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Abstract

Accurately measuring magnetic field strength in the interstellar medium, including giant molecular clouds, remains
a significant challenge. We present a machine learning approach using denoising diffusion probabilistic models
(DDPMs) to estimate magnetic field strength from synthetic observables such as column density, orientation angles
of the dust continuum polarization vector, and line-of-sight (LOS) nonthermal velocity dispersion. We trained three
versions of the DDPM model: the 1-channel DDPM (using only column density), the 2-channel DDPM
(incorporating both column density and polarization angles), and the 3-channel DDPM (which combines column
density, polarization angles, and LOS nonthermal velocity dispersion). The code and trained model are available
on GitHub at https://github.com/xuduo117/DDPM_Bmag. We assessed the models on both synthetic test
samples and new simulation data that were outside the training set's distribution. The 3-channel DDPM
consistently outperformed both the other DDPM variants and the power-law fitting approach based on column
density alone, demonstrating its robustness in handling previously unseen data. Additionally, we compared the
performance of the Davis–Chandrasekhar–Fermi (DCF) methods, both classical and modified, to the DDPM
predictions. The classical DCF method overestimated the magnetic field strength by approximately an order of
magnitude. Although the modified DCF method showed improvement over the classical version, it still fell short of
the precision achieved by the 3-channel DDPM.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Interstellar magnetic fields (845);
Astrostatistics (1882); Astrostatistics techniques (1886); Molecular clouds (1072); Magnetohydrodynamics (1964);
Convolutional neural networks (1938)

1. Introduction

Magnetic fields are a ubiquitous and significant element of
galactic environments and permeate the interstellar medium
(ISM; e.g., R. M. Crutcher 1999; J. L. Han 2017). They play a
crucial role in numerous astrophysical processes and have a
profound influence on the structure, dynamics, and evolution of
the ISM (R. M. Crutcher 2012; C. Federrath 2015). Magnetic
fields interact with the gas and dust in the ISM, exerting
pressure on the gas and affecting its dynamics, including
providing support against gravitational collapse. On large
scales, magnetic fields can exhibit coherent structures such as
spiral arms and filamentary structures spanning hundreds of
parsecs (e.g., J. L. Han et al. 1999; K. Wang et al. 2024).
However, on smaller scales, the magnetic field becomes more
complex, entangled, and turbulent, shaped by the interplay
between gas dynamics and stellar feedback (e.g., C. Eswaraiah
et al. 2021; J. Karoly et al. 2023). In spite of the potential
importance of magnetic fields in the ISM, accurately measuring
their strength is a challenging task.

Observations of magnetic fields in the ISM can be
categorized into two main types. The first type involves
measurements of the plane-of-sky (POS) component, which is

often traced using techniques such as polarized thermal dust
emission (R. Rao et al. 1998; Planck Collaboration et al. 2016),
starlight polarization (L. Davis & J. L. Greenstein 1951;
P. Fosalba et al. 2002), and synchrotron emission (R. Beck &
R. Graeve 1982; R. Jansson & G. R. Farrar 2012). The second
type involves measurements of the line-of-sight (LOS)
component, which is typically probed through Zeeman splitting
(T. H. Troland & C. Heiles 1986; R. M. Crutcher et al. 2010)
and Faraday rotation (B. J. Burn 1966; S. Hutschenreuter et al.
2022). However, accurately quantifying the total strength of
magnetic fields in diverse ISM environments with these
methods is difficult.
The strength of magnetic fields in the ISM shows significant

variation across different regions (J. L. Han 2017). On average,
the magnetic field strength in the Milky Way is estimated to be
around a few microgauss (μG), but it ranges from fractions of a
μG in diffuse areas (R. M. Crutcher 1999; R. M. Crutcher et al.
2010; T. C. Ching et al. 2022) to several tens to thousands of
μG in dense molecular clouds and star-forming regions
(R. M. Crutcher 1999; R. M. Crutcher et al. 1999, 2010;
T. Pillai et al. 2016). Direct measurements of the LOS
component of the magnetic field, Bz, are typically obtained
through the Zeeman effect, which is based on the splitting of
spectral lines in the presence of a magnetic field (T. H. Troland
& C. Heiles 1986; R. M. Crutcher et al. 2010). Meanwhile,
indirect measurements of the POS component rely on the
Davis–Chandrasekhar–Fermi (DCF) method (L. Davis 1951;
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S. Chandrasekhar & E. Fermi 1953; R. Beck 2015), which
often uses polarized thermal dust emission (R. Rao et al. 1998;
Planck Collaboration et al. 2016). The DCF method assumes an
equipartition between magnetic field energy and the turbulent
kinetic energy of the gas and relates magnetic field strength to
the polarization angle and other observable properties.
Specifically, the relation between the gas density ρ, the
nonthermal velocity dispersion σV, and the polarization angle
dispersion σPA gives the POS magnetic field strength BPOS as

( )pr
s
s

=B f 4 , 1V
POS

PA

where f is a correction factor. Recently, R. Skalidis & K. Tassis
(2021) introduced a modified DCF method that accounts for
compressible modes, expressed as

