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Abstract
The realization of fault-tolerant quantum computing requires the execution
of quantum error-correction (QEC) schemes, to mitigate the fragile nature of
qubits. In this context, to ensure the success of QEC, a protocol capable of
implementing both qubit reset and leakage reduction is highly desirable to-
gether with the ability to perform fast and high-fidelity readout of the qubit
s’ quantum states. In this thesis, we tackle both these challenges in an ar-
chitecture consisting of fixed-frequency transmon qubits pair-wise coupled via
tunable couplers. We demonstrate a readout scheme that combines two mi-
crowave techniques: applying a shelving technique to the qubits that reduces
the contribution of decay error during readout, and a two-tone excitation of the
readout resonators to distinguish among qubits’ populations in higher energy
levels. We perform single-shot frequency-multiplexed qubit readout, with a
140 ns readout time, and demonstrate 99.5 % assignment fidelity for two-state
readout and 96.9 % for three-state readout - without using a quantum-limited
amplifier. We also demonstrate a reset scheme that is fast, unconditional,
and achieves fidelities well above 99 %, thus enabling fixed-frequency qubit
architectures as future implementations of fault-tolerant quantum computers.
Our reset protocol uses the tunable couplers to transfer any undesired qubits’
excitation to the readout resonators of the qubits, from which this excitation
decays into the feedline. In total, the combination of qubit reset, leakage
reduction, and coupler reset takes only 83 ns to complete. This reset pro-
tocol also provides a means to both reduce QEC cycle runtime and improve
algorithmic fidelity on quantum processors.

Keywords: Quantum Computing, Superconducting Circuits, Transmons,
Qubit Control and Readout
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CHAPTER 1

Introduction

1.1 Quantum Information and Computation

Quantum computing has emerged as a transformative paradigm with the po-
tential to revolutionize computational science by offering solutions to problems
intractable for classical machines [1, 2]. This potential is rooted in the funda-
mental principles of quantum mechanics, specifically superposition and path
interference [3, 4]. Unlike classical bits, which are constrained to discrete states
of 0 or 1, quantum bits, or qubits, can exist in a coherent superposition of
quantum states. The superposition principle allows a quantum computer to
explore a vast computational space, effectively performing computations on an
exponentially large number of classical states simultaneously. The vast com-
putational space is formally described by a 2n-dimensional complex Hilbert
space for an n-qubit system [5]. This exponential scaling of the state space
with the number of qubits is the origin of quantum parallelism, enabling the
exploration of exponentially larger solution spaces than classically achievable
with a comparable number of bits [4, 6].

Furthermore, quantum systems exhibit entanglement, a uniquely quantum
correlation phenomenon wherein the quantum state of multiple qubits be-
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Chapter 1 Introduction

comes intertwined, irrespective of spatial separation [7, 8]. This non-classical
correlation, a direct consequence of the tensor product structure of composite
quantum systems, further amplifies the computational capabilities. Entan-
glement, characterized by non-separable states, represents correlations that
cannot be described by local hidden variable theories [9, 10] and is essential
for many quantum algorithms [4, 11].

Quantum computation proceeds by applying unitary transformations, rep-
resented by 2n × 2n unitary matrices, to state vectors, effectively evolving
the system within this high-dimensional space [12]. By coherently manipu-
lating superpositions and exploiting entanglement, quantum algorithms can
achieve significant speedups for specific computational tasks, such as integer
factorization (Shor’s algorithm) [13] and unstructured search (Grover’s algo-
rithm) [14], demonstrating the potential for exponential quantum advantage
[15]. The power of quantum computation stems from the ability to efficiently
manipulate these exponentially large state spaces and exploit uniquely quan-
tum phenomena such as quantum interference. This interference, arising from
the superposition principle, allows computational paths to constructively or
destructively interfere, leading to probabilistic but potentially exponentially
faster solutions compared to classical algorithms, where computations follow
deterministic trajectories in a classical phase space. The manipulation of
these high-dimensional state vectors through unitary transformations, com-
bined with the exploitation of quantum interference, constitutes the core of
quantum algorithmic design.

1.1.1 Quantum State of a Qubit

To formally represent the state of a single qubit, we use the Dirac, or "ket,"
notation. A general qubit state |ψ⟩ can be expressed as a superposition of the
computational basis states |0⟩ and |1⟩:

|ψ⟩ = α|0⟩ + β|1⟩, (1.1)

where α and β are complex amplitudes such that |α|2 + |β|2 = 1 [1]. This
normalization condition ensures that the total probability of measuring the
qubit is 1. Geometrically, a single qubit state can be visualized using the
Bloch sphere, a unit sphere where the north pole represents |0⟩ and the south
pole represents |1⟩ [1]. Any pure qubit state can be mapped to a point on the

4



1.1 Quantum Information and Computation

Figure 1.1: Qubit state representation on a Bloch sphere. (a) The geometric
parameters θ and ϕ of a qubit state vector r in the Bloch sphere. (b) The locations of
the basis states |0⟩ (north pole) and |1⟩ (south pole), along with the four equatorial
superposition states on the cardinal axes [16].

surface of the Bloch sphere, parameterized by two angles, θ and ϕ, as shown
in Fig. 1.1(a):

|ψ⟩ = cos(θ/2)|0⟩ + eiϕ sin(θ/2)|1⟩. (1.2)

It is important to note that the global phase of the qubit state is physically
irrelevant and is not explicitly represented in the Bloch sphere parametriza-
tion.

1.1.2 Coherent Quantum Operations

The evolution of a qubit state is governed by unitary transformations, which
correspond to rotations on the Bloch sphere. First, the basis states |0⟩ and
|1⟩ can be defined as

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
, (1.3)

in the matrix representation of the Hilbert space. An arbitrary single-qubit
rotation can then be parameterized by an angle α about the x-, y-, or z-axes
applied to the quantum state:

Xα = e−i α
2 σ̂x , Yα = e−i α

2 σ̂y , Zα = e−i α
2 σ̂z , (1.4)

5



Chapter 1 Introduction

using the Pauli operators

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (1.5)

The rotation operators enable continuous manipulation of the qubit state.
For example, Xα adjusts the polar angle θ by an amount α, while Zα modifies
the azimuthal phase ϕ in the Bloch sphere representation in Eq. (1.2). A
fundamental subset of these rotations occurs at α = π, where they reduce (up
to a global phase) to the Pauli operators:

• Xπ = −iσx: The X gate flips |0⟩ ↔ |1⟩ (bit-flip), analogous to a classical
NOT gate.

• Zπ = −iσz: The Z gate introduces a π relative phase between |0⟩ and
|1⟩ (phase-flip).

• Yπ = −iσy: The Y gate combines both effects, equivalent to Y = iXZ.

These discrete π-rotations form the basis of quantum algorithms. Another
common single-qubit gate is the Hadamard gate (H), essential for creating
superposition states from computational basis states:

H = 1√
2

[
1 1
1 −1

]
, H|0⟩ = |0⟩ + |1⟩√

2
, H|1⟩ = |0⟩ − |1⟩√

2
. (1.6)

Geometrically, H corresponds to a π/2 rotation about the y-axis followed by
a π rotation about the x-axis, mapping pole-to-equator states (see Fig. 1.1(b)).

1.1.3 Physical Requirements for Quantum Computation
Having introduced the basic theoretical foundations of quantum computation,
we now turn to the practical considerations for building a physical quantum
computer. David P. DiVincenzo outlined a set of criteria [17] that any physical
system must satisfy to be considered as a suitable candidate for building a
quantum computer. These criteria are:

1. Scalable physical system with well-defined qubits: The system
must be scalable to a large number of qubits.

6



1.2 Fault-Tolerant Quantum Computation

2. Ability to initialize the qubits to a simple fiducial state, such
as |0⟩: Qubit initialization is crucial for starting computations.

3. Long relevant decoherence times, much longer than the gate
operation time: Qubits must maintain their quantum coherence for
sufficiently long durations to perform meaningful computations.

4. A universal set of quantum gates: The ability to implement a uni-
versal set of quantum gates allows for arbitrary quantum computations.

5. Qubit-specific measurement capability: The ability to measure
the state of individual qubits is necessary to extract the results of a
computation.

These criteria provide a roadmap for the development of practical quantum
computers and highlight the key challenges in realizing this technology. At the
moment, there are many architectures for realizing quantum computers, in-
cluding nuclear spin in silicon [18, 19], nitrogen-vacancies centers in diamonds
[20, 21], quantum dots with semiconductor materials [22, 23], ultra-cold atoms
[24, 25] and trapped ions [26, 27], all of which use microscopic systems to store
and control quantum information. On the other hand, superconducting de-
vices use millimeter-sized circuit elements to realize quantum computing [28–
31]. One of the main advantages of superconducting circuits is their design
flexibility and the fact that their fabrication process is compatible with estab-
lished lithographic techniques for conventional integrated circuits, which has a
matured semiconductor industry that can support scaled-up processes in the
future. Moreover, superconducting circuits operate at microwave frequencies,
where technological development has been abundant in the form of telecom-
munications and reliable instruments are commercially available. On top of
that, superconducting systems have a coherence time on the order of microsec-
onds, much greater than the time to perform quantum operations (gate) that
is tens of nanoseconds on average, thus enabling the implementation of deep
circuits and complex algorithms.

1.2 Fault-Tolerant Quantum Computation
Superconducting circuits have emerged as a leading platform for quantum
computation, with recent progress demonstrating their potential [32–34]. How-

7



Chapter 1 Introduction

ever, realizing the full potential of quantum algorithms for solving practically
relevant problems requires scaling to thousands or even millions of qubits with
extremely low error rates. Current superconducting processors operate with
error rates between 10−2 and 10−3 [34], significantly higher than the 10−18

achieved by classical computers. This discrepancy motivates the development
of fault-tolerant quantum computation, a paradigm that allows for error de-
tection and correction during the computation itself.

1.2.1 Errors in Quantum Computation
The fragile nature of quantum states makes them highly susceptible to noise,
errors, and decoherence, posing significant challenges to the realization of scal-
able quantum computers. Unlike classical bits, qubits cannot be copied due
to the no-cloning theorem [35], making traditional error correction techniques
inapplicable. Even small error rates can accumulate rapidly during complex
quantum computations, leading to computational failure [36]. The primary
sources of errors in physical qubits can be categorized as follows:

• Decoherence: This is the loss of quantum coherence due to interaction
with the environment. It manifests in two primary forms:

– Energy relaxation (T1): This process describes the decay of a
qubit from the excited state |1⟩ to the ground state |0⟩, releasing
energy to the environment. The probability p|1⟩(t) of finding a
qubit in the |1⟩-state when it is undergoing energy relaxation fol-
lows the exponential decay function p|1⟩(t) = p|1⟩(0)e−t/T1 , where
p|1⟩(0) is the initial probability and T1 is the decay time constant.

– Pure Dephasing (Tϕ): This process describes the loss of phase
coherence when the qubit is in a superposition state, without en-
ergy exchange with the environment. It effectively randomizes the
relative phase between |0⟩ and |1⟩. An observable decoherence
time T2 that combines the effects of both T1 and Tϕ is given by
1

T2
= 1

2T1
+ 1

Tϕ
.

• Measurement errors: These are errors that occur during the mea-
surement of the qubit state. They can arise from imperfections in the
measurement apparatus or from interactions with the environment dur-
ing the measurement process.
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1.2 Fault-Tolerant Quantum Computation

• Gate errors: These are imperfections in the execution of quantum
gates, which cause deviations from the intended unitary transformations.
Gate errors can be further classified as:

– Coherent errors: These are systematic errors that arise from mis-
calibration of control pulses or other deterministic imperfections.
They can, in principle, be corrected through improved control tech-
niques.

– Incoherent errors: These are stochastic errors due to fluctuations
in the environment or other random processes. They are more
difficult to correct.

The performance of quantum operations is often characterized by their fi-
delity, which quantifies how close the implemented gate is to the ideal gate.
A fidelity of unity represents a perfect gate. For a single-qubit gate U , the
fidelity F with respect to the ideal gate V can be defined as:

F (U, V ) = 1
d

Tr(U†V ), (1.7)

where d is the dimension of the Hilbert space (2 for a single qubit) and Tr
denotes the trace operator [37]. For mixed states ρ and σ, the fidelity can be
expressed as [37]:

F (ρ, σ) =
(

Tr
√√

ρ σ
√
ρ

)2
. (1.8)

Achieving high fidelity gates and long coherence times (high T1 and T2) are
crucial for realizing fault-tolerant quantum computation.

1.2.2 Quantum-Error Correction Codes
To overcome the challenges posed by these errors, fault-tolerant quantum
computation (FTQC) provides a framework for performing reliable quantum
computations even in the presence of noise [12, 38, 39]. FTQC achieves this by
encoding logical qubits into highly entangled states of many physical qubits
[40, 41]. This encoding enables the detection and correction of errors with-
out directly measuring or collapsing the quantum state. The key idea is to
distribute the quantum information of a logical qubit across multiple physical
qubits in such a way that errors affecting individual physical qubits can be
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Figure 1.2: Layout of physical qubits in quantum-error-correction codes
(a) A distance-3 repetition code with 5 physical qubits that can protect the logi-
cal state against either bit-flip or phase-flip errors. "D" and "A" denote data and
ancilla qubits, respectively. (b) A distance-3 surface code consists of 17 physical
qubits, which can protect the logical states from both bit-flip and phase-flip errors
simultaneously. The blue and red backgrounds indicate the X and Z-type plaquettes
respectively.

detected and corrected without destroying the encoded quantum information.
The goal of FTQC is to ensure that the overall logical error rate is sufficiently
low to allow long and complex computations to succeed reliably.

A simple example of an error correction scheme is the classical repetition
code. In this code, a classical bit 0 is encoded as 000, and a bit 1 is encoded as
111. If a single-bit flip error occurs (e.g., 000 becomes 010), a majority vote can
recover the original bit based on the most frequent value of the three. However,
this simple approach cannot be directly applied to quantum information due
to the no-cloning theorem and the continuous nature of quantum errors. A
direct measurement of the qubit will collapse its quantum state, rendering
it useless in further computations. Instead, quantum error correction (QEC)
codes utilize entanglement and clever encoding schemes to protect quantum
information. The simplest example of a QEC code is the three-qubit bit-flip
code, as shown in Fig. 1.2(a). In this code, logical qubit states |0̄⟩ and |1̄⟩ are
encoded as:
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1.2 Fault-Tolerant Quantum Computation

|0̄⟩ = |000⟩, (1.9)
|1̄⟩ = |111⟩, (1.10)

in the three data qubits. If a bit-flip error (represented by the Pauli-X operator
σx) occurs on one of the physical qubits, we can detect it using repeated
measurements on the ancilla qubits. These measurements do not reveal the
encoded quantum information but provide information or syndromes of the
error. For instance, if the first qubit flips, |000⟩ becomes |100⟩. By measuring
the parity of the first two qubits and the last two qubits (using operators
like Z1Z2 and Z2Z3, where Z is the Pauli-Z operator), we can detect the
error without determining whether the encoded state was |0̄⟩ or |1̄⟩. The
measured outcomes on the ancilla qubits are called the error syndromes, and
each outcome corresponds to a specific error happening on the data qubits.

However, quantum information is susceptible to more than just bit-flip er-
rors. In addition to bit-flip errors (X errors), quantum states can also ex-
perience phase-flip errors (Z errors) and combinations of both (Y errors).
The three-qubit bit-flip code described above only protects against bit-flip
errors. A similar three-qubit phase-flip code can be constructed to protect
against phase-flip errors, encoding |0̄⟩ = |+++⟩ and |1̄⟩ = |– – –⟩, where
|±⟩ = (|0⟩ ± |1⟩)/

√
2.

An evolution of the repetition code that can protect against both bit-flip
and phase-flip errors simultaneously is the surface code [40–43], shown in
Fig. 1.2(b). The surface code has been shown experimentally to be a promis-
ing platform in recent implementation with superconducting qubits, notably
by researchers from ETH and Google [32–34, 44, 45]. In these codes, qubits are
arranged on a two-dimensional lattice, and errors are detected by measuring
stabilizers, which are multi-qubit Pauli operators. In the surface code, data
qubits are located on the vertices of the lattice, and ancilla qubits are located
on the faces (plaquettes). There are two types of plaquettes: X-type plaque-
ttes and Z-type plaquettes. The X(Z)-type stabilizer measures the product
of X(Z) operators on two or four surrounding data qubits. The syndrome
measurements, performed by measuring the ancilla qubits, reveal the location
of errors on the data qubits. By repeatedly performing these measurements,
errors can be tracked and corrected. Surface codes are particularly attractive
due to their high error thresholds and their planar layout, which is suitable
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for many physical implementations.

1.2.3 Physical-Error Threshold
Fault-tolerant quantum computation (FTQC) requires that physical error
rates for all operations, including qubit control, gate execution, and measure-
ment, remain below specific thresholds, such that increasing code distance L,
i.e., corresponding to the number of the encoding physical qubits, suppresses
the logical error rate exponentially instead of introducing new errors [41, 46,
47]. For many quantum error correction (QEC) codes, such as the surface
code, this threshold lies in the range of 10−3 to 10−2, depending on the spe-
cific noise model, implementation, and choice of the decoder [40, 41, 48]. Each
component of the quantum processor contributes to the overall error budget
[32, 33, 44, 45]:

• Single-qubit gates must have error rates below 10−3 to 10−4, corre-
sponding to fidelities in the range of 99.9% [49, 50]. Superconducting
qubits routinely achieve this level of performance through precise pulse
shaping, calibration, and error mitigation techniques.

• Two-qubit gates are more error-prone due to their longer duration
and increased complexity. The threshold for two-qubit gate error rates
is typically 10−2 to 10−3 [51, 52]. State-of-the-art superconducting sys-
tems achieve fidelities above 99.5%, with ongoing improvements target-
ing above 99.9%.

• Measurement errors must be below 10−2 to 10−3, corresponding to
fidelities exceeding 99% to 99.9% [53, 54]. Fast measurement is equally
important to reduce the overall time for QEC cycles. For superconduct-
ing qubits, dispersive readout with Purcell filtering and quantum-limited
parametric amplifiers allows measurement times on the order of 10 to
100 nanoseconds [55, 56].

• Control crosstalk error must be below 10−3 to 10−4 to prevent corre-
lated errors from propagating [57, 58]. Shielding against magnetic flux,
qubit frequency allocation schemes, and pulse shaping techniques are
used to minimize crosstalk in qubit control.
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• Leakage errors, where the qubit population is excited to a non-comput
ational state, must also be minimized [59, 60]. Contributions include
sub-optimized single and two-qubit gates, colliding qubit frequencies,
and measurement-induced transitions.

By meeting these thresholds across all components, superconducting qubit
platforms are approaching the fault-tolerance regime, enabling scalable quan-
tum computation with robust error correction. However, realizing these comp
onent-level performances in a functional, fault-tolerant quantum computer ne-
cessitates a massive system engineering effort to integrate these components
and control a large number of qubits with high precision and stability.

1.3 Thesis Focus and Outline
Advancing towards fault-tolerant quantum computing requires expanding the
capabilities and enhancing the performance of quantum control and readout.
This work, therefore, focuses on improving high-fidelity qubit readout and
enabling essential operations such as on-demand qubit state reset and leakage
population reduction. These advancements pave the way for more robust and
scalable quantum computing with superconducting qubits.

Chapter 2 lays the theoretical foundation for this work by introducing key
concepts, beginning with the Josephson junction and its implementation as
a Cooper-pair box (CPB). The discussion then progresses to fixed-frequency
and tunable transmon qubits. This chapter provides the necessary background
for subsequent investigations and also introduces the basic single-qubit oper-
ations, readout schemes, and benchmarking techniques that are further ex-
plored in Paper D.

Chapter 3 focuses on improving qubit readout through both software and
hardware enhancements. Readout speed is significantly increased by incor-
porating a common-mode Purcell bandpass filter into the readout circuit,
which protects the qubit state from decay while enabling a stronger coupling
between the qubit and its readout resonator. The signal-to-noise ratio can
be further improved by integrating the travelling-wave parametric amplifier
(TWPA) developed in Paper F into the measurement chain, contributing to
a faster readout speed. Concurrently, readout fidelity is boosted by leverag-
ing the higher energy levels of transmons and employing multiple microwave
readout tones, as detailed in Paper A.
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Chapter 4 delves into the subject of two-qubit gates, examining the theo-
retical model of a pair of qubits coupled via a tunable coupler. This coupling
scheme enables the implementation of three key two-qubit gates: iSWAP,
CPHASE, and SWAP, as detailed in Papers C, D, and E.

Chapter 5 explores qubit reset and leakage reduction, the central topic of
Paper B, implemented using a pair of fixed-frequency qubits coupled via a
tunable coupler. These operations are crucial for the future development of
quantum error correction codes on the same chip architecture as the 25-qubit
chip presented in Paper C.

Finally, Chapter 6 concludes the thesis with a comprehensive summary of
the various aspects of superconducting qubit quantum computing discussed in
the preceding chapters. This concluding chapter also places these individual
contributions within the broader context of advancing towards fault-tolerant
quantum computing.
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CHAPTER 2

Superconducting Qubits and Circuit Elements

Superconducting qubits have evolved through several designs, each with unique
characteristics. Early designs included the charge qubit, encoding information
in the presence or absence of Cooper pairs [61, 62]; the flux qubit, utilizing
magnetic flux states [63, 64]; and the phase qubit, exploiting the phase dif-
ference across a Josephson junction [65]. While these qubit types have sig-
nificantly contributed to the development of superconducting quantum tech-
nologies, the transmon qubit has become the predominant choice due to its
favorable balance of coherence and control [66]. The transmon is derived from
the superconducting charge qubit, effectively a Cooper-pair box (CPB) with
a large shunt capacitance. This design results in a set of slightly anharmonic
energy levels [66], enabling selective manipulation of excitations between the
ground (|0⟩) and excited (|1⟩) states, which are well-separated from higher
energy levels and define the computational subspace. Recently, the fluxo-
nium qubit has garnered significant interest due to its high coherence and
gate fidelity [67], enabling high-fidelity two-qubit gates as demonstrated by
recent experiments [68]. For discussions in this thesis, the focus will be on the
transmon qubits.

