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Abstract
Robots are increasingly deployed in dynamic human environments. To avoid
failures during task execution, such as setting a table, they must adapt to un-
expected changes. This is challenging because robots must proactively predict
failures and identify controllable factors to prevent them. If failures cannot
be autonomously prevented, robots should explain failure causes, which is
challenging because explanations should cater to non-expert users. The first
goal of this thesis is therefore to enhance the reliability and explainability of
robots by predicting, explaining, and preventing task execution failures using
symbolic causal models. We introduce a novel framework for learning causal
models from simulated data. To improve the transferability of the causal mod-
els between tasks, we propose three parameter transfer methods that leverage
the semantic similarities between models. To enhance failure prediction, we
propose a novel approach that combines the learned causal models with a
breadth-first search procedure for proactive failure prediction and contrastive
failure explanation. We validate this approach on object manipulation tasks,
such as stacking cubes, achieving a 95% failure prevention rate. We then
extend the method to predict human perceptions of a navigation robot’s com-
petence and improve its behavior, resulting in a 72% increase in perceived
competence.

Another common failure is missing capabilities that hinder a robot from
achieving its task goal. The second thesis goal is therefore to enable non-
experts to assist by teaching robots the missing actions intuitively, without
coding experience. We propose a novel demonstration system that lets users
teach tasks in Virtual Reality. Our system automatically segments and clas-
sifies the demonstrations, generating symbolic, robot-agnostic actions that
integrate into the robot’s existing capabilities. Our approach achieves a 92%
success rate in learning task abstractions from a single demonstration in single-
and multi-agent tasks. Additionally, our approach enables robots to detect
missing actions automatically, allowing users to demonstrate only the missing
parts instead of the entire task, reducing demonstration time by 61%.

The presented contributions enable robots to handle dynamic environments
more reliably and explainably while continuously expanding their capabilities
to adapt to new challenges.

Keywords: Failure Explanations, Causality, Robot Task Planning
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CHAPTER 1

Introduction

Future robots are expected to assist humans across various tasks and environ-
ments [1], [2]. At home, they might wash dishes [3], or care for the elderly [4].
In hospitals, robots can transport lab specimen [5], [6], while in industry, they
may assist with assembly or repetitive tasks, reducing strain and improving
workers’ health [7], [8].

However, human environments are often unstructured, dynamic, and sub-
ject to variation, even within the same domain [9]. This makes it inherently
difficult for robots to navigate and operate effectively. Consequently, trig-
gered by unexpected changes in the environment, robots frequently encounter
failures during their task execution [10], [11], [12], e.g., while setting the ta-
ble. Addressing these failures is a complex challenge as it requires robots to
proactively predict potential issues and identify controllable factors to prevent
them.

By leveraging robust predictive models and preventive actions, robots have
the potential to reduce the likelihood of failure, thereby improving their re-
liability and autonomy. However, considering the complexity of human envi-
ronments, preventing every possible failure is unrealistic [13], [14], [15]. This
limitation also applies to humans, who, despite their exceptional ability to re-
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Chapter 1 Introduction

act and adapt quickly to unexpected changes, still experience failures [16]. To
mitigate the impact of such failures, humans can retrospectively reason about
potential failure causes, enabling them to learn from mistakes and prevent
similar issues in the future. This capacity for causal reasoning is also funda-
mental to our ability to explain our actions to others [17], which is crucial for
effective collaboration and interaction between humans [18], [19]. Research
has shown that robots operating in human environments can similarly benefit
from causal reasoning capabilities, particularly in contexts of failure [17], [20],
as explainability has been shown to enhance trust and acceptance of robots by
providing insights into their decision-making processes and the reasons behind
their errors [19], [21], [22], [23], [24]. However, providing these explanations
is challenging as they must be tailored to the audience’s roles and level of ex-
perience [17], [19], [25]. This is particularly important for robots operating in
human environments, where they are frequently interacting with non-expert
users, such as caregivers or elderly individuals.

Proactive failure prediction and retrospective failure explanations are essen-
tial for preventing and mitigating the negative effects of failures. Nevertheless,
given the complexity of human environments, robots may still encounter fail-
ures that they cannot prevent or resolve without external assistance [25], [26],
[27], [28], [29], [30]. For instance, robots deployed in homes are likely to face
situations they are not capable of handling, requiring them to learn new tasks
such as setting the table or cleaning the kitchen. In such cases, a human-
in-the-loop can play a supportive role by teaching robots the entire tasks or
specific actions robots miss to successfully accomplish their objectives. How-
ever, enabling humans to assist robots effectively is challenging. Assistance
methods must be intuitive and accessible to non-experts, avoiding the need for
technical knowledge or coding [31]. Moreover, a critical capability for robots
is the ability to autonomously detect when they are missing specific actions
required to achieve a task goal. Instead of requesting demonstrations of an
entire task, robots should be able to identify the missing gap and seek tar-
geted human assistance. This ability is essential for reducing the burden on
human users while ensuring that robots continuously expand their skill sets
in a structured and effective manner.
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1.1 Background and Research Gaps
Failures are ubiquitous in robotics, prompting the development of various tax-
onomies to classify and understand them. For example, Steinbauer [12] an-
alyzed common faults encountered in the RoboCup@Home competition and
categorized them into two main types: hardware failures, such as issues with
sensors, manipulators, or controllers, and software or algorithmic failures,
which affect decision-making, behavior execution, or low-level control. Fail-
ures can also arise from human-robot interactions. For example, the robot
might not act as expected by a human user [32] or a human blocks the path
of a robot [31]. A more comprehensive exploration of these interaction-based
failures is provided in the taxonomy proposed by Honig and Oron-Gilad [10].
Beyond these taxonomies, Laprie [33] organized failures by severity, while
O’Hare et al. [34] classified them based on recoverability, distinguishing be-
tween failures that can be resolved autonomously and those that require ex-
ternal intervention.

