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PlaqueViT: a vision transformer model for
fully automatic vessel and plaque
segmentation in coronary computed
tomography angiography
Jennifer Alvén1, Richard Petersen1, David Hagerman1, Mårten Sandstedt2,3, Pieter Kitslaar4, Göran Bergström5,6,
Erika Fagman7,8 and Ola Hjelmgren5,9*

Abstract

Objectives To develop and evaluate a deep learning model for segmentation of the coronary artery vessels and
coronary plaques in coronary computed tomography angiography (CCTA).

Materials and methods CCTA image data from the Swedish CardioPulmonary BioImage Study (SCAPIS) was used for
model development (n= 463 subjects) and testing (n= 123) and for an interobserver study (n= 65). A dataset from
Linköping University Hospital (n= 28) was used for external validation. The model’s ability to detect coronary artery
disease (CAD) was tested in a separate SCAPIS dataset (n= 684). A deep ensemble (k= 6) of a customized 3D vision
transformer model was used for voxelwise classification. The Dice coefficient, the average surface distance, Pearson’s
correlation coefficient, analysis of segmented volumes by intraclass correlation coefficient (ICC), and agreement
(sensitivity and specificity) were used to analyze model performance.

Results PlaqueViT segmented coronary plaques with a Dice coefficient = 0.55, an average surface distance =
0.98 mm and ICC= 0.93 versus an expert reader. In the interobserver study, PlaqueViT performed as well as the expert
reader (Dice coefficient = 0.51 and 0.50, average surface distance = 1.31 and 1.15 mm, ICC= 0.97 and 0.98,
respectively). PlaqueViT achieved 88% agreement (sensitivity 97%, specificity 76%) in detecting any coronary plaque in
the test dataset (n= 123) and 89% agreement (sensitivity 95%, specificity 83%) in the CAD detection dataset (n= 684).

Conclusion We developed a deep learning model for fully automatic plaque detection and segmentation that
identifies and delineates coronary plaques and the arterial lumen with similar performance as an experienced reader.

Key Points
Question A tool for fully automatic and voxelwise segmentation of coronary plaques in coronary CTA (CCTA) is important
for both clinical and research usage of the CCTA examination.
Findings Segmentation of coronary artery plaques by PlaqueViT was comparable to an expert reader’s performance.
Clinical relevance This novel, fully automatic deep learning model for voxelwise segmentation of coronary plaques in
CCTA is highly relevant for large population studies such as the Swedish CardioPulmonary BioImage Study.

Keywords Coronary artery disease, Computed tomography angiography, Radiographic image interpretation,
Computer-assisted
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Graphical Abstract

Introduction
Coronary artery disease (CAD) is the predominant cause
of morbidity and mortality in the Western world [1], and
coronary computed tomography angiography (CCTA) is
becoming the primary tool for its diagnosis and assess-
ment [2]. Besides the degree of stenosis, CCTA can reveal
features of coronary plaques, such as their size, shape, and
composition [2]. Thus, by providing information beyond
the traditional factors used to assess CAD risk, such as
degree of stenosis, risk scores, and coronary artery calci-
fications, CCTA has the potential to enable more precise
identification of persons at elevated risk of coronary
events [3].
In several studies, plaque features identified by CCTA

correlated with coronary events. In the SCOT-HEART
trial, low-attenuation plaque volume was the best pre-
dictor of myocardial infarction in patients with chest pain
[4]. In the ROMICAT 1 and 2 trials, positive remodeling,
spotty calcifications, low-attenuation plaque volume, and
stenosis length predicted acute coronary syndrome and
remained a significant predictor after adjusting for ste-
nosis and clinical risk assessment (age, gender, number
of cardiovascular risk factors) [5–7]. However, data on
risk prediction by CCTA plaque analysis is lacking
in populations with asymptomatic coronary artery