This chapter explores the fundamental elements of superconducting qubits.
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(b) (c)(a)
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Substrate

Figure 2.1: Structure and circuit of a Josephson junction.(a)
Superconductor-insulator-superconductor layers of a single Josephson junction. The
thickness of superconductor layer is on the order of 100 nm, whilst that of the insu-
lator layer is approximately 2 nm. The substrate is typically silicon or sapphire. (b)
The circuit diagram of the Josephson junction, consisting of a non-linear inductor
with Josephson energy EJ and a small self-capacitance CJ . (c) The simplified cir-
cuit element for a Josephson junction. (d) Circuit model of the gated Cooper-pair
box. The red indicates the island of the CPB.

Section 2.1 introduces the Cooper-pair box (CPB) and its Hamiltonian, then
analyzes the energy levels within the transmon regime, demonstrating how this
leads to a fixed-frequency qubit. Section 2.2 proceeds to examine the coplanar
waveguide as a medium for non-destructive qubit readout. Finally, Section
2.3 explores the control elements used to excite and manipulate single-qubit
quantum states.

2.1 Cooper-Pair Box
The Cooper-pair box (CPB) [69, 70] was the first charge qubit ever developed.
The CPB, consists of two key components: 1) a Josephson junction: a non-
linear, non-dissipative element formed by a metal-insulator-metal structure
(typically Al/AlOx/Al), illustrated in Fig. 2.1. The junction is characterized
by the Josephson energy EJ related to the critical current IC across the junc-
tion and a self-capacitance CJ , typically on the order of 1 fF. Below the
critical temperature of the material, the insulating barrier layer allows tun-
nelling of Cooper pairs, generating a potential energy term proportional to
cos(ϕ), where ϕ is the superconducting phase difference across the junction;
2) a capacitor: a shunt capacitance CS in parallel with the Josephson junc-
tion, providing an electrostatic energy term. Thus, in combination with CJ ,
the total capacitance is C = CJ +CS . The value of the total capacitance leads
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Figure 2.2: Gate charge dependent energy spectrum. (a) CPB regime
(EJ /EC = 10). (b) Transmon regime (EJ /EC = 55).

to various regimes of superconducting qubits by adjusting the ratio between
the charging energy EC of the total capacitance and the Josephson energy
EJ . For a typical CPB, the EJ/EC ratio ranges approximately from one to
ten [70].

The CPB Hamiltonian combines the contributions of the Josephson junction
and the capacitor. In terms of the charge n, which is the number of Cooper
pairs on the capacitor, and the superconducting phase ϕ, the Hamiltonian is

Ĥ = 4EC n̂
2 − EJ cos(ϕ̂). (2.1)

EC = e2

2C is the charging energy, which quantifies the electrostatic energy
of a single Cooper pair on the capacitor and EJ = Φ0IC

2π is the Josephson
energy, which defines the potential energy associated with the phase difference
across the junction. The superconducting flux quantum, Φ0, is defined as
Φ0 = h/2e = 2.07 · 10−15 Tm−2. The charge n̂ and phase ϕ̂ operators are
conjugate operators satisfying the commutation relation [ϕ̂, n̂] = i. The term
−EJ cos(ϕ) creates a periodic potential with wells in ϕ. The depth of these
wells is determined by EJ , while the curvature at the minima is influenced by
the ratio EJ/EC .

The CPB can be coupled to the environment via a capacitor Cg, which can
be driven by a potential difference Vg, as shown in Fig. 2.1(d). The circuit
Hamiltonian is modified to include this contribution:
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Figure 2.3: Transmon physical structure. Optical micrography of a transmon
qubit, a special case of CPB. The blue area indicates the capacitor pad connector to
other control elements such as a readout resonator, while the red area indicates the
island of transmon qubit. The orange square highlights the location of the Josephson
junction.

Ĥ = 4EC(n̂− ng)2 − EJ cos(ϕ̂), (2.2)

where ng = CgVg/2e is the charge accumulated on the gate capacitor due to
the applied voltage Vg. The energy spectrum of the system can be expressed
in terms of Mathieu characteristic function [28, 71]. The solution for two
scenarios, EJ/EC = 10 and EJ/EC = 55, are shown in Fig. 2.2. In the CPB
regime, where EJ/EC = 10, the energy levels depend strongly on ng, which
leads to its sensitivity to gate charge noise. Therefore, for a more suitable
candidate as a qubit for quantum computation, we will examine the other
regime EJ/EC = 55 more closely.

2.1.1 Transmon Qubits
For EJ/EC = 55, the system enters what is referred to as the transmon
regime [66], where the energy levels vary only weakly as a function of ng,
as shown in Fig. 2.2(b), making it robust against charge fluctuations. The
eigenstates of the transmon are primarily localized in phase space ϕ, reducing
the dependence on the offset charge ng. The phase variable ϕ behaves as a
quasi-continuous degree of freedom within each well, suppressing the qubit’s
sensitivity to charge noise.
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In this regime, we can rewrite the Hamiltonian in Eq. (2.2) by assuming
ng = 0 and expanding the cos(ϕ̂) term in Eq. (2.2) as a perturbation in ϕ if
we only consider the small oscillations of ϕ up to the 4th order:

Ĥ ≈ 4EC n̂
2 + 1

2EJ ϕ̂
2 − EJ

4! ϕ̂
4. (2.3)

In order to solve for the energy level En, the n̂ and ϕ̂ conjugate operators
can be replaced with lowering and raising operators â and â† [5]:

ϕ̂ =
(

2EC

EJ

) 1
4

(â+ â†), (2.4)

n̂ = − i

2

(
2EC

EJ

)− 1
4

(â− â†). (2.5)

Then the transmon Hamiltonian becomes

Ĥ =
√

8EJEC â
†â− EC

12
(
â+ â†)4

. (2.6)

The second term is a small contribution and thus can be treated with per-
turbation theory. The eigenenergies of the transmon Hamiltonian can thus be
approximated as:

En = ℏωn ≈
√

8EJEC · n− EC

2
(
n2 + n

)
,

where n indexes the eigenstates (n = 0, 1, 2, . . .) giving the eigenfrequencies
ωn. The transmon’s anharmonicity η is defined as the difference in spacing
between successive energy levels, which is:

η = ∆ωn+1,n+2 − ∆ωn,n+1 = (ωn+2 − ωn+1) − (ωn+1 − ωn) = −EC

ℏ
. (2.7)

The weak anharmonicity, −EC/ℏ, ensures that the transmon behaves as a
qubit, allowing selective manipulation between |0⟩ and |1⟩ without significant
leakage to higher levels.

The optical micrography of the physical structure of a transmon is shown
in Fig. 2.3. The cross-shaped capacitance is shunted to the ground via the
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+
_

Figure 2.4: Flux-tunable transmon. Comparing to a fixed-frequency qubit,
there are two Josephson junction in parallel, and a DC line is added to be able to
thread magnetic flux through the loop formed by the two junctions in order to tune
the frequency of qubit.

Josephson junction. There are many degrees of freedom in the physical ge-
ometry and circuit design of the transmon, which is an area of great interest
[72].

2.1.2 Flux-tunable Transmon Qubits
The transmon circuit can be further modified for increasing flexibility. Adding
another Josephson junction in parallel creates a so-called superconducting
quantum interference device (SQUID), which enables the resonant frequency
of the qubit to be tuned in situ [73, 74]. This feature is useful to evaluate
frequency configuration during design iterations, probe defects in the envi-
ronment, and most importantly, to enable high on/off ratio coupling between
qubits for implementation of two-qubit gates.

Physically, a SQUID consists of two Josephson junctions connected in par-
allel, forming a loop where magnetic flux can be threaded through, as shown
in Fig. 2.4. This is typically achieved by sending a current in a coplanar
waveguide shorted near the SQUID loop through a mutual inductance. The
Hamiltonian of the tunable transmon can be written as

Ĥ = 4EC n̂
2 − EJ1 cos ϕ̂1 − EJ2 cos ϕ̂2, (2.8)

where Eji
and ϕi is the Josephson energy and phase difference across each

junction, respectively. The phase ϕ1 is related to ϕ2 by the external flux Φext
due to the quantization of magnetic field in terms of flux quantum Φ0 = h

2e .
Thus, a constant operator can be defined as 2πΦext/Φ0 = ϕ̂1 − ϕ̂2, while the
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Figure 2.5: Flux dependent SQUID frequency. Resonant frequencies ω01
of flux-tunable transmons as a function of the magnetic flux for different SQUID
EJ1/EJ2 asymmetry.

effective phase difference can be defined as φ = ϕ̂1 + ϕ̂2. The Hamiltonian can
be re-arranged in a similar form as the case with a single junction,

Ĥ = 4EC n̂
2 − EJ(Φext) cos φ̂, (2.9)

albeit with the flux depended Josephson energy EJ(Φext) being

EJ(Φext) = (EJ1 + EJ2)
∣∣∣∣cos

(
π

Φext

Φ0

)∣∣∣∣
√

1 +
(
EJ1 − EJ2

EJ1 + EJ2

)2
tan2

(
π

Φext

Φ0

)
(2.10)

The qubit frequency can be similarly derived as

ω01 = 1
ℏ

(√
8ECEJ(Φext) − EC

)
, (2.11)

which is dependent on the flux through the SQUID loop with a periodic-
ity of a flux quantum Φ0, as shown in Fig. 2.5. The frequency range of the
tunable SQUID can be modified by choosing a corresponding ratio between
EJ1 and EJ2 to suit the design need. For example, at the maximal or mini-
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Figure 2.6: Readout circuit model. (a) Optical micrograph of the readout
resonator coupled to a transmon qubit. (b) The equivalent circuit model of the
readout resonator and the transmon. The resonator is coupled to the qubit via a
capacitor with strength g, and to the input/output feedline with strength κ.

mal frequency, the SQUID is insensitive to flux fluctuation to the first order,
improving the coherence property of the qubit, which is so-called the qubit
’sweet-spot’. Therefore, in the case of a tunable transmon, it is preferred to
design the tunability curve such that the sweet-spot frequency targets the
desired operating range [75].

2.2 Readout Resonators
Readout resonators are central to the measurement of superconducting qubits,
as they provide an interface between the quantum state of the qubit and the
classical measurement apparatus [76, 77]. They are implemented as coplanar
waveguides [78] or lumped-element resonators [79] in a 2D planar geometry,
as illustrated in Fig. 2.6. The resonant frequency of the readout resonator,
denoted as ωr, is chosen to be detuned from the qubit frequency ωq to enable
a dispersive interaction via direct capacitive coupling while minimizing direct
energy exchange [76, 77]. In this configuration, the interaction between the
qubit and the resonator is described by the Jaynes-Cummings Hamiltonian:

Ĥ = ℏωrâ
†â+ ℏωq

2 σ̂z + ℏg(â†σ̂− + âσ̂+),

where â† and â are the creation and annihilation operators of the resonator
mode, σ̂z, σ̂−, and σ̂+ are the Pauli operators representing the qubit, and g is
the coupling strength. When the detuning ∆ = ωq −ωr satisfies the condition
|∆| ≫ g, the system enters the dispersive regime. In this regime, the qubit
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and resonator no longer exchange energy directly, and the Hamiltonian can
be approximated as:

Ĥdisp = ℏωrâ
†â+ ℏωq

2 σ̂z + ℏχâ†âσ̂z, (2.12)

where χ = g2/∆ is the dispersive shift, which quantifies the qubit-state-
dependent frequency shift of the resonator. This interaction enables a mech-
anism where the state of the qubit modifies the effective frequency of the
resonator, creating a shift of ±χ depending on whether the qubit is in the |0⟩
or |1⟩ state.

This treatment assumes the qubit to be an ideal two-level system. In reality,
the dispersive shift is dependent on the presence of higher energy levels of the
transmon. Taking that into account, the dispersive shift of the resonator,
depending on the qubit being in |0⟩ and |1⟩, can be expressed as

χ01 = g2

∆(1 + ∆/η) , (2.13)

where η is the anharmonicity of the transmon.
These two expressions of dispersive shift can be observed through differ-

ent experiments. The strength of χ can be extracted by measuring the bare
frequency of the resonator, ωr,bare, which is achieved by finding a stable res-
onator frequency at high drive power [80], as shown in Fig. 2.7. At low
power, the qubit is ideally at |0⟩, excluding thermal excitation, represent-
ing the scenario where the resonator is coupled to the ground state of qubit
ωr,coupled = ωr,|0⟩. Therefore, the dispersive shift χ = g2/∆ can be approxi-
mate as ωr,coupled − ωr,bare. This experiment can be performed as a means to
see if the qubit that the resonator is coupled to is functional or not. If there
is no change in resonator frequency at high power, then the qubit is likely to
be defective.

Next, the qubit-state dependent dispersive shift χ01 is characterized by
preparing the qubit in either |0⟩ or |1⟩ before probing the resonator fre-
quency response. A typical response for different qubit states is illustrated
in Fig. 2.8. The difference in resonator frequency corresponds to the relation∣∣ωr,|0⟩ − ωr,|1⟩

∣∣ = |2χ01|, which is stated previously. Combining these two
methods, we can reliably calculate the qubit-resonator coupling strength g to
compare with the design parameters and understand the qubit and readout
performance.
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Figure 2.7: Readout resonator response at various readout drive power.
The resonator frequency shifts between two stable regimes as drive power increases.
The difference between low and high power frequency ωr,coupled − ωr,bare is approxi-
mately the dispersive shift χ = g2/∆ of a two-level system.
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Figure 2.8: Qubit-state depended resonator response. The difference in
resonator frequency between qubit being at |0⟩ and |1⟩ corresponds to the dispersive
shift χ01.
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2.3 Single-Qubit Controls

Initially, the qubit is most likely at its quantum ground state according to the
Boltzmann distribution for a typical transmon with a frequency higher than
2 GHz in a 10 mK environment. To control the state of the qubit, a microwave
drive signal is sent to the qubit via a co-planar waveguide terminated near the
transmon island, forming a capacitive coupling. The shape of the drive pulse
can be expressed as

Vd(t) = Aε(t) sin(ωdt+ ϕ), (2.14)

where A is the amplitude of the pulse, ωd is the carrier frequency of the
drive, typically identical to the qubit frequency, ϕ is the phase of the drive, and
ϵ(t) is the envelope of the pulse. To minimize the bandwidth of the pulse and
avoid driving unwanted transitions, a Gaussian envelope is typically chosen,

ϵ(t) = e− 1
2σ2 (t−t0)2

, (2.15)

where σ is the width of the pulse and t0 indicates the center of the pulse
in time domain. The Hamiltonian of the driven qubit system in the two-level
computational subspace can be derived as

Ĥ = Ĥq + Ĥd = −ℏωq

2 σ̂z︸ ︷︷ ︸
Ĥq

+ ℏΩϵ(t) sin(ωdt+ α)σ̂y︸ ︷︷ ︸
Ĥd

, (2.16)

where σx,y,z are the Pauli operators and we define the Rabi frequency as

Ω = 2EC

ℏ
Cg

e

(
EJ

2EC

)1/4
A, (2.17)

that is proportional to the drive amplitude A as well as the capacitance
Cg between the control line and the transmon island. The Rabi frequency
indicates the coupling strength between the drive signal and the qubit. To
understand the evolution of the driven qubit state, we first move to the ro-
tating frame of the drive signal ωd, where the transformed qubit state is
|ψ′⟩ = e−iωdσ̂zt/2. Then, assuming that the drive frequency is near-resonant
with the qubit frequency, we can neglect higher frequency terms in the Hamil-
tonian, performing what is typically referred to as the rotating wave approxi-
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mation. These simplifications lead to

Ĥ ′(t) = −ℏ(ωq − ωd)
2 σ̂z + ℏΩ

2 ϵ(t)(σ̂x cos ϕ+ σ̂y sin ϕ). (2.18)

We then have full control over the quantum state vector on the Bloch sphere
mentioned in Sec. 1.1.2 by carefully selecting the amplitude A and phase
ϕ of the control pulse. Specifically, the amplitude A controls the angle of
rotation and the phase ϕ sets the axis of rotation. For example, a rotation
around {X,Y }-axis corresponds to a phase ϕ of {0, π/2}. On the other hand,
rotation around the Z-axis can be implemented as a virtual gate by adjusting
the reference frame of subsequent operations rather than applying an explicit
physical pulse [58].

2.3.1 Single-qubit Gate Calibration
In experiments, we employ the following protocol to calibrate the single-qubit
related operations in order to reach the optimal gate performance:

• Pulse parameter calibration. We can find the appropriate π-pulse
amplitude with a Rabi experiment where the drive amplitude A is swept
for a fixed pulse duration. The drive frequency ωd can be precisely cali-
brated to match with the qubit frequency ωq with a Ramsey experiment.
This procedure is usually repeated to ensure the accuracy of the single
qubit drive pulse [81].

• DRAG correction. The Derivative Removal by Adiabatic Gate (DRAG)
technique addresses leakage errors to the |2⟩-level and phase error caused
by the AC Stark shift during microwave-driven qubit control [81–83].
DRAG suppresses these effects by modifying the pulse envelope across
both quadratures (I and Q). The standard DRAG waveform is defined
as:

ϵDRAG(t) = ϵ(t) + iα
dϵ(t)
dt

+ β
d2ϵ(t)
dt2

, (2.19)

where ϵ(t) is the original Gaussian or cosine-shaped envelope, α scales
the first derivative (quadrature correction), and β suppresses residual
|2⟩-population via second-order terms [81, 83]. The derivative terms
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Figure 2.9: Scheme of a m-Clifford sequence for single-qubit gate random-
ized benchmarking. Each Ci is chosen randomly from the single-qubit Clifford
group. With the Cm+1 recovery Clifford gate, the sequence ideally condenses into
an identity operation.

create destructive interference for |2⟩ transitions while compensating for
the Stark shift.

• Single shot readout optimization. The readout pulse amplitude
and frequency are tuned in order to achieve the maximal single shot
state identification fidelity to distinguish between |0⟩ and |1⟩ [84, 85].
Furthermore, the three-level readout that includes the |2⟩ state is later
calibrated, resulting in the optimized state assignment probability. More
details on single-shot readout optimization are introduced in Chapter 3.

2.3.2 Single-Qubit Randomized Benchmarking
After the calibration procedure, we perform single-qubit gate randomized
benchmarking to have a quantitative measure of the gate performance [86].
The randomized benchmarking sequence is constructed from m single-qubit
gates that are randomly chosen from the single qubit Clifford group that in-
cludes π/2, π, 3π/2 rotations around the X, Y and Z axes as well as the
Hadamard gate [87]. Each Clifford gate is then decomposed into π and π/2
gate pulses in the experiment. Therefore, one Clifford gate contains a total
of 1.875 physical single qubit gates on average. After m gates have been ap-
plied, the recovery Clifford gate is added, which inverts the operation of the
whole sequence, ideally returning the qubit to the ground state. The recovery
Clifford gate exists within the Clifford group as well. At the end of the m+ 1
element long sequence, the value of the σZ operator is measured with single-
shot readout. The entire sequence generation and measurement procedure
is typically repeated 50 times to acquire a significant sample size among the
entire Clifford sequence space [88].
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Figure 2.10: The measured sequence fidelity F = ⟨σZ⟩ is plotted as a func-
tion of number of Cliffords m in the sequence. Each point in the measurement
is averaged over 50 randomly generated m-Clifford sequences.

The sequence fidelity F is measured as the expectation value of the single-
qubit correlator ⟨σZ⟩ of the target qubit and as a function of the sequence
length m. As illustrated in Fig. 2.10, the result can be fitted with an ex-
ponential decay from ⟨σZ⟩ = 1, where the qubit is in the ground state, to
⟨σZ⟩ = 0, where the qubit is in a maximally mixed state in the |0⟩ and |1⟩
basis. The data can be fitted with the equation

⟨σZ(m)⟩ = Apm +B, (2.20)

where 1−p is the rate of depolarization per Clifford gate and the parameters
A and B contain the state preparation and measurement errors as well as the
contribution from leakage out of the computational subspace [88]. The gate
error per Clifford can be estimated from the depolarizing rate p with

rRB = d− 1
d

(1 − p), (2.21)

where d = 2n is the dimensionality of the Hilbert space and n = 1 is the
number of qubits. For the results shown in Fig. 2.10, the best fitted parameters
are 1 − p = (0.1381 ± 0.0012)%, A = 1.038 ± 0.004, B = −0.035 ± 0.004
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and rRB = (0.0691 ± 0.0006)%. The small B suggests that the leakage due
to the single qubit gates are negligible. Since there are 1.875 single qubit
gates in each Clifford, the error per gate can be further calculated to be
rgate = rRB/1.875 = (0.0368 ± 0.0003)%. To understand the limitation on the
fidelity of the single qubit gate, we calculate the contribution of decoherence
by using the following equation that is generalized for a system with N qubits,

r̄N
coh.lim. = 1 − d

2(d+ 1)τ
N∑

k=1
(Γk

1 + Γk
ϕ), (2.22)

where Γk
1 (Γk

ϕ) is the relaxation (dephasing) rate of the qubit k [89]. For
this particular qubit, the coherence limit on the gate error is calculated to
be 0.0309% for a 20 ns gate, contributing to 84 % of the total gate error.
The performance is on par with the state-of-the-art quantum processors with
superconducting qubits [34].
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CHAPTER 3

Fast High-fidelity Qubit Readout

With the recent demonstrations of quantum error correction [32, 33, 44, 45],
superconducting circuits are one of the leading platforms towards the realiza-
tion of a fault-tolerant quantum computer [36, 40, 41]. However, despite the
remarkable progress, achieving fast and high-fidelity single-shot readout of the
qubits’ states remains a challenge. As a comparison, while the two-qubit-gate
fidelities are approaching the 0.1 % error threshold [90–93], readout errors are
typically at the 1 % level for two-state readout [54, 94–96]. Similarly, the im-
plementation of high-fidelity single- and two-qubit gates takes between 10 and
100 ns [92, 93, 97], while a readout measurement can take from hundreds of
nanoseconds to a few microseconds [54, 94–97]. Notably, readout performances
with fidelity > 99% in less than 100 ns readout time have been achieved in [54,
96]. Further improvement in the readout of superconducting qubits is there-
fore crucial to reliably cross the threshold of efficient error correction, which
is estimated to be less than 0.5 % for the break-even point [41]. Moreover,
having a fast and high-fidelity measurement scheme can boost the repetition
rate for both quantum-computing and quantum-communication applications
[98–102] and is essential for achieving fast reset protocols [96, 103].