In this thesis, we particularly distinguish between task planning failures
and task execution failures. This distinction is based on our adoption of the
Automated Planning (AP) framework, which plays a crucial role in robot
deliberation [35]. AP enables robots to break down complex, long-horizon
tasks, such as setting a table, into sequences of actions (e.g., navigating to the
kitchen, opening a drawer, picking up plates, and placing them on the table).
AP generates task plans prior to execution, determining which actions must be
performed and in what order to achieve a goal. Brooks [36] refers to failure as a
“degraded state or capability that causes the behavior or service performed by
a system to deviate from its ideal, normal, or correct functionality”. Consistent
with this definition, we define task planning and execution failures as follows:

• Task Planning Failures: A task planning failure occurs when the
robot is unable to generate a valid plan to achieve its goal. In this case,
the planning process deviates from its ideal functionality by failing to
produce a sequence of actions that lead to the desired outcome. For
example, a robot tasked with setting a table might fail to generate a
plan if the drawer containing plates is obstructed by a chair, and the
robot lacks the necessary skill to move the chair out of the way.

• Task Execution Failures: A task execution failure occurs when the
robot successfully generates a plan but encounters difficulties while ex-
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ecuting one or more actions within that plan. This type of failure is
characterized by deviations from the expected outcomes of individual
actions. For instance, a robot attempts to stack two cubes but the top
cube falls to the floor instead of staying in place.

In this thesis, we address three aspects of handling failures:

1. Failure prediction and prevention (proactively)

2. Failure explanation (retrospectively)

3. Human-supported failure handling (when robots cannot handle failures
autonomously)

The following subsections review relevant work in these three areas, highlight-
ing the challenges and limitations of current approaches, and identifying and
motivating the research questions addressed in this thesis.

1.1.1 Failure Prediction and Prevention
One area that has extensively addressed failure detection, prediction, and
prevention is fault detection and diagnosis (FDD). Fault detection refers to
recognizing when a fault occurs, while fault diagnosis involves identifying its
underlying causes [37]. FDD methods [38] monitor a system’s state and com-
pare it to known fault patterns or historical observations of normal behavior.
Common techniques include particle filters [39], [40] or outlier detection [41].
Once a fault is detected, fault tolerance strategies help maintain system func-
tionality. These include maintenance and repair protocols [37], or using fault-
tolerant control strategies [42]. However, many FDD approaches are tightly
coupled to specific hardware configurations, sensors, and actuators, making
adaptation to new systems data-intensive [43]. Moreover, most FDD methods
focus on low-level system states, such as sensor and actuator signals, primar-
ily addressing internal faults [37]. However, as robots increasingly operate in
human environments, where explainability and interpretability are crucial, it
is equally important to embed fault detection within a higher-level reason-
ing framework. This allows robots to not only detect failures but also assess
their external impact on the overall task objective or the current action be-
ing executed, enabling more transparent and effective failure handling. For
example, if a robot cleaning a table stacks several plates but drops one due
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1.1 Background and Research Gaps

to misalignment, the failure can be explained from two perspectives: an in-
ternal perspective might attribute the issue to sensor inaccuracies, motion
planning errors, or action policy limitations. In contrast, an external per-
spective explains the observable effects, such as the plate being misaligned
or dropped from too high. This abstraction layer facilitates communication
with non-expert users by focusing on observable outcomes rather than internal
mechanisms. It also supports building robot-agnostic models by decoupling
environmental changes from robot-platform-specific features.

There is also existing work on monitoring robot execution at a symbolic
level. Task and Motion Planning (TAMP) frameworks [44], [45] integrate
symbolic task planning with physical execution, enabling robots to detect and
react to failures at a higher level. These frameworks compare an action’s post-
execution state to its expected symbolic model, allowing robots to replan when
discrepancies arise. That means the robot first fails and then recovery strate-
gies are devised. This is effective for failures that can be resolved by retrying,
such as stacking cubes, if a cube falls, the robot can simply attempt the action
again. However, failures with irreversible consequences, such as dropping a
fragile object, require more sophisticated failure-handling strategies. While
such approaches focus on diagnosing and mitigating failures after execution,
this thesis aims to predict failures before they occur, enabling proactive inter-
vention rather than reactive replanning.

Other frameworks, such as State Machines [46] and Behavior Trees [47], fa-
cilitate reactive failure detection and recovery. However, they require the defi-
nition of transitions, fallbacks, or events, which must either be manually spec-
ified or learned from experience [48]. An alternative, more implicit approach
to handling execution failures is Reinforcement Learning (RL). Methods such
as [49] decouple rewards by providing positive reinforcement when the goal
is achieved while explicitly penalizing failures, such as colliding with a wall,
to discourage them during exploration. However, since failures are implicitly
encoded within the learned policy, these approaches lack interpretability and
explainability. Inceoglu et al. [50] propose a modular and hierarchical method
for safe robot manipulation in multi-objective settings, where multiple failure-
prevention policies are learned. Nevertheless, they still rely on hand-crafted
state machines to determine when these policies should be triggered. This
highlights a key challenge: learning predictive models capable of identifying
potential failures and their causes in a timely manner.
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Learning predictive models is particularly difficult when the error does not
manifest immediately but instead has delayed consequences. For instance, in
the task of stacking four cubes, a slight misalignment between the first and
second cube may not cause an immediate failure. However, this misalignment
could compromise the stability of the entire structure, leading to a collapse
when the fourth cube is added. Predictive models must be able to capture
such causal chains, spanning multiple actions, to anticipate failures that may
emerge over extended horizons. In this thesis, we therefore propose to learn
causal models that capture if and how certain environment factors (e.g., the
offset between two cube centers or the cube color) impact the outcome of a
task (e.g., the ability to stack two cubes on top of each other).

