly in terms of performance
overheads related to remote memory access and inter-chiplet communication.

Without loss of generality and to better understand the trade-offs, Figure 1.1
illustrates typical system configurations for a 16-core multicore architecture,
comparing three design paradigms: (a) a monolithic system, (b) a multi-
chiplet system, and (c) a hypothetical ideal system. The chip organization and
floorplan, inspired by the AMD Zen families [9, 10], consists of compute tiles
composed of the core with private L1 and L2 caches and a shared Last-Level
Cache (LLC) partitioned in slices. The memory hierarchy incorporates HBM
and external DDR DRAM interfaces, with all components interconnected via a
Network-on-Chip (NoC). In the monolithic chip, a 2D mesh NoC is employed,
with the LLC slices located in the middle columns of the 2D mesh and the
HBM and external DDR interfaces placed at the chip’s edges. The multi-
chiplet system divides the architecture into several chiplets, each containing a
subset of tiles, one or more LLC slices, and HBM interfaces, while a separate
I/O chiplet manages the external DDR access. Each chiplet utilizes a 2D
mesh NoC topology, and inter-chiplet communication is constrained by the
chiplet’s microbumps budget, as detailed in prior work [11,12]. The high latency
and limited bandwidth of the inter-chiplet communication add extra latency
compared to the monolithic system. The ideal system serves as a theoretical
baseline, assuming infinite capacity in the local HBMs, thus eliminating remote
memory accesses and the need for communication across chiplet boundaries.

Remote memory accesses in a NUMA environment increase access latency,
while the constrained bandwidth of inter-chiplet links exacerbates communica-
tion delays. Consequently, multi-chiplet systems face two primary challenges
that limit their performance: (i) NUMA inefficiencies impacting the remote
accesses and (ii) inter-chiplet communication overheads. These challenges form
the core of this thesis and are discussed in detail in the following sections.
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1.1.1 Cost-Performance Trade-offs of Multi-Chiplet Sys-
tems Compared to Monolithic Systems

Although the economic effectiveness of multi-chiplet chips has been thoroughly
analyzed [2], there is a notable gap in understanding the performance impli-
cations of multi-chiplet architectures compared to monolithic designs. Multi-
chiplet systems exhibit performance overheads due to the inherent non-uniform
memory architecture and inter-chiplet communication. These overheads may
negate the yield and cost advantages, making it crucial to evaluate the impact
systematically.

This thesis aims to comprehensively evaluate the performance overheads
of multi-chiplet systems relative to monolithic architectures and analyze the
associated cost-performance trade-offs. The findings will provide valuable
insights into the feasibility of multi-chiplet architectures as a scalable and cost-
effective alternative to monolithic chips while identifying avenues to mitigate
their performance limitations.

1.1.2 NUMA Challenges in Multi-Chiplet Systems

While software can optimize data placement in multi-chiplet NUMA systems,
there are currently no hardware mechanisms to improve data placement in
DRAM distributed across chiplet nodes at runtime. Our experiments reveal
that even with NUMA-aware memory allocation—where data is placed in
the closest available memory node relative to the processing node—system
performance remains significantly lower than that of an ideal system, which
always retrieves data from its local memory node.

While the monolithic system also lags behind the ideal in terms of system
performance, the chiplet-based system experiences an even greater slowdown,
emphasizing a significant performance gap that must be addressed. This
gap arises from the latency and bandwidth penalties associated with remote
memory requests, which are inherent to multi-chiplet NUMA architectures.
These inefficiencies pose a significant barrier to achieving optimal performance
in such systems. Therefore, there is a pressing need for mechanisms that
mitigate the performance impact of remote memory accesses.

Together, these two problems—understanding the cost-performance trade-
offs of multi-chiplet architectures and addressing NUMA-related inefficien-
cies—constitute the primary focus of this thesis.

1.2 Thesis Objectives and Contributions

The overarching goal of this thesis is to investigate and optimize the performance
of multi-chiplet systems by addressing their inherent NUMA challenges. This
involves exploring methods to reduce performance overheads and improve
memory access efficiency, specifically by evaluating the impact of different
architectural choices and proposing memory system techniques to overcome the
existing performance bottlenecks. Below, we outline the specific objectives that
drive this thesis and describe the approach taken to achieve these objectives,
along with key contributions of the thesis.
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1.2.1 Evaluating Cost-Performance Trade-offs of Multi-
Chiplet Systems Compared to Monolithic Systems

Objective: The first objective of the thesis is to analyze the performance
overheads of chiplet-based systems and evaluate their cost-performance trade-
offs compared to monolithic chips. This includes a detailed examination of key
design parameters that influence both system performance and cost.

Related Work: The benefits of multi-chiplet systems, particularly in terms of
yield and cost, have been thoroughly analyzed in the prior studies [2]. However,
these systems are not without performance penalties, primarily due to the
need for multiple NUMA nodes and the associated communication latencies.
For example, early AMD EPYC and Ryzen processors connected their CPU
chiplets to DRAM through a single I/O die, leading to varying access latencies
depending on the DRAM controller being accessed [1]. These latencies, often
differing by tens of nanoseconds, highlight the inefficiencies in memory access
that multi-chiplet systems must overcome.

Thesis Approach: This thesis focuses on evaluating the cost-performance
trade-offs of multi-chiplet systems by examining various design parameters,
including (i) system size, (ii) chiplet size, (iii) LLC organization, (iv) NoC
datapath width, and (v) silicon interposer type (passive vs. active). By
analyzing these parameters, the thesis aims to identify configurations that
balance performance and cost in multi-chiplet systems. To achieve this, a
microarchitectural simulation setup was developed to model large-scale chiplet
architectures, and the key design choices and technological factors influencing
performance were examined. The performance overheads of chiplet-based
systems are evaluated across different design alternatives, with insights drawn
from several interconnect and memory system metrics. To complement this
analysis, the thesis evaluates the associated costs using the Feng-Ma chiplet
actuary model [2], incorporating the parameters of the evaluated systems in
our study.

Thesis Contributions: In line with the objective, Paper A examined the
performance overheads of multi-chiplet systems, which had not been thoroughly
analyzed in prior studies, and made the following contributions:

• Developed a microarchitectural simulation setup to model large-scale
chiplet-based architectures, with detailed models of their memory system
and interconnection networks, capable of simulating about a billion
instructions per hour.

• Examined technological factors influencing inter-chiplet link delays, mi-
crobump budgets, and the yield and cost of chiplet-based versus mono-
lithic chips, confirming that chiplet-based designs can reduce recurring
engineering costs by nearly half.

• Conducted the first systematic performance analysis of chiplet-based
systems against monolithic chips, showing that chiplet-based systems



1.2. THESIS OBJECTIVES AND CONTRIBUTIONS 5

suffer a performance loss of about one-third compared to monolithic.
Compared to monolithic, chiplet-based systems:

– Achieve only 43% to 75% of monolithic performance, averaging 58%,
while an ideal system, where LLC misses always go to the closest
HBM, is 24% faster than monolithic.

– Suffer a 40% higher average memory access time, contributing sig-
nificantly to the performance gap.

– Experience 3.7× longer average packet latency due to inter-chiplet
communication overheads.

• Investigated design parameters such as system size, chiplet size, LLC
organization, NoC datapath width, and silicon interposer type, and
analyzed their impact on system performance. The key observations
include:

– As the system size increases, the performance gap between monolithic
and multi-chiplet systems remains relatively stable.

– For a constant system size, the performance reduces as the system
is disintegrated into more, smaller chiplets.

– Private LLC improves the system performance by about 30% over
Sliced LLC in multi-chiplet systems.

– Wider intra-chiplet NoC links improve the network throughput,
reduce average memory access time, and therefore improve overall
system performance.

– Active interposers effectively recover most of the performance over-
head seen in chiplet-based systems with passive interposers but at a
61% higher cost.

Appendix A provide additional results on the cost analysis of various design
options for chiplet-based systems, which were not included in Paper A due
to space constraints. This supplementary material offers further insights and
supports the findings presented in Paper A.

1.2.2 Mitigating NUMA Challenges in Multi-Chiplet Sys-
tems

Objective: The second objective of this thesis is to alleviate this perfor-
mance degradation in NUMA-based multi-chiplet architectures and bridge the
performance gap to ideal systems. The key insights behind this work are:

• Remote memory access in multi-chiplet NUMA systems leads to significant
performance degradation due to the high latency and limited bandwidth
associated with accessing data located on remote memory nodes.

• Caching remote data within the DRAM cache of the local HBM node
enhances data locality, thereby reducing the frequency of remote memory
accesses.

• Migrating data upon the DRAM cache eviction ensures that the most
frequently accessed data stays close to the processing chiplet.



6 CHAPTER 1. INTRODUCTION

HBM

HBM

HBM

HBM

SRAM LLC

Cores and Private Caches

DRAM Cache Controller

Memory Controller
Migration Metadata

DRAM Cache Data and 
part of Available Flat 

Address Space

Remap Table
Inverted Remap Table

Free Memory Stack

DRAM Cache 
Data 

Cache 
state

Access 
Counter

Cache 
Pointer

Memory 
Pointer

Address 
Translation

Migration 
Decision

LRU Dirty flag vector
Valid flag vector

Tag

DRAM Cache Tag Array

Memory 
Node ID

Processor Chiplet

HBM

Silicon Interposer

I/O
 C

hiplet

DDR NUMA Node = Processor Chiplet + HBM

Figure 1.2: MEMPLEX System Overview

Related Work: The performance of multi-chiplet systems is primarily limited
by two key challenges: the NUMA-related inefficiencies in memory access and
the overheads associated with inter-chiplet communication.

NUMA-related inefficiencies have long been a challenge in computing sys-
tems. Early solutions, such as Cache Only Memory Architectures (COMA) [13]
and Cache Coherent NUMA (CC-NUMA) [14] memory systems, enhanced the
performance of NUMA multi-socket machines by replicating (caching) and/or
migrating data closer to the processor chip. More recently, hybrid memory
systems, which combine smaller High Bandwidth Memory (HBM) with larger,
lower bandwidth external DRAM, have adopted similar techniques to reduce
memory access latencies. These hybrid systems use HBM as part of a flat
address space, relying on Operating System (OS) support [15] or hardware
migration mechanisms [16–21] to place data closer to the processing chiplet, or
they use the entire HBM as a DRAM cache for external DDR memory, often
wasting valuable main memory capacity [22–31], or employ a combination of
both [32].

Another performance overhead in multi-chiplet chips, which exacerbates
NUMA effects, stems from the increased latency and bandwidth constraints in
inter-chiplet communication. The necessity of traversing longer links through
microbumps and silicon interposers introduces additional latency. Moreover, the
chiplet size and density limitations restrict the number of available microbumps,
capping the available off-chiplet bandwidth and further impacting performance.

Thesis Approach: To address these challenges, this thesis proposes MEM-
PLEX, a novel memory system designed for multi-chiplet architectures, which
incorporates the above insights and techniques to minimize the performance
degradation in NUMA-based multi-chiplet architectures. MEMPLEX is a novel
memory system that enhances data locality by replicating and migrating data
across memory nodes in multi-chiplet systems. MEMPLEX is tailored for
chiplet-based architectures, comprising multiple processor chiplets and HBMs
integrated on a silicon interposer as well as external DDR memory accessed
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via an IO chiplet, as illustrated in Figure 1.2. MEMPLEX increases the
number of accesses to the closest memory node for each processing chiplet,
thereby minimizing remote memory requests. By leveraging a small fraction
of each HBM node as a DRAM cache and intelligently deciding whether to
migrate data upon eviction, MEMPLEX reduces average memory access times,
improves overall system performance, and provides substantial energy savings.

Thesis Contributions: In line with the objective, Paper B proposed
memory system enhancements to overcome the existing performance overheads,
and made the following contributions:

• Investigated the performance bottlenecks in multi-chiplet NUMA sys-
tems, revealing performance losses of 26% and 31% in 4- and 16-chiplet
configurations, respectively, compared to an ideal system.

• Proposed MEMPLEX, the first multi-chiplet NUMA architecture that
combines replication and migration of data across multiple memory nodes,
offering:

– Most of the HBM capacity as a shared flat address space, unlike
designs that use it entirely as a DRAM cache.

– Superior performance to existing software solutions offering NUMA-
aware data placement and designs using HBM exclusively as a cache.