In superconducting circuits, as discussed in Section 2.2, the state of a super-
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conducting qubit is typically read out by detecting the dispersive frequency
shift of a resonator coupled to the qubit [77]. The predominant source of error
is the relaxation of the qubit from the excited (|1⟩) to the ground (|0⟩) state
during the readout. On short time scales, this error grows almost linearly with
the ratio between the readout time τr and the qubit relaxation time T1 [54],
and can be mitigated by reducing τr. It is worth noting that various high-
power readout schemes have been exploited to decrease the measurement time
[104, 105]. Furthermore, Purcell filters [53, 106, 107] and quantum-limited or
near-quantum-limited amplifiers [108–111] have been implemented and, with
the combination of both, a readout fidelity exceeding 99 % within 100 ns has
been demonstrated [54, 94, 112].

In this Chapter, building on the basic principles of dispersive readout, we
start with investigating Purcell filter design for faster and higher fidelity read-
out. Then, the implementation of an improved readout scheme that boosts
the state-assignment fidelity and reduces the contribution of decay error dur-
ing readout is discussed in full detail. Finally, we examine the integration
of a travelling-wave parametric amplifier(TWPA) into our readout chain and
characterize the improvement in readout speed.

3.1 Purcell Filter for Fast Readout

The speed and performance of dispersive readout depend on the coupling
strength κ between the resonator and the external measurement line. A
strongly coupled resonator (lower quality factor Q = ω/κ) allows for faster
readout but can introduce additional noise and decoherence. Conversely, a
weakly coupled resonator (higher Q) ensures less disturbance but results in
slower measurement [77]. Optimizing this trade-off is critical for achieving
high-performance readout.

While dispersive readout is effective, it introduces potential sources of de-
coherence, primarily due to the coupling of the qubit to the measurement
environment through the resonator. One significant risk is the Purcell ef-
fect, which arises when the qubit radiatively decays into the resonator and,
through it, into the measurement line [77, 107]. This decay reduces the qubit’s
relaxation time T1 and can become particularly severe for fast readout config-
urations with strongly coupled resonators.
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Purcell
Filter

Qubit
Resonator
Readout

Figure 3.1: Readout circuit scheme with the additional Purcell filter. Both
the readout resonator and the Purcell filter are represented as distributed element co-
planar waveguide resonators, with a capacitive coupling of strength J . The Purcell
filter is centered at frequency ωf and coupled to the feedline with strength κf .

The Purcell effect is governed by the decay rate [77]:

ΓP = κ
g2

∆2 ,

which shows that increasing κ (to enable fast readout) also increases ΓP ,
directly impacting the qubit’s coherence.

A Purcell filter is employed to enable fast readout without sacrificing qubit
coherence. The filter suppresses the decay of the qubit excitation into the
feedline by introducing a frequency-selective impedance mismatch that is ef-
fectively a bandpass filter around the resonator frequency. This allows the
resonator to remain strongly coupled to the qubit for fast readout while pro-
tecting the qubit from Purcell-induced decoherence [107], thus reducing ΓP

without sacrificing either κ or g. This engineered suppression enables high-
fidelity, fast readout — a critical requirement for quantum error correction
and scalable architectures [53].

3.1.1 Common-mode Purcell filter
To understand how the Purcell filter functions, we start by analyzing the read-
out resonator-Purcell bandpass filter system with input-output theory [113].
We consider the system sketched in Fig. 3.1, where a qubit of frequency ωq is
coupled to a readout resonator of frequency ωr with strength g. The resonator
is coupled to the Purcell filter, centered at frequency ωf with coupling J . The
Purcell filter is coupled to the feedline with a coupling κf . The equations of
motion of the classical field amplitudes α(t) and β(t) in the readout resonator

33



Chapter 3 Fast High-fidelity Qubit Readout

and in the Purcell filter resonator are, respectively [107],

α̇(t) = −i∆rdα(t) − iJβ(t) − γa

2 α(t),

β̇(t) = −i∆fdβ(t) − iJ∗α(t) − κf

2 β(t) − iϵf (t).
(3.1)

∆rd (∆fd) = ωr(f) − ωd is the detuning between the resonator frequency ωr

(band-pass center frequency ωf ) and the driving tone at frequency ωd. J , and
its complex conjugate J∗, represent the coupling strength between the readout
resonator and the Purcell filter. κf is the Purcell filter bandwidth and γa is
the non-radiative loss rate of the resonator. ϵf (t) is the electric field strength
of the driving tone of frequency ωd, which can be time-dependent for pulsed
readout. Note that for simulation, the equations are written in the rotating
frame e−iωdt of a monochromatic readout drive frequency, which applies for
a continuous readout drive tone. In addition, the three field amplitudes α, β,
and ϵf are normalized such that |α|2 and |β|2 represent the average photon
number in the readout resonators and the Purcell filter, respectively. |ϵf |2 is
normalized accordingly as well.

We find the steady-state response of the filter on the time scale longer than
κ−1

f by solving the equations of motion with the conditions α̇(t) = 0 and
β̇(t) = 0. For an ideal resonator, we assume the loss γa to be zero to simplify
the expression. We find the analytical solution of the steady-state electric
field inside the coupled Purcell-resonator system as

β(ωd) = ∆rd · ϵf
(i∆fd + κf

2 )i∆rd + |J |2
. (3.2)

The transmitted field strength at the output of the Purcell filter is given
by γtr = βκf/2. We calculate γtr as a function of the drive frequency ωd,
which can then be used to fit the results in either HFSS simulation or readout
spectroscopy measurements.

To calculate the dynamic response of the field inside the readout resonator,
we only assume a quasi-steady state for the Purcell filter, i.e., β̇(t) = 0, and
solve for β(t) in Eq. (3.1) as a function of α(t),

β(t) = −iJα(t) − iϵf
κf/2 + i∆fd

. (3.3)
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We then substitute the expression back into the full equation of motion in
Eq. (3.1) and organize the terms in the following form:

α̇(t) = −i(∆rd + δωr)α(t) − κr

2 α(t) − iϵr, (3.4)

with an effective linewidth of the readout resonator κr, a shift δωr of the bare
resonator frequency due to the coupling to the Purcell filter, and an effective
drive amplitude inside the readout resonator ϵr. These parameters are given
by

κr = 4|J |2

κf

1
1 + (2∆fd/κf )2 ,

δωr = − |J |2·∆fd

(κf/2)2 + ∆2
fd

= −∆fd

κf
κr,

ϵr = iJ

κf/2 + i∆fd
ϵf .

(3.5)

Therefore, the qubit excitation decaying through the resonator could be
interpreted as driving the resonator at ωd = ωq with a decay rate

κq = 4|J |2

κf

1
1 + (2∆fq/κf )2 , (3.6)

where ∆fq = ωf −ωq. The qubit Purcell limit on the T1 decay is given in [77]

Γ1,Purcell ≈ κ
g2

(ωr − ωq)2 . (3.7)

With κ = κq, we find,

Γ1,Purcell ≈ 4|J |2κf

κ2
f + 4(ωf − ωq)2

g2

(ωr − ωq)2 . (3.8)

Therefore, Γ1,Purcell can be engineered to be significantly longer than the
case with the readout resonator directly coupled to the feedline with a rate κ,
while the dispersive shift χ can be sufficiently large to enable fast readout.

Multiple resonators can be coupled within the bandwidth of a single Purcell
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filter by choosing a corresponding resonance frequency ωf and linewidth κf .
Designs with a common Purcell filter provide various advantages in scalability
compared to designs having one Purcell filter for each readout resonator. The
main advantage is that it reduces the physical footprint on the chip, freeing
up space that can instead be used to route control lines to further avoid
drive crosstalk. The filter resonator is incorporated into the feedline in a
straightforward fashion as a λ/2 resonator with a capacitor at each end. The
fabrication accuracy of the resonator frequencies is less crucial to readout
performance since the bandwidth of the Purcell filter κf is large, so the filter
is insensitive to a small drift in resonator frequency.

One main concern about the common Purcell filter is that the crosstalk
between the readout resonators could increase: the measurement could induce
phase errors on the untargeted qubits with resonators coupled to the same
filter. This effect could be mitigated with pulse schemes to compensate for
the phase shift. At the same time, one could overcome this by designing
the circuit such that qubits are separated into different physical filter lines
depending on their designation, e.g., ancilla or data qubit.

3.1.2 Multiplexed Readout Implementation
We now demonstrate the operation of a 3-qubit device with a common

Purcell filter. The fabricated circuit schematic is shown in Fig. 3.2. The
device consists of three fixed-frequency transmon qubits [66] with transition
frequencies ωqi

/2π at 5.36, 5.40, and 5.46 GHz for i = 1, 2, 3, respectively.
There is no direct coupling element between the qubits. Each qubit is coupled
with a strength gi to a readout resonator of frequency ωri/2π = 6.45, 6.61,
and 6.74 GHz. The three resonators are coupled with a strength Ji to a
common Purcell filter that is embedded in the readout feedline [53]. The
Purcell-to-resonator coupling rates Ji/2π are designed to be at 60 MHz, while
the qubit-resonator coupling rates gi/2π are much larger, about 250 MHz.
The Purcell filter is centered at ωf/2π = 6.726 GHz with a linewidth of
κf/2π = 820.9 MHz. Further detail about the experimental setup can be
found in Paper A.

The initial characterization includes the measurement of the forward scat-
tering parameter S21 of the three resonators and the Purcell filter as a func-
tion of driving frequency. The results are shown in Fig. 3.3 and fitted with
Eq. (3.2). The measured and extracted parameters of the sample used in our
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Figure 3.2: Circuit schematic of the common-mode Purcell filter. The
Purcell filter is a λ/2 coplanar waveguide resonator centered at ωf , defined by a
capacitor on each side. The filter is embedded in the readout feedline, and driven by
the field ϵf . The output capacitance, represented by the Purcell-filter linewidth κf , is
around an order of magnitude larger than the input capacitance such that the signal
is guided towards the output port to measure transmission. Multiple resonators of
resonant frequency ωri couple to the Purcell filter with strength Ji within the filter
bandwidth. The individual resonators are capacitively coupled with strength gi to
the qubits with transition frequency ωqi .

Parameters R1 R2 R3 PF
Resonator frequency ωr/2π (GHz) 6.454 6.606 6.744 6.726
Effective linewidth κr

(
κf

)
/2π (MHz) 16.6 11.0 12.4 820.9

Readout-Purcell coupling J/2π (MHz) 70.1 57.1 60.6

Table 3.1: Measured resonator parameters for the Purcell filter and the
three readout resonators.

experiment are listed in Tables 3.1 and 3.2. The qubit relaxation time T1 is
Purcell-limited according to the calculation based on Eq. (3.7), which is lower
than the design value and what is normally achieved in our lab [114], due to a
shift in qubit frequencies during the fabrication process. The Purcell rates are
thus overestimated due to the relatively small detunings between the qubits
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Parameters Q1 Q2 Q3
Qubit frequency ωq/2π (GHz) 5.358 5.395 5.456
Qubit anharmonicity η/2π (MHz) -192 -198 -199
Qubit-readout coupling g/2π (MHz) 231 235 263
Dispersive shift χ/2π (MHz) 7.3 6.3 7.0
T1 Purcell limit TP (µs) 1.8 3.06 2.26
Average relaxation time T 1 (µs) 3.6 6.2 3.8
Average Ramsey decay
time

T
∗
2 (µs) 1.7 1.7 2.0

Average Echo decay time T
e
2 (µs) 1.8 2.1 2.2

Thermal population Pth(%) 1.9% 2.0% 1.6%
Single-qubit gate fidelity F1Q(%) 99.04% 99.59% 99.48%

Table 3.2: Measured qubit parameters, coherence properties, and single-
qubit performance for the three qubits.

and the resonators [107].

3.2 Exploiting Higher Energy Levels
Qubit-excited-state decay is a major error source during readout. To mini-

mize such an error, qubit-state measurements must be performed in the short-
est possible time [54, 94]. We implement a shelving scheme that exploits the
higher energy qubit levels [65, 95, 106, 115–119]. The pulse scheme is shown
in Fig. 3.4(a); a π12 and a π23 pulse are applied consecutively prior to the
readout pulse so that the qubit population originally in the |1⟩ state is trans-
ferred to the |3⟩ state before readout. Thus, the qubit population that was
in |1⟩ will take a longer time to decay to |0⟩ as the main relaxation chan-
nel is through cascading single-photon emission down the energy ladder, as
illustrated in Fig. 3.4(b).

To quantify the possible decrease in error due to the shelving technique, we
measure the population of the ground state p0(t) as a function of the delay
time t when the qubit is prepared in |0⟩, |1⟩, |2⟩, and |3⟩ (t = 0 means that
there is no delay between the last shelving pulse and the readout pulse). State
preparation and measurement (SPAM) errors are mitigated by applying the
inverse of the assignment matrix to the measurement results [120]. Then, the
most probable physical state is acquired with a maximum likelihood estimator
[121]. The duration of the readout pulse τr is minimized by optimizing the
readout-pulse amplitude without introducing significant readout-induced mix-
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Figure 3.3: Transmission coefficient S21 as a function of the driving fre-
quency ωd. The data is shown as the solid line and the fit to Eq. (3.2) is the dashed
line, where the resonator-Purcell coupling J is neglected. The vertical lines indicate
the frequencies of the qubits (blue) and the readout resonators (red). The qubits are
outside the passband of the Purcell filter and are therefore protected from relaxation
into the environment.

ing that contributes to the readout errors [122, 123]. The duration of our opti-
mized readout pulse [124–126] is τr = 140 ns. The data for Qubit 2 is shown in
Fig. 3.4(c). We find that when the qubit is prepared in |1⟩, the |1⟩-state pop-
ulation decays during the readout by an amount ϵ = 1 − e−τr/T01 = 2.24 %,
with relaxation time T01 = 6.18 µs, giving a significant contribution to the
readout error.

To calculate the population pi(t) in the |i⟩ state we write down the following
rate equations:

ṗ0(t) = p1(t)/T01 + p2(t)/T02 + p3(t)/T03,

ṗ1(t) = −p1(t)/T01 + p2(t)/T12 + p3(t)/T13,

ṗ2(t) = −p2(t)/(T12 + T02) + p3(t)/T23,

ṗ3(t) = −p3(t)/(T23 + T13 + T03),

(3.9)

where Tij is the relaxation rate from the |j⟩ to the |i⟩ state as illustrated in the
level diagram of Fig. 3.4(b). In principle, the anharmonicity of the transmon
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Figure 3.4: Schematics and implementation of the shelving technique. (a)
A π12 and a consecutive π23 pulse are inserted between any experimental sequence
U and the readout pulse. (b) Qubit population can be transferred to the desired
energy level with consecutive πij pulses. The population in state |j⟩ decays to |i⟩
with a rate 1/Tij . (c) The ground state |0⟩ population p0 of qubit Q2 is plotted as a
function of the delay time t after the transmon is initially prepared in |0⟩, |1⟩, |2⟩, or
|3⟩. The delay time t is counted from the end of the last qubit shelving pulse in the
sequence. Points represent experimental data for Q2 while continuous lines show fits
of the data according to the solutions of the expanded rate equations including all
non-sequential rates [115], which are given by Eq. (3.13) and Eq. (3.14). The inset
shows the population at short time scales with the dashed line marking the duration
τr = 140 ns of the readout pulse.

is sufficient such that non-sequential decay through multi-level channels is
exponentially suppressed. For example, the contribution of direct decay from
|2⟩ to |0⟩ is found to be two orders of magnitude smaller than that from |2⟩ to
|1⟩ [115]. For simplicity, we initially neglect the non-sequential decay terms
and solve for the evolution of any |i⟩-state population as a function of time t
when the qubit is initialized in the |j⟩ state, denoted as p|j⟩

i (t). Specifically,
we first solve for p|2⟩

0 (t) and assume p|2⟩
2 (0) = 1 in the absence of any error

and neglect the effect of higher-energy levels by using the initial conditions
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p
|2⟩
0 = p

|2⟩
1 = p

|2⟩
3 = 0. We find:

p
|2⟩
0 (t) = 1 − T01 e

−t/T01

T01 − T12
+ T12 e

−t/T12

T01 − T12
, (3.10)

where T12 ≈ 1
2 T01 for typical transmon parameters [115, 127]. The second

and third terms in Eq. (3.10) are two decaying functions with opposite signs,
hence the net result is no longer purely exponential. We also solve the rate
equations of the system in Eq. (3.9) for p|3⟩

0 , when the qubit is prepared in
|3⟩, with the initial conditions p|3⟩

0 = p
|3⟩
1 = p

|3⟩
2 = 0, and find the following:

p
|3⟩
0 (t) = 1 − T01

2 e−t/T01

(T01 − T12)(T01 − T23)

+ T12
2 e−t/T12

(T01 − T12)(T12 − T23)

− T23
2 e−t/T23

(T01 − T23)(T12 − T23) .

(3.11)

This equation contains a combination of exponential decays with different
signs as well. Fig. 3.4(c) shows the measured population p

|1⟩
0 , p|2⟩

0 and p
|3⟩
0

as a function of the delay time. We first used Eqs. (3.10) and (3.11) to fit
the data. However, at short timescales, the theory does not describe well the
data (see the dashed lines in Fig. 3.5). We then perform the same derivations
while including all non-sequential decays in the rate equations. To calculate
the population pi(t) in the |i⟩ state we use the full rate equations in Eq. (3.9)
without neglecting any term. The full solution for p|2⟩

0 (t) and p
|3⟩
0 (t) are the

following:

p
|1⟩
0 (t) = 1 − Γ12, (3.12)

p
|2⟩
0 (t) = 1 − Γ12 e

−Γ01t + (Γ02 − Γ01) e−(Γ02+Γ12)t

Γ01 − Γ02 − Γ12
, (3.13)
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Figure 3.5: Higher energy levels decay measurement and fit, at short time
scale. The ground state |0⟩ population p0 is plotted as a function of the delay time
t after the transmon is initially prepared in |0⟩, |1⟩, |2⟩, or |3⟩. The delay time t
is counted from the end of the last qubit shelving pulse in the sequence. Points
represent experimental data for Qubit 2. The continuous lines show fits of the data
according to the solutions of the expanded rate equations including all non-sequential
rates shown in Eqs. (3.12-3.15) [115], while the dashed lines represent the fits with
only sequential rates included in the equation.

p
|3⟩
0 (t) = 1 − (−Γ12Γ23 + Γ13δ0) e−Γ01t

δ0δ1

+ (−Γ01 + Γ02)Γ23 e
−(Γ02+Γ12)t

δ0(δ2 + Γ23)

− [(Γ01 + Γ03) δ2 + (Γ02 − Γ03)Γ23] e−δ3t

δ1(δ2 + Γ23) ,

(3.14)

where Γij = 1/Tij and

δ0 = Γ01 − Γ02 − Γ12,

δ1 = − Γ01 + Γ03 + Γ13 + Γ23,

δ2 = − Γ02 + Γ03 − Γ12 + Γ13,

δ3 = Γ03 + Γ13 + Γ23.

(3.15)
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Equations (3.12-3.15) are used to fit the data in Fig. 3.4(c) with a higher
precision, as shown in Fig. 3.5. It is clear that adding the non-sequential terms
improves the fitting at low time scales (see continuous lines in Fig. 3.5)[115].
We find excellent agreement between the data and the full model, and extract
the following relaxation times: T01 = 6.55µs, T12 = 5.27µs, T23 = 5.10µs,
T02 = 50µs, T13 = 125µs, and T03 = 350µs.

For Qubit 2, we find that the readout error from the |1⟩ state is reduced from
2.24 % to 0.057 % after the application of a π12 pulse, and to 8.7×10−4 % after
a π23 pulse. This is calculated by taking the difference between p

|2⟩
0 (t = τr)

and p|2⟩
0 (0) in Fig. 3.4(a). The remaining error is equivalent to the decay error

of a qubit with T01 = 85.8 µs using the standard readout method, achieving
an order-of-magnitude improvement. For a longer-lived qubit, the percentage
of decay errors that can be suppressed with shelving continues to grow closer
to unity [119]. However, other error contributions will likely become more
prominent at this level.