Research Question 1

How can we detect and learn cause-effect relationships in robot tasks
involving timely shifted and erroneous action effects?

Cognitive scientists emphasize that constructing explanatory causal models
is fundamental to human decision-making [51], [52]. Similarly, causal models
can empower robots to identify failure causes and reason about interventive
actions that enable robots to prevent future failures.

Research Question 2

How can a robot use the previously obtained causal models to predict
and prevent future failures?

1.1.2 Failure Explanation
With robots increasingly being deployed in human environments, a key con-
sideration is enabling humans to understand the decision-making processes of
robots. This ability becomes particularly crucial when robots encounter fail-
ures, as it plays a critical role in fostering trust, acceptance, and motivation
to engage with robotic systems [22], [23], [24]. This consideration reflects a
broader trend in Artificial Intelligence (AI), which has led to the emergence of
the subfield of Explainable Artificial Intelligence (XAI). XAI aims to make the
underlying models of an AI or robot’s decision-making system understandable
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to stakeholders [53], and it has become an active area of research in recent
years [54]. Two key concepts in XAI are interpretability and explainability.
Interpretability refers to systems that generate decisions based on humanly
understandable rules, while explainability involves providing explicit explana-
tions and justifications for those decisions [17].

Historically, much of XAI research has focused on addressing the inter-
pretability and explainability of black-box deep learning systems [55], [56].
For instance, Zhang et al. [57] explains the rationales behind a pre-trained
convolutional neural network’s predictions using a decision tree. Similarly,
LIME [58] (Local Interpretable Model-agnostic Explanation) creates an inter-
pretable representation to explain decisions made by any classifier or regressor.
However, as robots increasingly interact with humans in shared environments
and collaborate on tasks, there is a growing demand for explainable agency in
robotics. Most existing XAI methods are designed for technical experts with
expertise in AI and Machine Learning (ML), often remaining inaccessible to
end-users who lack this specialized background [25]. This gap highlights the
need for explanations that are understandable to non-expert users, which we
address in this thesis.

However, providing explanations for non-expert users is a difficult challenge,
as social sciences suggest that humans tend to anthropomorphize machines
and expect explanations to resemble human-to-human communication [17].
Human-centered explanations typically exhibit the following characteristics:

• Contrastiveness: Humans often prefer counterfactual explanations, such
as, “I would have arrived on time if I had taken a different route.”

• Selectiveness: Explanations highlight key causes rather than the entire
causal chain. For example, explaining why someone was late to work
might involve mentioning a traffic jam but not the car’s color or unre-
lated events from the previous week.

• Abstraction over Probabilities: Humans rarely use probabilities in ev-
eryday explanations. For instance, rather than stating that the success
probability of stacking a tower of cubes was 12%, people tend to refer
to abstract features, such as the cubes being misaligned.

Causality is another critical component in creating effective human-centered
explanations [54]. Causal models enable robots to identify variables relevant
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to task outcomes and predict the success or failure of actions. However, causal
models alone are insufficient for generating human-centered explanations for
failures.

Research Question 3

How can a robot use previously obtained causal models to generate
contrastive and selective explanations for task failures?

1.1.3 Model Transfer and Data Complexity
One significant challenge of using causal models in robotics is the often sub-
stantial data requirements needed to obtain them. While sufficient time for
offline training enables robots to leverage simulations to precompute these
causal models, real-world environments frequently introduce changes or varia-
tions that necessitate dynamic adaptation. Such changes may involve entirely
new tasks or familiar tasks applied to novel objects. For example, a robot
may transition from stacking one cube to stacking two cubes or adapt from
dropping a sphere into a bowl to dropping it into a glass. Successfully han-
dling these variations is especially critical when the robot must operate in a
zero-shot fashion [59]. This challenge is further compounded in scenarios like
human-robot interaction, where data collection is inherently expensive and
difficult, as these applications often involve real human participants1.

Priors have been proposed as a solution to mitigate the substantial data
requirements in learning (causal) Bayesian Networks. Previous research has
demonstrated that transferring the BN variable structure can help generalize
across tasks [60], [61]. The work in this thesis specifically focuses on trans-
ferring BN probability distribution parameters. Our approach aligns with
methods that transfer parameters from multiple prior BNs to a new target
network [62], [63]. These methods use a relatedness measure to identify prior
BN variables that closely match target BN variables, transferring a weighted
combination of their conditional probability distribution parameters. How-
ever, a key limitation of these approaches is their assumption that the prior
and target variables have the same number of probability distribution param-
eters, a condition that often does not hold. For instance, stacking two cubes

1The following review of prior work in this area is adapted from Paper D.
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has more causally relevant parameters than stacking only a single cube, be-
cause the success of the second stacking action also depends on the previous
stack.