• Evaluated MEMPLEX on multi-programmed workloads from different
benchmark suites (detailed in Section 3.4.3) and demonstrated that,
compared to a multi-chiplet system with NUMA-aware data placement
and no support for DRAM caching or migration, MEMPLEX:

– Eliminates 80% of remote memory traffic, leading to a 44% decrease
in dynamic memory energy consumption in a 4-chiplet system.

– Achieves up to 7% speedup (5% on average) when 1
16 of each HBM

is dedicated for caching in a 4-chiplet system, with performance
gains increasing up to 15% (10% on average) in 16-chiplet systems.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents Paper
A, “A Performance Analysis of Chiplet-based Systems,” which addresses the first
problem, and Chapter 3 presents Paper B, “MEMPLEX: A Memory System
with Replication and Migration of Data for Multi-Chiplet NUMA Architectures,”
which addresses the second problem of the thesis.
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Neethu Bal Mallya, Panagiotis Strikos, Bhavishya Goel, Ahsen Ejaz,
and Ioannis Sourdis

2025 Design, Automation and Test in Europe Conference and Exhi-
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Chapter 2

A Performance Analysis of
Chiplet-Based Systems

Abstract

As the semiconductor industry struggles to keep Moore’s law alive and integrate
more functionality on a chip, multi-chiplet chips offer a lower cost alternative to
large monolithic chips due to their higher yield. However, chiplet-based chips are
naturally Non-Uniform Memory Access (NUMA) systems and therefore suffer
from slow remote accesses. NUMA overheads are exacerbated by the limited
throughput and higher latency of inter-chiplet communication. This paper
offers a comprehensive analysis of chiplet-based systems with different design
parameters measuring their performance overheads compared to traditional
monolithic multicore designs and their scalability to system and chiplet size.
Several design alternatives pertaining to the memory hierarchy, interconnects,
and technology aspects are studied. Our analysis shows that although chiplet-
based chips can cut (recurring engineering) costs to half, they may give away
over a third of the monolithic performance. Part of this performance overhead
can be regained with specific design choices.

9



10 CHAPTER 2. A PERFORMANCE ANALYSIS OF CHIPLET-BASED SYSTEMS

2.1 Introduction
In the multicore era, integrating more resources on a chip is evermore important
for the performance scaling of processors. In the past couple of decades,
frequency scaling has been limited by power density, and therefore, delivering
performance speedup relies primarily on fitting more cores on a chip. However,
technology scaling has become more difficult, and large monolithic chips have
low yields and, thus, excessive costs. Building chips out of multiple smaller
chiplets is a cheaper, higher yield alternative [1–4].

Die stacking technology has enabled multi-chiplet chips. It was first used for
building 3D stacked DRAM chips such as High Bandwidth Memory (HBM) and
bringing it closer to processing units, e.g., to a GPU [5] or a vector engine [6].
Later it was employed for disintegrating processors to multiple chiplets, e.g.,
AMD EPYC and RYZEN architectures, improving yield [1]. Currently, large
chips, such as the AMD MI300 [7] and Intel Sapphire Rapids [8], are composed
of many CPU and/or GPU chiplets, as well as HBM nodes combining high
processing throughput with fast, high-bandwidth memory access.

Despite their improved yield, multi-chiplet chips come with performance
overheads. Due to their large size, such systems inevitably use multiple non-
uniform access memory nodes. Even early AMD EPYC and RYZEN chips,
which provide DRAM access to their CPU chiplets via a single IO die, have
a varying access latency by tens of nanoseconds depending on the accessed
DRAM controller [1]. AMD MI300 and Intel Sapphire Rapids have even
more complex, heterogeneous memory systems composed of multiple HBM
nodes and external DRAM. Non-uniform Memory Access (NUMA) machines
entail the performance pitfall of long latency remote accesses. Although in the
past Cache Only Memory Architectures (COMA) [13] and Cache Coherent
NUMA (CC-NUMA) [14] approaches improved data locality and performance
of NUMA multi-socket machines, current multi-chiplet chips rely mainly on
code optimizations to improve data placement when operating in a flat “HBM
+ external DDR” mode, or otherwise sacrifice HBM capacity to cache data.

Another performance overhead in multi-chiplet chips, which exacerbates
the NUMA effects, is related to the inter-chiplet communication. As opposed
to networks on monolithic chips, inter-chiplet connections suffer latency and
bandwidth overheads. Exchanging messages with another chiplet requires
traversing longer links via microbumps and a silicon interposer, adding extra
latency. In addition, the number of available microbumps is limited by the
chiplet size and their density constraints, putting a cap on available off-chiplet
bandwidth.

Although the yield and cost benefits of multi-chiplet chips have been
thoroughly analyzed [2], to the best of our knowledge, the performance with
respect to their monolithic counterparts has not been studied. This work fills
this gap by evaluating the aforementioned performance overheads of multi-
chiplet chips compared to monolithic ones and analyzing the cost-performance
trade-off they offer. We explore the following design points in this study: (i)
system size, (ii) chiplet size, (iii) Network-on-Chip (NoC) bandwidth, (iv)
Last-Level-Cache (LLC) organization, and (v) silicon interposer type (passive
vs. active). We measure the performance overheads of chiplet-based chips
varying the above design alternatives and analyze them based on the insight
provided by several interconnect and memory system metrics.
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Figure 2.1: Monolithic vs. Multi-Chiplet chips.

Concisely, the contributions of this paper are the following:

• A microarchitectural simulation setup to model large-scale chiplet-based
architectures, including detailed models of their memory system and
interconnection network;

• The first thorough analysis of performance overheads and cost-performance
trade-offs of chiplet-based chips in comparison to monolithic chips, show-
ing that despite their large cost benefit, chiplet-based designs incur a
significant impact on system performance;

• An analysis of various technological aspects that determine specific system
parameters such as the length and delay of inter-chiplet links, microbumps
budget, yield and cost of chiplet-based and monolithic chips;

• Some design choices are identified to regain some of the performance
overheads of chiplet-based chips.

The remainder of this paper is organized as follows: Section 2.2 describes
the design alternatives analyzed for chiplet-based architectures. Section 2.3
explains our experimental methodology. Section 2.4 presents our evaluation
results. Finally, Section 2.5 summarizes our conclusions.

2.2 Overview of Chiplet-Based Architectures

The microarchitecture of the chiplet-based chips studied in this paper as well
as the monolithic chips used as baselines, are described next. Without loss of
generality, the multicore systems are organized in tiles composed of a core with
its private L1 and L2 caches, a shared Last-Level Cache (LLC) partitioned in
slices, each being closer to a subset of tiles, as well as HBM and external DDR
DRAM interfaces. The above are interconnected via a Network-on-chip (NoC),
which dedicates a network router for each tile, LLC slice, HBM node, and
external DDR controller. The organization and floorplan of the chips illustrated
in Figure 2.1 are inspired by the AMD Zen families [9, 10]. A monolithic chip
uses a 2D mesh NoC, has its LLC slices in the middle columns of the 2D
mesh, and the HBM and external DDR interfaces at the edges of the chip.
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 (a) 4 chiplets    (b) 8 chiplets            (c) 16 chiplets

Compute Chiplet HBM DDR I/O Chiplet
Chiplet-Chiplet link Chiplet-I/O link

I/OI/OI/O

I/O-DDR link

Figure 2.2: Different sizes of multi-chiplet chips.

The chiplet-based counterpart uses chiplets, which contain a subset of tiles,
one or multiple LLC slices and HBM interfaces, while access to external DDR
is provided via a separate IO chiplet. The NoC topology within the chiplet
remains a 2D mesh, and inter-chiplet links are reduced to a number that can
be supported by the microbumps budget of the chiplet, similar to previous
work [11,12].

Figure 2.2 illustrates the above multi-chiplet organization for different
system sizes, i.e., different number of chiplets. It can be observed that the
number of HBM nodes scales linearly to the number of chiplets, i.e., one HBM
node per chiplet placed next to it. Moreover, the external DDR size and the
number of channels also scale linearly to the number of chips.

In the rest of the section, details are provided for system aspects that
affect the potential performance overheads of chiplet-based chips. In particular,
it describes (i) the design of the interconnects with a focus on inter-chiplet
communication and the choice of silicon interposer, (ii) the memory allocation
that dictates data placement on the Non-Uniform Memory Access system, and
(iii) the choice of the LLC organization. Finally, the yield and cost of the
chiplet-based chips are estimated with respect to their monolithic counterparts.

2.2.1 Chiplet-based NoCs

One of the first design choices involves deciding whether to use a passive or
active silicon interposer for integrating the chiplets. A passive silicon interposer
is cheaper as it requires fewer fabrication steps and offers a higher yield, but it
offers slower inter-chiplet links because it does not include buffers. An active
interposer offers higher throughput because it includes active components
to pipeline the links and potentially lower link latency. It may also include
network routers offering more advanced topologies. Additionally, an active
interposer benefits from lower clock skew/jitter due to repeaters and easier
clock synchronization. Minimally active silicon interposers have been shown to
have a small cost overhead compared to passive ones [33,34]. Another design
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choice studied in previous work is the placement of inter-chiplet links, showing
the benefits of concentrating inter-chiplet links to a few edge NoC routers of a
chiplet [11,12].

In our performance analysis, passive silicon interposers as well as minimally
active, i.e., with pipelined links, are explored. The total budget of microbumps
per chiplet is estimated based on technology parameters, and inter-chiplet
links are concentrated to fewer NoC edge routers, adjusting their width accord-
ingly. Finally, various intra-chiplet NoC datapath widths are explored, offering
different intra-chiplet communication bandwidths.

2.2.2 NUMA-aware Memory Allocation

The placement of data in DRAM (HBM and external DDR) is critical for the
performance of a NUMA system. Modern operating systems widely support
Non-Uniform Memory Access (NUMA) architectures through various mech-
anisms. For instance, operating systems like Linux [35], Windows [36], and
FreeBSD [37] implement NUMA-aware scheduling algorithms that place pro-
cesses and threads closer to the memory nodes. This approach helps to reduce
access latency by optimizing memory locality. Additionally, these operating
systems provide APIs that allow user applications to discover the NUMA topol-
ogy, request memory from specific nodes, and set process affinity, enhancing
performance for NUMA-enabled systems.

In this study, we use a Distance-aware Memory Allocation policy. This
policy allocates physical memory pages to the memory node closest to the
processor core that first accesses the memory. This approach can significantly
improve performance by ensuring that memory is allocated in proximity to the
accessing core, reducing the latency of memory access.

2.2.3 Last Level Cache Organization

In multi-chiplet systems, the Last-Level Cache (LLC) can be organized through
two primary designs:

Sliced LLC: The Sliced LLC architecture, pioneered by Intel starting
with the Sandy Bridge microarchitecture, distributes the LLC into multiple
“slices” [38]. Each slice acts as an independent cache, but all the slices together
form a single logical cache. The physical memory address determines the slice
into which data is loaded, effectively distributing memory addresses across
slices, and thereby enhancing effective memory bandwidth. In our study, we
assign one LLC slice per chiplet and evenly divide the address space among
the LLC slices, corresponding to the number of chiplets or High Bandwidth
Memory (HBM) nodes associated with a chiplet. The addresses mapped to
the external DDR are also divided and assigned into these slices. Accesses
from core private caches mapped to the local LLC slice exhibit lower latency,
whereas accesses mapped to remote LLC slices have to traverse inter-chiplet
links, resulting in higher access latency.

Private LLC: Unlike the sliced LLC architecture where the logical LLC
cache is distributed across chiplets, in the private LLC architecture, each
chiplet is assigned its own private LLC cache, and the entire address range is
mapped to that private LLC. As a result, all the accesses from the core private
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Figure 2.3: Cost analysis and comparison of RE cost of monolithic and multi-
chiplet chips for different system sizes. Cost is normalized to that of the smallest
monolithic.

caches first go to the local LLC, and only in the case of LLC miss may be
required to traverse the inter-chiplet communication link (depending on where
the data is mapped in the memory). This design results in reduced inter-chiplet
communication overhead compared to the sliced LLC architecture. However,
since the same address can now be present in different LLCs across chiplets,
LLCs need to be kept coherent, requiring a complex inter-chiplet coherence
mechanism. Despite these challenges, the Private LLC approach can offer
performance benefits in scenarios where the coherence overhead is manageable
or inter-chiplet communication latency is critical.

2.2.4 Yield and Cost

The performance analysis of the above multi-chiplet design alternatives needs
to be complemented with an evaluation of their cost with respect to their
monolithic alternative. This is performed using the Feng-Ma chiplet actuary
model [2] with the parameters of the evaluated systems in our study.

