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Entangling Schrödinger’s cat states by
bridging discrete- and continuous-variable
encoding

Daisuke Hoshi1,2,7, Toshiaki Nagase1,2,7, Sangil Kwon 3,7 , Daisuke Iyama1,2,
Takahiko Kamiya1,2, Shiori Fujii1,2, Hiroto Mukai 2,3, Shahnawaz Ahmed 4,
Anton Frisk Kockum 4, Shohei Watabe 3,5, Fumiki Yoshihara1,3 &
Jaw-Shen Tsai2,3,6

In quantum information processing, two primary research directions have
emerged: one based on discrete variables (DV) and the other on the structure
of quantum states in a continuous-variable (CV) space. Integrating these two
approaches could unlock new potentials, overcoming their respective limita-
tions. Here, we show that such a DV–CV hybrid approach, applied to super-
conducting Kerr parametric oscillators (KPOs), enables us to entangle a pair of
Schrödinger’s cat states by two methods. The first involves the entanglement-
preserving conversion between Bell states in the Fock-state basis (DV encod-
ing) and those in the cat-state basis (CV encoding). The second method
implements a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gatebetween twocat states following theprocedure for

Fock-state encoding. This simple and fast gate operation completes a universal
quantum gate set in a KPO system. Our work offers powerful applications of
DV–CV hybridization and marks a first step toward developing a multi-qubit
platform based on planar KPO systems.

For nearly three decades, there have been two paradigms in
quantum information processing: one involves discrete variables
(DVs), such as photon number (Fock) states or spin states1–4,
whereas the other relies on the structure of quantum states in a
continuous-variable (CV) space, such as Schrödinger’s cat and
Gottesman–Kitaev–Preskill states5–7. Recently, considerable
efforts have focused on bridging DV and CV quantum information
to overcome the limitations of each paradigm8–15. Parametrically
driven Kerr nonlinear resonators, often referred to as Kerr para-
metric oscillators (KPOs)16–20, offer a unique testbed for this task,
particularly for exploring emergent quantum properties like
entanglement in interacting quantum systems. This capability is

enabled by simple one-to-one conversion between Fock and cat
states via parametric pump control21–28.

In our previouswork29, we experimentally demonstrated that such
conversion in a superconducting planar KPO preserves the quantum
coherence of the system, with the underlying physics being quantum
tunnelling in phase space30,31. Furthermore, we showed that single-gate
operations on cat states in a KPO can be implemented similarly to
conventional gate operations on the Fock-state basis32–38.

To establish KPO systems as a promising quantum information
platform, the next step would be extending our approach to a multi-
KPO system. Although there have been studies on two interacting
KPOs39–41, the entanglement between them and its preservation

Received: 15 July 2024

Accepted: 21 January 2025

Check for updates

1Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601, Japan. 2RIKEN Center for
QuantumComputing (RQC),Wako-shi Saitama351-0198, Japan. 3Research Institute for Science and Technology, TokyoUniversity of Science, 1-3 Kagurazaka,
Shinjuku-ku Tokyo 162-8601, Japan. 4Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
5College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku Tokyo 135-8548, Japan. 6Graduate School of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601, Japan. 7These authors contributed equally: Daisuke Hoshi, Toshiaki Nagase, Sangil Kwon.

e-mail: kwon2866@gmail.com

Nature Communications |         (2025) 16:1309 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8113-0821
http://orcid.org/0000-0002-8113-0821
http://orcid.org/0000-0002-8113-0821
http://orcid.org/0000-0002-8113-0821
http://orcid.org/0000-0002-8113-0821
http://orcid.org/0000-0001-6689-7963
http://orcid.org/0000-0001-6689-7963
http://orcid.org/0000-0001-6689-7963
http://orcid.org/0000-0001-6689-7963
http://orcid.org/0000-0001-6689-7963
http://orcid.org/0000-0003-1145-7279
http://orcid.org/0000-0003-1145-7279
http://orcid.org/0000-0003-1145-7279
http://orcid.org/0000-0003-1145-7279
http://orcid.org/0000-0003-1145-7279
http://orcid.org/0000-0002-2534-3021
http://orcid.org/0000-0002-2534-3021
http://orcid.org/0000-0002-2534-3021
http://orcid.org/0000-0002-2534-3021
http://orcid.org/0000-0002-2534-3021
http://orcid.org/0000-0003-2895-698X
http://orcid.org/0000-0003-2895-698X
http://orcid.org/0000-0003-2895-698X
http://orcid.org/0000-0003-2895-698X
http://orcid.org/0000-0003-2895-698X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56503-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56503-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56503-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56503-8&domain=pdf
mailto:kwon2866@gmail.com
www.nature.com/naturecommunications


during the conversion between Fock and cat states have yet to be
investigated. Additionally, the two-KPO gate operation for cat-state
encoding, which we refer to as the two-cat gate, has not been
demonstrated.

