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Abstract

Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health
care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable
solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential
of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication
and pose risks to patient safety. Gaining more knowledge about addressing higher levels of interoperability issues is essential to
unlock the full potential of IoMT platforms.

Objective: This scoping review aims to summarize best practices and technologies to overcome interoperability issues in IoMT
platform development for prehospital care and HBC.

Methods: This review adheres to a protocol published in 2022. Our literature search followed a dual search strategy and was
conducted up to August 2023 across 6 electronic databases: IEEE Xplore, PubMed, Scopus, ACM Digital Library, Sage Journals,
and ScienceDirect. After the title, abstract, and full-text screening performed by 2 reviewers, 158 articles were selected for
inclusion. To answer our 2 research questions, we used 2 models defined in the protocol: a 6-level interoperability model and a
5-level IoMT reference model. Data extraction and synthesis were conducted through thematic analysis using Dedoose. The
findings, including commonly used technologies and standards, are presented through narrative descriptions and graphical
representations.

Results: The primary technologies and standards reported for interoperable IoMT platforms in prehospital care and HBC
included cloud computing (19/30, 63%), representational state transfer application programming interfaces (REST APIs; 17/30,
57%), Wi-Fi (17/30, 57%), gateways (15/30, 50%), and JSON (14/30, 47%). Message queuing telemetry transport (MQTT; 7/30,
23%) and WebSocket (7/30, 23%) were commonly used for real-time emergency alerts, while fog and edge computing were often
combined with cloud computing for enhanced processing power and reduced latencies. By contrast, technologies associated with
higher interoperability levels, such as blockchain (2/30, 7%), Kubernetes (3/30, 10%), and openEHR (2/30, 7%), were less
frequently reported, indicating a focus on lower level of interoperability in most of the included studies (17/30, 57%).

Conclusions: IoMT platforms that support higher levels of interoperability have the potential to deliver personalized patient
care, enhance overall patient experience, enable early disease detection, and minimize time delays. However, our findings highlight
a prevailing emphasis on lower levels of interoperability within the IoMT research community. While blockchain, microservices,
Docker, and openEHR are described as suitable solutions in the literature, these technologies seem to be seldom used in IoMT
platforms for prehospital care and HBC. Recognizing the evident benefit of cross-domain interoperability, we advocate a stronger
focus on collaborative initiatives and technologies to achieve higher levels of interoperability.
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Introduction

Background
The aging world population and an increased prevalence of
chronic conditions and multimorbidity have placed greater
pressure on health care systems and professionals [1]. In Europe,
over 50 million people have at least 1 chronic disease [2]; and
in the United States, it is estimated that the number of people
aged 50 years and older with at least 1 chronic disease will
increase by 100%, from 71 million in 2020 to 142 million by
2050 [3]. The incidence of life-threatening falls among older
adults (aged ≥70 y) continues to rise globally [4]; together with
other age-related medical emergencies, such as stroke [5], these
events claim millions of lives each year [5,6]. The notable
changes in global demographics, combined with the prevalence
of frailty among older adults, underscore the importance of
expanding the human resources available in the public health
sector. Nevertheless, due to economic and occupational
constraints, this may not be a feasible solution [7]. To alleviate
the pressure on health care systems, more sustainable initiatives
need to be implemented. One potential solution often discussed
in the literature is the transition to home-based care (HBC) [8,9].
HBC covers a wide continuum of care and involves delivering
increasingly complex health care services to individuals in their
own residences, allowing them to maintain their independence
as an alternative to relying on residential, long-term, or
institutional nursing care [10,11]. This transition is often
supported by older adults because the majority choose to remain
in their own homes for as long as possible [12,13].

To support the transitioning to HBC, there is a growing demand
for new technological innovations and collaborative initiatives

[14]. This often involves modifications of peoples’ homes and
the use of medical equipment that not only facilitates long-term
health monitoring but also enables the management of medical
emergencies that demand rapid medical attention [15-17]. This
is particularly important in the case of older adults (aged ≥65
y) because their inability to manually initiate an emergency
alarm after a sudden deterioration in physical condition (eg,
acute stroke or hip dislocation after a fall) may lead to long-term
consequences and increased mortality [15]. Studies have shown
that Internet of Medical Things (IoMT; Figure 1) platforms
have the potential to support the transitioning to HBC by
streamlining workflows, reducing costs and time delays, and
improving patient well-being [18-20]. While previous research
has demonstrated the usefulness of stand-alone platforms for
the monitoring of chronic conditions and detection of
abnormalities, there has been limited focus on achieving higher
levels of interoperability within IoMT [21-24]. Although
stand-alone platforms may be feasible in certain situations, the
lack of interoperability with external systems such as electronic
health records (EHRs), emergency medical services, and public
safety answering points (PSAPs) may lead to data becoming
trapped within silos, potentially resulting in delayed information
transfer, suboptimal decision-making, and patient harm
[7,21,25,26]; for example, a study conducted by Magrabi et al
[27] showed that approximately 20% of reported patient safety
hazards were linked to deficient information transfer.
Furthermore, Hyvämäki et al [26] showed that inadequate
documentation and use of information in HBC plays a significant
role in interorganizational health information exchange–related
incidents, resulting in, for example, delayed care and patient
harm.
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Figure 1. In this study, the Internet of Medical Things (IoMT) was defined as a network of interconnected medical devices and health care systems
that use the internet to collect, transmit, and exchange health care data. The figure illustrates device-to-device (thin lines), device-to-system (thin lines),
and system-to-system (thick lines) communication, with 2 IoMT platforms (A and B) interacting with each other.

At Chalmers University of Technology in Gothenburg, Sweden,
the Care@Distance research group is active in the field of
remote and prehospital digital health. The group is dedicated
to improving health care delivery through interoperable
cutting-edge solutions, encompassing clinical decision support
systems, artificial intelligence (AI), modern IT, and innovative
user interactions. While interoperability offers numerous
advantages, we acknowledge that current medical data still
contain nonstandard elements [28,29], and vendors continue to
use their own proprietary solutions [29]; for example, most
inpatient EHRs include over 5000 variables [28,29], making it
difficult to ensure a shared understanding of medical concepts
across domains and organizations [29]. One system may code
“A fall on and from stairs and steps” as W10 in the International
Classification of Diseases, Tenth Revision, Clinical Modification
(ICD-10-CM), while another system uses Systematized
Nomenclature of Medicine–Clinical Terms (SNOMED CT)
code 900000000000448009 for “Fall on stairs.” Establishing a
shared understanding of these 2 terms requires a translation
[21]. As the number of unique systems and standards increases,
the need for separate translations also increases, especially
considering that SNOMED CT includes over 340,000 medical
concepts (clinical findings, procedures, substances, etc) [29].
Due to these complex translation processes within health care,
involving various file formats (eg, text, video, images, and
audio), communication protocols, and semantics, over 80% of
all medical data tend to be overlooked or discarded [19]. This
not only hampers communication between systems but also
limits the use of AI, international cooperation, and research
[29]. As the technological landscape expands, navigating among
the available technologies and standards is becoming
increasingly challenging. Hence, in this study, we summarize
existing knowledge and best practices to overcome
interoperability issues in IoMT platform development to manage
medical emergencies within HBC and prehospital care settings.