More precisely, our work considers monolithic and multi-chiplet chips which
are based on AMD EPYC microarchitecture composed of Zen4/Zen4c CPU
chiplets manufactured at 5 nm and an IO chiplet at 14 nm. The chiplet area
is estimated, considering 16-core Zen4 chiplets after scaling the L2 and L3
cache sizes to what is used in our performance evaluation, as depicted in Table
3.1. That results in a chiplet size of 66mm2, which is similar to the AMD
Zen4 chiplets and slightly smaller than the AMD Zen4C chiplet. In addition,
each multi-chiplet chip includes an IO chiplet of 400mm2, as estimated from
AMD EPYC chips of similar technology. Finally, a passive interposer of 65 nm
technology is considered.

Based on the above parameters, the above cost model was used to derive
the costs of 64-, 128-, and 256-core systems, which are divided in the case of
chiplet-based chips to 4+1, 8+1, and 16+1 chiplets, respectively, including
the IO chiplet [2]. Figure 2.3 presents a breakdown of the detailed recursive
engineering (RE) cost. The total cost is the sum of the following: (i) cost of raw
chips which includes among others the cost of the silicon and the processing
during the wafer fabrication, (ii) cost of raw package which covers the materials
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that are necessary for assembling and packaging the chip as well as testing and
verification, (iii) cost of wasted known good dies (KGD) that encapsulates the
cost derived from dies that already have been tested to ensure their correct
functionality, but still fail, (iv) cost of chip defects, that covers the cost of
defects that occur during the wafer fabrication process, and (v) cost of package
defects which includes costs related to the packaging process. The total cost is
then normalized to that of the smallest monolithic chip.

Overall, the cost of chiplet-based chips is about 55% of that of monolithic
chips. The gap between the monolithic and multi-chiplet costs seems to only
slightly increase because of the conservative estimation of the model regarding
the bonding and packaging multi-chiplet yield. Nevertheless, the model confirms
the significant savings of chiplet-based approaches and puts our performance
analysis in perspective.

2.3 Experimental Methodology

2.3.1 System Configuration

Our microarchitectural simulation offers detailed modeling of the memory
subsystem and interconnection network, as explained in Section 2.3.2, and
therefore is computationally intensive for large systems. In order to keep the
simulation times of our experiments within affordable bounds (tens of hours per
simulation point), the modeled systems are scaled down to a quarter of a real
one. A full-scale AMD Zen4C chiplet contains 16 cores, as many considered in
our cost analysis of Section 2.2.41. As a consequence, our performance analysis
considers chiplets scaled to be a quarter of a chiplet AMD Zen4C or Intel
Sapphire Rapids chiplet and as such they contain a quarter of the number
of cores and connect to a quarter of HBM channels, as shown in Table 2.1.
Moreover, the L2 and L3 caches are undersized in order to put more pressure
on the memory system and increase LLC misses per kilo instructions (MPKI),
which is otherwise difficult to achieve when simulating systems for only a few
billion instructions.

Based on the scaled down chiplet size (16.5mm2)2, the microbump budget
is calculated to be proportional to the number of cores it includes. In addition,
the following parameters were taken into account for calculating the microbump
budget: (i) a microbump pitch of 45µm, (ii) reserving 40% of the microbumps
for power. Then, the number of microbumps available for data were allocated
for (i) connecting to the HBM channels, (ii) one bidirectional link to the IO
chiplet, (iii) multiple bidirectional links to the other CPU chiplets. Then, the
width of the links to IO and CPU chiplets, as well as the total number of links
to other CPU chiplets, were adjusted to fit the microbump budget. Finally,
the latency of the inter-chiplet links was measured to be 2 or 3 (NoC) clock
cycles considering the chiplet’s dimensions and the latency of the links on the
silicon interposer similar to [3, 39].

1A yield and cost analysis of a scaled down chiplet would not make sense as the size of
the chiplets would be small, and so would be the size of the monolithic chip making it too
small to break down into chiplets.

2Calculated based on Zen4 after scaling down L2 and L3 sizes proportional to the capacity
indicated in Table 2.1.
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Table 2.1: System Configuration1

System
Chiplets 4 chiplets1

Cores and Caches
Cores 4 cores1 / chiplet, out-of-order, 3.2 GHz
TLB I-TLB: 512-entry, 4-way, 1 cycle latency

D-TLB: 512-entry, 4-way, 1 cycle latency
L1 Cache L1-I: Private, 32KB, 4-way, 2 cycle access latency

L1-D: Private, 32KB, 4-way, 2 cycle access latency
L2 Cache Private, 256KB, 8-way, 4 cycle access latency
L3 Cache Shared, 1MB/core, 16-way, 12 cycle access latency2

Main Memory
HBM2 1GB/chiplet, 2GHz, 4 channels, 128 bits per channel, tCAS-

tRCD-tRP: 14-14-14 ns
DDR4 4GB, 3.2GHz, 1 channel, 64 bits per channel, tCAS-tRCD-tRP:

22-22-22 ns

Network
Intra-chiplet 2GHz, 3-stage router (VA/SA, ST, LT), 2x3 Mesh, 4 VCs per

port, credit-based flow control, 256 bit link for data, 154 bit link
for control (coherence) traffic, 5 flit buffers, XY Routing [40]

Inter-chiplet 2GHz, 3-stage router (VA/SA, ST, LT), 2x2 Mesh, passive
interposer, 2 to 3 cycle link latency3, 7 to 9 flit buffers 3

1 This configuration is the default setting. The parameter adjustments are detailed
in the respective evaluation sections of the sensitivity studies.

2 L3 access latency is 8 cycles for 2MB, 12 for 4MB, and 15 for 8MB.
3 Depending on the maximum inter-chiplet link length [3].

2.3.2 Simulation Setup

BZSim simulator was used for our experiments [41], extended to model memory
system and interconnects of chiplet-based chips. BZSim is based on ZSim
simulator [42] integrated with BookSim2 [43] for cycle-accurate intra- and
inter-chiplet network modeling, enhanced with a technique to detect and skip
simulation of low contention traffic in order to speed up simulation times. BZSim
offers microarchitectural simulations with detailed (cycle-accurate) interconnect
modeling at an order of magnitude faster simulation speeds compared to GEM5,
enabling multi-billion instruction experiments within reasonable times [41].
DRAMSim3 [44] was used for cycle-accurate DRAM modeling and CACTI [45]
for estimating cache access times.

The system treats all HBM and external DDR memory as part of a unified
flat address space. The virtual memory system was implemented based on
HSCC [46]. The cores are configurable with translation lookaside buffers
(TLBs) for both instructions and data, as well as with page table walkers
(PTWs). Additionally, the memory management modules include a distance-
aware allocation policy. This policy allocates pages to the HBM in the chiplet
where they are first accessed. If pages are unavailable in the nearest HBM,
they are allocated in the next neighboring HBM or in the external DDR.
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Table 2.2: Workload Characteristics

Benchmark Label Input
LLC

MPKI
Footprint

(GB)

Assigned to Mixes

mix-id#ofinstances

LLC MPKI 20-40
pageRank2 PRL2 LDBC (100k) 37.41 0.84 13,23,32,43,52,63,73,81

mcf1 MCF Default 34.01 0.45 22,63,82

graphColoring2 GCL2 LDBC (100k) 30.70 0.45 11,21,41,52,71,82

graphColoring2 GCL3 LDBC (10k) 21.26 0.09 12,21,32,62,81

Random Access
Workload3

RAND N=30,
M=1000,
chunk=1024

20.83 0.70 11,23,31,42,62,71,81

LLC MPKI 10-20
connectedComp2 CCL3 LDBC (10k) 19.33 0.09 13,22,31,43,51,62,72,81

lbm1 LBM Default 18.19 0.40 31,72,81

BFS2 BFSCR CA RoadNet 17.25 0.64 11,21,31,42,53,72,81

fotonik3d1 FOTO Default 17.07 0.59 11,41

pageRank2 PRL3 LDBC (10k) 13.96 0.09 21,41,51

xalancbmk1 XAL Default 13.62 0.16 11,21,32,41,62,73,81

blender1 BLEN Default 12.78 0.08 21,41,51

shortestPath2 SPCR CA RoadNet 12.30 0.64 11,32,51,71,81

XSBench4 XSB XXL 11.11 0.37 51,81

graphColoring2 GCCR CA RoadNet 10.69 0.63 11,31,52,61,81

LLC MPKI 0-10
parest1 PAR Default 8.54 0.05 31

roms1 ROMS Default 7.58 0.25 81

triangleCount2 TCL2 LDBC (100k) 6.24 0.55 61,81

graphColoring2 GCL1 LDBC (1000k) 5.92 0.29 11,41,71

pageRank2 PRKR Knowledge
Repo

4.56 0.30 31,51

omnetpp1 OMN Default 4.53 0.16 51

BFS2 BFSL1 LDBC (1000k) 2.71 0.98 31

1 SPEC CPU 2017 [47], 2 GraphBIG [48], 3 GUPS [49], 4 XSBench [50]

2.3.3 Workloads

We use mixes of multi-programmed workloads from the SPEC CPU2017 bench-
mark suite [47] (the eight with the highest MPKI), GraphBIG [48], Random
access workload from the GUPS suite [49] and XSBench [50] in our experiments.
For the SPEC CPU2017 and GraphBIG benchmarks, we use Simpoints [51] to
select a representative slice of one billion instructions. We have chosen 22 dif-
ferent workloads, detailed in Table 2.2, and created random multi-programmed
mixes of 16 applications designed to run on a system with 16 cores. Each mix
of applications has a minimum total memory footprint of 7GB and a geometric
mean LLC MPKI of at least 11. To scale these mixes for systems with 32
or 64 cores, we replicate the 16-application mix twice for the 32-core system
and four times for the 64-core system. All experiments run with an average of
125 million instructions per core warm-up period, where memory allocation is
enabled, followed by an average of 250 million instructions per core of detailed
simulation.
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2.3.4 Evaluated Systems

We evaluate three distinct systems as follows:

1. Chiplet-based System (CS): A multi-chiplet system with sliced LLC
is the focus of our evaluation. The default configuration (depicted in
Table 2.1) consists of 4 chiplets, each with 4 cores, integrated on a passive
interposer with one LLC slice per chiplet, 256 bit NoC data-links, 4 HBM
channels per chiplet, one link to IO chiplet, and one channel to external
DDR. The above parameters change in the various sensitivity analyses
of the evaluation. One variation of this design is to use chiplets with
private, rather than sliced, LLC, denoted as CP.

2. Monolithic (MN): A monolithic multicore matching the CS character-
istics. Similarly, the default monolithic configuration is a 16-core system
with sliced LLC in 4 parts and 256 bit NoC data-links, 16 HBM channels
and one external DDR channel.

3. Ideal (IL): An ideal chiplet-based system with the ideal scenario where
an LLC miss is always served by the closest HBM channel, assuming
the local HBM has infinite capacity, so memory allocation occurs solely
within this local HBM. As a result, all memory requests remain local to
the chiplet, eliminating the additional latency associated with accessing
remote HBM or external DDR.

2.4 Performance Evaluation

The performance of chiplet-based systems is evaluated and their overheads
with respect to monolithic counterparts are measured. System performance
is measured in terms of Instructions Per Cycle (IPC). The Average Memory
Access Time (AMAT) is also measured and broken down to: (i) the access
time for each cache level, (ii) the Network-on-Chip (NoC) latency between each
level (L2-L3 and L3-DRAM), and (iii) the DRAM access time. Furthermore,
the Average Packet Latency (APL) and the percentage of accesses to local and
remote HBM nodes, as well as to external DDR are reported.

The performance evaluation is structured as follows: first, the default
chiplet-based system is compared against the monolithic and ideal systems.
Subsequently, a sensitivity analysis of the system size is conducted to examine
how performance scales as the number of chiplets increases. Next, the impact
of chiplet granularity is explored by analyzing different chiplet sizes (i.e., cores
per chiplet) while keeping the system size fixed. Then, the performance of an
alternative LLC organization for chiplet-based designs (private LLC per chiplet)
is evaluated in comparison with the default sliced LLC. Next, a sensitivity
analysis of the intra-chiplet NoC data bandwidth (datapath) is performed.
Finally, the impact of passive versus minimally active interposer is measured.