Before performing readout calibration, we optimize the parameters of the
π12 and π23 pulses similar to the standard method developed for the π01 pulse.
The pulses have a cosine envelope with lengths set to be 50 ns as a starting
point. We first prepare the qubit in |1⟩ and conduct Rabi and Ramsey-like
experiments between the higher energy levels to optimize the amplitude and
frequency of the drive pulse. For shorter pulse lengths a proper derivative
removal by adiabatic gate (DRAG) [81, 82] needs to be calibrated for the π12
and π23 pulses as well.

With the state-preparation pulses calibrated, we acquire the responses of
the readout resonator when the qubit is prepared in |0⟩, |1⟩, |2⟩, and |3⟩,
respectively, illustrated in Fig. 3.6(a). We plot the in-phase and quadrature
parts of the spectroscopy result, as shown in Fig. 3.6(b).

3.3 Two-State Readout with a Primary Tone
For the two-state readout, we only use one tone, which is referred to as

the primary tone, for optimal readout performance. Later, we introduce a
secondary tone to perform three-state readout. We start by fine-tuning the
readout frequency of the primary tone to maximally separate the 2D in-phase
and quadrature (IQ) histograms corresponding to the |0⟩ and |1⟩ states, as
shown in Fig. 3.7(a). Higher energy levels are indistinguishable from |1⟩ in
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Figure 3.6: Transmission coefficient S21 as a function of the driving fre-
quency ωd centered around Resonator 2. (a) Qubit-state-dependent transmis-
sion S21 of resonator R2 when Qubit 2 is prepared in |0⟩, |1⟩, |2⟩, and |3⟩, respectively.
The colored dots represent the measured data while the solid lines show the fitted
function. The vertical dashed lines represent the optimal readout frequency for the
primary tone.(b) Estimated readout response of the primary tone at its optimal
frequency. The solid lines represent the in-phase and quadrature data shown in (a).
The disks of respective color represent the estimated Gaussian envelope of the signal
taking into account the added thermal noise.

this configuration, and we can only distinguish between |0⟩ and |0⟩ (NOT
|0⟩). To calibrate the readout, we prepare the qubit in either |0⟩ or |1⟩ and
add the π12 and π23 pulses to transfer the |1⟩-state population to the |3⟩
state before the readout, as illustrated in Fig. 3.4(a). To discard the results
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Figure 3.7: Single-shot readout results of discriminating between |0⟩ and
|0⟩. (a) Integrated readout signal in the IQ plane with Qubit 2 prepared in |0⟩
and |1⟩. With the consecutive π12 and π23 pulses implemented prior to a 140 ns
readout, we distinguish between |0⟩ and |0⟩ (NOT |0⟩). (b) The IQ-plane signals in
(a) are projected onto an optimal axis, and the resulting histogram is fitted with a
Gaussian distribution. The horizontal axis is normalized by the standard deviation
σ. The calculated assignment fidelity Fa and ideal fidelity Fid are shown above the
plot. The conditional probabilities P (i|j) represent the probabilities of measuring
state |i⟩ given that the qubit is prepared in state |j⟩. (c) Simultaneously measured
single-shot readout assignment fidelities for the three qubits with (F ′

a) and without
(Fa) the application of the π12 and π23 pulses. The error statistics are calculated
from the standard deviation of the measured set.

for which the initial state is not |0⟩, we include a preselection pulse, i.e., an
additional readout measurement before the sequence starts [54, 128]. Through
this preselection procedure, thermal and residual populations in the qubits are
filtered from the outcomes.
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We perform simultaneous readout of all three qubits and calculate the
single-qubit readout assignment fidelity Fa = 1 − [P (0|0) + P (0|0)]/2, where
P (i|j) is the classification probability, i.e., the probability that the |i⟩ state is
assigned given that the |j⟩ state is initially prepared. This measure of read-
out fidelity takes all the error contributions into account, including imperfect
state preparation before the readout sequence. The assignment fidelity for
80 repetitions, each containing 50,000 shots, is shown in Fig. 3.7(c) with (F ′

a)
and without (Fa) implementation of the shelving technique. The data demon-
strate a reduction in the overall error rate by 57 % on average for the three
qubits with the introduced readout scheme. We also compute the ideal read-
out fidelity Fid by integrating the overlapping area of the Gaussian probability
distributions after projecting the IQ data onto an optimal axis [129]:

Fid = 1
2

[
1 + erf

(√
SNR2

8

)]
, (3.16)

where the signal-to-noise ratio is

SNR =
∣∣⟨S0⟩ −

〈
S0
〉∣∣

σS0

, (3.17)

with Si being the set of measurement outcomes and σ2
S0

being the variance
of the data set. For Qubit 2, the best assignment fidelity is 99.5 % while
the ideal fidelity exceeds 99.95%; see Fig. 3.7(b) for detailed histograms. In
particular, the readout errors associated with the |0⟩- and the |0⟩-state are
ϵ|0⟩ = P (0|0) = 0.09% and ϵ|0⟩ = P (0|0) = 0.92%, respectively. The error
from qubit decay during readout contributes to 0.03% of the |0⟩-state error
ϵ|0⟩. This suggests that the fidelity is predominantly limited by other sources of
error. The most dominant source of error is due to imperfect state preparation
and application of the shelving pulses [54]. This contribution is at least 58%
of the ϵ|0⟩ error and is calculated based on the coherence limit of the qubit
and serves as a lower bound. The measurement-induced mixing is the next
dominant source of error. We estimate this contribution to be at most 10%
of ϵ|0⟩, since this affects both ϵ|0⟩ and ϵ|0⟩ equally [122, 123].
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3.4 Three-State Readout with Two Tones

As shown in Fig. 3.6, choosing the optimal readout frequency to attain the best
two-state assignment fidelity leaves other higher-energy states indistinguish-
able from each other. However, the information of the |2⟩-state population is
crucial to detect leakage errors during gate calibrations and algorithms [32].
To access this information, we introduce an additional readout pulse with a
readout frequency, referred to as secondary tone, that maximizes the separa-
tion between |1⟩ and |2⟩. This pulse is multiplexed with the primary pulse to
perform the readout measurements simultaneously.

We also use the π12 and π23 pulses to implement the shelving scheme. As the
initial |1⟩-level population is transferred to the |3⟩ state and the |2⟩-population
is transferred to the |1⟩ state, an error in |1⟩-state assignment will occur if a
cascade of decays happens from |3⟩ to |1⟩. The contribution of decay error
during readout is reduced, leading to an improvement in assignment fidelity.
To quantify the improvement, we need to solve Eq. (3.9) for the evolution of
population p

|3⟩
1 (t). The analytical solution is

p
|3⟩
1 (t) = T01

2 e−t/T01

(T01 − T12)(T01 − T23)

− T01 T12 e
−t/T12

(T01 − T23)(T12 − T23)

+ T01 T23 e
−t/T23

(T01 − T12)(T12 − T23) .

(3.18)

With the qubit being in the |3⟩ state (p|3⟩
3 (0) = 1), the effective population

accumulation in |1⟩ after a readout time of τr = 140 ns is 0.035 %. This is
two orders of magnitude smaller than the error from a direct decay of the
|2⟩-state population with rate 1/T12, corresponding to 2.65 %. Therefore, the
contribution to the three-state readout error should be reduced by a similar
factor.

The secondary tone is tuned up in the presence of the primary pulse. An
initial estimate for the secondary readout frequency is where the |1⟩- and
|2⟩-state responses are maximally separated in the IQ-plane. Similar to the
primary tone, we find the readout frequencies that maximize |1⟩-|2⟩ separa-
tion for the secondary tone, as shown in Fig. 3.8. As the readout tones are
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Figure 3.8: Readout Frequency Optimization for the Secondary tone (a)
The vertical lines represent the optimal readout frequencies for the primary (dashed
line) and secondary tone (dash-dotted line). (b) Estimated readout response of the
secondary tone at optimal frequency.

multiplexed into a single pulse, the frequency and phase of the secondary tone
are fine-tuned to minimize the effect on the measurement performance of the
primary tone.

We then fine-tune this frequency such that |0⟩ and |3⟩ are distinguishable
from each other as well. After optimization, the two readout pulses are typ-
ically a few MHz apart and are multiplexed in a single waveform for the
readout. The transmitted signal is then processed with standard multiplexed
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Figure 3.9: Single-shot readout results for discriminating between the
|0⟩, |1⟩, and |2⟩ state. (a) Integrated single-shot readout signal of the secondary
tone for Qubit 2. The |0⟩ and |1⟩ states are distinguishable from the rest, while
|2⟩ and |3⟩ have significant overlap, and are therefore being combined into a single
classification: |2̃⟩. The frequency of the primary tone is identical to that shown in
Fig. 3.7, which maximizes the distinction between |0⟩ and |0⟩. The dots indicate the
centers of the Gaussian distributions. (b) Three-state assignment matrix with the
two-tone readout for Qubit 2, reconstructed using a neural network. Note that the
most significant error contributions in the two-tone readout are the misclassification
between |2⟩ and |0⟩ as well as that between |1⟩ and |2⟩.

readout techniques [94]. We obtain two complex voltages after signal integra-
tion, each containing a pair of in-phase and quadrature values. Overlap errors
are then filtered by comparing the results in post-processing. The response
of the secondary tone when Qubit 2 is prepared in |0⟩, |1⟩, |2⟩, and |3⟩, with
50,000 repetitions per state, is shown in Fig. 3.9(a). Since |2⟩ and |3⟩ are
indistinguishable, we combine the results together and relabel them as the
|2̃⟩-state.

3.4.1 State Discrimination
We then formulate two methods to combine the results from the primary and
secondary readout pulses to reconstruct the population initially prepared in
|0⟩, |1⟩, and |2⟩. The first method is a truth table (see Table 3.3) that takes the
individual measurement results from the two tones as a pair of input values.
There exists a unique initial state that is compatible with both results. For
example, if the primary result is |0⟩ and the secondary result is |1⟩, then the
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Primary
Result

Secondary
Result

Before
Readout

Initial
State

|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |1⟩ |2⟩
|0⟩ |2̃⟩ |2⟩ |1⟩
|0⟩ |0⟩ Overlap Error|0⟩ |0⟩

Table 3.3: Truth table of the selection rule for the two-tone readout.
The first two columns are the discrimination results from the two readout tones,
respectively. There is a unique initial state if the results agree with each other.
Otherwise, the shots where the two readout results disagree will be counted towards
overlap error and discarded.

initially prepared state must be |2⟩. In case these two results cannot reach a
common decision due to overlap error, the measurement is discarded.

The second method to discriminate the qubit state utilizes a feedforward
neural network (FNN) that was specifically developed for multiplexed read-
out [130] and treats the two data sets as a single system. The input to
the neural network combines the in-phase (I[n]) and quadrature (Q[n]) data
from the nth integrated signal of the two tones into a four-element vector
{I1[n], Q1[n], I2[n], Q2[n]}. After being trained with a calibration data set,
the neural network is able to classify two-tone results and give the initial qubit
state as the output.

We utilize a feedforward neural network (FNN) with two hidden layers to
discriminate the qubit state using the combined two-tone results. The choice
of using an FNN over other methods such as support-vector machine (SVM)
or non-linear support-vector machine (NSVM) is justified by the fact that an
FNN could achieve greater performance when discriminating more than two
states as well as better scalability [130]. The FNN is also capable of transfer
learning, where retraining of the network during future re-calibration of the
system is significantly more efficient [131]. On the other hand, an SVM or
NSVM will need to be retrained from scratch every time. The advantage of
using FNN is significant enough to warrant a wider application [130, 132, 133].

The network is implemented with Wolfram Mathematica. The input layer
contains four nodes corresponding to the in-phase and quadrature compo-
nents of the two-tone results, {I1[n], Q1[n], I2[n], Q2[n]}, of each individual
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single-shot measurement n. The first hidden layer contains 16 nodes, while
the second layer has 8 nodes. Each node, comprised of the hidden layers, is fil-
tered by a scaled exponential linear unit (SELU), which acts as the nonlinear
activation function. Finally, the output layer contains three nodes, represent-
ing the probability of the qubit being in state |0⟩, |1⟩, and |2⟩, respectively.
We specify an epoch of 100 and a learning rate of 0.0005 with a batch size of
64 as a starting point. The network is then trained with 8000 samples and
validated by 2000 samples.

The resulting assignment matrix, shown in Fig. 3.9(b), demonstrates an
assignment fidelity of 96.9 % for the three-state readout. This result shows
a significant improvement over the average 94.2 % assignment fidelity that
we find using only a single readout pulse at an optimal readout frequency
to distinguish between |0⟩, |1⟩, and |2⟩, with the overall error rate reduced
by 47 %. The amount of suppression is achieved with the neural network
that consistently outperforms the truth table by 13 % in overall error rate
reduction.

A feature of the resulting assignment matrix is that the population origi-
nally in |2⟩ has a higher probability of being misidentified as |0⟩ than as |1⟩,
which is due to the shelving technique. Since the initial |2⟩-state population
is transferred to |1⟩ before measurement, decaying to the ground state is more
likely than the excitation back to higher energy levels.

3.4.2 Readout Crosstalk
We also investigate the effect of increased photon population in the res-

onators due to the secondary tone. A large photon number leads to signif-
icant measurement-induced mixing and readout crosstalk that contribute to
the overall readout error [94, 134]. We optimize the readout amplitude such
that readout errors due to measurement-induced mixing remain small with
the addition of the secondary tone. To investigate readout crosstalk, we de-
termine the measurement-induced dephasing with and without the secondary
tone [94]. The results are shown in Fig. 3.10. We find that the probabilities
of a phase error in untargeted qubits are a factor of three larger on average
due to the increase in photon number. Mitigation strategies may be required
if this contribution becomes significant for error-correction algorithms.

In the design of future devices, qubits could be grouped into physically sepa-
rated readout lines depending on their designation, e.g., ancilla or data qubits,
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Figure 3.10: Measurement-induced dephasing matrix for single-tone and
two-tone readout. Each element represents the qubit dephasing while a pulse is
targeting one of the readout resonators (R1, R2, or R3). Note that for the two-
tone case, resonator R1 was not driven by an additional tone, so that it served as a
benchmark measurement.

and whether their measurements occur simultaneously. Moreover, the induced
crosstalk could be further mitigated with other techniques such as machine-
learning algorithms for discrimination and readout pulse shaping [130, 132,
135].

3.5 TWPA Performance Characterization
To achieve high-fidelity readout, quantum-limited amplifiers [136] with a high
gain are desired. They are typically built as superconducting nonlinear os-
cillators or transmission lines and have demonstrated high gain with near-
quantum-limited noise performance [137–141], becoming an essential part of
the circuit Quantum Electrodynamics (cQED) [142] toolbox. While Joseph-
son parametric amplifiers (JPAs) have shown high gain and near-quantum-
limited noise performance [108, 143–149], they typically have a high gain over
a narrow band, making them unsuitable for multiplexed readout in large-scale
quantum computers.

The capability of quantum-limited noise performance and a high gain in a
wide band is provided by the travelling-wave parametric amplifier (TWPA) [150–
152]. The basic principle for amplification of the TWPA is based on frequency-
mixing between a weak signal and a strong wave, the pump, when they co-
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Figure 3.11: Qubit readout fidelity as a function of measurement time and
readout amplitude. (a) Readout amplitude as a function of optimal integration
duration using the TWPA with the pump on, off and with the through. The fit
is of the function A ∝ 1/

√
τ . (b) Measured readout fidelity a as function of the

integration time at a readout amplitude of 0.2, fitted with the error function of
integration time τ with constants, erf(τ).

propagate through a nonlinear medium. When a phase-matching condition
between the pump, the signal and the idler is fulfilled, this can result in ex-
ponential spatial growth of the signal amplitude.

We characterise a small footprint travelling-wave parametric amplifier (TWPA),
with more details presented in Paper F. The TWPA is built with magnet-
ically flux-tunable superconducting nonlinear asymmetric inductive elements
(SNAILs) and parallel-plate capacitors. It implements three-wave mixing
(3WM) with resonant phase matching (RPM), a small cutoff frequency for
high gain per unitcell and impedance matching networks for large bandwidth
impedance matching. The device has 200 unitcells and a physical footprint of
only 1.1 mm2, yet demonstrating an average parametric gain of 19 dB over a
3 GHz bandwidth, with an average effective signal-to-noise ratio improvement
of 10 dB and a clear speedup of qubit readout time.

In order to characterize the improved readout performance from the TWPA,
we use the TWPA in the readout chain of a two-qubit device [114]. The
device consists of two fixed-frequency transmon qubits [66] with transition
frequencies ωqi/(2π) at 3.848 and 3.384 GHz for i = 0 and 1, respectively.
The qubits are coupled via a tunable coupler element, which is not used in
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this experiment, thus we can consider the qubits uncoupled.
Each qubit is coupled to a dedicated readout resonator of frequency ωri/(2π) =

6.482 and 6.261 GHz with a strength g/(2π) ≈ 35 MHz. The transmitted sig-
nal is measured through the readout line. We prepared the two qubits in
|0⟩ and |1⟩ states respectively and characterised their single-shot readout per-
formance with multiplexed readout. The measurement results of each qubit
state are fitted with a Gaussian function and the ideal readout fidelity Fid
was calculated as given in Eqs. (3.16) and (3.17) [129, 153].

We set a fixed readout pulse amplitude and sweep the integration time of
the readout data acquisition process. The resulting readout fidelity for Qubit
1 with TWPA pump on, pump off and with a through is shown in Fig. 3.11(a)
as an example. The total energy needed to achieve sufficient SNR is constant,
which can be fitted with a functional form of E ∝ t · A2, where A is the
readout amplitude. The linecut at a fixed amplitude is shown in Fig. 3.11(b),
where the data can be approximately fitted with a Gaussian error function
to extract the dependence between the readout fidelity and integration time
[54].

To reach an ideal readout fidelity of 99.9 %, it takes 2.8 µs of integration
time with the through, while we only need 1.6 µs with the TWPA with the
pump on, achieving almost a factor of two improvement in the readout speed.
With the pump off, the time increases to 3.0 µs. It is worth noting that
the performance is also more robust at the shorter integration time with the
TWPA, indicating that a shorter readout time is achievable. With a device
designed with a larger qubit-readout dispersive coupling strength χ, resonator
decay strength κ, and incorporating Purcell filters, it is still possible to reduce
the readout duration greatly [153].

3.6 Summary
In conclusion, we have demonstrated that exploiting the higher energy levels
of the qubit together with the implementation of a secondary readout tone
lead to an improved readout-assignment fidelity of 99.5 % (96.9 %) for two-
state (three-state) discrimination within 140 ns of readout time, reducing the
overall error rate by 57 % (47 %) compared to our baseline. This result could
be further improved with the use of a quantum-limited parametric amplifier,
as the one showcased in Section 3.5.
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3.6 Summary

The proposed pulse scheme is straightforward to implement in any measure-
ment sequence to improve readout fidelity. Our scheme is also fully compati-
ble with quantum error correction algorithms that involve rapid, high-fidelity
measurements of ancilla qubits. In the case of the surface code, single-qubit
and measurement operations ideally do not disturb the encoded logical state
stored on data qubits. The proposed techniques will only be performed on
the ancilla qubits. Additionally, we envisage that to be fully utilized in the
surface-code algorithm, the readout scheme could be accompanied by a reset
protocol that targets higher-excited states after the measurement [96].

To further develop these readout techniques, more complex methods in the
construction of the primary and secondary readout tones could be explored.
Sophisticated deep neural-network methods could also be employed to aid
state classification of the two-tone readout results [130]. The possibility to
generalize these techniques to further boost fidelity for multiplexed readout is
a promising prospect for the future investigation of quantum computing with
superconducting qubits.

55





CHAPTER 4

Expanding Two-Qubit Gate Sets

To implement any gate-based sophisticated quantum algorithms, fast, high-
fidelity two-qubit gates are instrumental, and the motivation for further de-
velopment in this regard is of great interest to both academia and industry
[154]. The pioneers in this endeavor demonstrated an adiabatic controlled-
phase (CPHASE, CZ) gate in 2009 [155]. This specific type of adiabatic
CPHASE gate was designed for a pair tunable transmon qubits, which were
adjusted in frequency by applying magnetic flux through the respective qubit
SQUID loop. To implement the CPHASE gate, the |11⟩ and |20⟩ levels of the
two qubits were tuned close to resonance for a certain interaction time. To
prevent always-on interaction between the qubits, a third coupling element
was employed to mediate the interaction, which was a coplanar resonator in
this case. The current limitation of this gate performance arises from the
leakage to the qubits |2⟩-level, which is inherent to this type of CZ gate due
to the mechanism involving population exchange. Furthermore, the coherence
of the tunable qubits also poses an upper bound on the gate fidelity due to in-
creased sensitivity to flux noise. Therefore, finding alternatives to circumvent
or mitigate these limitations is a highly active area of research [156].

To this end, several coupling schemes to implement two-qubit gates have
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Q CQ C Q QQ Q

or(b) (c)(a)

Figure 4.1: Three types of two-qubit coupling scheme. Fixed-frequency
and tunable elements are represented by green and red blocks, respectively. (a)
Tunable qubits coupled via fixed resonator coupler. (b) Fixed-frequency qubits
with gate activated by microwave drives. (c) Fixed-frequency qubits coupled via
tunable coupler.

been successfully demonstrated with similarly high fidelity on the level of
99 % or higher. These coupling schemes can generally be divided into three
categories [156] as shown in Fig. 4.1. The first category (Fig. 4.1(a)) uses
the tunable transmon qubits as mentioned previously with a fixed-frequency
coupling element. The two-qubit gates are implemented by tuning respective
energy levels into resonance [155, 157–160]. The fidelity of this type of CZ
gate reached 99 % for the first time in 2014 [157, 161]. The second category
(Fig. 4.1(b)) operates with fixed-frequency qubits using an all-microwave con-
trol scheme for implementing the two-qubit gate. With this layout, the gate
is typically implemented by driving one qubit at the frequency of the other
qubit, which is known as the cross-resonance gate [162–166]. Although fixed
frequency qubits can provide longer coherence time, this gate typically requires
a longer operation time in comparison to what have been demonstrated with
the first category of coupling schemes. [156].