Objectives
This scoping review aims to summarize and map the enabling
technologies that can be used to develop interoperable platforms

to manage medical emergencies in HBC and prehospital care.
We have proceeded from a 6-level interoperability model
comprising device, network, syntactical, semantic,
cross-platform, and cross-domain interoperability and a 5-level
IoMT reference model comprising perception, transport,
processing, application, and business layers [11]. These models
provide adequate granularity and context to be applied within
the context of IoMT [10]. Relevant actors and domains within
the IoMT domain include homes, sensor providers, emergency
medical services, PSAPs, social security services, and hospitals.
The aim is to describe technologies and their use in an accessible
way, enabling cross-disciplinary discussion between clinicians
and engineers. This scoping review can potentially serve as a
guide for software developers, clinicians, and other practitioners
aiming to develop interoperable IoMT platforms.

Methods

Overview
This scoping review follows the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) guidelines for scoping reviews
(refer to Multimedia Appendix 1 for the PRISMA-ScR checklist)
[30] and adheres to the methodology outlined in the research
protocol [11]. Given the broad spectrum of research questions
addressed in this scoping review, the methodology includes 4
distinct search strategies, referred to as strategies A to D in the
research protocol [11]. The relationships between these search
strategies are illustrated in Figure 2.

This approach allows each research question to be addressed
more systematically by separating the search terms, search
periods, and goals within each search strategy. Search strategies
A and B were completed with the research protocol [11] (Figure
2) and addressed the following research questions:

1. What are the current challenges of developing a real-time
IoMT platform for managing medical emergencies such as
falls?
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2. What is interoperability? How can it be defined in the
context of IoMT?

3. What types of models are used to visualize the different
layers of interoperability? When talking about medical
devices in an IoMT setting, which model is preferable and
why?

4. Which reference model with corresponding protocols can
best describe and define the structure of key aspects of the
information being managed in a real-time IoMT system?
How is the model being used today?

These 4 research questions were addressed in the research
protocol [11], resulting in the definition of a 6-level
interoperability model and an IoMT reference model to be used
as reference materials in this scoping review. On the basis of
these definitions, this scoping review will proceed with search
strategies C and D (Figure 2), focusing on answering the
following research questions:

1. Have any studies examined which current technologies are
associated with the layers in the IoMT reference model,
comprising device, network, syntactical, semantic,
cross-platform, and cross-domain interoperability, and how
these are being used to fulfill the set of rules defined by
each layer? If so, what are the results?

2. How can interoperability solutions be mapped to the layers
in the interoperability model?

3. What recommendations regarding enabling technologies
can be given to clinicians and practitioners who want to
develop IoMT platforms that can aggregate, store, and
process data from relevant actors in prehospital care and
HBC settings?

Research questions 1 and 2 are addressed in search strategy C,
and research question 3 is addressed in search strategy D in this
review.

Figure 2. This scoping review used a 4-strategy approach to streamline the search process. Strategies A and B were conducted as part of the research
protocol [11], while strategies C and D are addressed in this scoping review. HBC: home-based care; IoMT: Internet of Medical Things.

Search and Screening Process
Six electronic databases were used in this study: IEEE Xplore,
PubMed, Scopus, ACM Digital Library, Sage Journals, and
ScienceDirect [11]. In the published protocol, we had proposed
using the Google Scholar database, but we replaced it with the
ACM Digital Library in this review to ensure higher precision
in search results [31,32] (refer to Multimedia Appendix 2 for
the search terms used for search strategies C and D). The
retrieved articles were assessed for inclusion based on
predefined eligibility criteria and underwent a 2-step screening
process using the web application Rayyan (Rayyan Systems

Inc) [33]. The screening was performed by HJ and MS, and any
disagreements were resolved through discussion between them
[11].

Eligibility Criteria
The eligibility criteria were originally defined in the research
protocol [11]. However, a minor adjustment was necessary to
streamline the screening process and enhance clarity (Textbox
1). The last inclusion criterion was updated to emphasize a
stronger focus on technologies that address interoperability
issues.
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Textbox 1. Eligibility criteria.

Inclusion criteria

• Published peer-reviewed journals and conference papers

• Written in English

• Published between January 1,1999, and August 31, 2023

• Studies describing or reporting the development or design of Internet of Medical Things (IoMT) systems with a focus on technology

• Studies reporting challenges and barriers to integrating IoMT platforms into prehospital care or home-based care settings with a focus on technology

• Studies describing the enabling technologies that can be used to solve interoperability issues in IoMT platform development

Exclusion criteria

• Full-text articles that were unavailable or not written in English

• Conference abstracts, book reviews, commentaries, and editorial articles

• Studies focusing on hardware, project management processes, or regulatory compliance

• Studies reporting on the design or development of IoT applications with no focus on health data (eg, Industry 4.0, including the automotive, food,
and manufacturing industries)

• Studies describing the design or development of machine learning methods to achieve interoperability

Data Extraction
In search strategy C, data were extracted to map interoperability
solutions to their respective interoperability models, categorizing
them based on the specific level of interoperability addressed.
The mapping was based on the 6-level interoperability model
and the 5-level IoMT reference model established in the research
protocol [11]. Similar mappings that could be found in the
literature acted as a reference and, combined with the expertise
of our research group, were used to validate the mappings.

In search strategy D, previous efforts in IoMT platform
development for prehospital care and HBC were examined. A
thematic analysis approach was used to identify and summarize
the technologies and standards used in these development
processes (Textbox 2). This analysis was performed by 1
reviewer (MS) using Microsoft Excel (version 2403) and the
web application Dedoose (version 9.0.107; SocioCultural
Research Consultants LLC). The thematic analysis was based
on the framework outlined by Braun and Clarke [34]. The
framework was adapted to this study and included five steps:

1. Reading through the literature and recording valuable
aspects of the data, including the technologies and standards
used

2. Organizing data into meaningful groups and creating codes
relevant to the research questions (each technology was
assigned a code, represented by a short descriptive summary
of its intended use; Textbox 2)

3. Collating codes and assigning different keywords to them
(each code could be assigned multiple keywords; the
keywords were used to facilitate thematic analysis, aiming
to conceptualize the functionality of each level in the
interoperability model)

4. Assigning a nonoverlapping theme to each technology based
on the codes and keywords (technologies with similar codes
and keywords were assigned the same theme; a theme was
defined as one of the following interoperability levels:
device, network, syntactical, semantic, cross-platform, or
cross-domain interoperability)

5. Compiling the thematic insights into a coherent review

Textbox 2. An example of the thematic analysis process. The applicability of the mapping was confirmed by our research group through tests with
multiple articles [35].

Blockchain technology mapped to cross-domain interoperability

• Technology: blockchain

• Description in literature: “integration of blockchain into healthcare applications, including all aspects of privacy, validity of safety, and access
to patient and electronic health records”

• Code assigned: blockchain can be used to preserve privacy and integrity of health data

• Keywords: security, data privacy, and integrity

• Assigned theme: cross-domain interoperability

From the thematic analysis, a list of commonly used
technologies was compiled. Each technology was accompanied
by a descriptive overview of its application area and function,
along with a mapping to one of the levels in the interoperability

model defined in the research protocol [11]. For each study, the
main areas of interest were identified, such as citation details
(eg, author, year of publication, and country of origin) and key
study characteristics (eg, type of IoMT platform, platform
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requirements, interoperability challenges, and the technologies
and standards used to achieve different levels of
interoperability). The results were summarized using narrative
descriptions as well as figures and tables. The data extraction
process ensured that sufficient data were gathered to answer
each research question.