Multi-Chiplet vs. Monolithic vs. Ideal: Figure 2.4 shows, per mix of
programs, the average performance (IPC), average packet latency, average
memory access time, and the breakdown of DRAM accesses for the default
configuration of a 4-chiplet system as well as for the equivalent 16-core mono-
lithic and ideal systems. The chiplet-based system is able to maintain only
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Figure 2.4: Multi-Chiplet vs. Monolithic vs. Ideal

43%-75% of the monolithic performance and on average 58%, as shown in
Figure 2.4(a). Compared to the ideal system, which is 24% faster than the
monolithic, and its LLC misses always go to the closest HBM, the chiplet-based
system is 54% slower. The performance overhead of the chiplet-based system
versus the monolithic is not explained by just observing AMAT, which is on
average 40% higher than the monolithic. A more detailed look in Figure 2.4(c)
reveals that the longer monolithic AMAT is due to slow external DDR accesses,
rather than longer NoC and cache access latency, which is more performance
critical and hence puts a heavier toll on chiplet-based performance. In fact,
Figure 2.4(b) confirms the 3.7× longer packet latency of chiplet-based systems
compared to monolithic. Finally, it is interesting to analyze the primary source
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Figure 2.5: Sensitivity analyses∗ on system size, chiplet size, LLC organization,
NoC datapath width, and interposer type.

∗ Geomean values of 8 mixes are shown, normalized to MN, as indicated by the thicker
outline of the bars; AMAT: Average Memory Access Time; APL: Average Packet Latency;
MN: Monolothic, CS or CP: Chiplet-based with Sliced or Private LLC, IL: Ideal, P-CS or
A-CS: Chiplet-based with Passive or Active Interposer.

of the performance overheads in the chiplet-based system, which is a fraction
of accesses to data placed remotely. Figure 2.4(d) shows that on average 19%
of the data accesses are to the external DDR and 10% of the accesses are to a
remote HBM node. For a chiplet-based system, as opposed to a monolithic one,
all these accesses involve slow (due to limited bandwidth and longer latency)
inter-chiplet communication.

Sensitivity Analysis on System Size: An interesting sensitivity analysis is
with respect to the system size. Chiplet-based chips are meant to scale better
to larger systems in terms of cost. However, it is unclear how their performance
overheads change when system size increases while keeping the chiplet size
constant. The performance of systems with 4, 8, and 16 CPU chiplets, i.e., 16,
32, and 64 cores, respectively, are evaluated. As shown in Figure 2.5(a), as
the system size increases, the performance gap between chiplet-based systems
and their respective monolithic of the same size remains stable or even slightly
reduces, ranging from 58% to 65%. This is attributed primarily to the distance-
aware data placement, which allows the distance of remote accesses to remain
relatively stable.
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Sensitivity Analysis on Chiplet Size: Next, a sensitivity analysis on
the chiplet size, i.e., the number of cores included in a chiplet, is performed
for chiplets of 2 (2CS), 4 (4CS), and 8 cores (8CS) per chiplet on a 16-core
system. Figure 2.5(b) shows the performance of these systems. As expected,
performance reduces as the system is disintegrated to a larger number of
chiplets. More precisely, 2, 4, and 8 chiplet systems offer 76%, 58%, and 44%
of the monolithic IPC, respectively, which is reflected in their AMAT and APL
measurements.

LLC Configuration Analysis - Sliced vs. Private: A chiplet-based system
with sliced LLC would need to go to a remote chiplet to serve an L2 miss
accessing a remote LLC slice if the memory address is mapped to the memory
region of another chiplet. An interesting question arises as of the benefit of
designing chiplets each with a private LLC. Such private LLC would store
cache lines from the entire address space, regardless of whether the memory is
mapped to local or remote DRAM (HBM and external DDR). Figure 2.5(c)
depicts the results of this comparison. Chiplets with sliced LLC reduce IPC
versus monolithic by 42%, while chiplets with private LLC reduce it by only
11%. A significant reduction in average packet latency of about 50% is achieved
by using private LLC because, with this organization, L2 misses do not need
to go off-chiplet, as opposed to LLC misses, which are fewer, and may need
remote accesses. On the contrary, chiplets with sliced LLC may need remote
accesses to serve L2 misses but not for LLC misses. This is also reflected in
the AMAT, which is improved by 16% when using chiplets with private LLC
compared to chiplets with sliced LLC.

Sensitivity Analysis on NoC Datapath Width: The performance impact
of the NoC data-link bandwidth is analyzed for chiplet-based and monolithic
systems. The intra-chiplet and monolithic NoC datapath varies from a quarter
of a cache line (128 bits), to a full cache line (512 bits). It is worth noting that
the width of inter-chiplet links remains constant as defined by the available
microbump budget of the chiplets (64 bits). Figure 2.5(d) shows the IPC,
AMAT and average packet latency of the three design points for chiplet-based
and monolithic chips normalized to the 256-bit monolithic. It can be observed
that wider (intra-chiplet) NoC links improve performance, although the gap
with the respective monolithic does not follow a specific trend. Finally, as
expected, AMAT improves for wider NoC datapaths, while at the same time,
the gap between monolithic and chiplet-based average packet latency increases
because the bottleneck of narrower inter-chiplet links is exacerbated.

Sensitivity Analysis on Active vs. Passive Interposer: The last design
parameter explored in our study is the use of minimally active (A-CS) versus
passive interposer (P-CS). As illustrated in Figure 2.5(e), a minimally active
interposer increases both throughput and latency of inter-chiplet links because it
can pipeline them. The performance impact of this is significant as it recovers
most of the performance overhead on chiplet-based systems. That comes,
however, at a higher system cost due to the lower yield of active interposers.
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2.5 Conclusions

Semiconductor technology has difficulty scaling the integrated resources on
a single die because monolithic chips have poor yield, leading to excessive
costs. Multi-chiplet chips offer a cheaper alternative as they have a higher yield,
but come with certain performance overheads stemming from their NUMA
memory system and inter-chiplet interconnection bottlenecks. This paper
analyzed these performance overheads. In particular, our study reveals that
although chiplet-based chips reduce system costs by almost half compared to
monolithic, they give away about a third of the monolithic performance. Our
work further showed that part of this performance overhead can be regained
with specific design choices. More specifically, designing chiplets with a private
LLC improves performance by about 30%. Moreover, chiplet-based systems
with active interposers are only 3% shy of the monolithic performance.
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Chapter 3

MEMPLEX: A Memory
System with Replication
and Migration of Data for
Multi-Chiplet NUMA
Architectures

Abstract

As the semiconductor industry struggles with the diminishing returns of Moore’s
law and explores innovative solutions for integrating more resources on a chip,
multi-chiplet chips offer a cost-efficient alternative to large monolithic chips due
to their higher yield. However, chiplet-based systems inherently exhibit Non-
Uniform Memory Access (NUMA) characteristics and, therefore, suffer from
slow remote accesses. Although data placement in multi-chiplet NUMA systems
can be optimized in software, currently, there are no hardware mechanisms to
dynamically improve data placement in DRAM distributed across chiplet nodes.
Our experiments show that this leads to wasting a significant fraction of system
performance compared to a hypothetical system with ideal data placement.
Our work addresses this problem by introducing MEMPLEX, a novel memory
system for multi-chiplet NUMA architectures, which offers data replication and
migration in the memory nodes of a multi-chiplet system. MEMPLEX allocates
a small fraction of each memory node to construct a DRAM cache and offers
their remaining capacity to a shared flat address space with hardware migration.
In a nutshell, MEMPLEX DRAM cache attracts data of the working set to the
local memory node and decides whether to migrate them upon eviction based on
their usage in the cache. Thereby, MEMPLEX improves data locality, regains a
large fraction of the above performance overhead, and offers substantial energy
savings.

23
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3.1 Introduction

Fitting more resources onto a chip has always been a key aspect of enhancing
the performance of processor chips. This became more critical in the multicore
era after Dennard scaling could no longer deliver higher frequencies due to
power limitations. However, with Moore’s law running out of steam, technology
scaling is increasingly challenging, and integrating more resources on a single
monolithic chip has become too expensive. Building larger chips out of multiple
smaller chiplets offers higher yield and is thus a lower cost alternative [2, 4].

Multi-chip integration technologies were initially employed to build High
Bandwidth Memory (HBM) and position it closer to a processing die, such as a
GPU [5] or a vector engine [6]. It was soon expanded to disintegrate processors
to multiple chiplets, as seen in AMD’s EPYC and RYZEN architectures,
providing access to multiple memory nodes with non-uniform access latencies
that vary by tens of nanoseconds [1]. Currently, multi-chiplet chips, such as
AMD MI300 [7] and Intel Sapphire Rapids [8], integrate multiple CPU and/or
GPU chiplets along with HBM nodes, forming part of a complex and less
uniform memory system.

Non-uniform Memory Access (NUMA) machines entail the performance pit-
fall of long latency remote accesses, but also offer opportunities for performance
optimizations, if data locality is maximized. In the 1990s, Cache Only Memory
Architectures (COMA) [13] and Cache Coherent NUMA (CC-NUMA) [14]
memory systems improved data locality and, consequently, the performance of
NUMA multi-socket machines by replicating (caching) and/or migrating data
close to the processor chip. More recently, hybrid memory systems composed of
nodes with heterogeneous characteristics, such as smaller HBM and larger but
lower bandwidth external DRAM, have employed similar techniques to reduce
memory access times, including, DRAM caching [22–31], data migration [15–21],
or a combination of both [32].

The focus of this work is on NUMA architectures composed of multiple
CPU chiplets and HBM nodes, such as the AMD MI300 [7] or Intel Sapphire
Rapids [8]. Currently, such systems use HBM as part of a flat address space
and rely on Operating System (OS) support or user optimizations to place
data closer to the processing chiplet, or they use the entire HBM as a DRAM
cache of an external DDR memory, thereby wasting valuable main memory
capacity [8]. This paper demonstrates that even when memory allocation is
NUMA-aware, placing data in the closest available memory node relative to
the processing node, system performance is still significantly reduced compared
to an ideal system that always finds data in its local memory node. Our aim is
to alleviate this performance loss by reducing remote memory accesses.

To this end, we propose MEMPLEX, a novel memory system that offers
replication and migration of data across the memory nodes of a multi-chiplet
chip in order to enhance data locality. As a result, the number of accesses to
the closest memory node for each processing chiplet is increased, while accesses
to the remote memory nodes are minimized. This reduces the average memory
access time, thereby improving system performance. The proposed memory
system uses a small fraction of each HBM node as a DRAM cache and decides
whether to migrate data upon eviction from that cache based on the usage of
the evicted blocks.
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Concisely, this paper makes the following contributions:

• Investigates the performance bottlenecks in a multi-chiplet NUMA sys-
tem revealing a performance loss of 26% and 31% in 4- and 16-chiplet
configurations, respectively, compared to an ideal system.

• Introduces MEMPLEX, the first multi-chiplet NUMA architecture, which
combines replication and migration of data across multiple memory nodes.
As a result, it:

– Offers most of the capacity of the HBM nodes as shared flat address
space, as opposed to designs that use them entirely as DRAM cache.

– Outperforms existing software solutions that offer NUMA-aware
data placement on a flat address space, as well as designs that use
HBM exclusively as DRAM cache.

• Evaluates MEMPLEX on multi-programmed mixes of workloads from
different benchmark suites (detailed in Section 3.4.3), and shows that,
compared to a multi-chiplet system with NUMA-aware data placement
and no support for DRAM caching or migration, MEMPLEX:

– Eliminates 80% of the remote memory traffic, resulting in a 44%
reduction in dynamic memory energy consumption in a 4-chiplet
system.

– Achieves up to 7% speedup (5% on average) when 1
16 of each HBM

is dedicated for caching in a 4-chiplet system, with performance
gains increasing up to 15% (10% on average) in 16-chiplet systems.

The remainder of this paper is organized as follows: Section 3.2 discusses
related work, Section 3.3 presents the MEMPLEX architecture, Section 3.4
outlines our experimental setup, Section 3.5 presents our evaluation results,
and Section 3.6 concludes with a summary of our findings.

3.2 Related Work

This section reviews existing solutions for data replication and/or migration in
memory systems, with a focus on (i) traditional multi-socket NUMA shared
memory systems, (ii) hybrid memory systems composed of HBM and external
DRAM, and (iii) the software support available for NUMA architectures.

3.2.1 Non-Uniform Memory Access in Shared Memory
Systems

Distributed shared memory (DSM) systems inherently deal with the problem
of incurring higher delays when retrieving data mapped to a remote memory
node compared to its local memory, resulting in non-uniform memory access.
Optimizing latency for remote data access in DSMs has been an extensive topic
of research in computer architecture for many decades. Cache-Coherent NUMA
(ccNUMA) machines address this challenge by allowing the remote data to be
cached in the local node’s cache hierarchy [14,52–54]. References to the remote
data that miss the local node’s cache hierarchy are sent to the home node of
the referenced page. The home node is responsible for the initial allocation of
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the page and is in charge of maintaining the consistency and coherence of that
page across the system.