In this Chapter, the discussion is focused on the third category of two-qubit
gates (Fig. 4.1(c)), which utilizes either parametric modulation or adiabatic
tuning of the magnetic flux applied to the additional coupling element in or-
der to induce a tunable coupling between the qubits. Several demonstrations
of two-qubit gates based on this type of scheme have been presented with
relatively high fidelity [167–171]. This tunable coupling architecture has been
viewed as a promising alternative to implement high-fidelity two-qubit gates
[172], achieving fidelity on the level of 99.9 % with recent developments [72,
173]. We will layout the theoretical background and experimental implemen-
tation of two-qubit parametric gates, introducing the calibration procedure
and benchmarking experiments in the process.
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Qubit 2CouplerQubit 1

Figure 4.2: The circuit model representing the two-path tunable coupling
scheme. The circuit elements that comprise the qubits and the coupler are marked
in red and green respectively. There is a direct capacitive connection between each
pair of the three elements, with g1, g2 and g12 indicating the corresponding coupling
rates.

4.1 Two-qubit Tunable Coupling Scheme

In order to explore the options enabled by the addition of a tunable coupling
element between the two fixed-frequency qubits, we utilize the circuit design
outlined in Fig. 4.2, consisting of two computational qubits and a tunable
coupling element. Without losing generality, the two qubits are allowed to
interact directly with each other with the coupling strength g12 and each of
them is also coupled to the central coupler with a rate of g1 and g2 respectively.
In the circuit diagram, the three transmon elements are represented by two
lumped elements in parallel: a non-linear inductor Lxi, and a capacitor Cxi.
The direct coupling channel between the qubits is mediated by the capacitance
Cxx while the one between each qubit to the coupler is mediated by Ccx. The
theoretical features of this scheme and possible implementations of different
types of two-qubit gates will be examined carefully in the following sections.
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4.1.1 Circuit Quantization

To quantitatively determine the coupling rates and non-linear interaction
strength in a system of capacitors and Josephson junctions, we can start with
the Lagrangian of the circuit model assuming all three elements are tunable
for the most general cases,

L = T − U

T = 1
2

−̇→
ϕ

T

C−̇→
ϕ

U =
∑

i=1,2,c

EJ,i(Φext,i) cos[ ϕi

Φ0
],

(4.1)

where T and U are the kinetic and potential energy respectively. In the
kinetic part of the Lagrangian, the node flux vector

−→
ϕ and the capacitance

matrix C, obtained from Fig. 4.2, are

−→
ϕ =

ϕ1
ϕ2
ϕc

 ,C =

Cx1 + Cxx + Ccx −Cxx −Ccx

−Cxx Cx2 + Cxx + Ccx −Ccx

−Ccx −Ccx Cxx + 2Ccx

 .
(4.2)

The node flux ϕi for the respective element is used as the generalized co-
ordinate of the system and Cxi is the transmon capacitance as denoted in
Fig. 4.2. For the potential energy, the tunable Josephson energy EJ,i(Φext,i),
depending on the external flux Φext,i threading through the respective SQUID
loop, is

EJ,i(Φext,i) = EJ,i,L + EJ,i,R

1 + r

√
1 + r2 + 2r cos(2Φext,i

Φ0
). (4.3)

The EJ,i,L and EJ,i,R are the Josephson energy of the left and right junction,
and r = EJ,i,L

EJ,i,R
is the asymmetry between them. The canonical conjugates to

the node flux ϕi are the node charges qi that are treated as the generalized
momentum,

qi = ∂L
∂ϕ̇i

= Ciiϕ̇, (4.4)

60



4.1 Two-qubit Tunable Coupling Scheme

and −→q = C−̇→
ϕ . With the Legendre transformation, the Hamiltonian can be

derived from the Lagrangian as

H =
∑

i

qiϕ̇i − L = 1
2

−→q T C−1−→q + U (4.5)

where the inverse capacitance matrix C−1 is

C−1 = 1
∥C∥

n11 n12 n1c
n21 n22 n2c
nc1 nc2 ncc

 . (4.6)

The ∥C∥ is the norm of the capacitance matrix C and nij is the inverse
matrix element that contributes to the coefficient of the term qiqj from capac-
itive coupling. We can quantize the generalized coordinates ϕi and momenta
qi with

ϕ̂i =
√

ℏ
2ωiLi

(âi + â†
i ),

q̂i = −i
√

ℏωiLi

2 (âi − â†
i ),

(4.7)

where Li is the inductance of the Josephson junction, âi and â†
i are the

annihilation and creation operator of the respective element. The Hamiltonian
can be re-arranged into the form

H =
∑

i=1,2,c

(ωia
†
iai − ηi

2 a
†
ia

†
iaiai)+

∑
i,j=1,2,c

gij(a†
iaj +aia

†
j −a†

ia
†
j −aiaj), (4.8)

that includes frequency ωi and anharmonicity ηi of the transmon element
as well as the co-rotating terms, a†

iaj and aia
†
j , and counter-rotating terms,

a†
ia

†
j and aiaj , that describe the interaction between them. The qubit or

coupler frequency ωi as well as the anharmonicity ηi are proportional to the
respective diagonal terms nii, whereas the coupling rate between the element
gij is proportional to the sum of corresponding off-diagonal terms nij + nji.

From this Hamiltonian, we can calculate the desired coupling strength for a
chosen set of device parameters in the experimental realization of the tunable
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coupling scheme.

4.1.2 Circuit Hamiltonian

For a more intuitive understanding of the features of this system, we can
simplify the Hamiltonian in Eq. (4.8) with several assumptions. Firstly, the
higher energy levels of the elements do not contribute to the interactions
within the first excitation manifold. Secondly, only the co-rotating terms are
kept for the exchange interactions after the rotating wave approximation. The
third assumption is that the coupler is in the ground state at all times. The
resulting Hamiltonian, in the two-qubit subspace, can be written as

H =
∑

i=1,2

1
2ωiσ

z
i + 1

2ωcσ
z
c +

∑
i=1,2

gi(σ+
i σ

−
c +σ−

i σ
+
c )+g12(σ+

1 σ
−
2 +σ−

1 σ
+
2 ), (4.9)

in the Pauli basis representation, where σz
i , σ+

i and σ−
i are Pauli-Z, rising

and lowing operators for the respective elements. There are two channels of
interaction between the qubits: the direct coupling g12 and an indirect path
via the virtual exchange interaction mediated by the coupler, arising from
the coupling from each qubit to the coupler, g1 and g2. Assuming the qubit
frequency is lower than that of the coupler, ∆i = ωi − ωc < 0 and |∆i| ≫ gi,
such that the coupling is dispersive, the effective coupling strength of the
indirect channel could be calculated with the Schrieffer-Wolff transformation,

S = e

∑
i1,

gi2
∆i

(σ+
i

σ−
c +σ−

i
σ+

c )
, (4.10)

which decouples the coupler from the system. The resulting expression of
the two-qubit Hamiltonian including the fourth-order contributions is

H̃ = SHS† =
∑

i=1,2

1
2 ω̃iσ

z
i + JDC(σ+

1 σ
−
2 + σ−

1 σ
+
2 ), (4.11)

with

ω̃i = ωi + g2
i

∆i
, (4.12)
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JDC = g1g2

2 ( 1
∆1

+ 1
∆2

− 1
Σ1

− 1
Σ2

) + g12, (4.13)

and

∆i = ωi − ωc,Σi = ωi + ωc. (4.14)

The ω̃i is the shifted qubit frequency due to the coupling to the coupler. The
effective-qubit coupling JDC has two contributions: g12 from the direct qubit-
qubit coupling, which is always positive; the other term with the coefficient
g1g2

2 comes from the indirect coupling via the coupler. Since we choose to
operate at ∆i < 0, the sign of the indirect coupling term is always negative.
Therefore, there is a competition between the two coupling channels and the
sign and magnitude of JDC can be adjusted with the coupler frequency ωc
through ∆i and Σi.

Theoretically, there always exists a specific coupler frequency ωoff
c such

that the effective coupling JDC = 0 if g12 > 0, as shown in Fig. 4.3. The only
physical limitation is that this frequency is still within the range of the flux
tunability of the coupler. Although it is ideal to operate within the dispersive
regime that satisfies |∆i| ≫ gi to prevent qubit population leaking into the
coupler, it is still possible to have the switch-off point at ωoff

c in a system
with significantly larger direct coupling strength g12 in the weakly dispersive
regime where |∆i| > gi.

Additionally, the validity of the Schrieffer-Wolff transformation and thus the
derivation of the effective coupling strength relies on the third assumption that
the coupler remains in its ground state at all times. Therefore, the effect of
coupler excitations such as thermal population need to be directly calculated
from the full Hamiltonian of the entire system shown in Eq. (4.8).

4.2 Parameteric Gate Mechanisms
With the shown circuit, on top of the static effective JDC coupling mentioned
above, there are more possible coupling mechanisms enabled by the dynamic
JAC from parametric modulation of the coupler flux bias, which will be in-
troduced in this section. From this coupling mechanism, at least three types
of two-qubit gates can be constructed, which are parametric iSWAP [170],
CPHASE [174] and SWAP [175]. In this section, the main mechanism for all
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Figure 4.3: Effective qubit-to-qubit coupling strength JDC as a function
of coupler frequency. Depending on the strength of the direct coupling between
the two qubits, g12, there exist two regimes: 1) in the upper plot, g12 = 0, so there
is no JDC cancellation point for couplers being above the qubit frequencies; 2) in the
lower plot, g12 = 2 MHz, JDC cancellation point is at ωc,0ff = 6.2 GHz. The part
with negative(positive) JDC is shown in blue(red).

three gates will be discussed as well as their specific features and advantages.
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4.2.1 Parametric iSWAP

First, we will discuss the two parametric coupling gates. Since the coupler is
flux-tunable, its frequency dependence is

ωc(Φ) = ωc(0)
√

| cos(πΦ
Φ0

)|, (4.15)

where Φ0 is the flux quantum. If a sinusoidal flux-bias modulation of am-
plitude A0 and frequency ωΦ is applied to the coupler, the total flux is then

Φ(t) = Θ +A0 cos(ωΦt), (4.16)

where Θ is the constant DC flux applied to bias the coupler at a chosen
frequency. Assuming that the modulation amplitude is much smaller than
one flux quantum, A0 ≪ Φ0, the shifted qubit frequency derived in Eq. (4.12),
ω̃i(Φ(t)), can be expanded to second order in A0 cos(ωΦt) as

ω̃i(Φ(t)) ≈ ω̃i(Θ) + ∂ω̃i

∂Φ

∣∣∣∣
Φ=Θ

A0 cos(ωΦt) + 1
2
∂2ω̃i

∂Φ2

∣∣∣∣
Φ=Θ

(A0 cos(ωΦt))2

= ω̃i(Θ) − A2
0

4
∂2ω̃i

∂Φ2

∣∣∣∣
Φ=Θ

+ ∂ω̃i

∂Φ

∣∣∣∣
Φ=Θ

A0 cos(ωΦt) + ∂2ω̃i

∂Φ2

∣∣∣∣
Φ=Θ

A2
0

4 cos(2ωΦt).

(4.17)

The additional terms in the Eq. (4.17) comparing to the unmodulated qubit
frequency are a second-order DC shift and two oscillating terms at ωΦ and
2ωΦ respectively. Since this representation is calculated from the definition of
the Taylor expansion, the same results apply to J(Φ(t)) as well:

J(Φ(t)) ≈ J(Θ) + ∂J

∂Φ

∣∣∣∣
Φ=Θ

A0 cos(ωΦt) + 1
2
∂2J

∂Φ2

∣∣∣∣
Φ=Θ

(A0 cos(ωΦt))2

= J(Θ) − A2
0

4
∂2J

∂Φ2

∣∣∣∣
Φ=Θ

+ ∂J

∂Φ

∣∣∣∣
Φ=Θ

A0 cos(ωΦt) + ∂2J

∂Φ2

∣∣∣∣
Φ=Θ

A2
0

4 cos(2ωΦt).

(4.18)

Inserting the expansion for ω̃i (Eq. (4.17)) and J(Φ) (Eq. (4.18)), the effec-
tive Hamiltonian derived in Eq. (4.11) becomes
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H̃ = H0 +H1,

H0 =
∑

i=1,2

1
2

[
ω̃i(Θ) − A2

0
4

∂2ω̃i

∂Φ2 + ∂ω̃i

∂Φ A0 cos(ωΦt) + ∂2ω̃i

∂Φ2
A2

0
4 cos(2ωΦt)

]
σz

i ,

H1 =
[
J(Θ) − A2

0
4

∂2J
∂Φ2 + ∂J

∂ΦA0 cos(ωΦt) + ∂2J
∂Φ2

A2
0

4 cos(2ωΦt)
]

(σ+
1 σ

−
2 + σ−

1 σ
+
2 ),

(4.19)

with all derivatives with respect to Φ evaluated at Φ = Θ. Moving to
the rotating frame of the respective qubit frequency, the oscillating parts in
ω(Φ(t)) is averaged out to be zero. The effect of static term in J(Φ(t)) is also
suppressed if the qubits are not on resonance, |∆|10⟩−|01⟩| = |ω1 −ω2| ≠ 0 and
the coupling is small comparing to the qubit detuning |∆|10⟩−|01⟩| ≫ J(Θ).
In this case, the Hamiltonian can be simplified to

H0 =
∑

i=1,2

1
2

[
ω̃i(Θ) − A2

0
4

∂2ω̃i

∂Φ2

]
σz

i ,

H1 =
[

∂J
∂ΦA0 cos(ωΦt) + ∂2J

∂Φ2
A2

0
4 cos(2ωΦt)

]
ei∆̃|10⟩−|01⟩t(σ+

1 σ
−
2 + σ−

1 σ
+
2 ),
(4.20)

∆̃|10⟩−|01⟩ =
[
ω̃1(Θ) − ω̃2(Θ)

]
− A2

0
4

[
∂2ω̃1
∂Φ2 − ∂2ω̃2

∂Φ2

]
, (4.21)

where ∆̃|10⟩−|01⟩ is the qubit-qubit frequency detuning including the second-
order terms from the effect of the coupler modulation drive found in Eq. (4.12).
Therefore, when the modulation frequency ωΦ is on resonance with the de-
tuning ∆̃|10⟩−|01⟩, the interaction part of Hamiltonian is

H1 = JAC(σ+
1 σ

−
2 +σ−

1 σ
+
2 ) = JAC(|10⟩ ⟨01|+|01⟩ ⟨10|) = 1

2JAC(σX
1 σ

X
2 +σY

1 σ
Y
2 ).

(4.22)
with

JAC = A0
∂J

∂Φ , (4.23)

Equation (4.22) describes an XX-YY exchange interaction between the

66



4.2 Parameteric Gate Mechanisms

-0.50 -0.25 0.00 0.25 0.50
0

2

4

6

8

10
C
ou
pl
er
Fr
eq
ue
nc
y,

ω
c
(G
H
z)

-0.50 -0.25 0.00 0.25 0.50
-10

-5

0

5

10

Coupler Flux Bias, ϕ/ϕ0

P
ar
am
et
ri
c
C
ou
pl
in
g,
J A
C
/A
0
(M
H
z)

Figure 4.4: Coupler bias point and parametric coupling strength. The
upper plot shows the coupler frequency ωc as a function of coupler flux bias ϕ.
The two Josephson junctions in the coupler SQUID loop are symmetric and the
maximal coupler frequency is designed to be 8 GHz. The dashed lines represent the
frequencies of the two coupled qubits. The lower plot shows the parametric coupling
rate JAC/A0 as a function of coupler flux bias ϕ. Since JAC is proportional to the first
derivative of the coupler flux tunability curve, the coupling rate is antisymmetric
and exactly zero at the sweet spot of the coupler. The dashed line represents where
the coupler will be on resonant with the qubits in frequency.
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qubits, with an effective coupling strength JAC induced by the coupler flux-
bias modulation that depends on the modulation strength in flux quanta A0
and the first derivative of J with respect to Φ. There is also a resonant inter-
action if 2ωΦ = ∆̃|10⟩−|01⟩ is fulfilled, but with a different coupling strength.
The values for the parametric coupling rates JAC/A0 as a function of coupler
flux bias Φ are shown in Fig. 4.4 for a coupler with 8 GHz maximum frequency
coupled to two qubits with frequencies 5 GHz and 4.5 GHz and g12 = 0.

In the two-qubit basis where

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 , (4.24)

the matrix form of the Hamiltonian is simply

H̃ =


0 0 0 0
0 0 JAC 0
0 JAC 0 0
0 0 0 0

 , (4.25)

which only couples |10⟩ and |01⟩ qubit states. The unitary propagator after
interacting for a time τ is

Û(τ) = e
iHτ

h =


1 0 0 0
0 cos(JACτ) i sin(JACτ) 0
0 i sin(JACτ) cos(JACτ) 0
0 0 0 1

 . (4.26)

Therefore, by fine tuning the amplitude of the modulation A0 and gate time
τ0 such that JAC · τ0 = π, as illustrated in Fig. 4.5, we can perform an iSWAP
gate on the two qubits given by the unitary propagator

Û(τ0) =


1 0 0 0
0 cos(π) i sin(π) 0
0 i sin(π) cos(π) 0
0 0 0 1

 =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 = ÛiSWAP. (4.27)

68



4.2 Parameteric Gate Mechanisms

0.00 0.50 1.00 1.50 2.00
0

0.25

0.5

0.75

1

Normalised Gate Time JACτ/π

|1
〉 
St
at
e 
P
op
ul
at
io
n

Qubit 1

Qubit 2

Figure 4.5: The evolution of the excited state population of each qubit as a function
of the normalized interaction time JACτ0/π. At first, the Qubit 1 population (blue)
is in the excited state while that of the Qubit 2 (red) is in the ground state. The
plot indicates that after JACτ0/π = 1 of interaction, the |1⟩-level population of the
qubits are completely swapped.

4.2.2 Parametric CPHASE (CZ)

This method can be used to find similar exchange interactions between any
states in the same excitation manifold. Therefore, in the second excitation
manifold of the two-qutrit system consisting of the |11⟩, |20⟩ and |02⟩ states,
the Hamiltonian in Eq. (4.20) becomes

H̃ =
[

∂J̃
∂ΦA0 cos(ωΦt) + ∂2J̃

∂Φ2
A2

0
4 cos(2ωΦt)

]
·
[
ei∆̃|11⟩−|02⟩t(|20⟩ ⟨11| + |11⟩ ⟨20|)

]
,

(4.28)
with

∆̃|11⟩−|02⟩ =
[
ω̃1(Θ) − η1 − ω̃2(Θ)

]
− A2

0
4

[
∂2ω̃1
∂Φ2 − ∂2ω̃2

∂Φ2

]
= ∆̃|10⟩−|01⟩ − η1,

(4.29)
where ηi = ωeg,i − ωef,i is the anharmonicity of the qubit, and J̃ is the

effective static coupling strength between |11⟩ and |20⟩ level mediated by the
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coupler. The Hamiltonian for the interaction between |11⟩ and |02⟩ has the
same form of Eq. (4.20) with a different J̃ and ∆̃|11⟩−|02⟩ = ∆̃|10⟩−|01⟩+η2. For
each case, the coupling strength J̃ needs to be calculated from the generalized
Tavis-Cummings methods for multi-level qubits for the levels involved in the
interaction [155]. Therefore, when ωΦ is on resonance with either ∆̃|11⟩−|02⟩

or ∆̃|11⟩−|02⟩, the Hamiltonian can be simplified to

H̃ = J̃AC(|20⟩ ⟨11| + |11⟩ ⟨20|), (4.30)

with

J̃AC = A0
∂J̃

∂Φ . (4.31)

The H̃ is a 9 × 9 matrix, including the interaction between all states from
the two qutrits. Truncating the Hamiltonian H̃ down to two qubit states
yields

Û(τ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 cos(J̃ACτ)

 . (4.32)

Similar to the construction of the iSWAP gate, the amplitude A0 and in-
teraction time τ can be tuned to realize a 2π rotation between |11⟩ and |20⟩
or |02⟩ level such that all population is returned to |11⟩ level, which means
cos2(J̃ACτ0) = 1 and consequently J̃ACτ0 = π. Therefore, the unitary will
introduce a π phase shift to the |11⟩ state while leaving the other computa-
tional states unchanged, implementing a CZ gate on the two qubits. The CZ
unitary can be written as:

Û(τ0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 cos(J̃ACτ0)

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = ÛCZ (4.33)

In summary, as illustrated in Fig. 4.6, by choosing the coupler modulation
frequency ωΦ to be resonant with either ∆̃|10⟩−|01⟩ or ∆̃11−02(20), we can im-
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Figure 4.6: The level diagram of the system. The energy levels of Qubit 1 and
Qubit 2 are shown in blue and red respectively. Additionally, the relevant level
detunings for the implementation of the parametric iSWAP and the CZ gates are
indicated as well.

plement two different types of two-qubit gate: iSWAP and CPHASE. In order
to have a fast gate with a gate time τ of around 100 ns, the effective coupling
strength due to parametric modulation JAC ∝ ∂JDC

∂Φ ∽ g1g2
∆2 needs to be on the

order of a few MHz. Ideally, the gate should operate within the regime where
JDC is predominately linear with respect to Φ to avoid any higher order effect
from the modulation. For implementations with small qubit-qubit detuning, it
will be necessary to achieve cancellation of the static JDC to a negligible level
during the idling time to prevent any undesired residual exchange interaction
that could contribute to the gate error.