Results

Study Selection
The study selection flowchart is presented in Figure 3. A total
of 2949 articles were identified (n=2306, 78.2% retrieved
through search strategy C and n=643, 21.8% retrieved through
search strategy D). After screening and snowballing, 158 articles
were included in this study (n=84, 53.2% from strategy C, n=29,
18.4% from strategy D, and n=45, 28.5% from snowballing).
Of the 33 articles excluded after title and abstract screening, 7
(21%) were left out because they were in non-English languages.

Figure 3. Study selection flowchart.

Subsections
This section is divided into 5 subsections (Figure 4). In the first,
we provide an overview of the technologies and standards
applicable to IoMT, emphasizing their relevance in addressing
various levels of interoperability, as introduced in the research
protocol [11]. In the second subsection, we present common
interoperability requirements identified in the included studies,
focusing on their application in prehospital care and HBC

scenarios. Next, in the third subsection, we explore the
interoperability challenges associated with IoMT platform
development. In the fourth subsection, we summarize previous
efforts in IoMT platform development and the technologies and
standards used in these initiatives. Finally, in the fifth
subsection, we draw upon our research findings to present
actionable insights and recommendations for addressing
interoperability challenges.
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Figure 4. The main Results section is divided into 5 parts: overview (a summary of the enabling technologies that address various levels of interoperability),
requirements (mapping Internet of Medical Things [IoMT] platform needs to the enabling technologies), challenges (presenting common interoperability
challenges), strategies (outlining strategies to overcome these challenges), and recommendations (offering our research group’s suggestions for addressing
interoperability issues in IoMT platform development).

An Overview of the Enabling Technologies That
Address Interoperability Issues Within IoMT
In the following subsections, we have categorized and
summarized the enabling technologies based on the specific
interoperability level they address (refer to Multimedia
Appendix 2 for a description of the enabling technologies).

Device Interoperability
Device interoperability is the foundational level of
interoperability [36] and involves ensuring that heterogeneous
devices can physically connect and communicate in a restricted
network, typically a personal area network (PAN) [36]. Solving
issues at this level is often the first step in IoMT platform
development processes because interoperable sensors are a
prerequisite for subsequent analysis and decision-making
processes. However, the widespread use of vendors’proprietary
solutions often hinders the achievement of this level of
interoperability [37]. Consequently, patients receiving
hypertension management services from a particular company,
for example, are often required to use a blood pressure device
provided by the same company [38].

A variety of standards and protocols, including the Institute of
Electrical and Electronics Engineers (IEEE) 11073 personal
health device (PHD) [38-40], Zigbee [41], and Bluetooth Low
Energy (BLE) [42], play a crucial role in addressing
interoperability among medical devices, such as weighing scales,
blood pressure monitors, and blood glucose monitors [39,43].
These technologies and devices can often be mapped to the
perception layer in the IoMT reference model [44], a layer that
is responsible for gathering raw data [45].

Network Interoperability
Network interoperability focuses on information exchange over
the internet, including the ability of different networks or devices

on separate networks to communicate [46]. Typically, network
interoperability involves extended communication compared
to device interoperability, which includes communication within
local area networks (LANs) or wide area networks (WANs).

Technologies that focus on solving issues at the network
interoperability level can primarily be mapped to the transport
or processing layer in the IoMT reference model and include
IP [47], user datagram protocol [48], transmission control
protocol, IPv6 over low-power wireless PAN (6LoWPAN)
[48,49], software-defined networking [36,50], gateways [51-53],
message queuing telemetry transport (MQTT) [54], and
WebSocket [55].

Syntactic interoperability
Syntactic interoperability, the third level of interoperability,
involves data formats and data structures [36]. In the health care
sector, both unstructured (eg, images, audio, and video streams)
and structured data are used, which means that technologies
used to address syntactic interoperability must be able to process
diverse data types. Without syntactic interoperability, data might
be sent to a system that is unable to process and use the
information [56].

Technologies that focus on syntactic interoperability issues can
be mapped to the processing layer in the IoMT reference model
and include JSON [57], Health Level 7 version 2 (HL7v2) [58],
and XML [59].

Semantic Interoperability
Semantic interoperability refers to the ability of different
computer systems to have a common understanding of message
contents, enabling them to share data with unambiguous, shared
meaning [25]. This level of interoperability is essential for
enabling automatic data processing and decision-making in
IoMT settings [60]. Shared semantics within health care can

J Med Internet Res 2025 | vol. 27 | e54470 | p. 7https://www.jmir.org/2025/1/e54470
(page number not for citation purposes)

Seth et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


help to avoid knowledge mismanagement, clinical
misinterpretation, misdiagnosis of a patient’s illness, and even
patient deaths [61]; for example, a system that receives “123”
as input from another system (Figure 5) cannot interpret the
data without additional information. For the receiving system
to process and use the received data, the value “123” must be
complemented by relevant metadata tags, such as “systolic blood

pressure” or “patient ID.” To achieve this contextual enrichment,
well-established standards such as RxNorm [62], openEHR
[63], ICD [37], Logical Observation Identifiers Names and
Codes (LOINC) [62,64], and SNOMED CT [62] can be used.
These standards offer a structured framework for associating
informative labels and classifications with data [62].

Figure 5. An example of the lack of semantic interoperability. If a system receives insufficient data, it cannot interpret the information correctly. In
the absence of semantic interoperability between the sending and receiving systems and without additional context or information, the receiving system
cannot interpret the value “123”.

Cross-Platform Interoperability
Cross-platform interoperability denotes the ability of different
platforms within a single domain to work together seamlessly.
It could be various systems (eg, PSAPs, EHRs, mobile apps,
and laboratory information systems) running on different
platforms (web, mobile, desktop, etc) located in different
hospital wards or hospitals. Cross-platform interoperability
challenges emerge at this level primarily due to the presence of
a wide range of operating systems (Windows, Android, Linux,
iOS, etc), programming languages, data structures, architectures,
and access methods for both entities and data (eg, application
programming interfaces [APIs]) [36]. Technologies that focus
on addressing these levels of interoperability issues can be
mapped to the application layer in the IoMT reference model
and include Fast Healthcare Interoperability Resources (FHIR)
[65-68], representational state transfer APIs (REST APIs) [66],
microservices [7,69], Docker [70], Kubernetes [70], and cloud
services [67,69-72].

Cross-Domain Interoperability
Patients are likely to receive medical attention from several
institutions and across various domains over their lifetime.
Hence, communicating vital information across organizational
and national boundaries is essential to ensure proper patient
care and treatment [29]. This level of communication is enabled
by cross-domain interoperability, which represents the highest
level of interoperability [36].