In this work, we introduce two straightforwardmethods to create
entangled cat states—a valuable resource for fault-tolerant quantum
computation and communication42–48—by bridging DV and CV
domains. The first method is the entanglement-preserving and deter-
ministic conversion from Fock-state encoding to cat-state encoding.
Such a conversion suggests the possibility of constructing quantum
networks in the cat basis using conventional schemes originally
developed for the Fock basis, thereby reducing experimental

complexity. Thus, our demonstration highlights the potential of
DV–CV hybridization and may lay new groundwork for constructing
quantum networks in the cat basis.

The nextmethod is to implement a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate between two cat

states in a manner almost identical to that for Fock-state encoding49.
This allows us to create entangled cat states faster than previous
implementations on bosonic modes50,51, using only a single square
pulse. Our implementation completes the demonstration of a uni-
versal quantum gate set, alongside the single-cat gate operations from
our previous work29.

For both our methods, we can make analogies to seeds (from the
DV domain) sprouting (in the CV domain) thanks to watering (two-
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Fig. 1 | Concept of the experiment. a Seed-sprout analogy for our methods to
create Bell–Cat states. In this analogy, the seeds represent Fock state encoding, the
sprouts represent cat state encoding, water sprinkles represent two-photon
pumps, and gray dotted curves indicate entanglement. b Bloch spheres for Fock
state encoding and cat state encoding. The normalization factor was omitted for
simplicity. c Figure of the chip. The left side is in false colour for clarity. Each KPO is
composedof 10 direct-current superconducting quantum interferencedevices (DC

SQUIDs) with a shunting capacitor. The two KPOs are capacitively coupled. The
state of each KPO is monitored by the nearby transmon (green) and its readout
resonator (purple). d Simultaneous and independent generation of even cat states
∣0C

�
from vacuum states ∣0F

�
and the corresponding pulse sequence. The pulse

sequence used to measure the Wigner function is omitted for simplicity (see
Supplementary Fig. 2 for the full pulse sequence). The colour represents the scaled
one-mode Wigner function (1WF), i.e., the number parity.
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photonpumping), as illustrated in Fig. 1a. In this paper, wedenote Fock
states ∣0i and ∣1i as ∣0F

�
and ∣1F

�
, respectively. Correspondingly, the

even and odd cat states are denoted as ∣0C

�
and ∣1C

�
as shown in

Fig. 1b. In addition, we refer to the Bell states in the Fock basis as
Bell–Fock states and designate the resulting entangled cat states as
Bell–Cat states.

Results
Setup
The chip used in thiswork is shown in Fig. 1c. It is the same chip used in
ourprevious study29. The transition frequencies between the ∣0i and ∣1i
states of the KPOs are 2.564 GHz (KPO1) and 2.420 GHz (KPO2). The
self-Kerr coefficient of both KPOs is approximately 2 MHz after
ramping up the pump.

The Hamiltonian of our system can be described as (see Section 1
of Supplementary Information for the derivation)

ĤðtÞ=Δ1â
y
1 â1 �

K1

2
ây
1 â

y
1 â1â1 +

P1ðtÞ
2

ây
1 â

y
1 + â1â1

� �
+Δ2â

y
2â2 �

K2

2
ây
2â

y
2â2â2 +

P2ðtÞ
2

ây
2â

y
2 + â2â2

� �
+ g ây

1 â2e
+ iΔpt + â1â

y
2e

�iΔpt
� �

:

ð1Þ

Here, we are working in units where ℏ = 1; âi and ây
i are the ladder

operators for the KPOi (i = 1, 2); Δi(≡ ωKi − ωpi/2) is the KPO-pump
frequency detuning, whereωKi is the transition frequency between the
∣0F

�
and ∣1F

�
states, and ωpi is the frequency of the two-photon pump;

Ki is the self-Kerr coefficient; Pi is the amplitude of the pump; g is the
coupling constant; and Δp[≡ (ωp1 − ωp2)/2] is half of the detuning
between the two pumps. The Hamiltonian in Eq. (1) is in the rotating
frame defined by Ĥ0 =

P
iðωpi=2Þây

i âi. See Supplementary Table 1 for
the values of these system parameters.