Some works focus on transferring robot task executions to novel situations
using ontologies. Bauer et al. [64] learn probabilistic action effects for drop-
ping objects into various containers and generalize success probability pre-
dictions to different object types, such as bowls and bread boxes. Another
approach [65] combines an ontology with edge weights that represent the gen-
eralization strength between object classes for tasks like grasping objects and
stowing them in drawers. While these studies aim to learn generalizable pre-
diction models, we emphasize identifying the object properties and environ-
mental preconditions that are critical for transferring tasks more reliably.

In addition to ontologies, data-driven models such as neural networks have
demonstrated success in transfer tasks [66], [67]. For instance, Xu et al. [66]
learn reward functions from related tasks in an inverse reinforcement learning
setting. Another study [67] highlights domain adaptation and a vision-based
grasping approach to transfer grasps from simulated to real-world objects.
However, while effective, these methods face limitations in human-centered
scenarios, where generalization failures are difficult to analyze due to the lack
of semantically meaningful features in neural networks.

Research Question 4

How can we increase the data efficiency for learning causal models?
How can we transfer causal models between tasks?

1.1.4 Human Support when Robots Fail
The literature identifies two primary roles for human support in addressing
robot failures: directly solving (sub-)tasks on behalf of the robot or teaching
the robot how to perform them independently. The first role is particularly
relevant when the robot lacks the physical capabilities required to continue
task execution. For instance, in [26], a robot requests users to call an elevator
because it is physically incapable of doing so. Similarly, in [27], a robot seeks
assistance in picking up IKEA furniture pieces when mechanical problems
such as grasping failures or perceptual issues such as a part not being visible
prevent it from completing the task. In [25], a framework is introduced that
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leverages failure explanations to guide users in resolving problems, such as
moving objects to eliminate occlusions or repositioning items to facilitate ma-
nipulation. These approaches primarily address recovery from failures during
task execution.

In this thesis, we focus on the second role, where a human acts as a teacher.
In particular, we investigate situations where no feasible plan can be generated
because the robot lacks necessary capabilities to accomplish the task goal. In
such cases, we would like the human to provide instructions or demonstrations
to enable the robot to learn the missing actions or whole tasks. An important
consideration is that many envisioned human teachers are non-experts which
require intuitive teaching modalities that do not require any coding skills
or in-depth experience in robotics. Early approaches include modular skill-
based programming and block-based graphical interfaces, which allow users
to define logic without coding [68], [69], or abstracting action sequences from
human demonstrations [70]. Van Waveren et al. [28] introduced a block-based
interface for crowdsourcing simple robot programs, while another study [29]
explored using non-experts to repair reinforcement learning (RL) policies. A
widely studied approach is Learning from Demonstration (LfD), also known
as Programming by Demonstration [30]. LfD encompasses various teaching
methodologies [71], including:

• Kinesthetic teaching, where a human physically guides the robot through
desired motions.

• Teleoperation, where the human controls the robot using external tools
like joysticks or graphical interfaces.

• Passive observation, where the robot observes the human performing a
task to learn from the demonstration.

LfD also varies in its outcomes, which may include policies (mapping states
to actions), cost/reward functions, or task abstractions [71].

In this thesis, we utilize passive observations through a Virtual Reality
(VR) environment to collect human demonstrations because VR allows users
to perform demonstrations naturally with their own “hands and body”, elimi-
nating the need for direct interaction with the robot, as required in kinesthetic
teaching or teleoperation. Additionally, VR offers full access to the simulated
environment, making it possible to capture variables that might be challenging
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to measure in real-world settings. Furthermore, we focus on task abstractions
as the outcome of demonstrations for three key reasons:

• High-level task descriptions abstract low-level execution details (e.g.,
joint trajectories) into meaningful actions that emphasize intended ef-
fects, which aids in planning long-horizon tasks [72]. Also, due to their
symbolic nature, action models can be collected and reused across dif-
ferent tasks.

• Task abstractions can be designed to be robot-agnostic, allowing the
reuse of action models across different robots.

• High-level, symbolic action descriptions enhance the interpretability of
plans, making it easier for humans to understand and debug the robot’s
behavior.

Extracting high-level task abstractions from human demonstrations in Vir-
tual Reality (VR) is challenging because demonstrations typically consist of
a continuous flow of states. To effectively learn from demonstrations, robots
must segment this continuous data stream into meaningful actions while iden-
tifying the relevant preconditions and effects for each action.

Beyond extracting individual actions, robots should also be capable of
reusing and integrating previous experiences with newly obtained demon-
strations. This knowledge should be transferable across robots and flexibly
adaptable to various situations, ensuring broader applicability and efficiency
in learning.

However, even with the ability to transfer and reuse learned capabilities, a
robot’s existing set of capabilities may sometimes be insufficient to complete
a new task without additional demonstrations. A critical limitation is that
robots often struggle to reason about which specific sub-tasks are missing,
forcing humans to either demonstrate the entire task sequence, including ac-
tions the robot already knows, or manually identify and teach only the miss-
ing components. This process can be tedious, repetitive, and discouraging
for users. Additionally, expecting users to have a deep understanding of the
robot’s capabilities contradicts the core goal of learning from demonstrations,
as non-experts often lack this knowledge. A more practical solution would
empower the robot to identify and communicate the specific parts of the task
it is missing, allowing human demonstrators to focus solely on teaching those
necessary components.
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While users should not be required to have a deep understanding of the
robot’s capabilities, some may still want a deeper understanding of what the
robot has learned from the demonstrations, which motivates the use of inter-
pretable learning methods.