In this context, a domain refers to a sociotechnical system
defined by shared objectives and interests. These domains, or
systems, are often separable from other systems by social,
technical, and legal boundaries (Figures 6 and 7). Examples of
domains include a medical device manufacturing company or
a hospital. Each domain might have distinct goals, processes,
security policies, and terminologies. Technologies and standards
such as BioPortal [73], blockchain [74], ontology mediation
[13,75], Web Ontology Language (OWL) [13], ontologies
[25,74,76], General Data Protection Regulation (GDPR) [77,78],
and Health Insurance Portability and Accountability Act
(HIPAA) [78,79] can help achieve cross-domain interoperability.
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Figure 6. Ontologies define domain knowledge, and semantics provide data meaning. Semantics can tag data (eg, “systolic”), while ontologies provide
context, such as relating “123” to “blood pressure” and defining “elevated systolic level” within the domain.

Figure 7. Technologies and standards such as blockchain, the General Data Protection Regulation (GDPR), and ontologies can enable data sharing
between 2 separate domains.

Common IoMT Interoperability Requirements for
Prehospital Care and HBC
IoMT platforms for prehospital care and HBC have specific
requirements. These platforms are required to operate in
time-critical environments, where large amounts of sensitive

data need to be exchanged in real time across various domains.
In this subsection, we have summarized common interoperability
requirements identified in the included studies and grouped
them based on their potential application in IoMT settings (Table
1).
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Table 1. The enabling technologies for interoperability and their application in Internet of Medical Things (IoMT) for prehospital care and home-based
care. Suitable technologies are mapped to various IoMT platform requirements and potential use, with supporting references provided in the last column.

ReferencesSuitable technologiesPotential useIoMT platform requirement

[19,54,80-88]MQTTa, WebSocket, and webhooksAlerts, notifications, chats, and data
visualization

Real-time text communication

[83,89]WebRTCb and VOIPcVideo and voice calls between patients
and caregiver

Real-time videoconferences or au-
dioconferences

[7,23,24,60,77,80,83,84,87,90,91]JSON, XML, CSV, and SenMLdData interoperability and sharingCommon data formats

[19,23,24,60,77,82,88,92-94]FHIRf, LOINCg, SNOMED CTh,
RxNorm, openEHR, ontologies, BioPor-

tal, DMTOi, and HL7 CDAj

Automatic data exchange, processing,
and interpretation; persistent data stor-

age and enabling use of AIe

Common semantics

[7,24,54,77,79,82-85,87,89,92,95,96]Blockchain, HTTPS, TLSk, SSLl,

GDPRm, and HIPAAn

Encrypted data communication, access
controls, and consent management ser-
vices

Data privacy and security

[19,24,60,80,83,91,95,97-99]Gateways, LPWANr (LoRas or Lo-
RaWAN), and 3G, 4G, or 5G

Allowing devices in LANo or PANp to

send their data over internet (WANq;

Extended sensor communication

eg, allowing monitoring applications
outdoors)

[7,19,23,24,60,77,79,80,82-89,
92,94,96,100-102]

HTTP, REST APIt, API, AMQPu, and

SOAPv

Allowing systems located on different
networks to connect over WANs

System-to-system communication

[19,24,94]OneM2M and IEEEw 11073Allowing sensors from different ven-
dors to adhere to common data format
and semantics

Allowing sensors from different
vendors to communicate

[23,24,60,82,83,99,100,102]OWLx, RDFy, OMz, Semantic Web,

and HeTOPaa

Interpreting and processing information
coming from a separate domain (eg,
using AI)

Translation or transcoding between
ontologies in different domains or
creation of common ontologies

[7,19,79,80,83,85,91,97,98]Fog and edge computingMinimizing delays and information loss
in latency-sensitive and real-time appli-
cations (eg, heart monitoring systems)

Timely data processing and immedi-
ate responses in emergency situa-
tions

[7,19,23,24,80,83,84,89-91,
94,95,97,99,100,103]

Zigbee, BLEab, Bluetooth, Z-Wave,

6LoWPANac, ANT+ad, NFCae,

Creating a smaller network of integrat-
ed medical devices that can collect pa-
tients’ vital signs

Device-to-device communication in
PANs or LANs

CoAPaf, Wi-Fi, RFIDag, and IEEE

11073 PHDah

[7,77,79,80,83,85]Microservices, Docker, and KubernetesEnhancing scalability and flexibility in
IoMT; ensures consistent deployment
and efficient application management

Modular system

[7,19,23,24,77,79,80,83,87,88,
91,93,95,97,100]

Cloud services (computing and storage,
etc)

Improving administration and availabil-
ity of data; enabling large-scale storage,
computationally intensive data process-
ing and advanced analysis tasks

Data availability and processing
power

[54,80,94]FIWARE, IHEai, Continua, and

OpenICEaj

Platforms, frameworks, and infrastruc-
ture for creating interoperable, standard-
ized, and scalable solutions

Common infrastructures or middle-
ware

aMQTT: message queuing telemetry transport.
bWebRTC: Web Real-Time Communication.
cVOIP: voice over IP.
dSenML: sensor markup language.
eAI: artificial intelligence.
fFHIR: Fast Healthcare Interoperability Resources.
gLOINC: Logical Observation Identifiers Names and Codes.
hSNOMED CT: Systematized Nomenclature of Medicine–Clinical Terms.
iDMTO: Diabetes Mellitus Treatment Ontology.
jHL7 CDA: Health Level 7 clinical document architecture.
kTLS: transport layer security.
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lSSL: secure sockets layer.
mGDPR: General Data Protection Regulation.
nHIPAA: Health Insurance Portability and Accountability Act.
oLAN: local area network.
pPAN: personal area network.
qWAN: wide area network.
rLPWAN: low-power wide area network.
sLoRa: long range.
tREST API: representational state transfer application programming interface.
uAMQP: advanced message queuing protocol.
vSOAP: simple object access protocol.
wIEEE: Institute of Electrical and Electronics Engineers.
xOWL: Web Ontology Language.
yRDF: resource description framework.
zOM: ontology for units of measure.
aaHeTOP: Health Terminology/Ontology Portal.
abBLE: Bluetooth Low Energy.
ac6LoWPAN: IPv6 over low-power wireless personal area network.
adANT+: Advanced and Adaptive Network Technology+.
aeNFC: near field communication.
afCoAP: constrained application protocol.
agRFID: radio frequency identification.
ahPHD: personal health device.
aiIHE: Integrating the Healthcare Enterprise.
ajOpenICE: Open Integrated Clinical Environment.

Common Interoperability Challenges in IoMT
Achieving interoperability is not a trivial task. The higher the
interoperability level, the more complex the endeavor due to
the involvement of additional technologies and standards.

Previous research has reported recurring interoperability
challenges frequently encountered in IoMT platform
development for prehospital care and HBC. Some of these
challenges are reported in Table 2.

Table 2. Common interoperability challenges in Internet of Medical Things (IoMT) platform development for prehospital care and home-based care.
Each challenge is mapped to studies (references) that discuss it in the context of previous IoMT platform developments efforts.