The cat states are generated adiabatically using the pump pulse
with the profile sin2ðπt=2τrampÞ, where the ramping time τramp is 1 μs
(see Methods for more details). Throughout this work, for both KPOs,
the P/K ratio is chosen to be 1.0, and the pump detuning [Δ1 and Δ2 in
Eq. (1)] is chosen to be 1.0 MHz. Since the detuning between the two
KPOs (144 MHz) is nearly 20 times larger than the coupling (8 MHz),
the interaction is effectively turned off on the timescale of the mea-
surements; thus, cat states can be generated and measured indepen-
dently and simultaneously as shown in Fig. 1d.

Conversion from Fock to cat
We first prepare all four types of Bell–Fock state, ∣0F0F

�
± ∣1F1F

�
and

∣0F1F
�
± ∣1F0F

�
. Subsequent two-photon pumping to each KPO con-

verts the Bell–Fock state into the same type of Bell–Cat state; for
instance, from ∣0F0F

�
+ ∣1F1F

�
to ∣0C0C

�
+ ∣1C1C

�
(see Fig. 2c for the

pulse sequence). This approach relies on the fundamental property of
entanglement, namely, that “entanglement is preserved under local
unitary operations”52.

The Bell–Fock state is prepared by activating the interaction
between the KPOs by applying a parametric pulse with either the fre-
quency ωK1 + ωK2 or ωK1 − ωK2 to the pump ports3. A parametric pulse
with each frequency induces the transitions between ∣0F0F

�
and ∣1F1F

�
,

and between ∣0F1F
�
and ∣1F0F

�
based on the three-wave mixing cap-

ability of our KPOs. Using such transitions, we can create states
∣0F0F

�
+ eiϕs ∣1F1F

�
and ∣0F1F

�
+ eiϕd ∣1F0F

�
, where the phases ϕs and ϕd

are determined by the phase of the parametric pulse (virtual Z gate).
We refer to this pulse as the Bell-preparation pulse. Rabi oscillations
associated with the Bell-preparation pulse are shown in Fig. 2a.

For the full characterization of suchentangled quantum states,we
measured the two-mode Wigner functions (2WFs) (Fig. 2d, e)45,53

because the one-mode Wigner functions (1WFs) cannot provide
information on entanglement—all Bell states show the same 1WF,
which is identical to that of the fully mixed state (Fig. 2b). The 2WFs of

the target Bell–Fock and Bell–Cat states are shown in Supplemen-
tary Fig. 3.

We observe all essential features in the 2WF of Bell–Cat states
(Fig. 2e). Firstly, in the Re–Re plots with Im(αi) = 0 (i = 1, 2), two red
circles aligned diagonally indicate the correlation between the two
KPOs, similar to the results in ref. 39. The alignment direction of the
red circles represents the sign of the superposition. The colour of the
centre circle, which represents the joint number parity, indicates the
type of Bell state; for instance, ∣01i+ eiϕ∣10i shows a blue centre
regardless of whether the basis is Fock or cat. Secondly, the inter-
ferencepattern in the Im–Implotwith Re(αi) = 0demonstrates that the
correlation is of quantum nature.

Note that the patterns in Fig. 2d, e illustrate how the 2WFs of
Bell–Fock states evolve to those of Bell–Cat states: As the pump
amplitude increases, the pattern in Fig. 2d elongates along the diag-
onal axis, eventually resembling the Re–Re plots in Fig. 2e. Regarding
the Im–Im plots of Bell–Fock states, those of ∣0F1F

�
± ∣1F0F

�
are iden-

tical to the Re–Re plots, whereas the Im–Im plot of ∣0F0F

�
± ∣1F1F

�
matches theRe–Replot of ∣0F0F

�
∓∣1F1F

�
. The Im–Implots in Fig. 2e can

be interpreted as a compressed version of the plots in Fig. 2d along the
diagonal axis. These 2WF patterns show the profound connection
between quantum correlations in the Bell–Fock and Bell–Cat states.