Research Question 5

How can a robot learn tasks in an efficient, agnostic, and interpretable
way by observing human demonstrations?

Most Learning from Demonstration (LfD) methods focus on single-robot sce-
narios, making them unsuitable for multi-robot tasks that require coordina-
tion, shared space management, and action synergies2. Stenmark et al. [73] de-
veloped a programming interface for dual-arm robots based on PbD, enabling
the modular reuse of skills. A subsequent study enriched skill descriptions
with high-level semantics, incorporating preconditions and postconditions via
a skill ontology [74]. However, skill sequences still needed manual definition
by the operator. Mayr et al. [75] introduced a skill-based framework for multi-
agent tasks that enables autonomous task planning. Nevertheless, the seman-
tic skill descriptions were manually encoded, not learned from demonstrations.
Similarly, Wang et al. [76] tackled task sequence planning for dual-arm robots
sharing workspace, modeling geometrical constraints and semantic skill rela-
tions. While the planner computed feasible plans, it relied on a predefined skill
library and did not address tasks that require concurrent actions. The Plan-
ning community proposed learning multi-agent domains from plan traces [77],
[78]. However, these approaches often require hundreds of demonstrations,
limiting their practicality for non-experts. When learning multi-agent skills
from demonstrations the following problems must be addressed:

• Current planning systems typically generate sequential plans, limiting
their ability to handle concurrent multi-agent tasks.

• Shared spaces and resource constraints in shared work areas are often
overlooked which can lead to plans with collisions.

• Action synergies, where tasks (e.g., closing a bottle) require parallel
actions by multiple robots, are not addressed.

2The following review of prior work in this area is adapted from Paper E.
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Research Question 6

How can we extend current Learning from Demonstration methods
from teaching single- to multi-agent tasks?

1.2 Thesis Goals and Contributions
This thesis is structured around two primary goals, each tackling a subset of
the six research questions identified before.

Thesis Goal 1

Explainable Handling of Robot Task Execution Failures based on
Causal Task Models

The first goal of this thesis is to enhance a robot’s ability to operate ef-
fectively in human environments. Specifically, we aim to increase the auton-
omy and reliability of robots by proactively predicting and preventing failures
caused by unexpected changes in the environment. Additionally, we aim to
equip robots with the ability to explain failures retrospectively, a crucial fac-
tor in fostering trust and increasing user acceptance. In particular, we focus
on providing explanations tailored for non-expert users.

To achieve this, we leverage causal models, which play a key role in human
decision-making and can similarly enable robots to identify actionable causes
of failures. Our research explores several key questions: how to learn causal
models from simulated data (RQ1), how to use them for failure prediction and
prevention (RQ2), how to generate causal, contrastive, and selective failure
explanations (RQ3), and how to transfer these models to new tasks or ac-
quire them efficiently from limited data (RQ4). By integrating causal models
into failure prediction and explanation, this thesis aims to enhance both the
reliability and explainability of robots in human environments.
Contributions towards Goal 1:

• In Papers B and C, we propose a pipeline for learning symbolic, robot-
agnostic causal models, specifically, Causal Bayesian Networks (CBNs),
from simulation (RQ1). This pipeline involves three steps: (1) task
modeling (variable definition), (2) CBN structure learning, and (3) CBN
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parameter estimation.

• Paper B proposes a new method for enabling robots to provide con-
trastive and selective explanations for task execution failures based on
causal models. When a task fails, the robot contrasts the failure state
with the nearest state that would have enabled success, identified through
a breadth-first search guided by the learned causal model (RQ3).

• Paper C paper presents a novel approach that leverages causal models
to proactively predict and prevent task execution failures (RQ2).

• Paper D enhances the transferability of CBNs by proposing three strate-
gies for generating and transferring informed distribution priors based
on the semantic similarity between two CBNs (RQ4).

• Paper G presents a CBN for predicting human perceptions of robot com-
petence and intent during navigation, addressing challenges in learning
from limited data. Additionally, it introduces a method for improving
perceived robot performance through counterfactual navigation behav-
iors. Paper G also proposes a framework for integrating different variable
types, continuous, discrete, and time-series, into a single CBN, expand-
ing the range of tasks that can be modeled (RQ4).

Thesis Goal 2

Human Support for Robot Planning Failures through Learning from
Demonstration

Our second goal is to equip robots with the ability to continuously learn and
adapt to novel situations they may not have been initially trained to handle,
which is a common challenge in dynamic human environments. Specifically,
we aim to enable humans to assist robots by teaching them new tasks or
missing actions.

To achieve this, we aim to develop new Learning from Demonstration (LfD)
methods that can segment human demonstrations into meaningful actions
along with their relevant preconditions and effects, allowing robots to reuse
and integrate previous experiences with new demonstrations for broader ap-
plicability. To streamline the demonstration process, robots should be able
to identify missing actions, enabling targeted demonstrations so that humans
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do not have to teach the entire task each time. Our approach will also utilize
interpretable learning methods to enhance user understanding of the robot’s
learning process (RQ5). Additionally, these methods should accommodate
dual-arm tasks that require coordination between multiple arms and may be
restricted in their use of shared resources (RQ6).
Contributions towards Goal 2:

• In Paper A, we propose a system that learns tasks from human demon-
strations in a Virtual Reality environment. It automatically segments
and classifies the demonstration into high-level actions using a pre-
learned decision tree, then generates symbolic action descriptions by
linking hand activities to corresponding environment changes (RQ5).