atherosclerosis. In the Swedish CardioPulmonary Bio-
Image Study (SCAPIS) [8], designed to gather data for risk
prediction in the general population, 30,154 participants
aged 50–64 years were randomly recruited. Among those
who underwent examinations including successful, high-
quality CCTA (n= 25,182), 42.1% had subclinical ather-
osclerosis [9]. However, CCTA has not yet been used for
detailed plaque analysis in SCAPIS, as the assessment is a
time-consuming manual process that requires an experi-
enced radiologist.
Previous studies of plaque composition [4–7] have used

semi-automated methods to quantify the plaque burden.
Deep learning methods have the potential to improve the
speed and diagnostic performance of CCTA image ana-
lysis by providing automatic and objective results. A deep
learning model would be invaluable both for the analysis
of data from studies such as SCAPIS and for the clinical
assessment of CCTA. Indeed, several attempts have been
made to automate the detection and characterization of
coronary plaques by voxelwise segmentation of CCTA
[10–13]. For example, 3D convolutional neural networks
[11, 13] and 2D convolutional long-short term memory
networks [10] have been used to predict voxelwise plaque
segmentations. However, these methods required pre-
processing steps such as manual or semi-automatic
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centerline extraction and multiplanar reformation. In
another study, a coronary artery and plaque segmentation
method without the need for manual or semi-automatic
centerline extraction is proposed; however, no evaluation
of the voxelwise plaque segmentations is reported [12].
In this study, we sought to develop a fully automatic

deep learning method for CCTA data analysis that was
capable of coronary artery plaque segmentation without
manual pre- or postprocessing, and that performed as well
as an expert reader in CAD detection and plaque seg-
mentation. This model will be referred to as PlaqueViT.

Materials and methods
This study was approved by the ethical review boards in
Gothenburg (570-18) and Linköping (2022-0541-01).
SCAPIS was approved as a multicenter study by the
ethical review board in Umeå (2010-228-31M). All par-
ticipants gave written informed consent.

Study population
Five retrospective CCTA datasets were used to train, vali-
date, and test the model, (Fig. 1). No cases are included in
more than one of the five different datasets. The training
dataset and the internal test dataset were sampled from the
SCAPIS cohort [8]. The criteria for inclusion in these
datasets were (1) at least one coronary plaque detected by

visual assessment in the SCAPIS, (2) a complete CCTA
examination (tube voltage 100 kV), and (3) availability of
the data needed to calculate risk with the Systematic
COronary Risk Evaluation (SCORE) system (age, sex,
smoking, systolic blood pressure, and total cholesterol).
The exclusion criteria were (1) a previous myocardial
infarction, stroke, or cardiac procedure (coronary artery
bypass grafting or percutaneous coronary intervention) and
(2) non-diagnostic examination due to low image quality.
Exclusion due to low image quality was performed by the
senior reader at an initial image quality check, and only
non-diagnostic cases where image quality was too poor to
delineate plaques in all proximal segments were excluded.
In total, 7% of the CCTA scans were excluded. Equal
numbers of eligible participants were randomized from
each stratum of SCORE (0–1%, 2%, 3%, 4%, 5%, and ≥ 6%).
The intraobserver test dataset, designed to compare

intraobserver variability, consisted of 36 subjects with
CAD and 29 healthy subjects who met the eligibility cri-
teria for the training and internal test datasets described
above except that the healthy subjects had no plaques.
The data sampling of the training, internal test, and
intraobserver test datasets is described elsewhere [14].
The external test dataset [15] included 28 patients at low
to intermediate risk for CAD who were referred for
clinical CCTA at Linköping University Hospital.

Fig. 1 Overview of the datasets
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The CAD detection dataset, designed to test the ability
of the model to detect CAD, consisted of 684 cases,
selected at random, that were not included in any of the
other test datasets and that met the following inclusion
criteria: (1) examination at the Gothenburg SCAPIS site,
(2) a complete CCTA examination (tube voltage 100 kV),
and (3) sufficient data from the primary radiological
assessment in SCAPIS to classify the cases as healthy or as
CAD positive. This CAD detection dataset did not include
vessel or plaque contouring ground truth annotations,
only case-level CAD status reports.