ReferencesChallenges

[11,13,22,75,79,81-85,91,101]Latency

[11,13,24,60,79,82,83,85,91,101-103]Privacy or security

[11,22,75,82-84,91,94,97,98,100,101,104]Volume and complexity of data

[11,56,60,79,83,85,91,98]Multiple or proprietary protocols

[19,23,24,60,82,88,100,102]Different terminologies or semantics

[84,95,97,103]Poor connectivity

Among the examined studies (n=25), we could identify 7
frequently reported challenges associated with interoperability.
Among the 7 reported challenges, 12 (21%) were related to
latency problems, 8 (14%) to proprietary protocols, 13 (23%)
to the volume and complexity of data, 12 (21%) to privacy and
security concerns, 8 (14%) to semantic coding issues and 4 (7%)
to poor connectivity.

Common Strategies to Overcome Interoperability
Issues in IoMT Platform Development
In this section, we provide an overview of the technologies and
standards used frequently to address interoperability challenges
in IoMT platform development for prehospital care and HBC
(Table 3).
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Table 3. Summary of Internet of Medical Things (IoMT) platform development for home-based care and prehospital care as presented in 30 (19%) of
the 158 studies reviewed, highlighting each IoMT platform’s primary purpose and objective, publication year, and the technologies and standards used
to address interoperability issues.

Technologies and standardsPublication yearObjectiveIoMT platform

Fog and cloud computing, MQTTa, Zigbee,

BLEb, CoAPc, 6LoWPANd, FIWARE,

2018Real-time, remote monitoring of patients
with sleep apnea to support diagnosis and
treatment

System for sleep monitoring [80]

JSON, CSV, HDFSe, REST APIf, gateways,
microservices, and Docker

RFIDh, MQTT, REST API, Wi-Fi, CSV,
XML, PDF, and JPEG

2022Individual patient vital signs monitoring in
potential emergency or prehospital applica-
tions

IoTg-based message broker system
[18]

FHIR STU3j, HL7 CDAk, CSV, XML,

SOAPl, JSON, SNOMED CTm, LOINCn

2019Care plan management tool integrated with

clinical decision support services, EHRsi,
and sensors

Platform for management of chronic
diseases [23]

and WHO ATCo, local versions of ICD-10p,

REST API, cloud computing, HeTOPq, and

SMARTr on FHIR

MQTT, OpenICEt, TLSu, and API2019Open-source platform for secure and accu-
rate remote pulmonary data monitoring

RePulmos [54]

Microservices, Docker, Kubernetes, cloud
and edge computing, REST API, JSON,

2020Support the early diagnosis of infectious
diseases in older people

SPIDEPv [7]

gateways, HTTPS, TLS, Wi-Fi, and
SMART on FHIR

openEHR, OWLw, ontologies, protocol
converter, Bluetooth, Zigbee, Wi-Fi, Sen-

2020An interoperable IoMT platformSemantic IoMT platform for
eHealth [60]

MLx, gateways, JSON, REST API, cloud
computing, and Semantic Web

REST API; MQTT; CoAP; openEHR;
FHIR; SenML; Wi-Fi; cloud, fog, and edge

2019A platform to cover the domain of health
care, following widely adopted standards,

IoMT platform for aggregation,
processing, and sharing [19]

computing; OneM2M; gateways, and Wi-
Fi

enabling semantic interoperability, and
considering a big data approach

REST API, TCPy, JSON, XML, SOAP,

Bluetooth, Wi-Fi, ANT+z, HTTPS, TLS,
cloud computing, and Wi-Fi

2021Smart health care platform oriented to mul-
tiple point-of-care scenarios for health care
promotion and cardiovascular disease pre-
vention

Platform for health care promotion
and cardiovascular disease preven-
tion [96]

FHIR, ontologies, SNOMED CT, LOINC,
BioPortal, REST API, WebSocket, web-

2023SemPryv supports REST APIs to consume
and produce interoperable streams of health

SemPryv [84]

hooks, RxNorm, UCUMaa, Docker,

GDPRab, Kubernetes, and RDFac

care data, following the HL7 FHIR standard
and using the Pryv.io platform

Zigbee, LoRaWAN, TCP/IP, Bluetooth, and
gateways

2018System for vital signs monitoring and fall
detection

LoRaWANad-based NXTGeUHae

[103]

API, Bluetooth, JSON, and NFCaf2021Support treatment, monitoring, and data
collection

Monitoring platform for patients
with diabetes [90]

Cloud and fog computing, microservices,
CoAP, JSON, BLE, WebSocket, REST API,

2019Remote monitoring of health parameters of
older people

VITASENIOR-MT [83]

MQTT, gateways, 6LoWPAN, AMQPag,

Bluetooth, WebRTCah, GDPR, and HTTPS

Bluetooth, Wi-Fi, cloud computing, and 4G2013Monitoring for Alzheimer disease diagnosis
and rehabilitation

Apnea MedAssist 2 [104]

OWL, ontologies, gateways, REST API,
RFID, Wi-Fi, Bluetooth, cloud computing,
Docker, and HTTP

2019Monitoring for Alzheimer disease diagnosis
and rehabilitation

IC-SMARTai [100]

REST API; cloud, edge, and fog computing;
gateways; CSV; blockchain; and HTTP

2020Automatic diagnosis of heart diseasesHealthFog [101]

RFID, HTTPS, WebSocket, RDF, JSON,

Semantic Web, ontologies, and SPARQLak
2019Platform for independent older peopleHABITATaj [102]
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Technologies and standardsPublication yearObjectiveIoMT platform

BLE, Bluetooth, REST API, HTTPS,
WebSocket, CSV, JSON, and Docker

2022A central platform that acts as a bridge be-
tween sensors and a user’s smartphone

SensorHub [84]

MQTT, HTTPS, Wi-Fi, Docker, and API2023On-wrist fall detection systemEnergy-aware IoT-based architec-
ture [85]

Bluetooth, Wi-Fi, gateways, cloud and fog
computing, JSON, XML, API, and TCP

2017Low-cost health system for continuous

monitoring of ECGal
Real-time remote monitoring system
[91]

LoRa; edge, fog, and cloud computing;
BLE; and gateways

2019A system that can be used to monitor, for
example, cardiovascular diseases or diabetes

Fall detection system [97]

Edge and cloud computing, blockchain, Wi-

Fi, Kubernetes, Docker, HIPAAam, HTTP,
and API

2020Securing health care applications at homeChainSDI [79]

REST API, JSON, AMQP, gateways, cloud
computing, ontologies, Z-Wave, HTTP,
microservices, GDPR, and Wi-Fi

2019A home care assistant system to support
informal caregivers caring for persons living
alone

SmartHabits [77]

JSON, MQTT, HTTPS, REST API, cloud

computing, WebSocket, and SSLan
2020A personal assistant platform for older

people and those who are visually impaired
DALÍ [87]

FHIR, REST API, IEEEao 11073, Zigbee,

Bluetooth, IHEap, Continua, SOAP, JSON,
and XML

2015Integrated monitoring systemIntegrated health monitoring system
[94]

FHIR, ontologies, OWL, JSON, HTTPS,
REST API, Bluetooth, cloud computing,
SNOMED CT, LOINC, RxNorm, BioPortal,

DMTOaq, IEEE 11073, Wi-Fi, 3G, 4G, or

5G, and BFOar

2019Platform for diabetes monitoring and to
provide customized, long-term, and real-
time treatment plans

A mobile health monitoring-and-
treatment system [24]

Cloud and fog computing, RFID, gateways,
and Wi-Fi

2018Remote monitoring platform for monitoring
patients in smart homes

Patient monitoring system in smart
homes [98]