Due to the relatively smaller size of the remote cache, the ccNUMA systems
exhibit high sensitivity to data placement. This sensitivity can be mitigated
to some extent by strategies such as caching remote data on DRAM [55,56]
or leveraging OS support for dynamic page migration to local memory [57].
Cache-only memory architecture (COMA) machines address this problem by
allowing the remote pages to be freely migrated to the local memory, improving
the chances of the referenced data being available locally. Since there is no
concept of a home node in traditional COMA systems, block localization in case
of a miss in the local memory can be challenging and time-consuming. FLAT-
COMA [58] resolves this problem by assigning a fixed home node for each page.
In this scheme, the pages are free to migrate to remote nodes, but the location of
the directory remains fixed. COMA systems implement block replacement and
relocation mechanisms in hardware, resulting in increased hardware complexity.
Simple-COMA (S-COMA) [59] systems simplify the hardware implementation
by offloading some of this complexity to the operating system. When a remote
page is first referenced, it results in a page fault. The operating system allocates
a page frame in the local memory for the remote page and fetches the remote
block into this newly allocated page frame. Subsequent references to the same
block get mapped directly to the local memory. Since the physical addresses in
the local memory are handled independently by the local MMU, identical blocks
residing in different nodes can have different physical addresses. Consequently,
nodes need a global identifier for migrated pages for inter-node communication.
Hence, each node maintains a translation table responsible for converting local
addresses to global addresses and vice versa.

Reactive NUMA (R-NUMA) [60] aims to combine the performance benefits
of ccNUMA and S-COMA. This scheme initially allocates the remote block
in the remote cache to achieve a low initial overhead cost of ccNUMA. The
system keeps track of block refetching due to conflict and capacity misses to
remote cache and initiates S-COMA page allocation process when refetch count
exceeds a certain threshold.

3.2.2 Hybrid Memory Systems

DRAM-based hybrid memory systems combine two types of memory to balance
performance and capacity. The first type is High Bandwidth Memory (HBM),
which offers high data transfer rates but has limited capacity due to heat
dissipation issues, increased cost, and stacking efficiency. To complement the
HBM, conventional lower-bandwidth external DRAM is used to expand the
system’s overall memory capacity. Ideally, the goal is to design a memory
system that seamlessly integrates the high bandwidth of HBM with the larger
capacity of off-chip external DRAM, providing an efficient balance of both
performance and storage.

Currently, there are two primary approaches for organizing hybrid memory
systems. The first approach is to use HBM and off-chip DRAM as part of the
same hybrid main memory system, with a migration mechanism that brings
the “hottest” data to the high-bandwidth 3D-stacked DRAM [15–21]. Some of
these designs rely on OS to select and migrate data [15] and, although simpler,
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have a slow response to working set changes. Other data migration solutions
are implemented in hardware, offering a faster response, but need to handle
address remapping and keep it transparent to the OS [16–21]. The second
approach uses HBM as a DRAM cache of the external DRAM [22–31], with
the primary challenge being the overheads associated with the management of
metadata (tags).

A hybrid of these two approaches has also been proposed in the Hybrid2

design, which reserves a fraction of the HBM for caching and offers its re-
maining capacity to the main memory [32]. Hybrid2 targets systems with a
single processor chip and 2-level hybrid memory, i.e. HBM and external DDR.
In contrast, MEMPLEX extends the concept of combining replication and
migration to chiplet-based systems featuring multiple processing chiplets, mul-
tiple HBM nodes, and external DDR. Unlike Hybrid2, MEMPLEX faces more
complex challenges, such as (i) the remap information needs to be fragmented
and scattered to the various NUMA nodes, (ii) data allocation and migration
decisions are intricate due to the varying distances between memory nodes,
and (iii) introducing multiple DRAM caches (one per HBM node) calls for
compatibility with directory-based cache coherence protocols [55]. MEMPLEX
addresses these challenges and provides an innovative solution that offers data
replication and migration in the memory system of a multi-chiplet processor,
improving the performance and energy efficiency of chiplet-based systems and
demonstrating scalability to larger systems with more chiplets.

Existing commercial multi-chiplet processors with HBM, such as Intel
Sapphire Rapids [8], do not combine replication and migration. Their HBM
nodes are either used entirely as DRAM cache wasting capacity, or as part
of a flat address space with no hardware support for migration. In the latter
case, software techniques can be employed to alleviate NUMA overheads, as
explained next.

3.2.3 Software support in NUMA machines

Modern operating systems widely support NUMA architectures through various
mechanisms. Operating systems like Linux [35], Windows [36], and FreeBSD [37]
implement NUMA-aware scheduling algorithms to place processes and threads
closer to the memory nodes, minimizing access latency. Additionally, oper-
ating systems allow user applications to discover NUMA topology, request
memory from specific nodes, and set process affinity through NUMA APIs. In
addition, Linux also facilitates manual page migration [61] from the remote
NUMA node to the one currently running the process. The automatic NUMA
balancing mechanism in Linux [62] enables periodic unmapping of process
memory, NUMA hinting faults, migration-on-fault, and automatic placement
of tasks closer to the memory. These operating system features can make ap-
plications NUMA-aware and improve performance on NUMA machines mostly
by selecting a static mapping that places data close to the consuming threads.
However, even with dynamic migration support, this approach often requires
programmer intervention and has a slower response to working set changes
compared to hardware migration solutions [32]. In contrast, MEMPLEX aims
to transparently improve performance on NUMA systems without putting an
additional burden on application programmers.
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Figure 3.1: MEMPLEX System Overview

3.3 MEMPLEX Design

MEMPLEX is a memory system for chiplet-based architectures, comprising
multiple processor chiplets and HBMs integrated on a silicon interposer as
well as external DDR memory accessed via an IO chiplet, as illustrated in
Figure 3.1. Without loss of generality, the system is organized in NUMA nodes
composed of a processor chiplet and an HBM. Each processor chiplet has a high
bandwidth connection to its nearby, local HBM, henceforth denoted as Local
Memory (LM), and can gradually reach larger parts of the shared memory
at the cost of lower bandwidth, by connecting first to the remote HBMs of
other nodes on the chip and second to the off-chip external DDR, collectively
referred to as Remote Memory (RM). On a system with such trade-offs between
memory bandwidth and memory capacity, MEMPLEX improves data locality
by employing a DRAM cache and a migration scheme on the shared flat address
space. It allocates a small portion of each HBM in the system as the data
array of a sectored DRAM cache, private to the node, and utilizes its remaining
capacity to form, combined with the external DDR, a shared flat address space
offering hardware support for data migration across the shared HBMs and the
external DDR.

3.3.1 MEMPLEX System Overview

The MEMPLEX system combines data replication and migration across the
HBMs of a multi-chiplet chip as well as the external DDR. A fraction of each
HBM is allocated to store the data array of a sectored DRAM cache, which
attracts data frequently used by the cores on the local chiplet. The rest of its
capacity is part of the flat address space. The DRAM Cache Tag Array (DCTA)
is maintained in SRAM locally at a reasonable cost. Migration decisions are
made per sector upon its eviction from the DRAM cache.

In MEMPLEX, the data management operates at distinct granularities.
The data blocks in the DRAM cache are fetched at the cache line granularity
(64 Bytes). The DRAM cache tags are maintained at the sector granularity,
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which for simplicity is equal to an OS page (4 KBytes). After a cache miss in
the SRAM LLC, DCTA is the first point of reference for determining whether
the requested cache line is available within the DRAM cache. The requested
cache line may reside either in the LM or in RM. In the event of a tag array
miss, a new entry for the missing sector is allocated in the DCTA regardless of
where the requested cache line resides. However, a new data array entry for
the sector is allocated in LM only if the requested cache line resides in the RM.
Otherwise, if the sector is already located in the main memory part of LM, the
added DCTA entry would point to the existing location of the sector in LM
and mark all cache lines as dirty to ensure a writeback after eviction. Thereby,
replication of data that already reside in LM is avoided, while DCTA acts as a
cache of the address remap information.

An HBM is logically, rather than physically, partitioned between the DRAM
cache and the flat address space, and the partitioning is facilitated by pointers
maintained in the DCTA. This allows for a seamless link of sectors already
present in the LM to the DRAM cache tags. Moreover, it enables cached sectors
from RM to be migrated into LM without relocating the already fetched cache
lines.

The sectored DRAM cache allows the tags to be kept entirely on the proces-
sor chiplet without significant SRAM cost due to its small size. This induces
minimal latency to the critical memory access path as all the memory requests
go through the DCTA. The tag array also contains additional information to
facilitate the data migration within the shared memory. Besides the tag and
cache state, each entry in the on-chip tag array stores the remapped address
of the sector, serving as a cache of the migration metadata, which effectively
reduces the overhead of address remapping. Section 3.3.2 elaborates on the
DCTA structure.

When a sector is evicted from the DRAM cache, the migration mechanism
decides whether to migrate it to the LM or evict it back to its current location
in RM. The migration decision is based on the cost of migration in terms of the
memory traffic and the number of accesses to the sector while in the DRAM
cache. By deferring the migration decision until a DRAM cache eviction,
the management of migration-related metadata is moved off the critical path,
thereby minimizing its impact on performance. Additionally, the RM traffic
generated by migrations is dynamically adjusted according to the workload
behavior.

3.3.2 DRAM Cache Controller

Each processor chiplet in the system features a DRAM Cache Controller (DCC)
responsible for high-level block management tasks. This includes handling
requests from the processor, accessing the on-chip tags, fetching cache blocks
on misses, evicting blocks, and generating writeback traffic to the main memory
for dirty blocks. Additionally, the DCC manages sector migrations between the
local and remote memory. This involves translating the addresses of remapped
sectors, selecting sectors for migration to LM, and making migration decisions
based on data usage (while in DC) and migration overhead considerations.
Section 3.3.7 discusses how DCC manages migrations. All memory requests go
through the DCC, which communicates with the memory controller to access
the HBMs and external DDR.
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Figure 3.2: (a) Logical Address Space Layout of the Memory System and (b)
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The DCC manages the DRAM Cache Tag Array (DCTA), which stores
all tags for the DRAM cache in SRAM on the processor chiplet. DCTA is
set-associative, with each set containing entries for multiple sectors. Each entry
in DCTA, as depicted in Figure 3.1, comprises the sector tag, state bits for
each cache line in the sector (including valid and dirty bits), an access counter,
two pointers, and a node identifier. The Access Counter (AC) monitors sector
accesses and is used upon DRAM cache eviction to decide whether to migrate
the sector to LM or evict it to RM. AC is incremented only for non-migrated
LM sectors to prevent potential starvation within the cache set, ensuring LM
sectors with frequent accesses are not evicted from the DCTA. Additionally, we
ignore the sectors whose counters have reached the maximum value to prevent
starvation from RM sectors that remain in the cache for prolonged periods.
Pointers facilitate address translation of processor physical addresses to sector
locations in the memory system. The Cache Pointer (CP) decouples the set
and way from the physical location of data in the LM. This indirection allows
our design for sector migration to LM without the need to copy data from one
LM location to another. The Memory Pointer (MP) points to sector physical
locations in RM and helps avoid remap table lookups. MP is same as CP for
sectors that belong to the LM or for sectors that have entirely migrated to the
LM. The Memory Node Identifier (MNID) is used to identify the node where
the cached sector is located in the main memory. For the HBM address space,
the MNID is the node ID where the HBM is located. On the other hand, the
external DDR is divided into a number of regions equal to the number of nodes
in the system, so each region is assigned to a different node, as illustrated in
Figure 3.1. When the MNID matches the self-ID of a node, it indicates that
the respective node has the sector in its flat address space, either as a result
of migration or as the original Home Node (HN) location determined by the
memory allocation.
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3.3.3 Memory Layout & Metadata

Figure 3.2(a) illustrates the logical address space layout of the memory system,
depicting the HBM local to a processor chiplet (LM) and another one that
is remote (RM). The external DDR memory is not illustrated as it only
contains data as part of the address space. On the contrary, each HBM
includes a reserved portion containing migration metadata structures used in
the MEMPLEX design. The non-reserved portion of the HBM is logically
partitioned between DRAM cache data and the available flat address space
across the shared memory. This means that the sector corresponding to a DCTA
entry can be located anywhere across the flat address space of its respective LM
(shown by the lined area in Figure 3.2(a)). DCC uses the pointers maintained
in the DCTA to track the location of sectors within its respective LM. Sectors
in LM may either fully reside in its DRAM cache (with a corresponding DCTA
entry) or not at all. Sectors in RM may be partially or fully cached in the
DRAM cache, also with corresponding DCTA entries.