( )pr
s
s

=B 2 . 2V
POS

PA

However, there is significant uncertainty in measuring magn-
etic field strength using the DCF method, especially due to
challenges in accurately determining angular dispersion. This
can be influenced by contributions from ordered magnetic
fields (R. H. Hildebrand et al. 2009; K. Pattle et al. 2017), line-
of-sight averaging (E. G. Zweibel 1990; P. C. Myers &
A. A. Goodman 1991), beam-smoothing (M. Houde et al.
2009), and other observational effects (M. Houde et al. 2016).
As angular dispersion is a statistical quantity, consistently
estimating magnetic field strength at a pixel level across entire
maps is difficult, with local fluctuations potentially affecting
the results (K. H. Yuen et al. 2021). Additionally, the
substantial uncertainty in estimating the nonthermal velocity
dispersion (i.e., the linewidth measurement) poses significant
challenges to accurately determining the magnetic field
strength. The LOS gas velocity, which can be used to estimate
the gas volume density—a crucial parameter in the DCF

Figure 1. Example of molecular cloud data for machine learning training: map of column density with magnetic field directions (top left), magnetic field angle
dispersion (top right), LOS velocity dispersion (bottom left), and projected magnetic field strength (bottom right).
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method—adds to this complexity (C.-Y. Chen et al. 2022).
More fundamentally, the anisotropic nature of MHD turbulence
undermines a core assumption of the DCF method, introducing
substantial uncertainties into the estimation of magnetic field
strength (A. Lazarian et al. 2022). Furthermore, the presence of
gravitational forces also violates the basic assumptions of the
DCF method, contributing to its high level of uncertainty
(J. Liu et al. 2022).

Recent advances in deep learning offer a promising
alternative for connecting observable quantities to intrinsic
physical properties, such as magnetic field strength. For
instance, D. Xu et al. (2020a, 2020b) demonstrated that the
convolutional approach to structure identification (CASI),
based on convolutional neural networks (CNNs), can effec-
tively separate gas associated with stellar feedback (e.g., stellar
winds and outflows) from ambient clouds using molecular line
emission. Additionally, D. Xu et al. (2023b) demonstrated that
CNNs can effectively predict magnetic field directions based
on gas morphology, surpassing simpler techniques such as
approaches based on gradient geometry, particularly in sub-
Alfvénic and trans-Alfvénic cloud environments (e.g.,
J. D. Soler et al. 2013; A. Lazarian et al. 2018; M. Heyer
et al. 2020). J. E. G. Peek & B. Burkhart (2019) demonstrated
that CNNs can effectively extract detailed information from gas
morphology, enabling accurate differentiation between varying
levels of magnetization. This supports the potential of machine
learning as a valuable tool for inferring magnetic field strength
from observational data. Furthermore, Y. Hu et al. (2024)
showed that CNNs can retrieve information on 3D magnetic
field strength from synthetic CO data with relatively high
accuracy, even though the study covered a narrower range of
magnetic field strengths. These findings further underscore the
promising capabilities of machine learning in this area.

Recently, denoising diffusion probabilistic models (DDPMs)
have emerged as powerful tools for image generation
(J. Sohl-Dickstein et al. 2015; J. Ho et al. 2020) and are
showing great potential for predictive tasks in astronomy.
Inspired by thermodynamic principles, DDPMs have demon-
strated their ability to generate realistic galaxy images
(M. J. Smith et al. 2022) and enhance interferometric image
quality by reducing noise (R. Wang et al. 2023). Furthermore,
DDPMs have been successfully applied to segmentation tasks,
such as identifying filamentary structures in maps of dust
emission (D. Xu et al. 2023a). They have also been used to
infer the volume density of the ISM from maps of column
density (D. Xu et al. 2023d) and estimate the interstellar
radiation field strength from multiband dust emission (D. Xu
et al. 2023c). D. Xu et al. (2023c, 2023d) demonstrate the
adaptability of DDPMs in linking observable data to intrinsic
physical properties, even when faced with previously unseen
data. This suggests that DDPMs could potentially surpass the
DCF method in estimating magnetic field strength, particularly
by accounting for deviations from the DCF assumptions—such
as nonisotropic turbulence, incorrect angular dispersion tracing,
or the lack of energy equipartition—through their ability to
correct domain shifts during prediction.
In this paper, we present a deep learning approach using

denoising diffusion probabilistic models to estimate the
magnetic field strength of giant molecular clouds (GMCs)
from maps of column density, dust polarization angles, and
LOS velocity dispersions. In Section 2, we explain the
diffusion model and outline the process of generating the
training data set from MHD simulations. Section 3 provides an
evaluation of our diffusion model's performance in predicting
magnetic field strength, comparing it to traditional DCF
methods. Finally, we summarize our findings and conclusions
in Section 4.

Figure 2. Schematic workflow of the DDPM, illustrating both the diffusion and denoising processes.
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2. Data and Method

2.1. Magnetohydrodynamics Simulations

We conduct ideal MHD simulations based on the setups
from B. Wu et al. (2020) and C. J. Hsu et al. (2023) using the
MUSCL-Dedner method and HLLD Riemann solver within the
adaptive mesh refinement (AMR) code Enzo (A. Dedner et al.
2002; P. Wang & T. Abel 2009; G. L. Bryan et al. 2014). These
simulations include self-gravity, magnetic fields, and heating/
cooling based on a photodissociation model, assuming a far-
UV radiation field of G0= 4 Habings, attenuation following the
nH–AV relation from B. Wu et al. (2015), and a cosmic-ray
ionization rate of ζ= 10−16 s−1. The setup includes two clouds,
each with a radius of 20 pc, initialized in a 128 pc3 domain with
a resolution of 2563 cells. The clouds have an initial density of
nH= 83 cm−3, a temperature of T= 15 K, and a solenoidal
turbulent velocity field with µ -  v k k, 2 20k