The fidelity between the target and measured Bell–Fock states is
0.81 ±0.01 (with the error representing the standarddeviation); for the
Bell–Cat states, the fidelity is 0.60 ± 0.04. This value would be 0.25 for
completely mixed cat states. These fidelities were obtained by recon-
structing the density matrix from the measured one- and two-mode
Wigner functions (see Methods).

The most notable difference between the 2WFs of the measured
and target Bell-Cat states is that the measured states show weaker
contrast in the centre circle of the Re–Re plots with Im(αi) = 0 (i = 1, 2)
and in the interference pattern of the Im–Im plots with Re(αi) = 0
compared to the target states. (The 2WFs for the target states are
shown in Supplementary Fig. 3.) The primary sources of this difference
are thermal excitation and relaxations, such as single-photon loss and
dephasing45,54. Thermal excitation sets an upper limit on fidelity: if we
start from a thermal state rather than a vacuum state, the fidelity is
inherently limited, even in the absence of relaxations and with perfect
control. In our case, this upper bound is 0.86, which is the fidelity
between the vacuum state and the tensor-product thermal states of
both KPOs.

Approximately 0.13 of the fidelity is lost due to relaxations, based
on simulations of our Bell-Fock state preparation and cat generation
using the Lindblad master equation. For the cat generation process,
dephasing is not considered because low-frequency noise does not
affect the fidelity; the cat states in KPOs are protected by the energy
gap24,55. Experimental evidence suggests that the primary source of
relaxation for cat states in a KPO is single-photon loss29,34,56.

Assuming T1 = T2 = 100 μs57–60 and a thermal photon number of
0.01, thefidelity of theBell-Fock states is approximately 0.96,while the
Bell-Cat state fidelity can reach about 0.93, as simulated by the Lind-
blad master equation. The main source of remaining infidelity arises
from population leakage from the computational subspace due to the
small Kerr coefficient. This issue can be mitigated by using a coun-
terdiabatic or numerically optimized pulse28,61,62. (In this work, a
counterdiabatic pulse was not used, unlike in our previous work29. See
Methods for more information.)

The final fidelity from the simulation, accounting for all these
error sources, is approximately 0.68, which is reasonably close to our
experimental result. Formoredetails on the simulation, see Section 4A
of Supplementary Information.

Two-cat gate operation
One notable feature of this KPO system is that the same type of para-
metric pulse can be used for two-qubit gate operations in both Fock-
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and cat-state encodings49. In thiswork, a parametric pulse—referred to as
the gate pulse—with a frequency of (ωp1 − ωp2)/2 was employed for the
gate operation. IfΔ1 =Δ2 in Eq. (1), the gate pulse frequencymatches that
used to prepare the Bell-Fock state. Thus, the schemes for creating Bell-

Fock and Bell-Cat states are quite similar, with one key difference: the
gate pulse at (ωp1 − ωp2)/2 induces not only ∣0C1C

� $ ∣1C0C

�
transitions

but also ∣0C0C

� $ ∣1C1C
�
transitions, the latter ofwhich are forbidden in

the Fock-state basis but enabled by the presence of the pump.

Fig. 2 | Converting Bell–Fock states to Bell–Cat states. a Rabi oscillations for Bell-
preparation pulse. Regarding Rabi oscillations associated with ∣0F1F

� $ ∣1F0F

�
transi-

tions, the colour represents the population of the ∣0F

�
state of KPO2 and zero detuning

corresponds to the frequency ωK1 − ωK2. As for Rabi oscillations associated with
∣0F0F

� $ ∣1F1F
�
transitions, the colour represents the population of the ∣0F

�
state of

KPO1 and zero detuning corresponds to the frequencyωK1 +ωK2 − ΔAC, where ΔAC is an

AC Stark-like frequency shift whose value is 21 MHz in this measurement. b Measured
one-mode Wigner function (1WF) of Bell–Fock and Bell–Cat states. c Pulse sequences
forBell–Fock statepreparationandBell–Cat stategeneration. The amplitude and length
ofpulses arenot to scale.d,eMeasured two-modeWigner function (2WF) for Bell–Fock
(d) and Bell–Cat (e) states. In Re–Re plots, Imðα1Þ= Imðα2Þ=0, whereas in Im–Im plots,
Reðα1Þ=Reðα2Þ=0. The colour represents the joint number parity.
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Below, we explicitly outline the three-wave mixing processes that
facilitate this gate operation. Each term represents the frequency of a
photon created or annihilated during the process; for example, ωp2

corresponds to the pump for KPO2 and (ωp1 −ωp2)/2 to the gate pulse.
The ∣0C1Ci $ ∣1C0Ci transitions:

(i) ωp2 ! ωp2

2 + ωp2

2 , (ii) ωp2

2 + ωp1�ωp2

2 ! ωp1

2 .
The ∣0C0Ci $ ∣1C1Ci transitions:

(i) ωp2 +
ωp1�ωp2

2 ! ωp1 +ωp2

2 , (ii) ωp1 +ωp2

2 ! ωp1

2 + ωp2

2 .
Here, the processes (i) and (ii) occur sequentially.

Based on the three-wave mixing processes described above, parti-
cularly process (ii), the working principle of our two-cat gate operation
can be understood as follows. We begin with the X gate, which can be
implemented using a single-photon drive with the frequency ωp1/2 or
ωp2/2

29, as the X gate changes the parity of the state and the cat states
are already shaped by the interplay between the Kerr nonlinearity and
the two-photon pump. In our two-cat gate, the gate pulse enables the
two KPOs to exchange a single photon (for the ∣0C1Ci $ ∣1C0Ci transi-
tions) or absorb/emit a single photon simultaneously (for the ∣0C0C

� $
∣1C1C

�
transitions). Such processes result in two correlated X gates act-

ing on each KPO, implementing the following gate operation ÛG:

ÛG =
1ffiffiffi
2

p

1 0 0 i

0 1 i 0

0 i 1 0

i 0 0 1

0
BBB@

1
CCCA: ð2Þ

Within the ∣0C1C
�
and ∣1C0C

�
subspace, the gate operation remains

identical to the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate. For simplicity, we refer to it as theffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

gate in this work. (Thiswork does not explore ∣0C0C

� $ ∣1C1C
�

transitions. A complete characterization of the gate operation, including
this aspect, is left for future study.)

Note that Eq. (2) corresponds to the R̂ZZ gate in the coherent-state
basis (see Section 6 of the Supplementary Information for the deri-
vation). This has two key implications: Since the R̂ZZ gate is part of the
universal gate set, Eq. (2) is as well. Additionally, the R̂ZZ gate—and
therefore Eq. (2)—preserves the biased-noise property of KPOs, as
discussed in ref. 33.

We observe the Rabi-like oscillations in the parity of each KPO,
which we call the two-cat Rabi, as a function of the phase and the
detuning of the parametric pulse (Fig. 3a, b). Here, the gate phaseϕg is
the phase relative to the pumps, and the gate detuning Δg is the
detuning from (ωp1 − ωp2)/2. For this measurement, we first prepare
∣0F1F

�
and convert it to ∣0C1C

�
by applying the pumps. Then, we apply

the gate pulse, in addition to the pumps, as shown in Fig. 3c.
Note that the two KPOs exhibit the same two-cat Rabi oscillations

but with opposite parities. From the simulation, we determined the
gate amplitude to be 2.96 MHz (see Supplementary Fig. 5a and its
caption for details). One-mode Wigner functions show that during the
Rabi oscillations, the state evolves from ∣0C1C

�
(no gate) to ∣1C0C

�
(iSWAP). To determine the intermediate quantum state between these
two points, a 2WF measurement with an additional offset in displace-
ment is required. This is because 1WF and the Re–Re (Im–Im) plot in
2WF without an additional displacement along the imaginary (real)
axes cannot distinguish the following three states: ∣0C1C

�
± i∣1C0C

�
,

which are the states after the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate, and the mixture of ∣0C1C