• Paper F introduces a method that uses combinatorial search to identify
the smallest necessary change in the initial task conditions to enable
the robot to solve the task with its current knowledge. This allows the
human to demonstrate only the missing subtask rather than the entire
task, streamlining the teaching process (RQ5).

• Paper E extends the LfD approach from Paper A to multi-agent environ-
ments, introducing constraints to prevent resource conflicts and schedule
parallel actions effectively (RQ6).

1.3 Thesis Overview
Chapter 2: Begins with a background section on the role of causality in
robotics. We then describe how we model robot tasks using causal models,
specifically Causal Bayesian Networks (CBNs), and outline our approaches
for acquiring these models (RQ1) and transferring them to different tasks
(RQ4). Following this, we present methods for explaining failures retrospec-
tively (RQ3) and for predicting and preventing future failures (RQ2).
Chapter 3: Presents our human-centered approach to addressing task plan-
ning failures, starting with an introduction to key concepts such as auto-
mated planning, the formalization of planning problems, and task planning
failures. Finally, we summarize the challenges and proposed methods to en-
able robots to mitigate planning failures through flexible, robot-agnostic, and
interpretable task learning from human demonstrations (RQ5, RQ6).
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Chapter 4: Provides a brief summary of all the papers that are included in
the thesis.
Chapter 5: Concluding discussion and future work.
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CHAPTER 2

Our Causal Approach for Explaining, Predicting and
Preventing Task Execution Failures

Causality plays a central role in human cognition [79]. By building causal
models, humans can effectively perform few-shot concept learning, generalize
across different situations, and fill in missing information, such as inferring un-
observed features, making predictions, or determining the functionality of an
object [51], [80]. Causal reasoning also helps distinguish core features from ir-
relevant ones, thereby enhancing decision-making and reasoning abilities [79].

For similar reasons, causality is gaining attention in Machine Learning (ML)
and Reinforcement Learning (RL). In ML, causal representations are expected
to improve generalization, especially in non-stationary environments or under
interventions [81], and make models more interpretable [82]. In the field of
robotics, we aim to leverage these causal insights to enhance understanding,
explanation, prediction, and the prevention of failures1.

While the application of causality in robotics has been relatively nascent [20],
its importance is increasingly being recognized. In robotics, causal reasoning
has been applied to identify task-relevant variables, enabling robust and in-

1The following review of work on causality in robotics is adapted from Papers B, C, D,
and G.
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terpretable decision-making [83]. For instance, CREST [84] employs causal
interventions to identify environmental variables that influence reinforcement
learning (RL) policies, while [85] builds on CREST to discover and learn a
diverse set of interpretable robot skills from limited data. Similarly, CAR-
DESPOT [86] integrates causal modeling into an anytime online POMDP
(Partially Observable Markov Decision Process) planner for more effective
planning. They address biases caused by unmeasured confounders (shared
causes of multiple variables, that introduce spurious correlations that causal
models aim to disentangle from true causal relationships). Furthermore, par-
tial parameterizations of causal models are learned offline. In [87], the authors
propose a probabilistic reasoning method, combining CBN-based modeling,
physics simulation, and probabilistic programming to predict manipulation
outcomes and guide next-best action selection under uncertainty, as demon-
strated in cube stacking tasks. To support further research, benchmarks like
CausalWorld [88] provide simulated environments for evaluating policies under
distribution shifts, enabling interventions and structured learning curricula.
These tools continue to foster advancements in causal structure learning and
transfer learning across diverse robotic tasks. Many RL approaches represent
robot dynamics through state-action descriptions, whereas our work focuses
on high-level causal features by leveraging a symbolic, object-centered envi-
ronment representation to enhance explainability, improve decision-making,
and make causal reasoning more accessible in robotic systems.

In [89], a humanoid iCub robot learns causal rules to distinguish between
relevant and irrelevant features in physical interactions and affordances. For
example, it learns from cumulative experiences that dropping heavy objects
into a jar increases the water level, while variables like color are irrelevant.
Brawer et al. [90] propose a causal approach to tool affordance learning, focus-
ing on identifying how tools interact with objects. Other works use Bayesian
Networks to uncover statistical dependencies between object attributes, grasp-
ing actions, and task constraints [91]. While these approaches aim to gener-
alize task execution through graphical models, they do not address how these
models can explain failures. Similarly, probabilistic methods have been ex-
plored to generalize action effects. For example, Bauer et al. [64] model the
effects of dropping objects into containers, generalizing predictions for objects
like bowls and bread boxes. However, their method does not investigate why
success probabilities differ across objects. Uhde et al. [92] focus on learning
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causal relationships between sequential actions in household tasks, such as
identifying the causal link between opening a drawer and retrieving plates.
Their approach is based on data collected from expert demonstrations in vir-
tual reality environments. While they extract causal links between actions, our
focus differs by examining causal relationships between environment variables,
such as object features and action outcomes, to provide deeper explanations
of task dynamics.

Due to its promise to increase explainability and interpretability, researchers
have started to use causal models in the context of Human-Robot Interaction
(HRI) [93]. Some early work applied causal time series analysis to model hu-
man and robot motion behaviors based on variables like distance to a goal,
angle, and velocity [94]. Similarly, Edström et al. [95] investigated enhancing
a robot’s causal understanding by allowing it to ask humans about causal
relationships. Their algorithm selects direct causal effects to query, based on
partial causal graphs (PDAGs) learned from observations. Unlike prior ap-
proaches, our goal is to leverage causality for timely prediction and prevention
of failures and for providing retrospective explanations when failures occur.