2 4 . The
surrounding gas has a density 10 times lower and a temperature
10 times higher to maintain pressure balance. While the GMCs
begin with a temperature of 15 K, a multiphase temperature

Figure 3. Correlation between magnetic field strength and column density under different physical conditions. From the first to third columns: initial magnetic field
strengths of 10 μG, 30 μG, and 50 μG, respectively. The first and second rows represent the colliding and noncolliding cloud scenarios. The third row combines both
colliding and noncolliding cloud scenarios for the three different initial magnetic field strengths. The fourth column (first and second rows) shows the combined results
for all three initial magnetic field strengths in the colliding and noncolliding scenarios, respectively. The bottom right panel displays the correlation between magnetic
field strength and column density across all simulation data. The dashed line represents the best-fit power law for each panel, with the power-law exponent shown in
the bottom right corner of each panel.

Figure 4. Probability distribution function of the relative error (δB) in the
inferred magnetic field strength from the column density, based on the best-fit
power law for each specific physical condition.
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structure soon forms, with typical temperatures of ~10–20 K at
high densities (nH 103 cm−3), ~40 K at intermediate densities
(nH ~ 102 cm−3), and ~1000 K at low densities (nH 10 cm−3)
(C. J. Hsu et al. 2023).

The initial magnetic field is set at a 60o angle to the collision
axis, with strengths of 10, 30, and 50 μG across different cases.
Four additional refinement levels are employed to resolve the
local Jeans length with eight cells. For each magnetic field

strength, we model two GMC setups: noncolliding and
colliding. In the colliding cases, the clouds have a relative
velocity of 10 km s−1 and are offset by 0.5RGMC. These
simulations, which run for 4.1 Myr, do not include star
formation or feedback, and thus they represent the early phases
of collapse before star formation begins. We analyze 22
evolutionary stages between 2 and 4.1 Myr, with 0.1 Myr
intervals.

Figure 5. An example showcasing the performance of three models trained with different inputs: single-channel (column density), two-channel (column density +
polarization angle), and three-channel (column density + polarization angle + LOS nonthermal velocity dispersion) in predicting the magnetic field strength of a piece
of molecular cloud.

Figure 6. 2D histograms comparing the ground-truth magnetic field strength with inferred values across samples in all physical conditions: using power-law fitting
from column density (first panel), and from the three different trained DDPMs (second–fourth panels).
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To enhance the diversity of the data set, we generate maps of
column density, their corresponding LOS mass-weighted
polarization angle, their corresponding LOS nonthermal
velocity dispersion, and their corresponding projected true 3D
magnetic field strength across different scales by adopting
different AMR levels with different physical resolutions. It is
important to note that the LOS nonthermal velocity dispersion
is influenced not only by turbulence but also by large-scale
motions, e.g., cloud collisions, which contribute to the overall
velocity dispersion. We do not exclude these effects, as it is
challenging to disentangle them in real observations. Therefore,
we replicate the conditions of observational data in our training
set by including all contributions directly. The image size in
pixels is 128× 128, with multiple physical scales, including
32, 16, 8, and 4 pc. In total, we have 25,479 images in the data
set, of which 70% are used for the training set, and the
remaining 30% are a test set. Additionally, these images are
seen from a random direction of the viewing angle to increase
the diversity of the data set. Figure 1 provides an example of
the molecular cloud data used in our training set.

2.2. Denoising Diffusion Probabilistic Models

DDPMs have emerged as a cutting-edge framework in deep
learning, particularly in generative modeling, where they achieve
state-of-the-art performance in capturing and reconstructing
complex data distributions (J. Sohl-Dickstein et al. 2015; J. Ho
et al. 2020; R. Rombach et al. 2022). These models utilize
principles from probability theory and stochastic processes to
generate data by progressively modeling the statistical structure
of the target distribution. Unlike traditional approaches, DDPMs
excel at learning intricate, high-dimensional, and nonlinear
relationships, making them particularly effective for domains
where explicit analytical models are intractable.

At the core of DDPMs lies a forward-and-reverse diffusion
mechanism. The forward process incrementally corrupts data
by adding Gaussian noise through a sequence of steps,
effectively transforming the data into a simple Gaussian
distribution. Conversely, the reverse process, parameterized
by a deep neural network (often a U-Net architecture),
reconstructs the original data by iteratively removing the noise.
Through this denoising sequence, DDPMs recover the true
underlying structure of the data while minimizing unwanted
perturbations. The entire process is governed by a predefined
variance schedule, ensuring smooth transitions along the
diffusion path. This framework enables DDPMs to model
highly complex distributions with remarkable precision, as the
progressive nature of the diffusion process allows for finer-
grained reconstructions.

The goal of generative modeling in DDPMs can be
mathematically described as learning a mapping between two
distributions: a simple, easy-to-sample prior distribution

( )~X I0, d , and the target data distribution Y, which often
represents a high-dimensional, intricate data set such as natural
images. In the context of machine learning, the dimensionality
of Y can be extraordinarily large. DDPMs learn this mapping
by training a model pθ to approximate samples from q(y), the
true data distribution. Once trained, the model can generate
new samples by drawing from ( ) I0, d and transforming the
noise through the learned reverse diffusion process to
approximate the manifold of Y.