Image acquisition
The computed tomography (CT) protocol in SCAPIS is
described in detail elsewhere [8]. Briefly, CT was done on
dedicated dual-source CT scanners (Somatom Definition
Flash, Siemens Medical Solution). The examination
included a non-contrast CT scan for calcium scoring and
a CCTA scan with iodine contrast enhancement (Omni-
paque, GE Healthcare, 350 mgI/mL) [16].
In the external validation dataset, all patients were

examined on a dual-source CT scanner (Somatom Force,
Siemens). High-pitch spiral CCTA scans were acquired
prospectively if the patient’s heart rate was regular and
below 65 beats/min. Otherwise, a retrospectively gated
spiral scan was used. Image acquisition in subjects in the
external validation dataset is described elsewhere [15].

The image preprocessing steps are described in the
supplement.

Image analysis
Expert CCTA annotations
Voxel-level annotations representing the ground truth were
generated for the training dataset, the internal test dataset,
the intraobserver test dataset and the external test dataset,
with all annotations carried out in our core lab as previously
described [14]. Plaques were analyzed with dedicated
workstations and semi-automated plaque analysis software
(Medis Suite CT, version 3.1.16.8, and QAngio CT RE,
version 3.1.4.2, respectively; Medis Medical Imaging Sys-
tems). The annotation included contours of the coronary
vessel wall and lumen, and all plaques were manually
marked. All CCTA scans were analyzed by one of the four
primary readers. The primary readers were experienced
radiographers who had undergone specialized training in
coronary plaque analysis using the Medis QAngio CT
software. The training procedure has been previously
described [14]. The annotations were subsequently
reviewed and adjusted if necessary, by the senior expert
reader (E.F., a senior radiologist). This workflow allowed a
large volume of CCTA examinations to be processed by one
single expert. CCTA scans with overall image quality
deemed too poor for plaque analysis due to high noise levels
or motion artifacts were excluded by the expert reader.

Table 1 Characteristics of included subjects

Variable Training dataset

(n= 463)

Internal test

dataset (n= 123)

Intraobserver test

dataset (n= 65)

External test

dataset (n= 28)

CAD detection

dataset (n= 684)

Mean age, years (range) 61.5 (57.8–63.6) 61.2 (58.9–63.6) 61.1 (57.8–63.5) 60.3 (50–71) 57.6 (53.9–63.4)

Female sex, % (n) 18% (82) 19% (23) 14% (9) 54% (15) 49% (334)

Weight, kg 83 (74.2–91.0) 81.9 (75.7–94) 81.2 (71.7–90.0) 80 (74–92) 80.5 (69.6–90.9)

BMI, kg/cm2 26.6 (24.2–29.0) 26.9 (24.5–29) 26.3 (23.5–29.3) 27.8 (22.4–41.5) 26.4 (24.1–29.4)

Total cholesterol, mmol/L 5.7 (5.1–6.4) 5.7 (4.9–6.5) 5.70 (4.95–6.50) * 5.50 (4.80–6.20)

Systolic blood pressure, mm

Hg (range)

136 (123–150) 136 (124–152) 131 (121–146.5) 150 (128–162) 122 (111–133)

Diastolic blood pressure,

mm Hg (range)

81 (74–89) 83 (72–90) 80 (72.5–86.50) 84 (77–91) 73 (66–82)

Current smoker, % (n) 32% (17) 33% (40) 39% (25) 3.6% (1) 12.9% (88)

Radiation dose, dose length

product (mGy*cm)

85 (69–105) 85 (67–106) 83 (68–105.5) 156 (6–273) 79 (62–103)