4.2.3 Parametric SWAP
One important gate that is not native to most [176, 177] quantum processors
is the SWAP gate. This gate is useful in systems without long-range or all-to-
all couplings between qubits, which is typical for superconducting quantum
processor architectures. The SWAP gate allows a two-qubit operation between
two distant qubits to be performed by repeatedly swapping the states [178,
179] within a chain of qubits, until the desired qubit states come adjacent
to one another [179]. Moreover, the SWAP-like family of gates is the only
two-qubit gate type that is guaranteed to avoid creating entanglement for any
separable input state [180].
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× • • S† ⊗ •

× • S† ⊗ •
= =

Figure 4.7: SWAP gate decomposition. A SWAP gate can be decomposed
either into three consecutive CNOT gates or in a combination of iSWAP and CZ
gates with additional single qubit gates. The iSWAP and CZ gate can be applied
either consecutively or simultaneously.

With both iSWAP and CZ gates implemented, there is an extra advantage
in the compilation of quantum circuits that contain SWAP gates. A SWAP
gate can be decomposed into three CZ gates that can be implemented na-
tively on most state-of-the-art quantum processors. Now, a more efficient
decomposition is possible with a combination of an iSWAP and a CZ gate as
shown in Fig. 4.7. Furthermore, the CZ gate commutes with the iSWAP gate,
thus they can be applied in any order, or even simultaneously since the para-
metric flux pulses that drive the CZ and iSWAP gates each targets different
frequencies. Detailed demonstration of this decomposition can be found in
Paper E. Such enhancements are particularly crucial considering NISQ-era
gate-error constraints given the high number of consecutive gates that must
be implemented during the course of an algorithm [2, 176, 178, 179]. Besides
NISQ, an augmented gate set may become useful in quantum error correction,
where encoding and decoding segments can benefit from circuits designed to
minimize the impact of SWAP gates [181].

To understand the compilation process, we can consider the unitary UiSWAP−CZ =
CZ · iSWAP,

UiSWAP−CZ =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 −1




1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 −1

 =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 −1

 .

(4.34)
If we use the conjugate transpose gates S† on both qubits to convert the
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off-diagonal i elements into 1 while also removing the negation on |11⟩, where

(S†)⊗2 =
(

1 0
0 −i

)⊗2

=


1 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 −1

 , (4.35)

we get that

(S†)⊗2UiSWAP−CZ =


1 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 −1




1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 −1

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

(4.36)
Equation 4.36 is identical to the SWAP unitary matrix. Since the S† gates are
implemented as 0 ns virtual-Z gates, such a SWAP sequence may be as short
as the duration of either one iSWAP or one CZ gate. In Paper E, we present
the implementation of this particular parametric SWAP gate in detail.

4.3 Parametric Gate Implementation
Equipped with the tools and understanding developed in the previous section,
we can implement the tunable coupling scheme illustrated in Fig. 4.2. All
three types of two-qubit gates that have been discussed can in principle be
implemented with the same pair of fixed-frequency qubits. In particular, the
capacitance Ci, Josephson energy Ej of each qubit are chosen such that the
qubit’s transition frequency is within the range of 4 to 5 GHz, compatible with
current state-of-the-art designs. The coupler is designed to be tuned over a
large range, starting from 7.5 GHz. The readout resonators are designed to
be between 6 to 7 GHz for the qubits. The initial target for the qubit-coupler
coupling rates, g1 and g2, are on the order of tens of MHz. The measured
parameters of the chosen sample used for the gate characterization in the
later sections are listed in Table 4.1.

The fabricated sample with the listed parameters is illustrated in Fig. 4.8.
There are three elements on the sample: two transmons operating as compu-
tational qubits, and another transmon between them serving as the coupler.
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Ej/h (GHz) Ec/h (GHz) Ccx (fF) gi/2π (MHz)
Qubit 1 15.3 232.5 2.4 47
Qubit 2 18.1 143.4 4.4 64

Table 4.1: Designed Josephson junction energy Ej/h, charging energy Ec, the qubit
and the coupler capacitance Ccx and calculated qubit-coupler interaction strength
gi for the two qubits.

qubit 1 qubit 2

coupler

XY2XY1
Z

readout 1 readout 2

Exposed Si-surface
C-chip Q-chip

Charge-line underneath
the qubit arm 

Flux-loop concentric 
with the coupler's SQUID

Resonator coupling structure 
underneath the qubit arm

feedthrough transmission line

Figure 4.8: Two-qubit flip-chip device. Illustration of two fixed-frequency
transmon qubits and one frequency-tunable coupler, located on the Q-chip, and
control lines (charge- or XY-line, flux- or Z-line), λ/4 readout resonators, and a
feedthrough transmission line, located on the C-chip. The shaded area corresponds
to the exposed silicon surface on each chip. The left inset shows the charge-lines
(C-chip), opposite the qubit arm (Q-chip). The middle inset shows the flux-loop
(C-chip), concentric with the SQUID loop of the coupler (Q-chip). The right inset
shows the open-ended part of the readout resonator (C-chip), opposite the qubit
(Q-chip). More details on this device are presented in Paper C.

As designed, the qubits are single-junction fixed-frequency transmons and the
coupler is tunable in frequency via the flux threaded through its SQUID loop.
The qubit excitation is driven via their respective charge line that is capac-
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Figure 4.9: The flux dependence of the frequency of Qubit 1 (blue), Qubit
2 (red) and the coupler (green) fitted from flux sweep measurement. The
chosen parking position of each element as listed in Table 4.2 is marked by the
corresponding dashed line. Additionally, the frequency of the readout resonators for
Qubit 1 and Qubit 2 are indicated as the dashed blue and red lines respectively.

ωq/2π (GHz) η/2π (MHz) T1 (µs) T ∗
2 (µs)

Qubit 1 5.176 -256 30.6 60.3
Qubit 2 4.534 -158 83.8 90.8

Table 4.2: Extracted frequencies and coherence times for the qubits. Qubit-qubit
detuning ∆|10⟩−|01⟩ is 642 MHz.

ωr/2π (GHz) κ/2π (MHz) χ/2π (MHz) nth.,|e⟩ (%) nth.,|f⟩ (%)
Qubit 1 6.752 0.427 0.132 2.1 0.4
Qubit 2 6.308 0.294 0.088 2.3 0.3

Table 4.3: Readout properties of the qubits. The measured thermal popula-
tions are determined by direct single-shot readout.

itively coupled to the qubit. By design, the qubits have a direct capacitive
coupling channel to the coupler but not to each other. They are also coupled
to their respective readout resonator via a capacitor.

The frequency dependence for the applied flux-bias is measured for the cou-
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pler, using qubit and resonator spectroscopy measurements. Fig. 4.9 shows the
results fitted with Eq. (4.3) to determine the values for the maximal Joseph-
son energies Ej,max/h, which are listed in Table 4.2. Additionally, the readout
resonators for Qubit 1 and Qubit 2 are approximately located at 6.7 GHz
and 6.3 GHz, shown as blue and red dashed lines in Fig. 4.9 respectively.
The measured qubit coherence and readout properties are shown in Table 4.2
and Table 4.3. The coupler parking position is chosen such that the coupler
frequency ωc satisfies the condition

ωc = ωq + a · ωCZ , (4.37)

where ωCZ is the CZ drive frequency, which can be either ∆20−11 or ∆02−11
[182]. We perform all gate characterization experiments at this parking posi-
tion.

After the completion of single-qubit gate calibration, the following proce-
dure is utilized to optimize the performance of two-qubit gates. For this im-
plementation, all the parametric gates use similar interaction mechanisms and
the types of flux pulse only differ in the frequency of the parametric flux drive.
In the following sections, the parametric CPHASE gates will be the focus of
our discussion, including the experimental results for the Chevron pattern,
conditional phase and dynamic phase measurement, CMA-ES optimization,
and randomized benchmarking.

4.3.1 Chevron Pattern Measurement

As a starting point for further optimization, the preliminary pulse parameters
for the parametric CPHASE gate can be obtained by measuring the popula-
tion exchange between the |11⟩ and |20⟩ (|02⟩) level, following the application
of the parametric flux pulse. The flux pulse has three main adjustable param-
eters: its length τ , modulation frequency ωΦ and amplitude A0. As shown
in Fig. 4.10, both qubits are prepared in the ground state at the start of the
experiment and then pulsed to the excited state. The flux pulse length τ and
modulation frequency ωΦ are swept between a chosen range while the ampli-
tude A0 of the pulse is fixed. The population of the qubit excited state is
measured at the end of the sequence and plotted against the pulse length τ

and modulation frequency ωΦ in a 2D density plot as illustrated in Fig. 4.11.
Two horizontal line cuts of the Chevron pattern shown in Fig. 4.11 along
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Qubit 1

Qubit 2

Coupler

Readout

Flux

Figure 4.10: The pulse sequence for the Chevron pattern measurement
with the parametric two-qubit gate. Either two parameters between the am-
plitude A0, frequency ωΦ and length τ of the flux pulse can be swept, while the
remaining one is fixed. There are two short buffer periods before and after the flux
pulse. The population of the qubits is measured at the end.
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Figure 4.11: Chevron pattern with pulse frequency and duration sweeped.
The measured |1⟩ and |2⟩- state population of Qubit 1 with the pulse scheme shown
in Fig. 4.10 for a parametric CPHASE gate. The white cross indicates the required
length and frequency to achieve full population exchange between the |11⟩ and |20⟩
states.

with the fitted model is illustrated in Fig. 4.12, with the results at ωΦ/2π =
378.6 MHz and ωΦ/2π = 383.1 MHz shown in red and blue respectively. As
discussed in Section 4.2.2, for the CPHASE gate operation, ideally the popula-
tion in the |11⟩ level is completely swapped to the |20⟩ level and fully recovered
to |11⟩ after an oscillation period of 2π. Therefore, we can extract the desired
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Figure 4.12: Off and on-resonant parametric drive response. The horizontal
line cuts of the Chevron pattern in Fig. 4.11 at off-resonant (ωΦ/2π = 378.6 MHz)
and on-resonant (ωΦ/2π = 383.1 MHz), which is shown in red and blue respectively.
The white cross in the on-resonant curve (red) marks the same point as in Fig. 4.11,
where the |1⟩-level population is fully swapped to the |2⟩-level and returned to the
original state with an additional π phase shift.

pulse parameter with a closer examination of the population exchange as a
function of pulse length at ωΦ/2π = 383.1 MHz, where the condition on popu-
lation exchange is fulfilled. As an example, for this dataset, the optimal pulse
length is 241.0 ns with a fixed modulation amplitude of A0 = 0.05Φ0.

Alternatively, having two-qubit gates of equal length across the chip is
preferable to benefit the compilation of larger quantum circuits. Therefore,
it is possible to fix the duration first to a reasonable value and sweep pulse
amplitude and frequency instead. The resulting parameters space is shown in
Fig. 4.13. In this case, to achieve a 256 ns gate, the pulse length in this mea-
surement is first fixed to half of the target length, i.e. 128 ns. The parameters
for maximal population swapping are easily identifiable as marked in the plot.
Then, the pulse with the same frequency ωΦ and amplitude A with double
the starting length will induce a complete population swap between |20⟩ and
|11⟩-state and back. These values will serve as the starting point for further
gate calibration.
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Figure 4.13: Chevron pattern with pulse frequency and amplitude
sweeped. The measured |1⟩ and |2⟩- state population of Qubit 1 with the pulse
scheme shown in Fig. 4.10 for a parametric CPHASE gate. The white cross indicates
the required length and frequency to achieve full population exchange between the
|11⟩ and |20⟩ state.

4.3.2 Conditional Phase Measurement
With the pulse parameters properly calibrated, we can continue to measure the
conditional phase induced by the gate. The experimental scheme is illustrated
in Fig. 4.14. In the plot, Qubit 1 is treated as the control qubit, and Qubit
2 as the target qubit, and the sequence can be repeated again with control
and target qubit swapped to calibrate both instances the gate can be applied.
Both qubits are prepared in the ground state at the start of the experiment.
The gate flux pulse is applied to the coupler and a Ramsey-type experiment
with a set of π/2-pulses is performed on the target qubit with the control
qubit either in |0⟩ or |1⟩. The sweeping parameter of the Ramsey experiment
is the phase of the second π/2-pulse, whereas the waiting time between the
two pulses is fixed. The populations of both qubits are measured at the end
of the experiment and plotted against the corresponding phase of the second
Ramsey π/2-pulse.

The results are measured with three level single-shot readout with pre-
selection. The measured excited state population of the target qubit that
undergoes the Ramsey experiment is shown in Fig. 4.15 as an example. The
conditional phase is acquired from the phase shift of the Ramsey signal when
the gate is turned on or off depending on the state of excitation of the control
qubit, which are shown in blue and red respectively. Ideally, the conditional
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Control 
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Flux

Qubit 1

Qubit 2

Figure 4.14: The pulse sequence of the conditional phase calibration.
First, the two qubits are prepared in the ground state. The π pulse on the control
qubit switches the gate on or off and a Ramsey experiment is performed on the
target qubit. The flux pulse on the coupler is a sinusoidal modulation with no DC
component.
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Figure 4.15: Conditional phase measurement. The measured |1⟩-level popula-
tion of Qubit 2 when the π-pulse on the control qubit is on (red) or off (blue) plotted
against the phase of the second π/2-pulse. The results are fitted with a sinusoidal
function and the relative phase difference and the change in maximal amplitude are
extracted between the Ramsey signals, which are the conditional phase and popu-
lation loss respectively.
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Figure 4.16: Leakage during conditional phase measurement. The measured
|2⟩-level population of Qubit 1 when the gate is on (red) or off (blue) is plotted
against the phase of the second π/2-pulse. The horizontal line indicates the mean
value for each set of measurements. The leakage extracted is from the difference in
the average |2⟩-level population between the two sets, shown as a solid line of the
respective color.

phase is calibrated to be 180° by tuning and optimizing all three pulse param-
eters.

The population loss of the |11⟩ state after the gate operation can be obtained
by comparing the maximal amplitude of the Ramsey signal of the target qubit
when the gate is on or off. However, there are a multitude of error mecha-
nisms that contribute to the measured population loss, such as decoherence
of the qubits during the gate and unwanted coherent processes that involve
population exchange between the |1⟩-state and other energy levels. Although
the population loss only provides limited information regarding the source of
errors, it can still serve as a general measure for the performance of the gate.

The leakage population outside of the computational subspace can be esti-
mated from the measured |2⟩-state population of the control qubit after the
conditional phase measurement sequence. An example of the measured result
is shown in Fig. 4.16. By comparing the average level of the |2⟩-state pop-
ulation with the gate on (red) and off (blue), the leakage rate per gate can
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Figure 4.17: The evolution of gate performance during 50 iterations of
CMA-ES optimization. The normalized cost function is calculated from√

((conditional phase − 180◦)/180◦)2 + (leakage)2 + (population loss)2.

be obtained, providing a direct measure of the potential error contribution to
gate performance.

4.3.3 CMA-ES Flux Pulse Optimization
We tune-up the parametric CPHASE gate with the transition between |11⟩
and |20⟩. For the chosen frequency configuration, listed in Table 4.2, the re-
quired modulation frequency is around 381.1 MHz, which is verified with the
Chevron pattern illustrated in Fig. 4.11. Manual calibration of the pulse
parameters, including the modulation amplitude A0 and frequency Φ0, is
done with the conditional phase sweep using the appropriate scheme for the
parametric CPHASE gate as shown in Fig. 4.14. The target is to achieve a
180° conditional phase shift with minimal population loss and leakage during
the gate. These settings are used as the starting position for the CMA-ES
algorithm.

Using the conditional phase measurement once more, we can employ a clas-
sical Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm
to numerically optimize the CPHASE gate with a stochastic process [183]. The
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cost function used by the CMA-ES includes the deviation of conditional phase
from 180°, population loss in the target qubit and leakage measured in the con-
trol qubit. The starting pulse parameters are tuned manually with the pulse
length sweep of the conditional phase mentioned earlier. Generally, all pulse
parameters specific to the type of CPHASE gate are tuned by several iterations
of the CMA-ES process to minimize the cost function and output an optimal
set of parameters. As an example, Fig. 4.17 shows the resulting conditional
phase, leakage and population loss for 20 iterations of CMA-ES optimization.
The values of the cost function can be represented by the norm, which is calcu-
lated as

√
((conditional phase − 180◦)/180◦)2 + (leakage)2 + (population loss)2.

For each factor, the mean of each iteration is indicated in purple dots and
gradually converges towards the minimal value. Further details regarding the
CMA-ES algorithm are described in the work of Hansen et. al.[184].

4.3.4 Dynamic Phase Measurement
On the other hand, the coupler pulse is also likely to affect the qubit fre-
quencies and induce an extra phase shift to the individual qubit independent
of the conditional phase. To measure the single qubit dynamic phase, each
qubit is prepared in the ground state and then a Ramsey-type experiment is
performed while the gate pulse is switched on or off, as illustrated in Fig. 4.18.

The measured results are shown in Fig. 4.19 and the dynamic phase for
the respective qubit is directly obtained by finding the phase difference of the
two Ramsey signals. Afterwards, the dynamic phase is corrected by applying
a virtual-Z gate on the respective qubit after the gate when the tuned-up
CPHASE gate is used as a component in another sequence.

After the dynamic phase calibration has been performed, the gate is ideally
fully optimized and ready to be examined in order to characterize the gate
performance.

4.3.5 Standard and Interleaved Randomized Benchmarking
In order to have a direct measure of the gate error, we perform the standard
and interleaved randomized benchmarking (RB) with the two-qubit CPHASE
gate [88]. The procedure is similar to the single-qubit randomized bench-
marking described in Section 2.3.2. In this case, the difference is that the
Clifford group used to generate the sequence contains both single-qubit gates

83



Chapter 4 Expanding Two-Qubit Gate Sets
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Figure 4.18: Dynamic phase measurement scheme. The pulse sequence of
the dynamic phase measurement. The qubit is prepared in the ground state and a
Ramsey experiment is performed while the flux pulse to the coupler is either on or
off. The experiment is repeated on both qubits involved in the gate.
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Figure 4.19: Dynamic phase measurement result. The measured Ramsey
signal when the pulse is on or off is plotted against the phase of the second π/2-pulse.
From the fitted sinusoidal function the relative phase difference can be extracted,
which is the dynamic phase from the effect of the gate flux pulse.

and two-qubit gates such as C-NOT, iSWAP and SWAP like gates [157]. All of
these three types can be decomposed into the target CPHASE gate and single
qubit gates as indicated in Fig. 4.20. In total, for a two-qubit system, there are
242 = 576 possible combinations for single qubit gates, 242 × 32 = 5184 gates
in C-NOT and iSWAP like classes and 242 = 576 gates in SWAP-like class
[185]. Therefore, the total number of possible gates in the two-qubit Clifford
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Figure 4.20: Scheme of the CNOT, iSWAP and SWAP like class in the
two-qubit Clifford group. Every type of two-qubit gate can be decomposed into
the +target CPHASE gate and single-qubit rotations.

group is 11520 and there are 1.5 CPHASE gates per Clifford on average.
The sequences for two-qubit gate RB are constructed as illustrated in Fig. 4.21,

similar to the method described in Section 2.3.2. In the interleaved RB, an ex-
tra CPHASE gate is inserted between two Clifford gates [186]. The measured
results are averaged over k = 100 randomly generated variations for each m

Clifford sequence.
The measured expectation values of the two-qubit correlation ⟨σ⊗2

Z ⟩, from
both standard and interleaved RB are plotted with the corresponding number
of Cliffords m, in Fig. 4.22. The results are fitted with

⟨σ⊗2
Z (m)⟩ = Apm +B, (4.38)

and the extracted depolarizing rate 1 − p, and the parameters A and B are
listed in Table 4.4.
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Figure 4.21: Two-qubit gate randomized benchmarking scheme. The stan-
dard (top) and interleaved (bottom) sequences are both listed. The standard se-
quence is constructed from randomly chosen gates in the two-qubit Clifford group.
In the interleaved sequence, an additional CPHASE gate is inserted between each
Clifford.
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Figure 4.22: Two-qubit randomized benchmarking results. The measured
two-qubit correlation ⟨σ⊗2

Z ⟩ as a function of the number of Cliffords in the RB (blue)
and IRB (red) sequence m. The final two-qubit state is ideally returned to |00⟩ state
where ⟨σ⊗2

Z ⟩ = 1. As the sequence becomes longer, the measured correlation ⟨σ⊗2
Z ⟩

decays exponentially to zero, indicating a maximally mixed state. The inset displays
the error rate per Clifford for the standard (blue) and interleaved (red) randomized
benchmarking sequence extracted from the Eq. (4.38).
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Parameter Fitted Value, RB Fitted Value, IRB

p (96.38 ± 0.70) % (93.84 ± 0.81) %

A (9.50 ± 0.22) ×10−1 (9.83 ± 0.14) ×10−1

B (1.36 ± 0.21) ×10−2 (1.59 ± 0.12) ×10−2

Table 4.4: List of parameters and the fitted values for the standard and interleaved
RB results shown in Fig. 4.22. Specifically, 1 − p is the depolarizing rate and the
parameter A and B contain information about the state preparation and measure-
ment errors.