Conditional DDPMs extend this framework by incorporating
auxiliary information, such as physical parameters or

observational constraints, to guide the generative process. By
conditioning the model on additional inputs, DDPMs can
integrate domain-specific knowledge, enabling them to produce
outputs that are both realistic and consistent with physical laws.
This conditional design is particularly useful in applications
such as astrophysical modeling, where the relationships
between variables are often highly nonlinear and difficult to
parameterize analytically. For example, in astrophysics,
DDPMs can condition on observational data such as column
density, polarization angles, or line-of-sight velocity dispersion
to predict physical quantities such as magnetic field strength.
By combining domain-specific priors with the model's ability
to handle high-dimensional, nonlinear mappings, DDPMs
provide a robust framework for simulating, analyzing, and
interpreting complex astrophysical phenomena.
The adaptability and precision of DDPMs make them

particularly well-suited for astrophysical research. In many
cases, astrophysical systems involve high-dimensional data
distributions and subtle dependences between physical vari-
ables that are not easily captured by traditional modeling
techniques. By leveraging DDPMs, researchers can explore
these complex relationships with unprecedented accuracy,
reducing the need for oversimplifications and approximations.
Moreover, DDPMs can be trained on synthetic data generated
from simulations, allowing them to generalize to real-world
observations while accounting for diverse and intricate physical
processes. Their ability to seamlessly integrate domain-specific
conditions further enhances their applicability in bridging
theoretical models and observational data in fields such as
astronomy and astrophysics.
The schematic workflow of a DDPM is illustrated in

Figure 2. Unlike traditional discriminative models, which
focus on defining decision boundaries (e.g., CNNs for
recognition tasks), DDPMs are generative models that aim
to learn the complete data distribution. This capability enables
them to generate new samples by mimicking the original
distribution rather than merely distinguishing classes.
The loss function used in training DDPMs has seen several

advancements in recent research. In this work, we employ the
original DDPM formulation introduced by J. Ho et al. (2020),
which utilizes a variational lower bound (VLB) loss—a
common objective in probabilistic generative models such as

Figure 7. Distribution of relative error (δB) between predicted and true values
across samples in all physical conditions for different models.
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variational autoencoders. The VLB loss function, defined as
follows, maximizes the likelihood of the data by optimizing a
lower bound on their probability, thus guiding the model
toward a smooth and stable generative process:

[ ( ( ∣ )∣∣ ( ))
( ( ∣ )∣∣ ( ∣ )) ( ∣ )] ( )å+ -

q

q q
>

- -

 x x

x x x x x x x

D q p x

D q p p, log , 3

q T T

t
t t t t

KL 0

1
KL 1 0 1 0 1

where q represents the forward diffusion process parameter-
ized by a sequence of Gaussian noises, and pθ denotes the
neural network with learnable parameters θ. In practice,
however, the model is implemented using a U-Net backbone,
and training is simplified by minimizing the mean squared
error (MSE) between the predicted noise and the noise defined
by the scheduler. This MSE-based objective aligns with
the diffusion process, making training more straightforward
by directly matching the predicted and target noise distribu-
tions, ultimately enhancing the model's stability and
performance.

In this work, we adopt the same diffusion model outlined in
D. Xu et al. (2023d), which provides a detailed mathematical
explanation of the DDPM formulation. We consider three
different tasks:

1. The first task uses a single input channel (condition) for
the DDPM to infer the magnetic field strength, based
solely on column density.

2. The second task involves two input channels, incorporat-
ing both column density and polarization angle.

3. The third task utilizes all three channels of information—
column density, polarization angle, and LOS nonthermal
velocity dispersion.

These tasks are designed to accommodate different observa-
tional scenarios, where certain data may be unavailable, such as
missing polarization angle measurements or molecular line data
for LOS velocity dispersion. For each task, we train three
different models and evaluate their performance:

1. One model is trained on all initial conditions, covering all
magnetic field strengths and both colliding and non-
colliding GMC scenarios.

2. Another model is trained only on colliding GMC
scenarios and tested on noncolliding ones.

3. An additional model is trained only on the 10 μG and
50 μG cases and tested on the 30 μG case.

In total, we have 25,479 data samples, with 75% allocated
for training and the remaining 25% for testing. Our DDPM
training was conducted on a single NVIDIA TITAN V GPU,
which, while not the most powerful by current standards, is a
cost-efficient consumer-grade option. We set the training to run
for 600 epochs, and due to the intrinsic configuration of
generative models such as DDPM, the optimal batch size was
1, resulting in a total of 11,465,400 iterations over the data. The
total training time for each model was 248 hr, or approximately
10 days. The performance of each model is presented in
Section 3.2.

3. Results

3.1. B–N Relation

The relationship between magnetic field strength (B) and
number density (n), commonly referred to as the B–n relation,
is a central focus in both observational studies (R. M. Crutcher
et al. 1993, 2010; R. M. Crutcher 1999; C. Heiles &
T. H. Troland 2005; S. Yao et al. 2011; P. C. Myers &
S. Basu 2021) and numerical simulations (E. C. Ostriker et al.
2001; P. S. Li et al. 2015; H. Yoon et al. 2016; Z. Cao &
H.-b. Li 2023). L. Mestel (1966) first proposed a theoretical
framework linking B and n through studies of collapsing,
magnetized, gravitationally bound clouds, suggesting power-
law relations: B∝ n2/3 for weak fields and B∝ n1/2 for strong
fields. Observationally, R. M. Crutcher et al. (2010) employed
Zeeman surveys of H I, OH, and CN spectral lines to measure
the LOS magnetic field strength (Bz), finding Bz∝ n0.65.