Calcium score > 0% 83% (383) 86% (106) 52.3% (34) 46% (13) 46% (317)

Calcium score, Agatston

units (range) For subjects

with CACS > 0

70 (16–208) 60.5 (8–212.5) 34 (8–173) 331 (2–1140) 39 (9–138)

SCORE (range) 3.25 (1.7–4.86) 3.43 (1.96–5.00) 3.07 (1.83–4.95) * 1.08 (0.59–1.80)

Data presented as median (IQR) or percentage (counts)
* External test dataset lacks information on cholesterol and SCORE
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Intraobserver variability analysis
Two copies were made of each CCTA examination in the
intraobserver test dataset and assigned new identification
codes. Examinations were shuffled, and one copy from
each pair was presented in a random order to two primary
readers (Observers 1 and 2). All primary analyses were
then sent to the senior reader in random order. The
senior reader reviewed the annotations and made changes
if deemed necessary. The resulting annotations from
Observer 1 and 2 were used to assess intraobserver
variability.

External test dataset analysis
All examinations in the external test dataset were sepa-
rately analyzed and annotated, in blinded fashion, by two
senior readers (E.F. and M.S.). Our core lab procedure was
used for analysis and annotation [14].

Matched plaque analysis
To further evaluate the PlaqueViT model, all scans in the
interobserver and external test datasets were examined
visually, and plaques that overlapped spatially in the
paired readings were labeled and analyzed pairwise. This
visual confirmation ensured that the same plaque was
quantified by Observer 1, Observer 2, and the
PlaqueViT model.

CAD detection dataset analysis
All CCTA scans in the SCAPIS study were scored for
CAD by trained radiologists or cardiologists, as described
in [9]; the coronary segments were visually examined for
the presence of plaques, and each segment was classified
as follows: no atherosclerosis, 1–49% stenosis, or > 50%
stenosis. In the present study, data was retrieved from the
SCAPIS database regarding the presence of athero-
sclerosis (yes/no) in individual cases, which was used as
ground truth. No voxelwise annotations were generated
for the CAD detection dataset.

Deep learning model
A one-step approach was used to directly segment the
coronary artery lumen and plaques in the reconstructed
3D CCTA scan. PlaqueViT employs a customized version
of the nnFormer model [17] which has a 3D vision
transformer architecture that incorporates local multi-
head self-attention and follows a U-net-like architecture
with an encoder and a decoder, including an initial
embedding layer and interleaved transformer and con-
volutional blocks. The initial embedding layer consists of
3D convolutional layers for accurate spatial encoding and
extraction of high-resolution, low-level features. The

transformer blocks use local multi-head self-attention and
shifted window partitioning to incorporate long-term
dependencies into high-level features, and the convolu-
tional blocks model object concepts from high-level fea-
tures at multiple scales. PlaqueViT’s model configurations
differ from the original design. The number of local multi-
head self-attention heads was set to 3, 6, 12, and 24 and
the number of embedding dimensions to 96. Local multi-
head attention was applied to a window of 4 × 4 × 4 voxels
throughout all stages. Instead of deep supervision, sto-
chastic depth, and skip-attention as proposed in the ori-
ginal work, standard residual connections between the
encoder and decoder are used. See the supplement for
more details on the architectural changes and model
selection in an ablation study.
Model training used data augmentation of 90-degree

rotations and mirroring along all dimensions. The model
was trained as a deep ensemble with k= 6 ensemble
members, each trained and validated on a separate data
partition using k-fold with k= 6 on 463 images. During
inference, the argmax of the average softmax over the
ensemble is used as final prediction [18]. Validation was
done every 1000 iterations, and the model with the best
validation plaque Dice index was selected. An Nvidia
DGX-2 supercomputer with four Nvidia Tesla V100
SXM3 32 GB HBM2 accelerators was used for training
and validation.