REST API, WebSocket, and HL7 data2021Allowing patients access to their health data
in real time

VitalCore [88]

Ontologies, gateways, Wi-Fi, Zigbee, Lo-
RaWAN, RDF, and OWL

2021An ontology-based IoMT platform to allevi-
ate problems related to chronic diseases

Health care system for older people
[99]

Bluetooth, 6LoWPAN, gateways, UDP, Wi-
Fi, cloud computing, and API

2017Platform to assist older people in their
homes and trigger alarms in case of emer-
gency situations; works offline

We-Care [95]

J Med Internet Res 2025 | vol. 27 | e54470 | p. 13https://www.jmir.org/2025/1/e54470
(page number not for citation purposes)

Seth et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Technologies and standardsPublication yearObjectiveIoMT platform

Gateways, UDP, TCP, Wi-Fi, WebSocket,
TLS, and cloud computing

2018A scalable IoT system for real-time automat-
ic pain assessment using facial expressions

Remote pain monitoring system [81]

aMQTT: message queuing telemetry transport.
bBLE: Bluetooth Low Energy.
cCoAP: constrained application protocol.
d6LoWPAN: IPv6 over low-power wireless personal area network.
eHDFS: Hadoop Distributed File System.
fREST API: representational state transfer application programming interface.
gIoT: Internet of Things.
hRFID: radio frequency identification.
iEHR: electronic health record.
jFHIR STU3: Fast Healthcare Interoperability Resources Standard for Trial Use, version 3.
kHL7 CDA: Health Level 7 clinical document architecture.
lSOAP: simple object access protocol.
mSNOMED CT: Systematized Nomenclature of Medicine–Clinical Terms.
nLOINC: Logical Observation Identifiers Names and Codes.
oWHO ATC: World Health Organization Anatomical Therapeutic Chemical.
pICD-10: International Classification of Diseases, Tenth Revision.
qHeTOP: Health Terminology/Ontology Portal.
rSMART: Substitutable Medical Applications, Reusable Technologies.
sRePulmo: remote pulmonary monitoring system.
tOpenICE: Open Integrated Clinical Environment.
uTLS: transport layer security.
vSPIDEP: System for Prediagnosis and Telecare of Infectious Diseases in Elderly People.
wOWL: Web Ontology Language.
xSenML: sensor markup language.
yTCP: transmission control protocol.
zANT+: Advanced and Adaptive Network Technology+.
aaUCUM: Unified Code for Units of Measure.
abGDPR: General Data Protection Regulation.
acRDF: resource description framework.
adLoRaWAN: long-range wide area network.
aeNXTGeUH: Next Generation Ubiquitous Healthcare.
afNFC: near field communication.
agAMQP: advanced message queuing protocol.
ahWebRTC: Web Real-Time Communication.
aiIC-SMART: Internet of Things Cloud-Enabled Seamless Monitoring for Alzheimer Diagnosis and Rehabilitation.
ajHABITAT: Home Assistance Based on the Internet of Things for the Autonomy of Everybody.
akSPARQL: SPARQL Protocol and RDF Query Language.
alECG: electrocardiography.
amHIPAA: Health Insurance Portability and Accountability Act.
anSSL: secure sockets layer.
aoIEEE: Institute of Electrical and Electronics Engineers.
apIHE: Integrating the Healthcare Enterprise.
aqDMTO: Diabetes Mellitus Treatment Ontology.
arBFO: Basic Formal Ontology.
asUDP: user datagram protocol.

As can be seen in Table 3, IoMT platform development often
requires a combination of technologies and standards. Simply
specifying “Bluetooth,” “Wi-Fi,” or “SNOMED CT” is not
sufficient because no single standard, protocol, or technology
can address higher levels of interoperability [100]; for example,
SNOMED CT can be complemented by more domain-specific

standards such as LOINC [29], while Bluetooth can be used in
conjunction with a gateway, MQTT, and FHIR to enhance
interoperability within IoMT [19]. Table 2 reveals variations
in the frequency of the technology and standards used.
Consequently, we have summarized the most used technologies
and standards in Figure 8. Technologies and standards that
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appeared in 2 or fewer articles were excluded from Figure 8.
These include Web Real-Time Communication (WebRTC),
openEHR, voice over IP, webhooks, and Substitutable Medical
Applications, Reusable Technologies (SMART) on FHIR, as
well as the interoperability guidelines and frameworks such as

FIWARE, Integrating the Healthcare Enterprise (IHE), Continua,
and Open Integrated Clinical Environment (OpenICE). The top
5 reported technologies were cloud computing (19/37, 51%),
REST APIs (17/37, 46%), Wi-Fi (17/37, 46%), gateways (15/37,
41%), and JSON (14/37, 38%).

Figure 8. Occurrences of common technologies addressing interoperability in Internet of Medical Things (IoMT) platforms for prehospital care and
home-based care, grouped by application area (each color). Only technologies and standards reported in 2 or more separate articles are included.
6LoWPAN: IPv6 over low-power wireless personal area network; API: application programming interface; BLE: Bluetooth Low Energy; CoAP:
constrained application protocol; FHIR: Fast Healthcare Interoperability Resources; GDPR: General Data Protection Regulation; LOINC: Logical
Observation Identifiers Names and Codes; MQTT: message queuing telemetry transport; OWL: Web Ontology Language; RDF: resource description
framework; REST API: representational state transfer application programming interface; RFID: radio frequency identification; SNOMED CT:
Systematized Nomenclature of Medicine–Clinical Terms; TLS: transport layer security.

Recommendations
Our recommendations (Textbox 3) are based on the findings
presented in Table 3 together with discussions within our
research group. These recommendations focus on technologies
and standards that support cross-domain interoperability across

all layers of the IoMT reference model, spanning from data
collection by sensors to cloud-based data processing and secure
cross-domain data exchange. In broad terms, an IoMT platform
for HBC and prehospital care should include, in our opinion,
the capabilities presented in Textbox 3.
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Textbox 3. Capabilities required by an Internet of Medical Things (IoMT) platform for home-based care and prehospital care.

Compatibility for medical device integration and secure and reliable real-time data transfer to the cloud

• The IoMT platform should ensure seamless integration of medical devices and enable secure, real-time transmission of data to the cloud.

• Recommended technologies and standards: Bluetooth Low Energy (BLE), Zigbee, Institute of Electrical and Electronics Engineers (IEEE) 11073
personal health device (PHD), Open Integrated Clinical Environment (OpenICE), and FIWARE

Real-time and low latency data processing and communication

• The IoMT platform should be capable of processing and visualizing data in real time with minimal latency to support timely decision-making
and data processing.

• Recommended technologies and standards: message queuing telemetry transport (MQTT), WebSocket, and Web Real-Time Communication
(WebRTC)

Data persistence for reliable data storage

• The IoMT platform should ensure that data are stored in a consistent and secure way.

• Recommended technologies and standards: openEHR and blockchain

Open data standards and data exchange mechanisms for secure and efficient system-to-system communication.

• The IoMT platform should adhere to open data standards and secure exchange mechanisms, facilitating efficient communication between different
systems.