Figure 8. 2D histograms comparing the ground-truth magnetic field strength with the inferred values for the test set (noncolliding GMC scenarios): using power-law
fitting based on column density from the training set (colliding GMC scenarios) in the first panel, and from three different DDPMs trained on colliding GMC scenarios
in the second–fourth panels. The fifth panel shows the power-law fitting based on column density from the test set (noncolliding GMC scenarios).

Figure 9. Distribution of relative error (δB) between the predicted and true
values for the noncolliding test samples across different models.
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Likewise, P. C. Myers & S. Basu (2021) analyzed 17 dense
cores using the DCF method to estimate the POS magnetic field
strength (BPOS), reporting an exponent of 0.66. However,
estimating the number density in molecular clouds is challen-
ging in observations. Therefore, we examine the correlation
between magnetic field strength and column density (N), a
more readily obtained observable.

Figure 3 illustrates the relationship between magnetic field
strength and column density under different initial magnetic
field strengths and dynamic conditions. The best-fit power law
for each scenario is also shown. While there is significant
scatter in the B–N relations, correlation exists, suggesting that
magnetic field strength can potentially be inferred from column
density. The figure also provides the power-law exponents,
showing that these vary depending on physical conditions.
When averaged across all conditions, the power-law exponent
is 0.448.

In Figure 4, we illustrate the relative error in estimating
magnetic field strength based on the corresponding power-law
fit for each scenario, using column density. The relative error
(δB) is defined symmetrically as follows:

( )
( )d =

-B B

B Bmin ,
. 4B

Pred True

Pred True

This formulation provides a more balanced approach than the
classical definition of relative error, which uses BTrue as the

denominator. In the classical method, when the predicted value
overestimates, it is easy to assess the factor of overestimation.
However, in cases of underestimation, the error falls between
−1 and 0, making it difficult to gauge how much the predicted
value differs from the true one. By defining δB symmetrically,
we can more clearly interpret the factor of difference between
predicted and true values. For instance, if the prediction
underestimates by 50%, δB returns a value of −1, indicating
that the true value is twice the predicted value. Simulations
with an initial magnetic field strength of 50 μG show the
smallest dispersion, likely due to the narrower dynamic range
of magnetic field strength in these cases, where strong magnetic
support prevents significant gravitational collapse.

3.2. Evaluation of DDPM Performance

In this section, we evaluate the performance of the trained
DDPMs on the test sets. We first examine the models trained
on all initial conditions, which encompass a range of magnetic
field strengths and both colliding and noncolliding GMC
scenarios. Figure 5 illustrates an example of predictions made
by three models trained with different inputs: single-channel
(column density), two-channel (column density + polarization
angle), and three-channel (column density + polarization angle
+ LOS nonthermal velocity dispersion). To quantitatively
assess these results, Figure 6 presents 2D histograms compar-
ing the ground-truth magnetic field strength to the DDPM-
predicted values for each model, with power-law fitting
inferred from column density also shown for comparison. To
further evaluate uncertainty, Figure 7 displays the distributions
of relative error (δB, Equation (4)) between predicted and true
values for all tested samples, and provides the mean and
standard deviation of these relative errors.
Next, we evaluate the models trained on a subset of

physical conditions and tested on new, unseen conditions.
Figure 8 shows 2D histograms comparing the ground-truth
magnetic field strength with the inferred values for the test set
(noncolliding GMC scenarios), including power-law fitting
based on column density from both the training set (colliding
GMC scenarios) and the test set (noncolliding GMC
scenarios). The distributions of relative error (δB) for these
noncolliding test samples across different models are shown
in Figure 9. Notably, applying the power-law fitting from the
training set (colliding GMC scenarios) to the test set
(noncolliding scenarios) leads to a clear overestimation of
magnetic field strength. A similar trend is observed in the

Figure 10. 2D histograms comparing the ground-truth magnetic field strength with the inferred values for the test set (30 μG): using power-law fitting based on
column density from the training set (10 μG and 50 μG cases) in the first panel, and from three different DDPMs trained on colliding GMC scenarios in the second–
fourth panels. The fifth panel shows the power-law fitting based on column density from the test set (30 μG).

Figure 11. Distribution of relative error (δB) between the predicted and true
values for the test samples in the 30 μG case across different models.
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DDPMs trained on colliding scenarios. This discrepancy,
highlighted by the distinct difference in exponents from the
B–N relation between colliding and noncolliding GMC
scenarios (Figure 3), suggests that while DDPMs are power-
ful, they may not generalize perfectly to physical conditions
not represented in the training data, warranting caution when
applying them to new scenarios.

Finally, we evaluate the models trained on the 10 μG and
50 μG cases and tested on the 30 μG case. Figure 10 presents
2D histograms comparing the ground-truth magnetic field
strength to the inferred values for the test set (30 μG), including

power-law fitting based on column density from both the
training set (10 μG and 50 μG cases) and the test set (30 μG).
The distributions of relative error (δB) for these test samples are
shown in Figure 11. Here, the DDPM trained with three
channels performs significantly better than other methods,
although some underestimation remains at the lower end of the
magnetic field strength. Power-law fitting methods exhibit a
long tail in relative error (δB), whereas the DDPMs—regardless
of the number of input channels—generally show less
dispersion. This suggests that DDPMs are more capable of
accurately inferring magnetic field strength for “interpolated”

Figure 12. 2D histograms comparing the ground-truth magnetic field strength with the inferred values for new simulations with a virial parameter αvir = 2 at different
mass-to-flux ratios μΦ. From left to right: power-law fitting based on the training set (first column), and predictions from three different trained DDPMs (second–fourth
columns). The fifth column presents power-law fitting based on the column density from the corresponding new simulations (test set).
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physical conditions, as the 30 μG case lies between the 10 μG
and 50 μG training conditions.