�
and ∣1C0C

�
. The Re–Re plot with an additional offset shows that the

state is ∣0C1C
�� i∣1C0C

�
(the plot at the bottom of Fig. 3d), confirming

that the two-cat gate operation is the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate (see Supplemen-

tary Fig. 3).
The

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate time, 275 ns, is significantly faster than recent

implementations of similar SWAP gate operations on bosonic
modes50,51. This short gate time is possible because the beam-splitter
interaction is inherently built into theHamiltonian [Eq. (1)], and the KPO
system enables us to adopt schemes for gate operations in Fock-state
encoding. The primary limitations on our gate time are the AC Stark-like

frequency shift induced by the gate pulse above a certain amplitude
threshold, which would introduce unwanted Z-gate operations, and the
small cat size. Additionally, ref. 49 suggested implementing Eq. (2)
using the frequency (ωp1 + ωp2)/2, as we demonstrated in Fig. 2 for the
preparation of Bell–Fock states. We did not pursue this approach
because the amplitude threshold for the AC Stark-like frequency shift is
almost zero at (ωp1 + ωp2)/2. Therefore, suppressing the AC Stark-like
frequency shift at the circuit design level and increasing the cat size will
enable faster gate operations and enhance functionalities.

Similarly to the Bell–Fock state preparation, the sign of the
superposition can be flipped by adding π in the phase of the two-cat
gate pulse. Unlike the conversion from the Bell–Fock to Bell–Cat
states, however, we cannot create a Bell-Cat state with an arbitrary
phase. The reason is that once the pumps are turned on, the pump
phase becomes the reference phase. Consequently, we can no longer
use the virtual Z gate as implied in Fig. 3a. In other words, ϕd in
∣0F1F

�
+ eiϕd ∣1F0F

�
can only take values of (n + 1/2)π, where n is an

integer. Thus, the Bell–Cat state we create in this work using the two-
cat gate is limited to ∣0C1C

�
± i∣1C0C

�
, which is exactlywhat is expected

from the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate.

The gate-detuning dependence of the two-cat Rabi exhibits the
characteristic pattern observed in cat Rabi oscillations for the X gate29.
This suggests that, as pointed out in ref. 29, when mapping the
dynamics of cat states to that of interacting two-level qubits, two tones
with opposite gate detuning are required. In such a two-level qubit
system, the same pattern can be reproduced by modulating the cou-
pling constantwith two frequencies,ωg and2(ωq1−ωq2)−ωg,whereωqi

is the transition frequency of the two-level qubiti (i = 1, 2). In this case,
zero detuning corresponds to ωg = ωq1 − ωq2. For further discussion
and simulation results, see Section 5 of Supplementary Information.

The fidelity of the ∣0C1C
�
± i∣1C0C

�
states is 0.61 ± 0.03, which is

almost identical to that achieved by the conversion from Bell–Fock to
Bell–Cat states. This result is not surprising because, although the
pulse length of the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate on the cat states (275 ns) is less than

half that of the Bell-preparation pulse (730 ns), the contrast of the two-
cat Rabi oscillations attenuates faster than that of the Rabi oscillations
used for the Bell–Fock state preparation (compare Fig. 3b and the left
plot of Fig. 2a).More quantitatively, the decay time of the two-cat Rabi
oscillation is 3 μs for both KPOs, whereas that of the Rabi oscillations
used inBell–Fock state preparation is longer than 10μs. The simulation
using the Lindblad master equation suggests that the photon lifetime
of both KPOs to reproduce the data in Fig. 3b is 10 μs (see Supple-
mentary Fig. 5a). This photon lifetime falls within the observed range
(Supplementary Table 1). Thus, the main sources of infidelity in this
case are also thermal excitation and relaxations.

The fidelity of our Bell-Cat states is somewhat lower than that
reported in previous works, which was 0.7450,51. This difference is likely
due to the low thermal population (≲0.01) in the earlier studies. In fact,
the 0.13 difference in fidelity between our work and previous studies
closely matches the infidelity attributed to thermal excitation, as dis-
cussed in Section “Conversion from Fock to cat” of “Results”. We
expect the performance of our gate operation to be comparable to
that of previous demonstrations.

Overall, our gate operation is faster and significantly simpler,
requiring only a single square pulse to implement the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate,

while achieving comparable performance. Furthermore, there is con-
siderable potential for improving fidelity by suppressing the thermal
population, enhancing the relaxation times of KPOs, or optimizing the
gate pulse shape.