• Recommended technologies and standards: JSON and representational state transfer application programming interface (REST API)

• Common semantics and domain knowledge descriptions for automatic knowledge extraction

Common semantics and domain descriptions enable automatic extraction of knowledge from data, enhancing system understanding.

• Recommended technologies and standards: Fast Healthcare Interoperability Resources (FHIR), Systematized Nomenclature of Medicine–Clinical
Terms (SNOMED CT), Web Ontology Language (OWL), resource description framework (RDF), Logical Observation Identifiers Names and
Codes (LOINC), and BioPortal

Security measures to protect patient data and ensure data confidentiality

• The IoMT platform should ensure the privacy and integrity of patient data throughout its life cycle.

• Recommended technologies and standards: transport layer security (TLS), General Data Protection Regulation (GDPR), Health Insurance
Portability and Accountability Act (HIPAA), blockchain, and Open Authorization 2.0 (OAuth2)

Scalability to accommodate a growing number of connected devices and generated data volumes

• The platform should scale effectively to handle an increasing number of devices and growing data volumes.

• Recommended technologies and standards: Docker, Kubernetes, cloud services, and fog and edge computing

Discussion

Principal Findings and Study Contribution
This scoping review provides insights into the enabling
technologies that can address interoperability issues in IoMT
settings. Although the primary focus has been on solutions for
prehospital care and HBC, the results are also applicable to
other settings with similar characteristics and requirements. The
results show that higher levels of interoperability in IoMT can
be achieved by combining various technologies and standards
from multiple interoperability levels.

On the basis of the studies (n=30) presented in Table 3, it seems
that contemporary IoMT studies on prehospital care and HBC
tend to focus on lower levels of interoperability. This conclusion
is in line with previous research conducted by Rubí and Gondim
[19]. One possible explanation for the predominant focus on
device integration and lower levels of interoperability among
the reviewed studies is our use of “IoMT” as a search term.

Although IoMT is broad and includes integration with medical
devices as well as medical applications, the term is somewhat
ambiguous and might introduce some biases toward
device-centric approaches. We believe that future research could
benefit from using a more refined definition to emphasize a
shifted focus toward higher levels of interoperability. Therefore,
we propose the introduction of the term Internet of Medical
Systems (IoMS) to address this gap. This new terminology could
help distinguish studies focusing on device-to-device integration
from those focusing on integration with EHRs and other health
applications.

We acknowledge that some may argue that technologies and
standards such as blockchain, fog computing, GDPR, and the
like may primarily focus on aspects other than interoperability
(eg, security, communication, networking, data transfer, or
architectural design). However, proceeding from the 6-level
interoperability model [11], our interpretation of interoperability
extends beyond mere data exchange and interpretation. Even if
two systems possess the capabilities to exchange and interpret
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information, we believe that it is not enough to achieve higher
levels of interoperability within health care without considering
privacy and security aspects. However, our findings indicate
varying levels of focus on technologies such as blockchain and
SMART on FHIR within the research community, with some
of the studies (4/30, 13%) analyzing these technologies in depth,
while others (26/30, 87%) tend to overlook them. As an
example, of the 30 included studies, 8 (27%) reported the use
of authentication and authorization mechanisms
[79,80,90,91,95,96,101,105], but only 7% (2/30) reported the
use of Open Authorization (OAuth) or SMART on FHIR as
mechanisms for authentication and authorization [7,23].

On the basis of our findings, it seems that more comprehensive
platforms tend to incorporate a wider range of technologies
compared to simpler platforms (Table 3); for example, platforms
that reported interoperability capabilities with external systems
or the use of AI seem to more frequently use technologies and
standards to semantically code the data, including ontologies,
FHIR, LOINC, ICD, openEHR, RxNorm, and SNOMED CT.
However, this relationship was not confirmed statistically, and
we acknowledge that other factors may influence platform
complexity, such as regulatory requirements, available
technologies, and expertise among developers.

Table 3 reveals that 30% (9/30) of the IoMT platform
development studies for prehospital care and HBC reported the
use of semantic frameworks or ontologies. As the creation of
ontologies is a necessary but time-consuming and labor-intensive
task, research has examined the potential to achieve ontology
alignment by using AI; for example, Dam et al [106] used
augmented intelligence to map data across various domains to
facilitate the integration of diverse data sources. According to
Tangi et al [107], AI has the potential to not only establish a
common language and foster a shared understanding of data
but also clean and structure the data. While we acknowledge
that using AI for interoperability is an emerging trend, such
studies have not been incorporated in this review.

In the reviewed literature, semantic standards and ontologies
were described as essential for establishing connections with
external systems and enabling the use of AI. Interestingly,
standards for image and video formats, such as Digital Imaging
and Communications in Medicine (DICOM), have not been
mentioned in the examined studies. Interoperability enhancing
organizations and initiatives such as FIWARE, IHE, Continua,
and OpenICE were reported to guide researchers and developers
[88], but these organizations and initiatives were only mentioned
in 3 (10%) of the 30 studies.

Fog and edge computing were reported to be used to overcome
problems related to limited bandwidth, often associated with
high data rate applications, such as fall detection systems or
electrocardiography monitoring [97]. Our findings suggest that
fog and edge computing are often combined with cloud
computing, especially in AI-intensive applications that require
more processing power. To improve the performance of AI
algorithms and enable machines to correlate data, studies
reported the use of ontologies, resource description framework
(RDF), and OWL [24,99]. Furthermore, platforms requiring

real-time functionalities (alerts or notifications) reported the
use of MQTT (7/30, 23%) and WebSocket (7/30, 23%) [82,85].

While we have documented the use of commonly used
technologies and standards in this study, it is important to
acknowledge that the accuracy of these findings depends on the
transparency and thoroughness of the explanations within the
included studies; for instance, some of the studies (30/63, 48%)
offered detailed insights into their IoMT platform development
processes and the technologies and standards used, while others
(33/63, 52%) focused on broad aspects of the topic, as in the
studies by Rakhman et al [108] and Shim et al [109]. As a result,
some of the studies (33/63, 52%) were excluded from Table 2.
Furthermore, because technologies and standards can have
versatile applications, specifying their exact application area
can often be challenging. Therefore, the findings presented in
Table 3 should be considered as a guidance rather than absolute
truths.

Mapping the Enabling Technologies to the
Interoperability Model
In this study, the mapping was performed based on a 6-level
interoperability model defined in the study protocol [11]. To
facilitate the mapping process, any inconsistencies between our
model and the levels described in the included studies were
addressed using a flowchart model [11]. This was done to
manage different naming conventions across different models;
for instance, one study may label a specific interoperability
level as “technical interoperability,” [105] while others may
refer to it as “foundational interoperability” [110]. Similarly,
the specific functions and components of each level may not
be consistent across different models or frameworks, which can
create ambiguity and uncertainty about how to define and
interpret interoperability. Hence, proceeding from a different
interoperability model [71] would most likely result in a
somewhat different mapping outcome.

It is important to note that although we mapped the enabling
technologies to specific interoperability levels, it is uncommon
for a technology to address a single interoperability level; for
example, the FHIR standard not only specifies data exchange
formats and semantics but also supports REST APIs, enabling
it to address syntactic, semantic, and cross-platform
interoperability concurrently. Hence, in this study, we mapped
FHIR to cross-platform interoperability, which represents the
highest level of interoperability addressed by FHIR. However,
saying that the FHIR standard solves cross-platform
interoperability is not completely true because it needs to be
combined with technologies on lower interoperability levels.
We argue that the correct phrasing should be that FHIR can
solve cross-platform interoperability issues if it is appropriately
combined with other relevant technologies and standards.