The error per Clifford for RB and IRB is found to be (3.45 ± 0.23) % and
(6.16±0.27) % respectively, using the relation rClifford = 3

4p. By comparing the
depolarizing rates from RB and IRB measurements, the error per CPHASE
gate can be found with

r = 3
4

(
1 − pIRB

pRB

)
= (2.10 ± 0.35) % (4.39)

Consequently, the gate fidelity is p = 1 − r = (97.90 ± 0.35) %. Considering
the coherence time of the qubits presented in Table 4.2, the contribution to
the gate error measured in RB due to the energy relaxation and dephasing
is estimated to be around 98.9 % for a 256 ns gate time, which is calculated
from Eq. (2.22) [89, 187]. However, when the flux pulse is applied to the
coupler, it is possible for the coupler to cross the qubit in frequency due
to the symmetrical SQUID loop design of the coupler, which will contribute
to the gate error in two ways. Firstly, the effective coherence time of the
qubits is reduced due to the additional dephasing induced by the flux pulse.
Secondly, it becomes possible for the qubit population to leak into the coupler
due to the crossing of qubit levels. This is also indicated in the population
loss and leakage measured in earlier calibration experiments. While the gate
mechanism is promising in principle, future design iterations are essential to
continuously improve gate performances.
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4.4 Summary
In conclusion, we have examined all three parametric two-qubit gates that in-
clude iSWAP, SWAP and CPHASE(CZ) theoretically and demonstrated the
calibration procedure of parametric CZ in particular. Due to the parametric
nature of the flux pulses used for the gate, the calibration procedure is rel-
atively straightforward when comparing to that for the fast DC flux pulses
[155]. One major drawback is the speed of the parametric gate, leading to a
higher probability for the qubit to decay during the gate operation. Further
investigation has been focused on this aspect of the parametric coupling sys-
tem, which is an ongoing effort. By optimizing coupler design parameters and
choosing a better coupler frequency during gate operation, the parametric gate
has the potential for improvement in terms of both speed and performance.
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CHAPTER 5

Qubit Reset and Leakage Reduction

To achieve fault-tolerant quantum computing, quantum error correction (QEC)
algorithms are crucial components in preserving quantum information in a log-
ical qubit. Among QEC algorithms, the surface code has been shown to be
a promising platform in recent implementation with superconducting qubits
[32–34, 44, 45]. In such a code, physical qubits are designated to be either data
or ancilla qubits in a checkerboard pattern [36, 40, 41]. The data qubits store
the quantum information, and are parity-checked by measuring the ancilla
qubits in each error-correction cycle. Each parity check is followed by a reset
operation on the ancilla qubits to return them to the ground state and prepare
them for the next round of error detection. However, during the cycle, data
and ancilla qubits are prone to leak outside the computational subspace, thus
fatally compromising the error-correction algorithms [188–193]. Therefore,
both a fast and high-fidelity reset for ancilla qubits and a leakage-reduction
unit (LRU) for data qubits are instrumental for practical error correction.

Qubit reset is used to speed up the algorithm runtime as qubits’ lifetime
improves and the waiting time for the qubit excitation to naturally decay be-
comes significant [194, 195]. Qubit-reset protocols can be either conditional
or unconditional depending on whether or not they require knowledge of the
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qubit state. In conditional reset, qubits are reset conditioned on the mea-
sured results [196]. If the qubit population is in the first excited state |1⟩, a
π-pulse is sent to the qubit to drive the population back to the ground state
|0⟩ via real-time feedback. The primary limitation for conditional reset is
the feedback time of the control electronics. However, the success rate of the
feedback operation depends on the readout fidelity. In unconditional reset,
qubit excited-state is depopulated regardless of its initial state [188, 192, 194,
195, 197–199]. Existing unconditional reset schemes typically require addi-
tional drive signals, flux-tunable qubits, or additional control elements on the
device. These challenges lead to increased difficulties when scaling up to a
larger number of qubits.

In the context of LRU, its implementation requires resetting only the |2⟩-
state or higher-energy states without disturbing the computational subspace.
An LRU can be implemented either by directly coupling the |2⟩-state pop-
ulation to a lossy resonator [189, 191, 200] or by performing a SWAP gate
to transfer the |2⟩-state population to another element on the processor [190,
192]. It is crucial to develop an LRU that complements the chosen reset strat-
egy. Although LRUs are mainly discussed within the context of QEC, they
can be applied during any quantum algorithm to reduce the accumulation of
leakage errors.

In this Chapter, we present both high-fidelity unconditional qubit reset and
leakage reduction in an architecture using fixed-frequency transmon qubits
[66] pair-wise coupled via tunable couplers [114, 201, 202].

5.1 Unconditional Reset of Fixed-frequency Qubit
We first consider a system consisting of a fixed-frequency transmon qubit, a
tunable transmon that acts as the coupler element, and a leaky resonator form-
ing the dissipator stage. The energy levels of the two-qubit subsystem in the
single-excitation manifold are sketched out in Fig. 5.1. The high-frequency
qubit Q0 is treated as the ancilla qubit that we aim to reset, and the low-
frequency qubit Q1 acts as the data qubit that needs leakage reduction. To
implement the reset protocol on the ancilla qubit, the first step is to do a
qubit–coupler (QC) SWAP gate where the excitation is moved from qubit Q0
to coupler C0. The coupler C0 is parked above Q0 to avoid any interaction
with Q1. Using a similar mechanism, the LRU is implemented on qubit Q1
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R0

C0

Q0

CR

QC

Q1

R1

C1

LRU

CR

Figure 5.1: Schematic of the reset and leakage-reduction protocol with en-
ergy levels of the qubit-resonator-coupler subsystem. In a pair-wise coupled
system, two fixed-frequency qubits, Q0 and Q1, are coupled via a frequency-tunable
coupler C0 controlled by an applied magnetic flux. Each qubit is also coupled to
a dedicated readout resonator, denoted as R0 and R1. In the reset protocol, the
coupler C0 is first tuned on resonance with Q0 to implement a qubit-coupler (QC)
SWAP gate. Q1 is not affected due to the relatively large detuning between the two
qubits. For the leakage reduction unit (LRU), coupler C1 is used, initially biased
below the Q1 frequency. Afterwards, both couplers are tuned to higher frequencies
to interact with the resonators of either qubit to implement the coupler-resonator
(CR) SWAP gate. The excitation will then decay into the environment via the read-
out feedline.

via coupler C1, parked below Q1. The QC SWAP and the LRU can be exe-
cuted simultaneously on the respective qubit. Afterwards, the last step of the
protocol involves the coupler–resonator (CR) SWAP gates for all couplers in
parallel. The resonator excitation can then be dissipated through the feedline.

A simplified circuit diagram of this subsystem is shown in Fig. 5.2. Invoking
the rotating-wave approximation (RWA), we model the qubit and the coupler
as Kerr oscillators with anharmonicities αq and αc, respectively, and we write
the system Hamiltonian as

HRWA = ωra
†a+ ωqb

†b+ αq

2 b†2b2 + ωcc
†c+ αc

2 c†2c2

+ gqr

(
a†b+ b†a

)
+ gqc

(
b†c+ c†b

)
,

(5.1)

where a (a†), b (b†), c (c†) are the annihilation (creation) operators for the
resonator, qubit, and coupler, labeled by the subscripts r, q, and c, respec-
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Resonator CouplerQubit

In

Out

Figure 5.2: Circuit diagram of resonator-qubit-coupler subsystem. The
coupler, the qubit and the resonator are coupled with strength gqc and gqr between
each of the two elements, respectively. The resonator is coupled to the environment
with strength κ via the feedline.

tively. gij denotes the coupling strength between the systems i and j. For
the theoretical study, we assume that the coupler is not directly connected
to the resonator. Therefore, the exchange of quanta between the coupler and
resonator primarily occurs near their resonance, via second-order interactions
that can be studied using the well-known Schrieffer-Wolff perturbative expan-
sion [203].

Note that HRWA is number-conserving as all the terms contain an equal
number of raising and lowering ladder operators. The Hamiltonian decouples
into different blocks labeled by the total number of excitations N , and each
block can be studied separately. The dynamics of a qubit starting in its first-
excited state can be studied within the first-excitation subspace:

H1 =

ωr grq 0
grq ωq gqc

0 gqc ωc

 . (5.2)

5.1.1 Diabatic SWAP Interactions
To understand the dynamics of the reset protocol, we start by examining the
case of diabatic swap between the qubit and the coupler, which contributes
to reset the |1⟩-state population of the qubit. We employ both analytical and
numerical tools to interpret the reset scheme when the coupler frequency is
brought into resonance with the qubit on time shorter than 1/g. To achieve
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this resonant condition, we tune the coupler frequency. During the waiting
time at resonance, the qubit exchanges excitations with the coupler, thus
completing the first QC SWAP.

At the QC resonance, the resonator is far detuned from the qubit (ωr−ωq ≫
grq) such that we can neglect its contribution to the dynamics during this
first swap interaction. This makes the analysis even simpler as it reduces the
three-level system in Eq. (5.2) to an effective two-level system (TLS) formed
by the qubit and the coupler near resonance. Thus, we expect vacuum Rabi
oscillations between the qubit and the coupler.

We start the protocol with the system initialized in |1q0c0r⟩, where states
are labeled in the order |qubit, coupler, resonator⟩. The effective TLS Hamil-
tonian in the space of states |1q0c0r⟩ and |0q1c0r⟩ interacting in the first QC
SWAP is

Hqc =
[
−∆qc/2 gqc

gqc ∆qc/2

]
, (5.3)

with ∆qc = ωq − ωc.
During the waiting time τ of the first swap, ∆qc = 0. Therefore, the state

at time t = π/2gqc is

|Ψt⟩ = cos(gqct) |1q0c0r⟩ + i sin(gqct) |0q1c0r⟩ , (5.4)

with the qubit population entirely moving to the coupler at time t = π/2gqc.
The interaction is ideally an iSWAP gate. However, since we only consider the
population transfer during reset, we can simplify the notation to be SWAP.
After the first swap, the coupler is in the excited state, meaning that the
coupler needs to move away from resonance near t = π/2gqc, marking the
end of the first swap. The coupler frequency is then ramped up to the res-
onator frequency to initiate the second step, to enable the interaction between
the resonator and the coupler. At resonance, the coupler and the resonator
undergo Rabi oscillations, which is referred to as the CR SWAP. The lossy
resonator leaks out almost completely in a time of 3/κ, thus emptying the
resonator and completing a full reset operation.

The TLS Hamiltonian for the CR SWAP is

Hcr =
[
−∆cr/2 gcr

gcr ∆cr/2

]
, (5.5)
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with ∆cr = ωc−ωr. The resonator has a loss rate κ, which makes the evolution
non-unitary and necessary to treat within the master-equation formalism. If
we assume that the coupler and the resonator are not simultaneously excited,
the master equation implies that the non-Hermitian Hamiltonian

Heff = H − iκ2 L†L (5.6)

equivalently accounts for the dissipation. Solving its effective Schrödinger
equation yields an analytical expression for the non-unitary evolution of the
resonator and coupler states. Here, we consider photon loss from the res-
onator as the main source of dissipation. Therefore, the Lindblad operator L
annihilates a resonator excitation, i.e., L = a. The effective non-Hermitian
Hamiltonian governing the second swap can be written as

Hcr =
[
−∆cr/2 gcr

gcr ∆cr/2 − i κ
2

]
. (5.7)

Solving the Schrödinger equation for the Hamiltonian in Eq. (5.7), we find
the decay of the excited coupler wavefunction ψc:

e− κt
4

2gcr

(
κ sinh

(√
|α|t
4

)
+
√

|α| cosh
(√

|α|t
4

))
, α > 0

e− κt
4

2gcr

(
κ sin

(√
|α|t
4

)
+
√

|α| cos
(√

|α|t
4

))
, α < 0

e− κt
4

gcr

(
κt
4 + 1

)
, α = 0

(5.8)

with α = κ2 − 4g2
cr. This provides important insights into the overall reset

rates. One might expect that the photon decay rate and, thus, the reset speed
increases with κ. As seen from Eq. (5.8), the reset can be divided into three
regimes, under-damped (α < 0), over-damped (α > 0), and critically damped
(α = 0). In the over-damped regime, populations decay without oscillations.
The decay rate is less than κ/2 as the terms inside the parenthesis, contribute
to population growth and slow down the decay. In the under-damped regime,
the decay is oscillatory, limiting the overall speed of population decay. The
reset rate increases with κ until it hits the critical point κ/gcr = 2. At the
critical damping point, the population decays without oscillations. This is
where we expect to get the fastest decay at a rate κ/2. The ratio κ/gcr = 2
suggests the optimal point of operation in terms of the overall reset speed.
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From Eqs. (5.4) and (5.8), we can derive the total reset time for the fastest
case of diabatic reset when it is operated in the regime of the critical damping.
At resonance, the vacuum Rabi frequency for CR exchange is ΩR = 2gcr.
Similarly, the vacuum Rabi frequency of the QC interaction is ΩQ = 2gqc.
Using the above relation, we define the total reset time to be:

Treset = Ω−1
R + Ω−1

Q + κ−1, (5.9)

which can be used to estimate the reset speed for future device designs. To
enable a total reset time on the order of 100 ns, a set of typical design pa-
rameters can be {ΩR/2π,ΩQ/2π, κ/2π} = {10, 60, 10} MHz, which is feasible
with a flip-chip architecture and Purcell-filter designs for fast readout.

5.1.2 Adiabatic Landau-Zener-Stückelberg Transitions

To understand the adiabatic component of the reset dynamics, we consider
the Landau-Zener-Stückelberg (LZS) problem [204–206]. We will first describe
the LZS problem and then map our system to it. Consider a TLS described
by the following Hamiltonian, which varies linearly in time:

HLZS =
[
αt/2 0

0 −αt/2

]
, E± = ±αt/2,

Ψ+ =
[
1
0

]
, Ψ− =

[
0
1

]
.

(5.10)

Since the Hamiltonian is diagonal, solving the time evolution of the instan-
taneous eigenstates is straightforward (ℏ = 1):

|Ψ±(t)⟩ = e±iαt2/2 |Ψ±⟩ . (5.11)

After adding a coupling strength along the off-diagonals of the Hamiltonian

HLZS =
[
αt/2 g

g −αt/2

]
, E± = ±

√(
αt

2

2)
+ g2, (5.12)

the eigenstates |Ψ±⟩ are no longer time-independent, which leads to Ψ+ → Ψ−
and Ψ+ → Ψ−.
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Figure 5.3: Diabatic and adiabatic transitions. The qubit and coupler energy
levels are coupled with strength g. The qubit level is stationary while the coupler
is transiting across in frequency for a duration T . There are two limiting scenarios
in this case: 1) in fast diabatic transition (left), gT < 1, the population stays on its
original trajectory, 2) in slow adiabatic transition (right), gT ≫ 1, the population
is swapped to the other energy level during the interaction.

The minimum energy gap between the eigenstates occurs at t = 0, δmin =
2g. This sets the time scale for transitions, and two limiting scenarios arise,
as shown in Fig. 5.3. If the transition duration is on a timescale of T ≫ 1/g,
the process is said to be adiabatic. This is the origin of the ramp-up time
set to T < 1/g in the diabatic swap interactions. It can be shown that the
probability of a transition, a non-adiabatic effect, is

Ptrans = e− 2πg2
ℏα . (5.13)

This clearly indicates that the evolution becomes more adiabatic for larger
values of couplings, which can be attributed to the increase in the energy gap
at the avoided level crossing.

5.2 Qubit Reset and Leakage Reduction Unit
The experimental demonstration is carried out in a two-qubit subset of a
25-qubit device, which is illustrated in Fig. 5.4. More details on the device,
fabrication, and performance are provided in Refs. [114, 207]. The qubits
are designed to be in two frequency groups in a checkerboard pattern, with
neighbouring qubits separated in frequency by roughly 600 MHz [208]. The
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R0

Q1

C0

C2 C1

R1

Q0

Figure 5.4: Subset of the 25-chip device under test. A pair of qubits, with
their respective readout resonators and three of their surrounding couplers, are in-
volved in the experiments. Qubit Q0 (Q1) is treated as the ancilla (data) qubit.
Couplers C0 and C2 are utilized to reset qubit Q0, and the leakage reduction unit
on qubit Q1 is implemented via coupler C1. The device is designed and fabricated
as a flip-chip architecture [114], with the elements in red placed on the qubit chip
and those in blue on the control chip.

subset consists of two fixed-frequency transmon qubits Q0 and Q1 [66] with
transition frequencies ωQi

/2π at 5.176 and 4.534 GHz, and anharmonicities
of ηQi/2π at −256 and −158 MHz for i = 0 and 1, respectively. Each qubit is
coupled with a strength gi to a readout resonator Ri of frequency ωRi

/2π =
6.752 and 6.308 GHz for i = 0 and 1, respectively. Both resonators are
coupled to the same feedline. There is a tunable coupler between each pair of
qubits arranged in a square grid on the chip. In this experiment, three of the
couplers (C0, C1, and C2) surrounding the pair of qubits are used. The qubit-
to-coupler coupling rates gQC/2π are 40 MHz (60 MHz) for qubit Q0 (Q1),
while the qubit-resonator coupling rates gQR/2π are around 50 MHz. The
coupling between the coupler and resonator has two main sources: a direct
capacitive coupling due to their proximity on the chip and an indirect coupling
mediated by the qubit. The sample used in our experiment is the same one
as in Section 4.3, with parameters listed in Table 4.2 and Table 4.3. The
complete experimental setup and full wiring diagram are detailed in Paper
B.

For qubit reset, one main scenario to consider is the ability to reset not
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just the qubit |1⟩-state population, but also that of the higher energy states,
due to the accumulation of leakage population outside of the computational
subspace. For this reason, an adiabatic pulse is chosen to perform qubit reset
due to the possibility of transferring the population from multiple energy
levels simultaneously. The pulse shape is calculated from the instantaneous
approximate adiabatic condition. Given a Hamiltonian H(t), for any two
adjacent eigenstates |Ψn(t)⟩ and |Ψm(t)⟩ and corresponding eigenvalues En(t)
and Em(t), the evolution with duration τ is approximately adiabatic if the
following condition is met:

max
0≤t≤τ

∣∣∣⟨Ψn(t)| ∂H(t)
∂t |Ψm(t)⟩

∣∣∣
max

0≤t≤τ
|En(t) − Em(t)|2 ≪ 1. (5.14)

This condition implies that the changes in the interactions between the
states m and n at time t must be significantly smaller than the energy dis-
tance between the states. Note that this is a global condition and can be mod-
ified to an instantaneous condition. The instantaneous approximate adiabatic
condition was previously used to accelerate Grover’s algorithm in adiabatic
quantum computation by Roland and Cerf [209, 210], which has been studied
and experimentally verified in two-level systems [211, 212].

The exact analytical solution of the adiabatic pulse is derived following the
Roland and Cerf protocol to speed up the adiabatic transitions [209, 210], with
an example shown and annotated in Fig. 5.5(a). Assuming that the adiabatic
condition in Eq. (5.14) is satisfied for every infinitesimal time interval from t

to t+ dt, we arrive at∣∣∣∣〈Ψn(t)
∣∣∣∣∂H(t)
∂t

∣∣∣∣Ψm(t)
〉∣∣∣∣ ≪ |En(t) − Em(t)|2. (5.15)

For a two-level system (TLS) with coupling strength g that is described by
the Hamiltonian

HTLS(t) = ℏ
[
∆(t)/2 g

g −∆(t)/2

]
, (5.16)

the adiabatic condition, defined by Eq. (5.15), is:∣∣∣∣∂∆(t)
∂t

∣∣∣∣ ≪ (∆2(t) + 4g2) 3
2

g
. (5.17)
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(a)
QC RO
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RO(d)

(b)

CR RO(c)

Figure 5.5: Calibration sequences of the reset protocols with adiabatic
pulses. (a) The adiabatic pulse for the qubit-coupler (QC) reset SWAP is defined
by Eq. (5.19) with four parameters: the pulse duration τ = 100 ns, the coupler
frequency offset, fτ = −1 GHz, the QC coupling strength, g, and the QC detuning
that defines the start of the adiabatic process, f0 = −1.5 GHz. In particular, fτ is
essentially the amplitude of the flux pulse. The coupler is first pulsed to be below
Q0, and then crossing the Q0 energy level adiabatically before returning to the idle
position. The pulse schemes to calibrate the (b) qubit-coupler (QC) SWAP, (c)
coupler-resonator (CR) SWAP and (d) leakage reduction unit (LRU) include π01
(red) and π12/2 (blue) pulses to prepare the qubit state, the flux pulses (filled areas
in green) applied on the coupler, and the readout (RO) pulses on the resonator
(black).

We then find the qubit-coupler detuning ∆(t) for implementing adiabatic
evolution. The differential equation can be solved by multiplying a scaling
prefactor β to its right-hand side:∣∣∣∣∂∆(t)

∂t

∣∣∣∣ = β
(∆2(t) + 4g2) 3

2

g
. (5.18)

Therefore, given the boundary conditions for a pulse duration of τ , which are
denoted as ∆(0) = f0 and ∆(τ) = fτ , one can find the solution to Eq. (5.18)
for the instantaneous adiabatic evolution to be

∆(t) = − 8g(βg · t+ δ)√
1 − 16(βg · t)2 − 32βδg · t− 16δ2

, (5.19)
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with

β =
−4δ(f2

τ + 4g2) − fτ

√
f2

τ + 4g2)
4gτ(f2

τ + 4g2) , (5.20)

δ = − f0√
16f2

0 + 64g2
. (5.21)

Trajectories similar to Eq. (5.19) based on the Roland and Cerf protocol can
also be found in Refs. [209, 212–215].