2.1 Learning Causal Task Models
In our work (Papers B, C, D and G), we model a robot task T , such as stacking
cubes, as a Causal Bayesian Network (CBN). Formally, CBNs are defined as
Directed Acyclic Graphs (DAG)

G = (X, A), (2.1)

where the nodes X = {X1, X2, ..., XN} are a set of N random variables Xi

and A is the set of arcs [96] that describe the causal connections between
the variables. An exemplarly graph with five nodes is shown in Fig. 2.1.
Based on the dependency structure of the DAG and the Markov property, the
joint probability distribution of a CBN can be factorized into a set of local
probability distributions, where each random variable Xi only depends on its
direct parents PaXi

:

P (X1, X2, ..., XN ) =
N∏

i=1
P (Xi|PaXi) (2.2)
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Figure 2.1: Shows an exemplary Causal Bayesian Network (CBN) graph with five
nodes X = {X1, X2, X3, X4, X5}.

The set of random variables X represents potentially task-relevant features
of the task execution or environment (causes) and their effect on the task
outcome (effects). In Papers B and C, we propose a multi-step approach to
detect causal relationships in the form of a Causal Bayesian Network from
task simulations (RQ1):

Step 1 Variable Definition: Identify and define the set of variables X that
are relevant to the task or system domain being modeled (currently man-
ually performed by the experiment designer). These variables represent
both the potential causes and effects within the domain.

Step 2 Variable Preprocessing: Depending on the variable type, preprocess-
ing steps are required, particularly the discretization of the data.

Step 3 Causal Model Learning: Using the defined and preprocessed vari-
ables, this step involves:

Step 3.1 Structure Learning: Obtain the graphical structure of the CBN,
which represents the causal relationships among the variables in the
form of a Directed Acyclic Graph (DAG).

Step 3.2 Parameter Learning: Estimate the conditional probability dis-
tributions associated with each variable, quantifying the dependen-
cies and interactions captured by the structure.
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2.1.1 Variable Definition
We conceptually divide X into two subsets: treatment variables (causes)
C ⊂ X and outcome variables (effects) E ⊂ X. Treatment variables C

are those that can be actively decided and set, whereas outcome variables E

are passively measured at the end or during the task. We denote a specific
parametrization of X as x = {X1 = x1, X2 = x2, ..., XN = xN}. We define
another set Xgoal which contains all possible variable parameterizations that
denote a successful action execution. A task is succesfull iff its parameter-
ization x ∈ Xgoal. In this thesis, we assume Xgoal is provided a priori. In
other words, we assume the robot can identify unsuccessful task executions by
comparing the outcomes of its actions (as defined by the outcome variables E)
with Xgoal. However, the robot has no prior knowledge about which variables
in X = X1, X2, ..., XN belong to C or E, nor how these variables are related.
This information is generated by learning the CBN.

Currently, variable selection is a manual process conducted by the per-
son responsible for setting up the simulation experiment and collecting the
data. Below, we present several examples drawn from the included papers.
In Examples 1 (Papers B, C, D) and 2 (Papers B, D), we developed our
own simulation environments, which offered greater flexibility in selecting the
task-specific variables2. In contrast, in Example 3 (Paper G), we applied our
method to an existing HRI dataset (the SEAN Together dataset [97]), requir-
ing us to use the available data and carefully define the variables based on the
dataset variables.

Example 1. Stacking-Cubes Task: In the cube stacking scenario, the
environment contains two cubes: CubeUp and CubeDown (see Fig. 2.2). The
goal of the stacking task is to place CubeUp on top of CubeDown.

We define six variables as X = {xOff, yOff, dropOff,colorDown, colorUp,

onTop} (see Fig. 2.2-b) for their definitions). In this task, onTop is the goal
variable, and any variable parametrization where onTop = 1 corresponds to a
successful stacking task.

In Papers C and D, we also utilized tasks where the robot had to stack
two or three cubes. The variables for these examples were defined similarly
as in Fig. 2.2, with subscripts to distinguish between the different cubes (e.g.,

2The datasets and implementations for Paper B and C are publicly available under https:
//gitlab.com/craft_lab/causality-robotics/explainandpreventrobotfailures
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CubeUp1

CubeDown

xOff1

yOff1

dropOff1

b)a)

Figure 2.2: a) visualizes the used variables X of Example 1 and b) describes their
meaning. Please refer to the Papers B, C and D for more information about the
respective variable distributions and ranges used during the data generation process
in our Unity3d simulation environment. Source: Paper C. © 2023 Elsevier (RAS).

xOff1 denoting the x-offset of the first stacked cube, or onTop2 describing the
outcome of the second stack).

Example 2. Sphere-Dropping Task: The robot needs to drop spheres into
different containers. The environment contains a Sphere and one of several
possible Containers, which are shaped like a plate, bowl or glass (see Fig. 2.3).

We define eight variables as follows: X = {xOff, yOff, inCont,

containerHeight, containerSize, containerType, containerCurvature,

containerColor}. In this task, inCont is the goal variable, and any vari-
able parametrization where inCont = 1 corresponds to a successful stacking
task.

Example 3. Robot-Following Task: This is a dynamic HRI task where
a robot guides a person (the human follower) to a pre-specified goal, as in-
troduced in the SEAN Together dataset [97]. The task takes place in a Vir-
tual Reality (VR) simulation of a warehouse, which includes obstacles such as
shelves and other autonomous agents (e.g., pedestrians) navigating the envi-
ronment (see Fig. 2.4a). The human follower is controlled by a participant
wearing a VR headset.