Statistical analysis
The performance of the model in lumen and plaque
segmentations was assessed with the Dice coefficient and
average surface distance. Plaque volumes were assessed
with Pearson correlation, ICC, and limits of agreement,
and mean absolute percentage error. Sensitivity, specifi-
city, positive and negative predictive values were used to
assess the performance of the model in detecting CAD,
defined as plaque > 2 mm3. Statistical analysis was per-
formed with the XLMiner Analysis ToolPak.

Results
The characteristics of the subjects are summarized in
Table 1. The training dataset and the internal test dataset
consisted of 586 fully annotated cases, which were ran-
domly assigned 80% to the former (n= 463) and 20% to
the latter (n= 123). Validation was performed using
k-fold cross-validation within the training dataset. The
intraobserver test dataset consisted of 65 cases, of which
36 had at least one coronary plaque. The external test
dataset included 28 cases, of which 17 had at least one
coronary plaque. The CAD detection dataset consisted of
684 cases (341 subjects with CAD and 343 subjects
without CAD).
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Inference
PlaqueViT fully segmented lumen and plaque voxels in
the CCTA scans without any manual intervention. One
example of our automatic plaque segmentation is visua-
lized as a 3D volume in Fig. 2, and a detailed example of
plaque annotation and corresponding model segmenta-
tion is shown in Fig. 3. PlaqueViT analysis was performed
using a Nvidia Quadro RTX 8000 graphics card with a
mean inference time of 25 s per case.

Model performance in plaque segmentation
The agreement between the segmented plaque volumes
by PlaqueViT and the expert reader was excellent in the
internal test dataset (ICC= 0.93) and the intraobserver
test dataset (ICC= 0.98). The PlaqueViT model and
expert annotations of total plaque volume in the internal
test dataset and the intraobserver test dataset were
strongly correlated (r= 0.93 and 0.98, respectively,
p < 0.001) (Fig. 4).
In the intraobserver test dataset, the mean difference in

total plaque volume between PlaqueViT and the expert
reader was 2.3 mm3 (95% limits of agreement −88.3 to
92.9); the difference between Observers 1 and 2 was 8.3
mm3 (95% limits of agreement −92.0 to 128.0), as shown
by Bland-Altman analysis. The mean Dice coefficient for
segmentation of all plaques between PlaqueViT and
expert was 0.55 in the internal test dataset and 0.51 in the
intraobserver test dataset. This was slightly better than the
mean Dice coefficient for Observer 1 versus Observer 2
(0.50). The median average surface distance between
PlaqueViT segmentation and expert annotation was
0.98 mm in the internal test dataset and 1.31 mm in the
intraobserver test dataset. The median average surface
distance was 1.15 mm for Observer 1 versus Observer 2.
Similarity metrics are shown in Table 2.

Paired comparisons of matched plaques in the
intraobserver test dataset
To ensure a correct comparison of plaques we used
pairwise analysis. The mean Dice coefficient for segmen-
tation of paired plaques between PlaqueViT and expert

was 0.56 in the intraobserver test dataset compared to
0.61 between Observer 1 and Observer 2. The median
average surface distance between PlaqueViT segmenta-
tion and expert annotation was 0.30 mm in the intraob-
server test dataset compared to 0.34 mm for Observer 1
versus Observer 2. Agreement was good for low-
attenuation plaque volume (ICC= 0.73, p < 0.001) and
excellent for plaque volume (ICC= 0.95, p < 0.001) and
calcified plaque volume (ICC= 0.98, p < 0.001) (Fig. 5).
Similarity metrics for the comparison of matched plaques
are presented in Table 3.

Model performance in CAD detection
The ability of PlaqueViT to detect any plaque > 2 mm3 in
the intraobserver test dataset (n= 65) is shown in Table 4,
along with corresponding intraobserver performance. The
readings of Observer 1 were defined as ground truth. In
the CAD detection dataset (n= 684), PlaqueViT exhibited
a per-patient sensitivity of 0.95 and specificity of 0.83 for
detecting any CAD. Table 4 shows the diagnostic per-
formance of PlaqueViT.