3.3. Testing on New Simulations

In this section, we evaluate the performance of the DDPMs
on new simulations generated with a different code and under
varying physical and initial conditions. These new MHD
simulations follow the setup in D. Xu et al. (2023b). We run
ideal MHD simulations using the ORION2 code (P. Li et al.
2021) to model turbulent clouds with periodic boundary
conditions, excluding self-gravity. The simulation box size is
5× 5× 5 pc3, with the magnetic field initialized along the z-
axis. Turbulence is driven with equal energy distribution

between solenoidal and compressive modes. The turbulence
driving occurs on large scales, specifically in Fourier space at
wavenumbers corresponding to 1/2–1 of the box size, with an
appropriate decay time to maintain driving-mode correlations
for about two crossing times. The gas is modeled as an
isothermal ideal gas with a temperature of 10 K. The 3D Mach
number is 10.5, positioning the simulated cloud on the
linewidth–size relation, s = R0.721D pc

0.5 km s−1 (C. F. McKee
& E. C. Ostriker 2007). The base grid for these calculations is
2563, without AMR.
Simulations are performed with two different virial para-

meters, /( )a s= =R GM5 1vvir
2 and 2. Additionally, five

different mass-to-flux ratios are adopted: μΦ=Mgas/MΦ=
2πG1/2Mgas/(BL

2), with μΦ= 1, 2, 4, 8, and 16. This results in

Figure 13. Similar to Figure 12, but for new simulations with a virial parameter of αvir = 1.
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10 different simulation setups, with Alfvén Mach numbers
ranging between 0.62 and 14, and initial magnetic field
strengths ranging from 1.6 μG to 51 μG.

Figures 12 and 13 display 2D histograms comparing the
ground-truth magnetic field strength with the inferred values
from various models on the new simulations, categorized by
virial parameters and mass-to-flux ratios. Figure 14 provides a
quantitative analysis of the distributions of relative error (δB)
across these simulations, with a summary of the results in
Table 1. The results show that under different initial conditions,
the power-law fitting inferred from the training set often leads
to systematic offsets due to variations in the B–N relation.
Similarly, the 1-channel and 2-channel DDPMs exhibit notable
prediction offsets on the new simulation data. In contrast, the
3-channel DDPM consistently performs better than the other
models across different conditions.

Upon examining the performance of relative error (δB) across
different physical conditions, it is noteworthy that all four
models—the power-law fitting from the training set and the
three DDPMs—achieve nearly the same accuracy as the power-
law fitting based on the new simulations when αvir= 1 and
μΦ= 1. This suggests that such conditions are well represented

in the training data. Conversely, when the relative error (δB) of
the predicted magnetic field strength from the training set's
power-law fitting deviates significantly from zero, it indicates
that these conditions—such as those with μΦ> 4—are under-
represented in the training set.
In these outlier cases, both the 1-channel and 2-channel

DDPMs exhibit performance similar to the power-law fitting
from the training set, showing significant deviations from the
true values. In contrast, the 3-channel DDPM delivers
superior results, with much smaller offsets in relative error
(δB). This demonstrates the 3-channel DDPM's ability to
effectively handle out-of-distribution data, a critical skill for
applying the model to real observational data sets, which
often contain previously unseen conditions for machine
learning models.
To further demonstrate the ability of the 3-channel DDPM

method to learn from out-of-distribution data, we tested the
models on turbulent box simulations that include both self-
gravity and outflow feedback mechanisms. Each simulation in
these data sets features at least one protostellar outflow. It is
important to note that outflows can partially offset the rapid
decay of turbulent energy. However, the impact of numerical

Figure 14. Distribution of relative error (δB) between predicted and true values for the new simulations with different virial parameters (αvir) and mass-to-flux
ratios (μΦ).

Table 1
Summary of the Relative Error (δB) for Different Models on New Simulationsa

αvir μΦ B MA
PL-Train 1-Channel 2-Channel 3-Channel PL-Test

(μG) mean std mean std mean std mean std mean std

2 1 25.5 0.87 0.339 0.324 0.788 0.675 0.294 0.322 0.213 0.505 −0.095 0.186
2 12.8 1.75 0.673 0.526 1.364 1.040 0.134 0.545 −0.147 0.286 −0.207 0.446
4 6.4 3.50 1.209 0.778 2.073 1.226 0.556 0.762 0.105 0.405 −0.105 0.470
8 3.2 6.99 1.450 0.855 2.507 1.723 0.573 0.804 0.196 0.442 −0.027 0.534
16 1.6 13.98 2.287 1.143 3.672 2.281 1.301 1.200 0.644 0.647 0.000 0.646