Lastly, we point out that the same
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate operation can be

performed between cat states with different mean photon numbers.
This property may provide significant flexibility when constructing a
KPO-based quantum network, particularly for the scheme developed
in refs. 63,64. The simulation results can be found in Supplemen-
tary Fig. 5c.
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Discussion
To summarize, we demonstrate two intuitive methods for entangling
cat states by adopting a DV–CV hybrid approach. This hybridization is
achieved through Hamiltonian engineering, combiningmoderate Kerr
nonlinearity and two-photon pumping. It enables coherent treatment
of Bell–Fock and Bell–Cat states, facilitating gate operations directly
on the cat basis without the need for ancilla qubits or individual Fock
state control. One consequence is the entanglement-preserving con-
version from Bell–Fock to Bell–Cat states. The other is the fast and
simple

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate operation on the cat states, thereby completing

the demonstration of a universal quantum gate set. Therefore, our
superconducting planar KPO system is not only a promising quantum
information processing unit but also a potent platform for DV–CV
hybridization.

We suggest several future research directions extending this work.
First, we can construct quantum networks in the cat basis. Note that
our methods are compatible with previously demonstrated quantum
network constructions in the Fock basis63–65. This means we can create

more complex entangled states, such as Greenberger–Horne–Zeilinger
or cluster states, in the cat basis simply by replacing transmon/Xmon
qubits with KPOs and converting the basis from Fock to cat states. This
approach will significantly reduce the complexity of constructing
quantum networks using bosonic modes. We can also create travelling
entangled-cat states by coupling our system to transmission lines62.
Combining Hamiltonian engineering with dissipation engineering may
enable us to create highly coherent cat states66–69. Finally, employing
other multiphoton pumps may open new possibilities70–82, such as
exploring condensed matter physics in time crystals83–85 and autono-
mous quantum error correction86.

Methods
Cat state generation
As mentioned in the main text, the ramping time of the pump for cat-
state generation is 1 μs. This ramping time is much longer than that in
our previous work (300 ns)29 because the counterdiabatic pulse did
notwork.Webelieve that the reason is the reduction inKerr coefficient
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Fig. 3 | Two-cat gate operation. a, b Two-cat Rabi oscillations between ∣0C1C
�
and
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�
. The colours represent the number parity of each KPO. ϕg and Δg represent

the phase and detuning of the gate pulse, respectively. Zero detuning (Δg = 0)
means that the frequency of the gate pulse is equal to (ωp1 − ωp2)/2. One-mode

Wigner functions at times corresponding to no gate (0 ns),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate (275 ns),

and iSWAP gate (480 ns) are shown above. c Pulse sequence for the two-cat Rabi.
d Two-mode Wigner functions of the KPO state after the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate. All Wigner

functions showing the results of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate are enclosed in black frames.
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from about 3 MHz to 2 MHz after ramping up the pump (see Supple-
mentary Table 1), whereas the Kerr coefficient in ref. 29 increases
slightly from 2.86 MHz to 3.13 MHz.

During the ramping,we change thepump frequency, i.e., chirp the
pump pulse, for two reasons: One is to compensate for unwanted AC
Stark-like frequency shifts in 2ωK1 and 2ωK2, which are approximately
− 10 MHz at the target pump amplitude29. The other reason is that the
pump detuning must start from zero and then approach the target
value adiabatically to create high-fidelity cat states.

Wigner-function measurements
The one-mode Wigner function of the KPO is given by87

W ðiÞðαiÞ=
2
π
Tr D̂

yðαiÞρðiÞD̂ðαiÞΠ̂
ðiÞh i

, ð3Þ

where D̂ðαiÞ= exp αiâ
y
i � α*

i âi

� �
is the displacement operator,

Π̂
ðiÞ
= exp iπây

i âi

� �
is the photon-number parity operator, and ρ(i) is the

density matrix of KPOi (i = 1, 2). Similarly, the two-mode Wigner
function is given by45

W ð12Þðα1,α2Þ=
4
π2 Tr D̂

yðα2ÞD̂
yðα1Þρð12ÞD̂ðα1ÞD̂ðα2ÞΠ̂

ð12Þh i
ð4Þ

=
4
π2 hΠ̂

ð12Þðα1,α2Þi, ð5Þ

where ρ(12) is the density matrix of the two-KPO system and

Π̂
ð12Þ

= Π̂
ð1Þ
Π̂

ð2Þ
is the joint parity of the two KPOs. This operator can

be measured by the joint probabilities of the transmons being in their
ground/excited state Pjk ( j, k ∈ {g, e})53:

hΠ̂ð12Þðα1,α2Þi=Pee +Pgg � Peg � Pge: ð6Þ

In the experiment, this was accomplished by fitting the single-shot
readout data (Fig. 4a) with a two-dimensional Gaussian function for all
pixels of the Wigner function plots.