Model performance in plaque detection in the external test
dataset
The ability of PlaqueViT to detect any plaque > 2 mm3 in
the external test dataset (n= 28) is reported in Table 4,
along with the corresponding intraobserver performance.
The Dice coefficient for total plaque volume was 0.51 for

Fig. 2 3D visualization of coronary tree segmentations. Left: A 3D
visualization of a manually segmented coronary tree by Observer 1. Right:
Same examination segmented by PlaqueViT. The vessel lumen voxels are
shown in red. Coronary plaque voxels are shown in black

Fig. 3 Example of coronary plaque. Left: Image from QAngio CT software
of manually annotated CCTA examination showing a plaque in left
anterior descending coronary artery. Yellow line, segmented vessel lumen.
Orange line, outer contour of the vessel wall/outer wall of coronary
plaque. Right: Fully automatic segmentation of the same examination by
PlaqueViT (segmentation imported into QAngio CT software for
visualization)
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Fig. 4 Total plaque volume measured by Observer 1 versus PlaqueViT and Observer 2. Correlation (A) and Bland-Altman (B) plots between PlaqueViT
and Observer 1 in the test dataset. Correlation (C) and Bland-Altman (D) plots between PlaqueViT and Observer 1 in the interobserver variability dataset.
Correlation (E) and Bland-Altman (F) plots between Observer 1 and Observer 2 in the interobserver variability dataset
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Fig. 5 Correlations between segmented volumes plaque components in the interobserver variability dataset. Correlation plots of low-attenuation
plaque volume between PlaqueViT and Observer 1 (A) and between Observer 1 and Observer 2 (B). Correlation plots of calcium volume between
PlaqueViT and Observer 1 (C) and between Observer 1 and Observer 2 (D)

Table 2 PlaqueViT model performance in plaque segmentation

Internal test dataset (n= 123) Intraobserver test dataset (n= 65)

Measurement PlaqueViT versus Observer 1 PlaqueViT versus Observer 1 Observer 1 versus Observer 2

Segmentation of coronary plaques

Dice coefficient 0.55 (0.21) 0.51 (0.20) 0.50 (0.24)

Median average surface distance (mm) 0.98 1.31 1.15

Total plaque volume (mm3)

Mean percentage error −9.7% (58.9) 17.4% (77.0) 12.1% (73.1)

Mean absolute percentage error 38.3% (45.5) 43.6% (66.8) 39.9% (62.3)

Correlation 0.93, p < 0.001 0.98, p < 0.001 0.97, p < 0.001

ICC 0.93, p < 0.001 0.98, p < 0.001 0.96, p < 0.001

Limits of agreement −7.4 (−193.4 to 178.6) 2.3 (−88.3 to 92.9) 18.0 (−92.1 to 128.0)

Segmentation of coronary lumen

Dice coefficient 0.81 (0.11) 0.85 (0.07) 0.91 (0.06)

Median average surface distance (mm) 1.65 0.71 0.45

Total lumen volume (mm3)

Mean percentage error 8.4% (24.6) −1.7% (15.6) −5.7% (11.8)

Mean absolute percentage error 16.1% (20.7) 8.8% (13.0) 7.9% (10.3)

Correlation 0.82, p < 0.001 0.93, p < 0.001 0.96, p < 0.001

ICC 0.80, p < 0.001 0.92, p < 0.001 0.95, p < 0.001

Limits of agreement 166.8 (−1177.8 to 1511.4) −52.0 (−795.9 to 689.9) −139.0 (−700.9 to 422.8)

Dice coefficient presented as mean and (SD)
ICC intraclass correlation coefficient
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PlaqueViT versus Observer 1 and 0.37 for Observer 1
versus Observer 2. Performance of plaque segmentation
in the pairwise analysis of matched plaques is reported in
the supplement.