1 1 51.1 0.62 −0.259 0.623 0.115 0.330 −0.076 0.202 −0.076 0.301 −0.238 0.469
2 25.5 1.24 0.285 0.478 0.552 0.537 0.160 0.394 −0.184 0.396 −0.149 0.417
4 12.8 2.47 1.331 0.732 1.735 0.913 1.149 0.643 0.340 0.561 −0.227 0.526
8 6.4 4.94 1.194 0.783 1.587 1.001 0.819 0.721 0.213 0.579 −0.169 0.545
16 3.2 9.89 1.765 0.948 2.675 1.635 1.338 1.092 0.720 0.867 0.026 0.551

Note.
a Virial parameter, mass-to-flux ratios, magnetic field, Alfvén mach number, and the mean and standard deviation of the relative error (δB) for predictions from various
models. From left to right: power-law fitting from the training set, 1-channel DDPM, 2-channel DDPM, 3-channel DDPM, and power-law fitting based on the column
density from the corresponding new simulations (test set).
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dissipation in previous simulations, particularly those lacking
feedback mechanisms (e.g., in turbulence-dominated diffuse
regions), remains uncertain. Figures 15 and 16 show 2D
histograms comparing the ground-truth magnetic field strength
with the inferred values from different models applied to these
new simulations, taking into account self-gravity and outflow
feedback. The simulations are categorized by virial parameters
and mass-to-flux ratios. Figure 17 provides a quantitative
analysis of the distributions of relative error (δB) across these
simulations, with a summary of results in Table 2. It is clear
that the 3-channel DDPM consistently outperforms the other
models under various physical conditions, demonstrating its
significantly improved accuracy in predicting magnetic field
strength on previously unseen data.

3.4. Comparison with the DCF Method

In this section, we assess the performance of the DCF
method in calculating magnetic field strength for the simula-
tions discussed in Section 2.1 and compare the results with
machine learning approaches. We follow the approach
described by C.-Y. Law et al. (2024), which employs two
variations of the DCF method. The first is the classical DCF
method for estimating the POS magnetic field strength, as
outlined in Equation (1). The second is the modified DCF
method, as described in Equation (2). We applied a 2× 2
sliding window to calculate the polarization angle dispersion
σPA at the pixel level. The POS magnetic field strength was
then calculated for each pixel using Equations (1) and (2).

Figure 15. Similar to Figure 15, but showing results for new simulations that include self-gravity and outflow feedback, with a virial parameter of αvir = 2.
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Assuming the three components of the 3D magnetic field have
comparable magnitudes, we estimated the total magnetic field
strength as /( )= =B B B3 3 23D 1D POS.

Figure 18 provides an example of the magnetic field strength
calculated using both the classical and modified DCF methods.
Figure 19 shows 2D histograms comparing the ground-truth
magnetic field strength with the inferred values from the DCF
methods. Figure 20 presents the distributions of relative error
(δB) for various methods, including the classical and modified
DCF approaches.

It is evident that the classical DCF method overestimates the
magnetic field strength by about an order of magnitude,
aligning with the results reported by R. Skalidis & K. Tassis

(2021), and shows a large dispersion in δB of 18. The modified
DCF method performs significantly better, with an average
overestimation of 48% and a reduced dispersion of 2.5.
However, while the modified DCF method shows improvement
over the classical version, it still falls short of the accuracy
achieved by the power-law fitting approach and the
3-channel DDPM.
To assess the impact of window size on the DCF method, we

employ varying window sizes to scan the image and calculate
the density-weighted ground-truth magnetic field strength
within each window. Additionally, we compute the density-
weighted LOS velocity dispersion, angle dispersion, and mean
density within the selected windows to estimate the magnetic

Figure 16. Similar to Figure 15, but showing results for new simulations that include self-gravity and outflow feedback, with a virial parameter of αvir = 1.
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field strength using the DCF method, as detailed in the
Appendix. Our analysis reveals that the choice of window size
significantly affects the performance of the DCF method.
However, there is no universally optimal window size, even at
the image scale. For instance, when applying a 128× 128
window, the DCF method does not demonstrate improved
accuracy in estimating the average magnetic field strength on
larger scales. This underscores the inherent limitations of the
DCF method in achieving consistent performance across
different window sizes.

There are several reasons why the DCF method performs
poorly in simulations. First and foremost, the fundamental
assumption of the DCF method—that turbulent energy and
magnetic energy are in equipartition—does not always hold in
molecular clouds. Additionally, the presence of gravity further
disrupts this assumption of energy equipartition. Furthermore,
from a technical perspective, the LOS velocity dispersion in
our simulations is influenced not only by turbulence but also by
large-scale motions, e.g., cloud collisions, which can lead to a
significant overestimation of the magnetic field strength (Y. Hu
& A. Lazarian 2023). Moreover, since the DCF method is
inherently a statistical approach, calculating the polarization
angle dispersion on a small scale (e.g., using a 2× 2 sliding
window) introduces considerable uncertainty. Consequently,

caution should always be exercised when estimating magnetic
field strength using DCF methods.

4. Conclusions

We trained the deep learning model DDPM to predict
magnetic field strength from observables, including column
density, polarization angles, and LOS velocity dispersion. The
code and trained model are available on GitHub at https://
github.com/xuduo117/DDPM_Bmag. We evaluated the per-
formance of the diffusion model on both synthetic test samples
and new simulation data that are outside the distribution of the
training data. Our main findings are summarized below.

1. There is a power-law correlation between magnetic field
strength and column density; however, the power-law
exponents vary with different initial magnetic field
strengths and dynamic conditions. This variability makes
it challenging to accurately infer magnetic field strength
based solely on column density across different data sets.