The pulse can be defined by four parameters: τ is the pulse duration, f0 is
the coupler frequency offset from the idle point, fτ is the qubit-coupler detun-
ing before the start of the pulse, and g is the qubit-coupler coupling strength
that defines the slope of the center region of the pulse. In practice, the cou-
pling parameter g can be treated as an adjustable variable to be optimized for
better reset performance. With increasing g, the pulse gradually transforms
from a square pulse with an extra tail to a linear ramp pulse, so that we have
the full range to tune the adiabaticity of the transition induced by this pulse.

5.2.1 Qubit-Coupler SWAP Gate
The first step of our reset protocol is to transfer the |1⟩-state population of
qubit Q0 to coupler C0, as shown in Fig. 5.5(b). We first bias the coupler
C0 to be at least 1 GHz above Q0 and below its resonator R0, which would
be the common idling point chosen for implementing a parametric two-qubit
gate. We prepare Q0 in |1⟩ (without the π12/2-pulse at this stage) and then
implement a QC SWAP operation between Q0 and C0 by applying the adi-
abatic flux pulse in Eq. (5.19), which is given by the solution of Eq. (5.14).
The pulse induces a population transfer between qubit and coupler, which is
ideally adiabatic.

To tune-up the QC SWAP gate, we need to acquire the pulse parameters
in two separate 2D sweeps, since four parameters are needed to define the
pulse. For each sweep, we define the reset error ϵreset to be the residual non-
ground-state population after the operation, 1 − p0, where p0 is the measured
|0⟩-state population of Q0. We use the reset error as the figure of merit for
the calibration.

We first measure the reset error as a function of the pulse duration τQC

and the coupler frequency detuning fτ . We set f0 and g to be 200 MHz
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QC SWAP - |1〉-state Reset
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Figure 5.6: Calibration results of qubit-coupler (QC) SWAP. The measure-
ment results of the qubit-coupler (QC) SWAP are shown. The pulse sequence of
the measurement is shown in Fig. 5.5(b). The qubit is initialized in the |1⟩ state.
For the 2D parameter sweeps, the colour represents the reset error, which takes all
non-ground state populations into account, and the regions with lower reset errors
are always indicated in blue. The line cut in (b,d) indicates the cross-section of the
optimal parameters taken from the 2D sweep marked with a vertical white dashed
line.

and 71 MHz, respectively, given preliminary qubit and coupler spectroscopy
results. The reset error as a function of τQC and fτ is shown in Fig. 5.6(a), and
a chevron pattern illustrating population transfer from the qubit to the coupler
|1⟩-state is observed. A line-cut of the first minimum in reset error is displayed
in Fig. 5.6(b) to demonstrate the time evolution of the population. We then
fix τQC and fτ to be the values that produce the lowest reset error, and sweep
both g and f0 to refine the pulse shape, as shown in Fig. 5.6(c-d). A large
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QC SWAP - |1〉 and |2〉-state Reset
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Figure 5.7: Calibration results of qubit-coupler (QC) SWAP for |2⟩-state
reset. The pulse sequence of the measurement is shown in Fig. 5.5(b). The qubit
is initially prepared in a (|1⟩ + |2⟩)/

√
2 superposition state.

parameter space, with g being below 50 MHz and f0 being around -200 MHz,
can be identified where the reset error approaches the readout limit. These
initial results suggest that the fidelity of this swap operation can be above
99%, limited by drifting qubit parameters and coupler flux bias currents. We
achieve depopulation of the |1⟩ state with a 9 ns QC SWAP gate between the
ancilla qubit and the coupler. The data qubit, Q1, is only negligibly affected
by the flux pulse, since it is 642 MHz lower in frequency than the ancilla qubit.
Therefore, the reset of the ancilla qubit can be performed independently of
the state of the data qubit.

To show how we can reset both the |1⟩-state and |2⟩-state population of the
ancilla qubit simultaneously, we prepare the ancilla in a superposition state
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(|1⟩+|2⟩)/
√

2 with an additional π12/2-pulse [see Fig. 5.5(b)] so that the effect
on both states is visible with a single measurement. The coupler interacts
with multiple qubit levels during the frequency tuning. The results are shown
in Fig. 5.7. There is a relatively small parameter space for a fast reset on
the order of 31 ns due to interaction between both qubit |1⟩- and |2⟩-state
population with the coupler, with around 5% of the population remaining at
the |1⟩ state while the rest is in the |0⟩ state. This is due to the proximity
of the data qubit Q1 to Q0 in frequency, limiting the furthest extent of the
adiabatic pulse and thus the adiabadicity of the pulse. Therefore, we are
able to reset both the |1⟩ and the |2⟩ states with the same pulse parameters,
although the reset of the |2⟩ state is only partially complete with a single
pulse.

To improve the reset fidelity, we repeat the same reset scheme with another
coupler. In practice, the implementation is realized with coupler C0 and
coupler C2, both of which are coupled to qubit Q0. Assuming that the |1⟩-
state reset is ideal, the reset success probability is 1 − 2 · 0.05 = 90% for a
pure |2⟩ state. From this, we can estimate that two successive reset operations
with similar success probability can achieve a total fidelity of 1 − 0.12 = 99%,
albeit at the cost of double the time.

5.2.2 Coupler-Resonator SWAP Gate
The next step of the reset protocol is to remove the excitation in the coupler
by resonant interaction with the qubit readout resonator, as shown in Fig. 5.1.
Due to the direct capacitive coupling between the coupler and the qubit read-
out resonator and indirect coupling mediated by the qubit, it is possible to
implement this scheme without changing the architecture of the device.

To calibrate the coupler-resonator SWAP, we implement the pulse sequence
shown in Fig. 5.5(c). We first prepare the ancilla qubit in the |1⟩ state and
then apply the reset flux pulse, starting with a QC SWAP to populate the
coupler. A diabatic square pulse is preferable here during the calibration
since it is easier to observe the oscillation of the excitation between the qubit
and the coupler. Afterwards, we implement a linear-ramp pulse to perform
the CR SWAP to induce adiabatic transfer, due to the simpler nature of the
frequency landscape of the resonators. The amplitude of the CR SWAP flux
pulse has the opposite sign of the QC SWAP pulse in order to interact with
the resonator levels that are higher in frequency. We add an extra QC SWAP
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Figure 5.8: Calibration results of coupler-readout resonator (CR) SWAP.
The pulse sequence of each measurement is shown in Fig. 5.5(c). The qubit is
initialized in the |1⟩ state.
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Figure 5.9: Simulated energy spectrum of the Q0-Q1-C0 system and QC
SWAP with a square flux pulse. (a) Energy spectrum that involves two-
excitation states such as |002⟩, |011⟩, |110⟩, |101⟩, |200⟩, and |020⟩ as a function
of the coupler frequency. These states represent different combinations of excita-
tions distributed among the two qubits and the coupler. (b) Energy spectrum of
the single-excitation states |001⟩, |100⟩, and |010⟩, which involve a single excitation
localized in either Q0, Q1, or C0.

pulse after the CR SWAP pulse to move the residual population in the coupler
back to the ancilla qubit so that its population can be read out.

The coupler is reset to its ground state |0c⟩ after 20 ns, as shown in Fig. 5.8,
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Figure 5.10: QC SWAP with a diabatic flux pulse. Reset error for the qubit
(a) Q0 and (b) Q1. The color scale represents the reset error, defined as 1 − p0,
where p0 is the probability of the qubit being in the ground state after the reset
protocol. The heatmaps illustrate how the state-transfer dynamics and subsequent
reset errors depend on the interaction between the qubits and the tunable coupler.
Darker regions (red) indicate higher reset errors, while lighter regions (blue) signify
more efficient resets with lower error rates.

with reset error reaching below the readout floor at 10−4 for a relatively large
parameter space. We choose a pulse duration of 22 ns for robustness against
fluctuations over time. Note that the CR SWAP can be applied to all couplers
simultaneously to reduce sequence time.

5.2.3 Data Qubit Response
One limiting constraint on the adiabaticity of the reset pulse is the frequency
spacing between the two qubits. First, we simulate the effect of the coupler
frequency-tuning to understand the system behaviour in the regime when
the coupler interacts with both qubits [216]. The simulated energy spectrum
of the Q0-Q1-C0 system is shown in Fig. 5.9, consisting of the two fixed-
frequency transmon qubits, Q0 and Q1, coupled via the tunable coupler C0.
In this architecture, the coupler frequency (ωc) can be adjusted to control the
interactions between the qubits, enabling dynamical control over the energy
levels of the system. As the coupler frequency is tuned, the energy levels shift,
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Figure 5.11: Adiabatic pulse performance with respect to the excitation
on the data qubit. In (a-b) ((c-d)), Q1 is initially prepared in |0⟩ (|1⟩)-state.
The interaction between the coupler and Q0 varies much differently depending on
the state of Q1. The coupling strength parameter g is set to 1 GHz for both mea-
surements to approximate a linear ramp pulse.

displaying several avoided level crossings where the states interact strongly,
highlighting the tunable coupling mechanism.

The avoided crossings between the states |200⟩, |101⟩, and |002⟩ in Fig. 5.9(a),
as well as |100⟩ and |001⟩ in Fig. 5.9(b), are of particular interest as they
provide a pathway for adiabatic state transfer between qubit Q0 and the cou-
pler C0. By slowly varying the coupler frequency, the system can transition
between these states without occupying intermediate levels, facilitating a con-
trolled swap of an excitation from qubit Q0 to the coupler C0. This mechanism
is crucial for our approach in unconditional reset of the qubit Q0.
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We then simulate reset errors of qubits Q0 and Q1 as a function of the
coupler frequency (ωc) and pulse duration (τQC) for a square flux pulse. The
result is shown in Fig. 5.10. The simulation result shows that Q1 is not affected
by the reset pulse given that one chooses ωc and τQC to best reset Q0.

However, due to the anharmonicity of the transmon, the higher energy
transitions have a multitude resonant interactions with the coupler states as
shown in Fig. 5.9(a). It becomes difficult to reset both the |1⟩- and |2⟩-state
population of the qubit with a single diabatic pulse. Therefore, we need to
examine the feasibility to reset multiple qubit states with adiabatic transfer
instead.

Experimentally, we can measure the effect of the applied adiabatic pulse on
the data qubit directly. In Fig. 5.11, two sets of measurements are carried out
for the same reset pulse with Q1 initially prepared in either |0⟩ [Fig. 5.11(a-b)]
or |1⟩ [Fig. 5.11(c-d)]. We observe that the parameter space available for a
complete reset for Q0 in Fig. 5.11(a) is much larger than that in Fig. 5.11(c).
The transition in this regime is fully adiabatic, indicated by the fact that there
are no oscillations occurring at a longer pulse duration.

However, reset pulses with these parameters move the coupler too close to
the Q1 frequency, resulting in significant undesirable interaction with Q1, as
shown more prominently in Fig. 5.11(d). Therefore, in order to protect the
|1⟩-state population of Q1, we choose to operate in the regime indicated by
Fig. 5.11(c). This constraint increases the calibration difficulty and potentially
decreases long-term stability in large devices.

5.3 Leakage Reduction Unit with Diabatic Pulse
Leakage in the data qubits is a major error source in any error-correction
scheme. Therefore, a protocol to specifically target the |2⟩ state of data qubits
without disrupting the |1⟩-state population is necessary for successful error
correction. An LRU on the data qubit Q1 can be implemented by moving the
coupler C1 to where the |111c⟩ and |210c⟩ states of the Q1-C1 system are on
resonance, as shown in Fig. 5.1. The coupler C1 that implements the LRU is
parked below the data qubit, to avoid disruption of its |1⟩-state population.

The specific pulse scheme is shown in Fig. 5.5(d). We prepare Q1 in the
(|1⟩+|2⟩)/

√
2 superposition state, and apply the flux pulse to move the coupler

C1 such that the |210c⟩ state is on resonance with the |111c⟩ state. The LRU
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Figure 5.12: Calibration results of leakage reduction protocol. The pulse
sequence of each measurement is shown in Fig. 5.5(d). The qubit is initialized in
the |2⟩ state.

pulse shape is chosen to be a simple square pulse such that the interaction is
fast and diabatic. This minimizes the effect on the qubit |1⟩-state population.
An extra π01 pulse is added after the LRU, since the readout fidelity is higher
when measuring the |0⟩-state population. The results in Fig. 5.12 show that it
takes 5 ns to complete the population swapping from the |210c⟩ to the |111c⟩
state.

Furthermore, the LRU can be implemented simultaneously with the reset
pulse on the ancilla qubit, since it uses a different coupler, C1. Similarly to
the reset protocol, after interacting with the qubits, all couplers are made
to adiabatically interact with the resonators simultaneously to transfer the
couplers’ population.

5.4 Single-Shot Verification
To fully characterize the reset and LRU performance, we prepare the data
and ancilla qubits in all nine combinations of two-qubit states in the first and
second excitation manifolds, i.e., |0001⟩, |0011⟩, |0021⟩, etc. Then we execute
the full reset protocol, including |1⟩- and |2⟩-state QC SWAP, CR SWAP, and
LRU with the two qubits (Q0 and Q1) and the three couplers (C0, C1, and
C2), as shown in Fig. 5.13(a). With the measurement protocol established, we
employ the CMA-ES algorithm to optimize the pulse parameters g, fτ , and
f0 to achieve a lower reset error [217].
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Figure 5.13: Pulse sequence and performance verification with single-
shot readout. (a) The pulse sequences include state preparation of two qubits,
flux pulses applied on three couplers for reset and leakage reduction, and the readout
of qubit population. The total duration of the flux pulse sequence is 83 ns. All 9
combinations of two-qubit initial states in the first and second excitation manifold
are prepared and measured. (b) Single-shot readout results of resetting all 9 two-
qubit states. The mean reset error is calculated from the average of all combinations.
(c) Long-term single-shot readout results for the 3 out of 9 combinations where Q0
is prepared in the |1⟩- or |2⟩-state, or Q1 is prepared in the |2⟩-state respectively.
The measurement is repeated 200 times to test the stability of the protocol.

Time-wise, resetting only the |1⟩ state of the ancilla qubit requires only
9 ns. However, to reset both the |1⟩ and |2⟩ states, we need to apply flux
pulses on couplers C0 and C2 sequentially; these pulses are 31 ns and 30 ns
long, respectively. The CR SWAP takes 22 ns while the leakage reduction
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unit needs a 5-ns-long pulse, which can start at the same time as the QC
SWAP pulses. Therefore, the total time needed to implement both reset and
LRU is 83 ns.

Each of the nine states is prepared and measured for 10,000 shots with
single-shot readout. The results for each measurement are illustrated as a
matrix in Fig. 5.13(b). To understand the long-term stability and error mar-
gin, the results are gathered from 200 repeated measurements as illustrated
in Fig. 5.13(c). We average over the three out of nine combinations of the
initial state where Q0 is prepared in the |1⟩ or |2⟩ state, or Q1 is prepared in
the |2⟩ state, to trace out the effect of the different input states. On average,
the adiabatic reset protocol achieves a reset error of 1.87 × 10−3 (7.87 × 10−3)
for the |1⟩ (|2⟩) state. Meanwhile, the leakage reduction reaches an error
of 9.50 × 10−3. Over time, all three components are robust against random
fluctuations during the span of at least a few hours.

5.5 Summary
In summary, we have implemented a fast, high-fidelity, and unconditional
qubit reset protocol on fixed-frequency qubits with a tunable coupler. Using
adiabatic pulses, our reset protocol achieves a reset error of (1.87±1.12)×10−3

for the |1⟩ state within 9 ns, and (7.87±1.94)×10−3 for the |2⟩ state in 61 ns.
We also perform leakage reduction, on the qubit in 5 ns with a remaining
leakage error of (9.50±1.35)×10−3. Afterwards, the population in the coupler
can be transferred to the readout resonator in 22 ns. In total, the combination
of qubit reset, leakage reduction and coupler reset takes only 83 ns to complete.
The reset error we achieved is below the suggested threshold for quantum
error correction [218], which is between 10−2 to 10−2.5, together with the
additional benefit of removing leakage in both ancilla and data qubits. The
reset and LRU fidelities are also comparable with the state-of-the-art result
from Google with tunable qubits, which are 99.86% and 98.9%, respectively
[188, 190]. The reset pulses are straightforward to tune up, with at most four
parameters completely defining the entire pulse shape. Moreover, the reset of
the ancilla qubits and the leakage reduction unit of the data qubits can run
simultaneously to achieve maximal efficiency due to the usage of all available
coupler elements.

The main limitation on the fidelity of the reset protocol is found to be
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the frequency separation of the qubit pair. With only 642 MHz of spacing
between the two qubits, the adiabatic pulses have a limited frequency range
to evolve back to the initial state of the coupler in the dispersive regime, which
leads to an incomplete adiabatic transition. Another limiting factor for the
LRU is the small anharmonicity of the couplers on the current device, ηc =
82 MHz, which affects the undesirable interaction with the |1⟩ state of the data
qubits. Further design iterations and development in pulse-shaping techniques
to alleviate these undesirable effects are currently under investigation with
more theoretical simulations and better parameter-optimization algorithms.

To see how to scale up the reset and LRU protocol in the surface code
implementation based on a 2D square grid, we can start by estimating the
ratio between the number of qubits and couplers. For a code distance d, there
will be d2 data qubits, d2 − 1 ancilla qubits, and cd = 4d(d − 1) couplers.
The reset and LRU protocol will need cr = 3 · d2 − 1 couplers to fully imple-
ment the scheme. For d > 3, cd is always greater than cr, thus guaranteeing
the implementation of our protocol without the need for additional elements.
Moreover, we have recently demonstrated [207] that our processor has a low
level of crosstalk, thus, enabling us to further scale up our design. In conclu-
sion, we have demonstrated that the architecture with fixed-frequency qubits
and tunable couplers is compatible with quantum error-correction schemes
and subsequent fault-tolerant quantum computing.
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CHAPTER 6

Conclusion

In this thesis, we mainly address two critical challenges in quantum computing:
high-fidelity readout and efficient on-demand qubit reset. These improvements
are essential steps towards realizing fault-tolerant quantum computation.

Our readout strategy exploits the higher energy levels of the qubit [65, 95,
106, 115, 117, 119] and introduces a two-tone probing of the resonator to
enhance the readout fidelity of multiple states. We demonstrate single-shot
readout fidelity up to 99.5 % (96.9 %) for two-state (three-state) discrimination
within 140 ns without using a quantum-limited amplifier. The techniques
we present here offer significant protection against decay during readout, are
straightforward to implement, and can be readily integrated in state-of-the-art
quantum-computing devices.

We also propose and demonstrate a reset and leakage reduction scheme that
utilizes the tunable coupler as a mean to transfer excitations from a qubit to its
readout resonator, from which the excitations can then decay into the feedline.
Remarkably, we show that all operations have negligible impact on the other
qubits on the chip and are easy to implement with the current fixed-frequency
qubits and tunable-coupler architecture without the need for any additional
hardware resources. We demonstrate a fast semi-adiabatic |1⟩- to |0⟩-state
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reset with an error of (1.87 ± 1.12) × 10−3 within 9 ns, and an adiabatic reset
that can also move both the |1⟩- and |2⟩-state populations to the |0⟩ state at
the same time, reaching a (7.87±1.94)×10−3 error within 61 ns. We also show
a Leakage Reduction Unit (LRU), that removes the |2⟩-state population back
to the |1⟩ state without disrupting the computational subspace of the data
qubits with an error of 9.50 × 10−3 in 5 ns, and a coupler reset scheme that
dissipates the excitation through the qubit readout resonator within 22 ns.
Notably, we can simultaneously reset the ancilla qubits and perform leakage
reduction of the data qubits in a total time of 83 ns.

Combined with high-fidelity single-qubit gates and parametric two-qubit op-
erations (iSWAP, SWAP, CZ), these advancements establish a robust frame-
work for fault-tolerant quantum computing. The integration of rapid readout,
unconditional reset, leakage reduction, and precise control gates positions our
chip architecture at the forefront for future demonstrations of quantum error
correction algorithms.

For the published work included in this thesis, my contributions are listed
in the following:

• Paper A: Chen, L. et al. Fast unconditional reset and leakage reduc-
tion in fixed-frequency transmon qubits. arXiv 2409, 16748 (2024).

– I developed the idea, designed the experiment, measured the device
and analyzed the results.

• Paper B: Chen, L. et al. Transmon qubit readout fidelity at the thresh-
old for quantum error correction without a quantum-limited amplifier.
npj Quantum Information 9, 26 (2023).

– I developed the idea, designed the experiment, measured the device
and analyzed the results.

• Paper C: Kosen, S. et al. Signal Crosstalk in a Flip-Chip Quantum
Processor. PRX Quantum 5, 030350 (2024).

– I contributed with design review, I set up and maintained the mea-
surement and cryogenic facilities.

• Paper D: Kosen, S. et al. Building blocks of a flip-chip integrated
superconducting quantum processor. Quantum Science and Technolgy
7, 035018 (2022).
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– I contributed with design review, implemented readout optimiza-
tion techniques, and discussed the interpretation of the results.

• Paper E: Krizan, C. et al. Quantum SWAP gate realized with CZ
and iSWAP gates in a superconducting architecture.arXiv 2412, 15022
(2024).

– I improved single-shot readout optimization and implemented error
mitigation techniques. I was also involved in gates’ implementation
and interpretation of the results.

• Paper F: Nilsson, H. R. et al. A small footprint travelling-wave para-
metric amplifier with a high Signal-to-Noise Ratio improvement in a
wide band. arXiv 2408, 16366 (2024).

– I developed single-shot readout performance characterization and
optimization techniques.

In addition, I significantly contributed to the tergite automatic calibration
[219], developed in collaboration with Chalmers Next Lab, by producing sev-
eral calibration nodes and analysis.
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