Discussion
This study shows that our deep learning model, Pla-
queViT, can rapidly detect and segment coronary artery

plaques without manual pre- or postprocessing and does
so as well as an expert reader. Segmentation by Pla-
queViT is performed in a voxelwise fashion. Thus, it can
quantify plaque features, including the volume of low-
attenuation plaque tissue, which predicts the risk for
myocardial infarction [4, 7]. Voxelwise segmentation will
also make it possible to apply radiomic analysis methods
to CCTA data [19] and identify specific structural fea-
tures of coronary plaques that predict future myocardial
events. In studies like SCAPIS, outcome data on myo-
cardial infarcts can be used in future radiomic models to
describe the types of coronary plaques that hold the
highest risk.
Unlike other deep learning models for CCTA assess-

ment, PlaqueViT does not require any pre- or post-
processing for coronary vessel segmentation. Previous
models for voxelwise plaque segmentation typically rely
on a three-step approach that involves semi-automatic
centerline extraction, straightened or curved multiplanar
reformation, and vessel contour delineation. The model of
Lin et al [10] performs similarly to ours but requires
manual centerline extraction. The model of Jávorszky et al
[11] requires both manual centerline extraction and
multiplanar reconstruction before the deep learning
model is applied, and although it provides voxelwise
plaque segmentation, ICC analysis shows weaker agree-
ments than our model. Most previous models can only
detect plaques, determine the CAD-RADS grade, and the
degree of stenosis, or classify plaque type without pro-
viding actual plaque delineations. Like PlaqueViT, the
model of Jin et al [12] is fully automatic and can detect,
delineate and classify coronary plaques; however, the
authors do not evaluate the voxelwise plaque segmenta-
tions. To the best of our knowledge, PlaqueViT is the first
deep learning model that does not rely on any manual
interventions to provide coronary plaque detection and
voxelwise segmentation.
The PlaqueViT model is somewhat oversensitive, as

judged by comparison to the visual assessments in SCA-
PIS, which could be due to a possible preselection bias
from only including scans with plaques present in the
training data. However, after importing the PlaqueViT
segmentations into the QAngio CT workstation, we
visually reassessed the first 50 cases with the largest seg-
mented plaques classified as false positives in the CAD
detection dataset and found that 73% had a true coronary
plaque. In the majority of these cases, the plaques were
noncalcified and contained low-attenuation plaque tissue.
This finding suggests that automated reading has sig-
nificant advantages for large studies involving many dif-
ferent radiologists with different levels of experience.
Since our model is fully automatic, accurate, and fast—
with a mean analysis time of 25 s per case—it is well suited

Table 3 PlaqueViT model performance in plaque segmentation
of matched plaques

Variable PlaqueViT versus

Observer 1

(n= 73)

Observer 1 versus

Observer 2

(n= 69)

Segmentation of coronary plaques

Dice coefficient 0.56 (0.16) 0.61 (0.17)

Median average

surface distance (mm)

0.30 0.34

Plaque volume (mm3)

Correlation 0.95, p < 0.001 0.96, p < 0.001

ICC 0.94, p < 0.001 0.95, p < 0.001

Limits of agreement 0.45 (−86.1 to 87.1) 10.3 (−69.6 to 90.3)

Mean absolute

percentage error

41.6% 39.5%

Low-attenuation plaque volume (mm3)

Correlation 0.73, p < 0.001 0.74, p < 0.001

ICC 0.73, p < 0.001 0.62, p < 0.001

Limits of agreement −0.61 (−13.8 to 13.9) 3.78 (−20.5 to 28.1)

Mean absolute

percentage error

73.8% 57.3%

Calcified plaque volume (mm3)

Correlation 0.98, p < 0.001 0.99, p < 0.001

ICC 0.98, p < 0.001 0.99, p < 0.001

Limits of agreement −0.79 (−27.8 to 26.3) −2.69 (−19.0 to 13.6)