Another aspect worth mentioning regarding the mapping is the
importance of examining the primary focus of the technologies
and standards; for example, the IEEE 11073 PHD standard
involves data models that specify how a measurement and
observations of vital signs should be represented, including
descriptions of the different units, data types, and semantic
meanings [38,40]. On the basis of this description, it is likely
that the IEEE 11073 PHD standard should be categorized at the
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semantic interoperability level. However, due to its primary
focus on device-to-device communication within LANs or
PANs, the IEEE 11073 PHD standard does not fully meet the
requirements for network interoperability, let alone semantic
interoperability. Hence, the IEEE 11073 PHD standard was
mapped to the device interoperability level in this study.

Summarizing the Enabling Technologies That Address
Interoperability Issues
In our study, we found that technologies such as BLE and
Zigbee, which primarily target device interoperability, are not
sufficient for IoMT applications in prehospital or HBC settings
due to their restricted physical communication range (ie, 20-100
meters) [41,111]. For physicians to remotely monitor patients
and for devices to automatically send alarms during medical
emergencies, the first step is to extend the communication range
by enabling network interoperability [49]. Otherwise, the
physician’s system would need to be in the same room as the
patient, which obviates the concept of remote monitoring; for
example, by combining BLE with long-range wide area network
(LoRaWAN) or 4G or 5G—or 6LoWPAN with
CoAP—long-range data transmission can be achieved [112].
This allows physicians to remotely monitor patients residing
several kilometers away from the hospital [25]. However,
choosing a particular combination of technologies from different
interoperability levels does not ensure the achievement of the
desired level of interoperability. This is because interoperability
initiatives require collaboration among all involved stakeholders;
for instance, a standard such as IEEE 11073 can be adopted in
several ways, which means that simply specifying the use of
IEEE 11073 may not be sufficient to achieve device
interoperability. Instead, a standard should be tailored to meet
the specific requirements of a particular use case or application.
This can be achieved using profiles to ensure that the standard
is implemented in a way that suits the needs.

Although close collaboration among stakeholders is essential
to achieve higher levels of interoperability, studies have shown
this endeavor to be challenging; for example, a study conducted
in 2021 by Everson et al [113] revealed that more than half
(55%) of health information exchange organizations in the
United States reported varying degrees of intentional information
blocking. The authors showed that the most prevalent form of
information blocking involved the refusal to share information,
which 14% of the health information exchange organizations
routinely observed among EHR vendors. The reason for
blocking information according to Everson et al [113] had to
do with regional competition among vendors. By limiting the
sharing of information with other actors, vendors can ensure
that health care providers stick to their platform [113,114].
While this approach benefits vendors, it creates disadvantages
for patients and the health care industry. The findings of Everson
et al [113] suggest that while technologies and standards can
streamline data exchange in health care, the reluctance of
organizations to engage in such efforts impedes progress toward
higher levels of interoperability.

Comments on Our Recommendations
The recommendations provided in this study draw on insights
from previous IoMT platform development projects and our

research group’s expertise. They focus on technologies and
standards that together can support cross-platform or
cross-domain interoperability. We acknowledge that multiple
technologies and standards can be used to develop IoMT
platforms. We are also aware that there is no “one right way”
of adopting a specific technology or standard. Rather, we argue
that interoperability initiatives and development projects should
be facilitated by close collaboration among the stakeholders
involved.

With this study and our recommendations, we hope to bring
together the research, developer, and health care communities
by highlighting relevant technologies and standards to foster
collaboration and improve interoperability initiatives within the
health care domain. While we recognize the importance of
independence in driving innovation, we hope to see more IoMT
platforms using common standards and best practices already
available in the market. We further hope to see an increased
engagement in interoperability initiatives such as FIWARE,
IHE, and OpenICE.

We acknowledge the advantages of IoMT platforms capable of
delivering personalized patient care and enhancing patient
safety. However, we do not believe that technologies and
standards are the only solutions. To achieve the highest level
of interoperability, we argue that it is necessary to have a
profound understanding of organizations’ working processes,
routines, and policies. Hence, we look forward to delving into
these challenges in close collaboration with relevant stakeholders
and developing an IoMS platform that supports cross-domain
interoperability.

Limitations and Biases
This scoping review adheres to the published protocol [11] and
focuses on technologies addressing interoperability issues within
the context of IoMT platform development in HBC and
prehospital care settings. Hence, studies focusing on hospital
systems [115], platforms for intensive care units [81], integration
platforms [93], or platforms for research or clinical trials
[92,116] were omitted. Furthermore, most of the studies (33/63,
52%) displayed a deficiency in information or a lack of
transparency regarding the development process and the
technologies used; therefore, they were excluded from Table 1
and Table 3. As the focus of this study was to identify and
summarize best practices and frequently used technologies, we
did not assess the effectiveness of technology implementations
in detail.

To manage the scope of this review process effectively, the
reviewers made a deliberate decision to limit the included studies
to those specifically addressing interoperability in an IoMT
context. This was necessary to avoid overwhelming screening
efforts with an unmanageable number of studies. We are aware
that we might have missed relevant articles with this strategy.
Furthermore, we are aware that technologies used in other
sectors, for example, Industry 4.0, manufacturing, and
transportation, could also be applicable to IoMT, especially
considering that these domains share some common
characteristics (eg, requirements for real-time, cross-domain
information exchange). Another limitation of this study might
be the use of the term “IoMT” in our literature search. Although
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IoMT is often defined as the interconnection of medical devices
and applications, there seems to be a predominant focus on
devices and lower levels of interoperability among these studies.
This limitation could potentially be eliminated by the
introduction and use of the new term IoMS.

Although recent advancements in AI have demonstrated its
potential to enhance interoperability, studies reporting the use
of AI for this purpose were excluded from this review. Another
limitation of this study is that, to expedite the process, the coding
scheme was tested by only 1 reviewer (MS).

Conclusions
In this study, we have demonstrated that the highest level of
interoperability can be theoretically achieved through a strategic
combination of various technologies and standards. Furthermore,
we have provided a summary of the relevant technologies and
standards that can be used in IoMT platforms to overcome
interoperability issues in HBC and prehospital care settings.

Despite the availability of innovative and suitable technologies,
the IoMT research community has reported limited interest in
adopting technologies and standards such as Docker, blockchain,
SMART on FHIR, HIPAA, and GDPR to achieve cross-domain
interoperability. Most of the studies (17/30, 57%) have primarily
focused on lower levels of interoperability (up to the semantic
interoperability level). This observation highlights a significant
research gap, particularly in achieving cross-domain
interoperability within IoMT for HBC and prehospital care. To
emphasize the need for higher levels of interoperability and to
support future research, we advocate for the introduction of the
term IoMS. In addition, the reluctance of organizations and
vendors to share information and participate in interoperability
initiatives highlights the importance of considering these aspects
when addressing interoperability challenges, especially in
procurement processes [117].
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