Figure 3.2(b) demonstrates examples of DCTA entries. The first entry ( 1
in Figure 3.2(b)) corresponds to a sector entirely migrated to its respective LM,
as indicated by CP specifying its location. In this scenario, MP is the same as
CP, MNID is the node’s self ID, and as a convention, all valid and dirty bits
are set. The second entry ( 2 in Figure 3.2(b)) represents a sector partially
cached in the DRAM cache, indicating it has not been migrated to the LM.
Some cache lines of the sector have been fetched to the LM, as indicated by
the valid flag vector of the DCTA entry. The dirty flag vector specifies the
cache lines of the sector that were written while in the DRAM cache. The CP
and MP pointers indicate the sector location in the LM and RM corresponding
to MNID, respectively.

Migration Metadata Structures

Our design allows all-to-all address remapping for pages across the flat address
space available in the HBMs and external DDR. To achieve this, we maintain
the following structures in each memory node:

• Remap Table: Each node in the system maintains a remap table
which stores mappings from the processor physical address to the actual
memory location of the sector in the memory system. A remap table
stores entries of sectors (pages), which natively belong to its node and
are migrated elsewhere as well as sectors migrated to its local HBM from
other parts of the memory. Unlike the centralized remap table in the
Hybrid2 design, where all remap information is stored in one location,
our approach distributes remap information across NUMA nodes. This
fragmentation introduces greater complexity in tracking data. To mitigate
this complexity, the remap table structure is optimized by implementing
it as a hash table that maintains an entry for each of the native LM
sectors that have migrated to RMs and for the RM sectors that have
migrated to the LM. This means that if a native LM sector gets a miss in
the remap table, the sector is in its default, native location. The structure
is indexed by the processor physical address and points to the memory
location of the sector. On a sector migration, the remap table is updated
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to reflect the new address. It is worth noting that the DCTA serves as a
cache for remap table entries of sectors currently (partially or fully) in
the DRAM cache, facilitated by the pointers illustrated in Figure 3.2(b).
This distributed yet optimized design enables effective memory location
tracking across NUMA nodes.

• Inverted Remap Table: This table contains processor physical ad-
dresses corresponding to all locations within the respective memory node.
The table also includes a bit map representing the sharers of the address
if the sector is cached. This table is employed during the migration of
blocks out of the memory node. Further details on its usage are provided
in Section 3.3.5.

• Free Memory Stack: Each node maintains a stack of a minimum
number of its own free locations, which currently hold no valid data and
are available for use. A predefined number of entries from this stack are
given exclusively to each other memory node for migrating data. Thus, in
addition to its own free locations, each memory node maintains a stack of
free locations reserved for use on all other memory nodes. Furthermore,
when a node exhausts its available free locations, it requests additional
entries to replenish its stack. The stack size is bound to the number of
sectors that can fit within the DRAM cache. The stack pointer and a set
number of top entries of the stack per node are stored on-chip within the
DCC to minimize LM access.

MEMPLEX overheads are primarily related to (1) added logic in the memory
controller (for supporting migration and DRAM caching), which is similar to
the overheads imposed by existing hardware migration and DRAM caching
approaches, (2) SRAM cost for storing DCTA, and (3) DRAM space for
metadata. The space allocated for all the above metadata is small (even when
considering the full remap table) and in our implementations constitutes only
0.5% of a memory node capacity.

3.3.4 Memory Access Path

When a memory request arrives in the DCC of a requesting node due to an
LLC miss, the DCTA is indexed with the (physical) address to determine if
the requested sector and the specific cache line is available within the DRAM
cache. This operation can result in one of four possible outcomes, as illustrated
in Figure 3.3.

1 DCTA Miss: In this scenario, the DCTA does not contain an entry
corresponding to the requested sector. The requested sector may reside
either in the LM or in any of the RM locations. Regardless of where the
requested sector resides (LM or RM), an entry is allocated in the DCTA
for that sector. Section 3.3.6 elaborates on the allocation of a new entry
in the DCTA and the eviction process in the DRAM cache if necessary
during this allocation.

The address remap table in the LM is accessed using the sector’s physical
address to determine the sector’s location in the memory system. If the
remap table in LM does not contain the updated location of the requested
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Figure 3.3: Memory Access Path

physical address, the system defaults to accessing the remap table in
the Home Node (HN), decoded from the higher-order bits of the address.
This is typical for the first access to a sector allocated in any of the RMs.
Subsequent requests from the same chiplet would be served from its DCTA.

1a Requested Sector in LM: If the sector is located in the LM, then
all cache lines associated with that sector are already present in the
LM. Consequently, the entry in the DCTA is updated accordingly.
The CP and MP are set to point to the LM location of the sector.
Additionally, the MNID is set to the self-ID, and all cache lines are
flagged as valid and dirty.

1b Requested Sector in RM: If the sector is not located in the LM,
but is in the region of external DDR that belongs to the requesting
node, then the location of the sector is already known form step
1a. Otherwise, the remap table in the RM node, i.e., the node
of the physical address is accessed to get the updated location of
the requested physical address. Next, space is allocated in the LM
for caching the new sector in the DC, and the requested cache line
needs to be fetched from RM to the newly allocated location in
LM. Section 3.3.5 elaborates on the allocation process followed by
a memory node. Subsequently, the DCTA is updated with the new
sector. The CP is set to point to the newly allocated LM location
of the sector. The MP is set to the RM location of the sector, and
the MNID is assigned the ID of the RM node. The valid flag is set
only for the fetched cache line, while the dirty flag depends on the
request type. Additionally, the inverted remap table in the requesting
node is updated with the physical address of the sector, even though
this sector has not yet been migrated to LM. This is done to ensure
correctness during LM allocation, as explained in Section 3.3.5.
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2 DCTA Hit: In this scenario, the DCTA contains an entry matching the
requested sector. However, even though there is an entry for the sector in
the DCTA, the requested cache line might be located in the LM or not.

2a Requested Cache Line not in DRAM Cache: In this scenario,
an entry for the sector exists in the DCTA, but the specific cache
line is not valid. This indicates that the sector is located in the RM,
and only certain cache lines of the sector have been fetched to the
DRAM cache. Subsequently, the MP pointer is utilized to retrieve the
requested cache line from the RM, while the CP pointer is employed
to write the cache line to the appropriate location in the LM.

2b Requested Cache Line in DRAM Cache: In this scenario, the
requested cache line is located in the DRAM Cache. The sector
can be located either in the LM or the RM. In either scenario, the
requested cache line is accessible in the LM through the CP pointer
of the DCTA entry.

3.3.5 Allocating a Sector in Local Memory

When a DCTA miss occurs and is indicated that the requested sector resides
in any of the RM (1b in Figure 3.3), a new sector must be allocated in LM.
To make space for this new sector, another sector must be migrated away to
any RMs. When the cache is initially empty at boot, we employ a simple
counter to allocate space for the cache within LM. Figure 3.4 illustrates the
sector allocation process in the LM. During this process, the DCC (i) identifies
the victim sector in the LM, (ii) locates a free sector in the nearest RM for
allocation from the Free Memory Stack, (iii) copies the data from the victim
sector in the LM to the free sector in RM, and (iv) after the data is copied,
the mapping structures are updated to reflect the new location of the sectors
in the LM and RM.

3.3.5.1 Finding victim sector in LM

A FIFO policy is employed to identify a victim sector in LM. A Local FIFO
counter, wrapping around all the available LM locations, is incremented each
time a new location in LM is needed. However, the sector corresponding to
the counter may currently be assigned to the DRAM cache (indicated by CP
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Figure 3.5: Allocating an entry in DCTA

in the DCTA entry) or cached in any of the RMs. To handle this, the inverted
remap table is indexed with the counter to obtain the sector’s physical address.
Then, look up the DCTA using the physical address of the sector. If the sector
is in the DCTA, we proceed to the next one until finding an available sector.
This ensures correctness, as a sector in the DRAM cache must not be migrated
to RM. Furthermore, this approach yields a better replacement decision than
FIFO alone, as sectors frequently accessed are more likely to reside in the
DRAM cache and avoid migration to RM. To minimize the latency of this step,
which is in the critical path of an access, each DCC maintains a buffer of a few
(e.g., two) spare, unused DC data entries ready to be used as victim sectors.

3.3.5.2 Finding free sector in RM

To locate a free sector in RM, we utilize the free entries of RM stored in the
Free Memory Stack of the node. When a sector is migrated from RM to LM,
its original RM location is pushed onto the Free Memory Stack of the RM,
making it available to be overwritten.

3.3.6 DRAM Cache Evictions

Figure 3.5 depicts the DRAM cache eviction logic, where the DCC employs
the LRU algorithm to determine which sector to evict from the DRAM cache.
The DRAM cache can contain (i) Sectors already in the LM, (ii) Sectors that
have migrated to the LM, or (iii) Sectors located in the RM, with some or all
cache lines already fetched to the LM.

3.3.6.1 Evicting sectors already in LM

For sectors in cases (i) and (ii) involving data already in the LM or migrated
to it ( 1 in Figure 3.5), no data movement is necessary. The remap table has
been updated with the evicted sector’s location during migration to LM, and
the inverted remap table has been updated with the physical address of the
evicted sector when first fetched in the DRAM cache. Thus, the corresponding
DCTA entry can be reassigned.
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3.3.6.2 Evicting sectors located in RM

For sectors in case (iii) located in any of the RMs, the DCC determines whether
to migrate the sector to the LM or evict it back to the RM. Migration to
LM (2a in Figure 3.5) involves fetching all non-valid cache lines of the sector

from the RM and updating migration structures. In contrast, eviction (2b
in Figure 3.5) involves writing back all dirty cache lines of the sector to the
RM, and no remapping data structures need to be updated. The algorithm
for deciding between migration and eviction is detailed in the following section
(Section 3.3.7).

3.3.7 Migration Decision and Traffic Regulation

This section discusses the mechanism employed to regulate the migration traffic
overheads and the process of deciding between migration and eviction.

3.3.7.1 Migration Traffic Overheads

When evicting a sector from the DRAM cache that has not been migrated
to the LM, DCC has two choices: Either (i) evict the sector back to the RM,

requiring the writeback of all the dirty cache lines (2b in Figure 3.5), or (ii)
migrate the sector to the LM by fetching the non-valid cache lines of the sector
from the RM (2a in Figure 3.5). The choice between the two is made based
on the migration overhead, which is calculated in terms of the number of RM
accesses caused by a migration decision and, in essence, indicate memory traffic
cost. The number of RM accesses depends on the number of valid and dirty
cache lines within the sector in the DRAM cache.

In the case of eviction, the RM accesses (ERM) correspond to the number
of dirty cache lines (Ndirty) that must be written back to RM. However, in
the case of migration, the RM accesses (MRM) are determined by two factors:
firstly, the number of cache lines that need to be fetched from RM, calculated
by subtracting the number of valid cache lines (Nvalid) already present in the
sector from the total number of cache lines per sector (Nall); and secondly, the
cost of swapping out the evicted sector from LM to accommodate the new one,
which necessitates Nall writebacks to RM.

ERM = Ndirty (3.1)

MRM = (Nall −Nvalid) +Nall (3.2)

Thus, the overhead incurred in migrating a sector in terms of RM accesses
(Om) is given by the equation:

Om = ERM −MRM + 1 = 2×Nall −Nvalid −Ndirty + 1 (3.3)

where the constant “1” is added as a minimum overhead. The Om can range
from 1, indicating all cache lines of a sector are valid and dirty, to 2 × Nall,
which occurs when only one cache line of a sector is valid and clean upon
eviction from the DRAM cache. Nevertheless, this latency overhead does not
impact the critical path of memory access, as migration decisions are made
only during evictions.
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3.3.7.2 Balancing Migration and Processors Traffic

DCC maintains a remote access counter to monitor RM accesses, distinguishing
between migration and processor requests. The counter is incremented for
every DRAM cache miss that must be fetched from the RM. When a sector is
migrated, the counter is decremented by its migration overhead (Om). Besides
monitoring the RM accesses, DCC also checks the number of sector accesses
(The field AC in DCTA). If enabled, this check ensures that the value of AC
of a sector is greater than AC of other sectors in the same cache set. The
conjecture is that if this check is successful, the sector is likely to be reused
again and thus worth keeping in LM.