2. We trained three DDPMs: the 1-channel DDPM (using
column density as the only input), the 2-channel DDPM
(using both column density and polarization angle), and
the 3-channel DDPM (using column density, polarization

Figure 17. Distribution of relative error (δB) between the predicted and true values for the new simulations incorporating self-gravity and outflow feedback, with
different virial parameters (αvir) and mass-to-flux ratios (μΦ).

Table 2
Summary of Relative Error (δB) for Different Models on New Simulations Including Self-gravitya

αvir μΦ B MA
PL-Train 1-Channel 2-Channel 3-Channel PL-Test

(μG) mean std mean std mean std mean std mean std

2 1 25.5 0.87 0.386 0.269 0.793 0.694 0.388 0.304 0.320 0.574 −0.021 0.122
2 12.8 1.75 1.016 0.647 1.568 1.332 0.284 0.611 0.013 0.360 −0.176 0.405
4 6.4 3.50 1.556 0.798 2.263 1.439 0.562 0.657 0.232 0.304 −0.123 0.394
8 3.2 6.99 1.729 0.873 2.674 1.774 0.705 0.798 0.289 0.403 0.010 0.461
16 1.6 13.98 2.241 1.073 3.309 2.251 1.062 1.073 0.543 0.487 −0.005 0.487

1 1 51.1 0.62 −0.320 0.649 −0.042 0.322 −0.115 0.226 −0.187 0.300 −0.155 0.369
2 25.5 1.24 0.275 0.460 0.413 0.485 0.078 0.360 −0.253 0.314 −0.131 0.412
4 12.8 2.47 1.317 0.734 1.426 0.869 0.867 0.677 0.097 0.350 −0.118 0.434
8 6.4 4.94 1.027 0.672 1.176 0.836 0.410 0.582 0.010 0.402 −0.154 0.471
16 3.2 9.89 1.632 0.807 2.265 1.604 1.086 0.831 0.392 0.554 −0.001 0.449

Note.
a Virial parameter, mass-to-flux ratios, magnetic field, Alfvén mach number, and the mean and standard deviation of the relative error (δB) for predictions from various
models. From left to right: power-law fitting from the training set, 1-channel DDPM, 2-channel DDPM, 3-channel DDPM, and power-law fitting based on the column
density from the corresponding new simulations including self-gravity (test set).
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angle, and LOS nonthermal velocity dispersion). The
3-channel DDPM consistently outperformed both the
other DDPM models and the power-law fitting approach
based solely on column density from the training set.

Figure 18. An example illustrating the magnetic field strength calculated using the DCF method: map of column density with magnetic field directions (top left), true
magnetic field strength (top right), result of the classical DCF method (bottom left), and result of the modified DCF method (bottom right).

Figure 19. 2D histograms comparing the ground-truth magnetic field strength
with inferred values using the DCF methods: classical DCF method (left panel)
and modified DCF method (right panel).

Figure 20. Distribution of relative error (δB) between the predicted and true
values for various methods, including the classical and modified DCF methods.
For comparison, the results of DDPM and power-law fitting are also included.
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3. We also tested the DDPMs on new simulations generated
using a different code and under different physical and
initial conditions. The 3-channel DDPM showed the best
performance, with the smallest systematic offset in the
relative error. This suggests that the 3-channel DDPM is
highly capable of handling unseen data that were not part
of the training set.

4. Additionally, we compared the DCF methods (both the
classical and modified versions) with the DDPM predic-
tions for estimating magnetic field strength in the
simulations. The classical DCF method overestimated
the magnetic field strength by about an order of
magnitude. While the modified DCF method improved
on the classic version, it still fell short of the precision
achieved by the 3-channel DDPM.

In a forthcoming companion paper, we will apply the
3-channel DDPM trained in this study to real observational data
sets of molecular clouds, including from the Polarized Light
from Massive Protoclusters (POLIMAP) survey (C.-Y. Law
et al. 2024), which has used SOFIA-HAWC+ to map the
polarized dust continuum emission of a sample of infrared dark
clouds to systematically measure the magnetic field strength in
these regions via DCF-type methods.
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Appendix
Impact of Window Size on DCF

In this appendix, we evaluate the effect of window size on
the performance of the DCF method by utilizing various
window sizes to scan the image. For each window, we calculate
the density-weighted ground-truth magnetic field strength and
the corresponding density-weighted LOS velocity dispersion,
angle dispersion, and mean density to estimate the magnetic
field strength using the DCF method. The window sizes tested
include 4× 4, 8× 8, 16× 16, and 128× 128. Figures 21 and
22 illustrate the comparisons between the ground-truth
magnetic field strengths and those estimated by the DCF

Figure 21. 2D histograms comparing the ground-truth magnetic field strength with inferred values using the DCF methods with different window sizes: classical DCF
method (left panel) and modified DCF method (right panel).
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method for these different window sizes. The results indicate
that there is no universally optimal window size, even at the
image scale. For instance, using a 128× 128 window does not
lead to improved accuracy in estimating the average magnetic
field strength on larger scales. This result differs from previous
studies, such as by P. S. Li et al. (2022), where the DCF
method demonstrated strong performance in simulations of
filament formation. The discrepancy may arise from the fact
that our simulations encompass a much broader range of
physical conditions, where the fundamental assumptions of the
DCF method may no longer hold.
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