The two-mode Wigner functions of the target and simulated
states in Supplementary Information are obtained using the
Cahill–Glauber formula88–90:

W ð12Þðα1,α2Þ=
4
π2 Tr ρð12ÞT̂ðα1ÞT̂ðα2Þ

h i
ð7Þ

=
4
π2

XNi

fnig=0

XNi

fmig=0

Y2

i = 1
hnijT̂ðαiÞjmii

× hfmigjρð12Þjfnigi,
ð8Þ

where T̂ is the complex Fourier transform of the displacement
operator, andNi is the dimension of the Hilbert space of KPOi. Formi ≥
ni,

hnijT̂ðαiÞjmii=
ffiffiffiffiffiffiffi
ni!

mi!

s
ð�1Þni ð2α*

i Þ
δi

× LðδiÞ
ni

ð4jαij2Þ expð�2jαij2Þ,
ð9Þ

where δi ≡mi − ni and LðδiÞ
ni

ðxÞ are the associated Laguerre polynomials.
For mi < ni, we can use the following property:

hnijT̂ðαiÞjmii= hmijT̂ðα*
i Þjnii: ð10Þ

Density-matrix reconstruction
A two-modeWigner function is a four-dimensional function. Since our
signal-to-noise ratio is marginal, as shown in Fig. 4a, collecting such a
large data set—13 × 13 × 13 × 13 pixels, for example—is impractical.
Instead, we measured 10 two-dimensional plots, each of which has
17 × 17 pixels in the range − 1.6 ≤α i ≤ 1.6 (i = 1, 2). Among these 10plots,
half are Re–Re plots with imaginary offset displacements and the other
half are Im–Im plots with real offset displacements. For Re–Re plots,
the imaginary offset displacements are given as follows (Fig. 4b):
{(Im(α1), Im(α2))}= {(0,0), (0,+0.82), (−1.10,+1.07), (−1.35,−1.32), (+1.35,-
−0.82)}. The same values are used for the real offset displacements
for Im–Im plots. In addition to the 10 plots from the two-mode
Wigner function, one-mode Wigner functions of both KPOs were
measured, resulting in a total of 12 plots used for density matrix
reconstruction.

We found that, with the data set simulated from the target
Bell–Cat states, the reconstruction fidelity is > 0.99. We also checked
the reconstruction fidelity of non-ideal data sets. For example, we
prepared low-quality Bell–Cat states by simulating the Lindblad mater
equation with T1 = 10 μs for both KPOs after 2 μs waiting; the resulting
fidelity between this state and the initial state was 0.57, which is similar
to our results. The reconstruction fidelity from 2WFs of these low-
quality states is still ≥0.98.

For Bell–Fock states, the dimensions of the Hilbert space were
set to 3 × 3. For Bell–Cat states, the dimensions of the Hilbert space
were set to 8 × 8 because, for the ideal Bell–Cat states with P/K = 1 and
1 MHz of pump detuning, the occupation probability at ∣≥8i is less
than 10−4.

The algorithm for reconstruction followed the idea from
refs. 91,92, which use gradient descent to reconstruct a density matrix
with a projection step. A loss function between themeasured data and
that obtained from an estimated density matrix is minimized to obtain
the reconstructed density matrix starting from a random initialization.
We simplified the method to directly apply gradient descent (Adam93)
on amatrix T, that is projected to construct an estimate of the physical
density matrix using the Cholesky decomposition. At each gradient-
descent step, the loss function is minimized followed by a projection
step where the matrix T is converted to a lower triangular matrix with
real-valued diagonal elements by discarding the upper-triangular part
and making the diagonal real. This step allows us to obtain a density

matrix ρ= TyT
Tr ðTyTÞ that is guaranteed to be physical. The Python

libraries used were QuTiP94,95, NumPy96, and JAX97.
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Fig. 4 | Configurations for measuring two-mode Wigner functions. a Typical
single-shot results. RR stands for “readout resonator''. b Coordinates of offset
displacement for Re–Re plots of a two-mode Wigner function.
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Data availability
All data are available in the main text or in the supplementary
information.
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