When deciding on a sector for migration, its Om is compared with the
remote access counter. If Om is smaller than the remote access counter and
the above check is met, the sector is considered for migration. Essentially, the
remote access counter acts as an upper bound on the number of RM accesses
for migration and is periodically reset (every 100K cycles) to adapt to workload
phase changes. The check on AC regulate eligible sectors for migration, striking
a balance between data “hotness” (usage) and migration cost to optimize
system performance. These checks occur during eviction and hence do not
affect the critical path of a memory access.

3.3.8 An Example Illustration

Figure 3.6 illustrates how MEMPLEX handles migration metadata. The system
has four nodes, each displaying certain memory entries, a portion of the address
remap table, and the free memory stack. For simplicity, regions of external
DDR are omitted. The physical address of the sector is denoted by A (in bold),
and the actual address (location within the memory node) is denoted by A (in
italics). The entire address range includes A, A+1, ..., A+n, B, ..., B+n,
C, ..., C+n, D, ..., D+n, divided across 4 memory nodes. Node 0 serves as
the Home Node for physical addresses A to A+n, containing locations A to
A+n, and so on for the remaining nodes. If the sector migrates, it will have an
Owner Node where the sector currently resides.

Various scenarios of sector placement and migration are shown: (i) Sectors
in their native location, e.g., sector with physical address PA=A placed at
AA=A; (ii) Cached sectors, e.g., sector with PA=B+2 from Node 1 cached
at AA=A+4 in Node 0 while maintaining its data at AA=B+2 in Node 1.
The corresponding entry for this cached sector would be in the DCTA (not
shown) of Node 0; (iii) Migrated sectors, e.g., sector with PA=D from Node 3
migrated to AA=B in Node 1. The remap tables in Node 1 and Node 3 reflect
this migration, and the entry is also in the DCTA (not shown) of Node 1. Since
D migrated out of Node 3, location D is in the Free Memory Stack.

An interesting scenario involves sectors with PA=C and PA=C+1, which
remain in their native location in Node 2 and are cached in the DRAM cache of
the same node as the respective processor chiplet uses them. Another scenario
occurs when Node 0 misses in its DRAM cache for a line in sector D+5. Since
the sector is not found in Node 0’s remap table, it checks the remap table of
sector D+5’s home node, i.e., Node 3, which indicates that the sector has
migrated to Node 1 at AA=B+3, where the requested line is found after adding
the line offset.
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Figure 3.6: Example snapshot of HBM contents and metadata for a 4-node
MEMPLEX system. The mapping of sectors with physical addresses (PA -
bold), to actual addresses (AA - italics) of the machine is illustrated, as well
as the contents of the remap table and free memory stack for each node.

3.3.9 Cache Coherence

In MEMPLEX, each processor chiplet is paired with a memory node, which
allocates a portion of its memory as a private DRAM cache. This DRAM cache
can store pages from both local and remote memory nodes. Since a page may
reside in multiple DRAM caches simultaneously, a cache coherence protocol is
necessary to ensure coherence across the different memory nodes. While the
specific cache coherence mechanism for DRAM caches is not detailed in this
proposal—leaving room for future optimizations—MEMPLEX is designed to
be compatible with a directory-based protocol, such as CANDY [55].

The home node of a cache line can either be statically assigned or dynam-
ically determined by consulting the remap table, which locates the current
placement of a sector. The coherence directory is stored in DRAM within
each memory node to mitigate the SRAM storage overhead. Additionally,
an SRAM cache of the directory is maintained on the processor chiplet to
store recently accessed entries. This hybrid approach helps reduce both the
substantial storage overhead and the access latency typically associated with
coherence directories in the memory nodes. However, the migration policy for
shared sectors warrants reconsideration, as sector usage in a single DRAM
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cache may not provide enough data for optimal decision-making and could
conflict with the migration policies of other nodes. Leveraging the sector’s
directory to collect information from all sharers could facilitate more efficient
migration decisions.

The cache coherence optimizations and their evaluation with multi-threaded
workloads are left for future work. Nevertheless, even multi-programmed
workloads demonstrate a significant reduction in remote traffic, noticeable
performance gain, and substantial energy gains, as detailed in Section 3.5.

3.4 Experimental Setup

3.4.1 System Configuration

Our microarchitectural simulation offers detailed modeling of the memory and
interconnects, as outlined in Section 3.4.2, making it computationally intensive
for large systems. To keep the simulation times of our experiments within
affordable bounds (tens of hours per simulation point), the modeled systems
are scaled down to a quarter of a real one. A full-scale AMD Zen4C chiplet
consists of 16 cores; therefore, our performance analysis focuses on chiplets
scaled to one-quarter of the AMD Zen4C or Intel Sapphire Rapids chiplets.
Consequently, these scaled-down chiplets contain only a quarter of the number
of cores and connect to a quarter of the HBM channels, as detailed in Table
3.1. Additionally, the L2 and L3 caches are undersized to put more pressure
on the memory system and increase LLC misses per kilo instructions (MPKI),
which is otherwise difficult to achieve when simulating systems for only a few
billion instructions.

Based on the scaled down chiplet size (16.5mm2)1, the microbump budget
is calculated to be proportional to the number of cores it includes. In addition,
the following parameters were used for calculating the microbump budget: (i)
a microbump pitch of 45µm, (ii) reserving 40% of the microbumps for power.
Then, the number of microbumps available for data were allocated for (i)
connecting to the HBM channels, (ii) one bidirectional link to the IO chiplet,
(iii) multiple bidirectional links to the other CPU chiplets. Then the width of
the links to IO and CPU chiplets, as well as the total number of links to other
CPU chiplets were adjusted to fit the microbump budget. Finally, the latency
of the inter-chiplet links was measured to be 2 or 3 (NoC) cycles according
to the chiplet’s dimensions and the latency of the links on a passive silicon
interposer similar to [3, 39].

To motivate the use of chiplet-based architectures, we measured the costs
of 4, 8, and 16 16-core chiplets, i.e., full scale, with the above configuration
compared to their equivalent hypothetical monolithic chips using the chiplet
actuary model by Feng and Ma [2]. We considered (i) processor chiplets of size
66mm2 manufactured at 5 nm, (ii) a 400mm2 IO chiplet at 14 nm, and (iii)
passive interposer in 65 nm technology. The analysis showed that the recurring
engineering cost of chiplet-based systems were 52-55% of their monolithic
counterparts.

1Calculated based on Zen4 after scaling down L2 and L3 sizes proportional to the capacity
indicated in Table 3.1.
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Table 3.1: System Configuration1

System
Chiplets 4 chiplets1

Cores and Caches
Cores 4 cores1 / chiplet, out-of-order, 3.2 GHz
TLB I-TLB: 512-entry, 4-way, 1 cycle latency

D-TLB: 512-entry, 4-way, 1 cycle latency
L1 Cache L1-I: Private, 32KB, 4-way, 2 cycle access latency

L1-D: Private, 32KB, 4-way, 2 cycle access latency
L2 Cache Private, 256KB, 8-way, 4 cycle access latency
L3 Cache Shared, 1MB/core, 16-way, 12 cycle access latency2

Main Memory
HBM2 1GB/chiplet, 2GHz, 4 channels, 128 bits per channel, tCAS-

tRCD-tRP: 14-14-14 ns, RD/WR+I/O Energy = 6.4 pJ/bit
DDR4 4GB, 3.2GHz, 1 channel, 64 bits per channel, tCAS-tRCD-tRP:

22-22-22 ns, RD/WR+I/O Energy = 33 pJ/bit

Network
Intra-chiplet 2GHz, 3-stage router (VA/SA, ST, LT), 2x3 Mesh, 4 VCs per

port, credit-based flow control, 256 bit link for data, 154 bit
link for control (coherence) traffic, 5 flit buffers, XY Routing

Inter-chiplet 2GHz, 3-stage router (VA/SA, ST, LT), 2x2 Mesh, passive
interposer, 2 to 3 cycle link latency3, 7 to 9 flit buffers 3

1 This configuration is the default setting. The parameter adjustments are detailed
in the respective evaluation sections of the sensitivity studies.

2 L3 access latency is 8 cycles for 2MB, 12 for 4MB, and 15 for 8MB.
3 Depending on the maximum inter-chiplet link length [3].

3.4.2 Simulation Setup

MEMPLEX is evaluated using BZSim [41], which has been extended to model
the memory system and interconnects of chiplet-based chips. BZSim is based on
the ZSim simulator [42] integrated with BookSim2 [43] for cycle-accurate intra-
and inter-chiplet network modeling, enhanced with a technique to detect and
skip simulation of low contention traffic to speedup simulation times [41]. BZSim
offers microarchitectural simulations with detailed (cycle-accurate) interconnect
modeling at an order of magnitude faster simulation speeds compared to GEM5,
enabling multi-billion instruction experiments within reasonable times [41].
DRAMSim3 [44] was used for cycle-accurate DRAM modeling and CACTI [45]
for estimating cache access times.

The system treats all HBM and external DDR memory as part of a unified
flat address space. The virtual memory system was implemented based on
HSCC [46]. The cores are configurable with translation lookaside buffers
(TLBs) for both instructions and data, as well as with page table walkers
(PTWs). Additionally, the memory management modules include a distance-
aware allocation policy. This policy allocates pages to the HBM in the chiplet
where they are first accessed. If pages are unavailable in the nearest HBM,
they are allocated in the next neighboring HBM or in the external DDR.
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Table 3.2: Workload Characteristics

Benchmark Label Input
LLC

MPKI
Footprint

(GB)

Assigned to Mixes

mix-id#ofinstances

LLC MPKI 20-40
pageRank2 PRL2 LDBC (100k) 37.41 0.84 13,23,32,43,53,63,71

mcf1 MCF Default 34.01 0.45 22,53,72

graphColoring2 GCL2 LDBC (100k) 30.70 0.45 11,21,41,61,72

graphColoring2 GCL3 LDBC (10k) 21.26 0.09 12,21,32,52,71

Random Access
Workload3

RAND N=30,
M=1000,
chunk=1024

20.83 0.70 11,23,31,42,52,61,71

LLC MPKI 10-20
connectedComp2 CCL3 LDBC (10k) 19.33 0.09 13,22,31,43,52,62,71

lbm1 LBM Default 18.19 0.40 31,62,71

BFS2 BFSCR CA RoadNet 17.25 0.64 11,21,31,42,62,71

fotonik3d1 FOTO Default 17.07 0.59 11,41

pageRank2 PRL3 LDBC (10k) 13.96 0.09 21,41

xalancbmk1 XAL Default 13.62 0.16 11,21,32,41,52,63,71

blender1 BLEN Default 12.78 0.08 21,41

shortestPath2 SPCR CA RoadNet 12.30 0.64 11,32,61,71

XSBench4 XSB XXL 11.11 0.37 71

graphColoring2 GCCR CA RoadNet 10.69 0.63 11,31,51,71

LLC MPKI 0-10
parest1 PAR Default 8.54 0.05 31

roms1 ROMS Default 7.58 0.25 71

triangleCount2 TCL2 LDBC (100k) 6.24 0.55 51,71

graphColoring2 GCL1 LDBC (1000k) 5.92 0.29 11,41,61

pageRank2 PRKR Knowledge
Repo

4.56 0.30 31

BFS2 BFSL1 LDBC (1000k) 2.71 0.98 31

1 SPEC CPU 2017 [47], 2 GraphBIG [48], 3 GUPS [49], 4 XSBench [50]

3.4.3 Workloads

Multi-programmed workloads are used in our experiments from the SPEC
CPU2017 benchmark suite [47] (the seven with highest MPKI), GraphBIG [48],
Random access workload from the GUPS suite [49] and XSBench [50]. For the
SPEC CPU2017 and GraphBIG benchmarks, we use Simpoints [51] to select
a representative slice of one billion instructions. We have chosen 21 different
workloads, detailed in Table 3.2, and created random multi-programmed mixes
mapping one benchmark to each core. Each mix of applications has a minimum
total memory footprint of 7GB and a geometric mean LLC MPKI of at least
11. To scale these mixes for systems with 32 or 64 cores, we replicate the
16-application mix twice for the 32-core system and four times for the 64-core
system. All experiments run with an average of 125 million instructions per
core warm-up period, where memory allocation is enabled, followed by an
average of 250 million instructions per core of detailed simulation.