Mean absolute

percentage error

35.8% 35.6%

Fibrous-fatty plaque volume (mm3)

Correlation 0.87, p < 0.001 0.92, p < 0.001

ICC 0.86, p < 0.001 0.89, p < 0.001

Limits of agreement 1.30 (−31.6 to 34.2) 5.32 (−27.0 to 37.7)

Mean absolute

percentage error

51.7% (46.1) 46.3% (36.1)

Fibrous plaque volume (mm3)

Correlation 0.94, p < 0.001 0.98, p < 0.001

ICC 0.94, p < 0.001 0.98, p < 0.001

Limits of agreement 1.26 (−21.1 to 23.6) 24.4 (36.4 to 85.2)

Mean absolute

percentage error

41.7% (36.2) 35.7% (33.7)

Similarity metrics of paired comparisons of all matched plaques in the Intraobserver
test dataset. Data presented as correlation coefficient, intraclass correlation (ICC),
limits of agreement (1.96 SD interval) or mean percentage error (standard
deviation). Dice coefficient presented as mean and (SD). Similarity metrics for
plaque burden and the remodeling index are shown in the supplement
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to analyze and segment coronary plaques in large studies
such as SCAPIS.

Limitations
Our study has limitations. First, the training data were
exclusively from the SCAPIS cohort, whose scans were
acquired using a single type of CT scanner. Although the
performance of PlaqueViT on the external test dataset
(with a different type of CT scanner) showed promising
results, the model needs to be evaluated on a broader
range of CT scanners before it can be introduced into a
clinical environment. Second, PlaqueViT was trained
from annotations from one senior expert, whose reading
was not verified against intravascular ultrasound data or
event data. Third, PlaqueViT has not been trained or
evaluated on CCTA scans where the overall image quality
was considered too poor for manual plaque analysis by the
expert reader. Finally, PlaqueViT has not been evaluated
on stenosis classification using CAD-RADS classes or
plaque classification (calcified/noncalcified/mixed).

Conclusion
We developed PlaqueViT, a deep learning model for fully
automatic plaque detection and segmentation that detects
and delineates coronary plaques and the arterial lumen
with similar performance as an experienced radiologist.
PlaqueViT could be integrated into clinical practice, ser-
ving as both a supplementary reader and a valuable tool to
support clinical decision-making. Because a model such as
PlaqueViT can rapidly deliver automatic and unbiased
results, it has the potential to reduce intraobserver
variability and minimize interpretation errors made by
physicians. It could be used for pre-screening to identify

patients with coronary artery diseases and prioritize their
CCTA scans for review by a radiologist.
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CCTA Coronary computed tomography angiography
CT Computed tomography
ICC Intraclass correlation coefficient
SCAPIS Swedish CardioPulmonary BioImage Study
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Table 4 CAD detection

Intraobserver test dataset

(n= 65)

CAD detection dataset

(n= 684)

External test dataset

(n= 28)

PlaqueViT

versus

Observer 1

Observer 1 versus

Observer 2

PlaqueViT

versus

radiologic assessment

PlaqueViT versus

Observer 1

Expert reader

versus Observer 1

Sensitivity 0.97 0.94 0.95 0.88 0.76

Specificity 0.76 0.86 0.83 0.91 1.0

Kappa 0.75 0.81 0.78 0.78 0.72

Agreement 0.88 0.91 0.89 0.89 0.86

Predictive value

Positive 0.83 0.89 0.84 0.94 1.0

Negative 0.96 0.93 0.95 0.83 0.73

ICC 0.98 0.96 * 0.99 0.92

CAD coronary artery disease, ICC intraclass correlation coefficient
* Radiologic assessment had no volume data and ICC cannot be calculated
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Methodology

● Retrospective
● Cross-sectional study, diagnostic study
● Performed at one institution
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