3.4.4 Evaluated Systems

In the evaluation, we consider four distinct systems that offer unique approaches
to managing memory resources in a NUMA multi-chiplet architecture.
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1. Baseline (BS): A multi-chiplet system with private LLC, NUMA-aware
data placement and no support for DRAM caching or migration. The
default configuration (depicted in Table 3.1) includes 4 chiplets, each
with 4 cores and private LLC, integrated on a passive interposer with
256 bit NoC data-links, 4 HBM channels per chiplet, 1 link to IO chiplet,
and 1 channel to external DDR.

2. DRAM Cache-Only (CO): A multi-chiplet system in which each chiplet
uses its entire local HBM as a private DRAM cache. The workload mixes
are calibrated to fit within a main memory that combines the capacities
of HBMs and external DDR. To ensure a fair comparison, the external
DDR size in the CO is increased to accommodate the workload mix.

3. MEMPLEX (MP): A multi-chiplet system in which a fraction of the
HBM is used as a private DRAM cache, while the rest serves as part of
the main memory with migration support.

4. Ideal (IL): A multi-chiplet system that operates under the ideal scenario
in which an LLC miss is always resolved by the nearest HBM channel,
assuming infinite capacity of the local HBM. This setup allows memory
allocation solely within the local HBM, ensuring that all memory requests
remain local to the chiplet and eliminating the latency associated with
accessing remote HBM or external DDR.

3.5 Evaluation

3.5.1 Performance

We evaluate the system performance using Instructions Per Cycle (IPC) as
the primary metric. Additionally, Average Memory Access Time (AMAT) is
measured and broken down to: (i) the access time for each cache level, (ii) the
Network-on-Chip (NoC) latency between each level (L2-L3 and L3-MEM), and
(iii) the DRAM access time. Furthermore, the percentage of accesses to local
and remote HBM nodes, as well as to external DDR are reported.

Figure 3.7 illustrates, for each workload mix, the performance speedup (in
terms of IPC), the average memory access time, and the distribution of DRAM
accesses. These metrics are presented for the default configuration of a 4-chiplet
system (BS), a DRAM cache-only design (CO), the MEMPLEX design with a
1:16 DRAM cache to Main Memory ratio (MP), and an ideal system (IL). The
MEMPLEX system improves baseline performance by 3-7%, with an average
improvement of 5%, as shown in Figure 3.7(a). The DRAM cache-only design
exhibits a mixed trend across the analyzed workload mixes, with an average
performance improvement of 1% over the baseline. This variation is attributed
to the differing number of requests, and thus remote traffic to the external
DDR for fetching cache lines into the DRAM cache, which is also reflected in
the AMAT numbers. In comparison, the ideal system—26% faster than the
baseline—achieves this by always directing LLC misses to the nearest HBM.
However, MEMPLEX, while 17% slower than the ideal system, still represents
a significant improvement over the baseline, effectively reducing the impact of
remote requests that are inherent in multi-chiplet NUMA architectures. This
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Figure 3.7: Performance, AMAT and distribution of memory access comparison
between Baseline, DRAM cache-only, MEMPLEX and Ideal designs.

positions MEMPLEX as a more efficient alternative, narrowing the performance
gap toward ideal scenarios.

The speedup achieved by MEMPLEX over the baseline is in line with the
decrease in AMAT which is on average 10%, as shown in Figure 3.7(b). A closer
look reveals that the main source of performance overhead in the chiplet-based
system is the significant portion of data accesses placed remotely. As illustrated
in Figure 3.7(c), the baseline system experiences an average of 39% of remote
data accesses, comprising 10% to remote HBM and 29% to external DDR.
Both types of remote accesses involve slow inter-chiplet communication due
to limited bandwidth and higher latency. When the entire HBM is dedicated
to caching, the DRAM cache-only design reduces remote accesses to just 14%,
all of which are directed to external DDR. Meanwhile, MEMPLEX effectively
addresses this challenge by bringing 90% of the data within the local HBM,
leaving only 10% requiring access to remote memory, thereby significantly
reducing the performance impact of remote memory accesses.
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Figure 3.8: Local and Remote Memory Traffic, and Dynamic Memory Energy
Consumption normalized to the Baseline.

3.5.2 Memory Traffic

Figure 3.8(a) and Figure 3.8(b) show the local and remote memory traffic
normalized to the the baseline multi-chiplet system for all workload mixes.
The remote memory traffic includes both remote HBM and external DDR
accesses. The DRAM cache-only design increases local memory traffic by 55%
compared to the baseline. However, this benefit is offset by a 38% increase
in remote traffic to the external DDR, highlighting a trade-off that limits its
overall performance. In contrast, MEMPLEX delivers a more balanced and
effective solution. It generates more local memory traffic compared to the
baseline system, with 58% more requests being served from the local HBM.
This increase in local traffic is bolstered by an impressive 80% reduction in
remote memory traffic, substantially outperforming the 62% reduction achieved
by the DRAM cache-only design.

Thus, MEMPLEX effectively combines DRAM caching and data migration
to achieve a notable reduction in remote traffic, translating to improved perfor-
mance and energy savings, as described next. However, the performance gains
are not fully maximized, as the MEMPLEX design still involves accesses to
the external DDR. Furthermore, unlike the DRAM cache-only design, which
dedicates the entire HBM for caching, MEMPLEX sacrifices only 1

16 of the
HBM capacity, demonstrating a far greater resource efficiency.
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Figure 3.9: Sensitivity analysis on system size and DRAM cache size. All values
are the geometric mean of all workload mixes normalized to the Baseline.

3.5.3 Energy Consumption

Figure 3.8(c) presents the dynamic memory system energy consumption normal-
ized to the baseline multi-chiplet system for all workload mixes. The DRAM
cache-only design exhibits a 23% reduction in dynamic energy consumption
compared to the baseline system. This improvement stems primarily from
caching, which significantly reduces remote accesses to external DDR—a major
source of energy consumption in the baseline architecture. In comparison,
MEMPLEX delivers a remarkable 44% reduction in dynamic memory energy
consumption relative to the baseline system. This significant decrease is primar-
ily attributed to lower accesses to remote HBM and external DDR, effectively
minimizing high-energy operations and leveraging efficient local memory access.
Processor energy and static memory energy (refresh energy) are not reported
as these are largely proportional to runtime.

3.5.4 Sensitivity analysis on System Size

An important focus of sensitivity analysis is the effect of system size. Chiplet-
based designs are expected to scale more cost-effectively; however, it is still
uncertain how their performance overheads change as the system size increases
while keeping the number of cores per chiplet constant. To investigate this, in
addition to the above evaluated 4-chiplet MEMPLEX system (16-core system),
the performance of a 16-chiplet system, which corresponds to 64 cores, is
assessed as shown in Figure 3.9(a). As observed above, in a 4-chiplet system,
the ideal design would offer 26% higher performance than the baseline and
MEMPLEX delivers on average 5% of that speedup and up to 7% for a single
mix. As expected, on a 16-chiplet system, the NUMA overheads increase, and
so do the MEMPLEX gains. In this case, the ideal design would perform 31%
better than the baseline, and MEMPLEX speedup is up to 15% for a single
mix and 10% on average.
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3.5.5 Sensitivity analysis on DRAM Cache Size

MEMPLEX can be configured with various DRAM cache sizes, and this design
choice significantly influences both the performance and the size of the DCTA.
Figure 3.9(b) presents the results of a sensitivity analysis exploring different
DRAM Cache to Main Memory ratios (1:8, 1:16, 1:32) in comparison to the
baseline system without MEMPLEX. In terms of area overhead, the DCTA
requires 512 kB, 1 MB, or 2 MB for these respective ratios, assuming an 8-byte
entry size. The average performance improvements for the 1:8, 1:16, and 1:32
ratios are 8%, 5%, and 4%, respectively. Notably, the 1:8 ratio can achieve up
to a 10% speedup in specific scenarios.

3.6 Conclusions

Multi-chiplet chips provide a cost-effective solution by delivering higher manu-
facturing yields. However, they encounter performance challenges due to the
NUMA memory architecture and inter-chiplet communication bottlenecks. In
this study, we analyzed these overheads, showing that an ideal 4- and 16-chiplet
system would offer 26% and 31% higher performance, respectively, compared to
a baseline with NUMA-aware data placement. To address these challenges, we
proposed MEMPLEX, a novel architecture that enables data replication and
migration across multiple memory nodes within a multi-chiplet system. MEM-
PLEX efficiently dedicates a portion of each memory node for a DRAM cache,
while the remaining capacity is utilized as a shared flat address space with
hardware migration. Thereby, MEMPLEX enhances data locality, bringing
frequently accessed data closer to the processor and managing migration based
on usage patterns. As a result, MEMPLEX reduces remote memory traffic by
80%, leading to a significant 44% dynamic memory energy consumption. In a
4-chiplet system, MEMPLEX achieves up to 7% speedup and an average of 5%
when dedicating 1

16 of each HBM for caching. When 1
8 of the HBM capacity is

used for caching, the performance gain increases to up to 10%, with an average
of 8%. Finally, the performance benefits of MEMPLEX performance are more
pronounced in larger systems, with the average speedup improving from 5% to
10% as the system size increases from 4 to 16 chiplets.
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Appendix A

Additional Results On
Cost Analysis of
Chiplet-Based Systems

This appendix provides additional results on the cost analysis of various design
options for chiplet-based systems. This supplementary material offers further
insights and supports the findings presented in Paper A.

A.1 Cost Analysis

As detailed in Section 2.2.4, this thesis evaluates the associated costs using
the Feng-Ma chiplet actuary model [2], incorporating the parameters of the
evaluated systems. Figure A.1 presents a detailed breakdown of the recursive
engineering (RE) cost for the different design options of chiplet-based systems
and their monolithic counterpart. The total RE cost comprises:

(i) Cost of raw chips, which includes, among others, the cost of the silicon
and the processing involved in wafer fabrication.

(ii) Cost of chip defects, which includes the cost of defects that occur
during the wafer fabrication process.

(iii) Cost of raw package, which covers the materials necessary for assem-
bling and packaging the chip, as well as testing and verification.

(iv) Cost of package defects, which includes the costs arising from defects
during the packaging process.

(v) Cost of wasted Known Good Dies (KGD), which encapsulates
the cost of dies that have already been tested to ensure their correct
functionality but still fail.

System Size: Using the cost model and parameters mentioned in Section 2.2.4,
we derived the costs of 64-, 128-, and 256-core systems. In chiplet-based systems,
these cores are partitioned into 4+1, 8+1, and 16+1 configurations, respectively,
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Figure A.1: Cost analysis and comparison of RE costs between monolithic and
various chiplet-based systems, with costs normalized to the monolithic.

including an IO chiplet in each case. Figure A.1(a) presents the cost values
normalized to the monolithic of the smallest system. The results indicate that
the chiplet-based designs reduce costs to approximately 55% of their monolithic
counterparts. The cost gap between monolithic and multi-chiplet systems
remains relatively stable or increases slightly due to the model’s conservative
bonding and packaging yield estimates. Nevertheless, the results highlight the
substantial cost savings of chiplet-based designs over monolithic designs.

Chiplet Size: We examined the impact of chiplet size, which refers to the
number of cores per chiplet, by partitioning a 64-core system into 2+1, 4+1,
and 8+1 chiplet configurations, each including an IO chiplet. Figure A.1(b)
presents the cost values normalized to the monolithic design. The results show
that while the first chiplet-based system has a reasonable cost, increasing the
number of chiplets causes a non-linear rise in overall system cost. This can be
attributed to the increased package defects and wasted KGD as chiplet size
increases, reducing yield and raising costs.
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LLC Organization: Another key design choice was the LLC organization in
the chiplet-based systems. We evaluated a 64-core system partitioned into a
4+1 chiplet configuration. Figure A.1(c) presents the cost values normalized to
the monolithic design. While the LLC organization does not directly influence
the cost, Section 2.4 demonstrates that a private LLC significantly outperforms
a sliced LLC in terms of system performance.

Interposer Type: The last design choice was the different types of silicon
interposers for multi-chiplet systems, evaluated on a 64-core system partitioned
into a 4+1 chiplet configuration. Figure A.1(d) presents the cost values nor-
malized to the monolithic design. Unlike passive interposers, active interposers
incorporate active logic to pipeline network links, thus improving the network’s
latency and throughput. While active interposers enhance system performance
(as demonstrated in Section 2.4), they come at a 61% higher cost than passive
interposers, making their cost comparable to monolithic designs.

Overall, the analysis highlights the cost trade-offs in chiplet-based designs and
the significant cost savings they can achieve.
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