For Example 3, we used the CBN to predict how the human follower is
rating the performance of the robot based on variables such as the robot’s
trajectory or map of the environment (see Fig. 2.5). Furthermore, if the robot
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Figure 2.3: a) visualizes some of the variables X from Example 2, b) describes
the variable meanings. Please refer to Paper B for more information about the
respective variable distributions and ranges used during the data generation process
in our Unity3d simulation environment. Source: Adapted from Paper B. © 2022
IEEE (RAL).

(a) Shows an example where the person
is following a robot inside a virtual ware-
house.

(b) Shows the survey view where the
human follower rates the robot’s compe-
tence.

Figure 2.4: In 2.4a, the robot is guiding a person to the goal location, which is
marked with a red X on the ground. This X was visible to people in the VR simula-
tion when they were in the line-of-sight of the goal location. At certain intervals, the
simulation is paused and the person will rate the robot’s competence by answering
survey questions within the VR simulation (see Fig. 2.4b). Source: Paper G.
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Figure 2.5: Shows a top-down visualization of the robot-follower task environment:
The blue arrow represents the robot’s position and orientation. The red arrow indi-
cates the body orientation of the human follower. Other people in the environment
are indicated by grey arrows. The destination, located at the top of the images,
is a green rectangle. The black areas are static obstacles and the white areas is
navigable space around the robot. The surrounding grey region is beyond the 7.2m
public space where the 2D map was recorded.

is predicted to have a low perceived competence, we use the CBN to find an
alternative trajectory that will lead to higher perceived competence.

The original set of variables in the SEAN Together dataset include:

• Agent poses were calculated relative to the robot. Only the agents
within a distance of 7.2m from the robot are considered in the set, as
this constitutes the robot’s public space, defined by Hall’s proxemics [98].
Each feature was composed of (x, y, θ), where x, y represent the position,
and θ denotes the yaw angle of the agent’s body.

• The goal position, to which the robot guided the person, describes the
robot’s proximity and relative orientation to the desired destination.

• A 2D map, cropped around the robot (7.2m × 7.2m), was used to
describe the occupancy of nearby space by static objects, also known as
Region of Interest (ROI).
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During the navigation, the interactive simulation was occasionally paused,
and participants were asked to provide their impressions of the robot’s per-
formance through an interface within the simulation.

The participants provided ratings along several dimensions (see Fig. 2.4b):

1. How competent was the robot at navigating?

2. How clear was the robot’s intention during navigation?

Participants provided ratings using a 5-point Likert responding format. For
example in the case of the competence dimension, (1 point) corresponded to
“incompetent,” (2 points) “somewhat incompetent,” (3 points) “neither com-
petent nor incompetent,” (4 points) “somewhat competent,” and (5 points)
“competent”. Since in our work, we want to modify the robot’s behavior
when the person perceives the robot as performing poorly (low competence),
we transformed the 5-point format to a binary rating where a value in the
range [1, 3] indicated low=0 and [4, 5] indicated high=1.

The dataset consists of 2, 964 examples, each consisting of time-series data
for the aforementioned variables of an 8-second window, along with a single
competence rating recorded at the end of the interaction. Formally, consider a
dataset of observations and performance labels, D = (o1i : T, yi), where o1 : T

is an observation sequence of length T (in our case fixed to 8 seconds), y is a
performance rating given by a person interacting with the robot at the end of
the sequence, and i identifies a given data sample.

Although 2,964 examples constitute a relatively large dataset for the field
of HRI, the dataset size still presents a significant challenge for training pre-
dictive models. We, therefore, approached the variable selection process for
learning the causal model with several objectives in mind:

1. The number of parent variables for each node in the graph should be
limited, to keep the parameter estimation feasible.

2. Each node should have a clear semantic meaning, making the model
more understandable to human users.

3. Wherever possible, nodes (in particular the parent variables of compe-
tence and intention) should be actionable by the robot.

To achieve these goals, we manually implemented three key modifications
to the original SEAN Together variables. First, we combined variables that
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express distances, originally measured in two variables (distance in (x, y) di-
rection), into a single new variable representing the L2 norm. This trans-
formation was applied to both the robot-goal distance and the human-robot
distance. Second, we converted all distances, originally measured as absolute
values, into relative changes with respect to the first value of their respective
8-second time series. In this formulation, each distance time-series trajectory
begins at 0 (representing the current location) and indicates how the distance
changes over the 8-second interval. This adjustment was made with the exe-
cutability of failure prevention actions in mind. For example, if our method
were to recommend an alternative robot trajectory with a different initial dis-
tance to the goal, executing such a trajectory would be infeasible without
“teleporting” the robot to a new initial state, an operation that is physically
impossible. By ensuring all distance trajectories start at 0, every robot-goal
trajectory becomes executable. Finally, we eliminated all variables related to
autonomous (non-human) pedestrians and map information. This variable
selection process remains a manual and task-dependent effort that requires
domain expertise. However, these modifications make the model learning pro-
cess more tractable by reducing complexity and improving the interpretability
of the resulting model.

As a result, we defined a set of seven variables, as outlined in Table 2.1.
This set includes a mix of time-series data variables (robot_rotation_change,
robot_pos_change, human_pos_change), single-valued continuous variables
(initial_robot_rotation, total_robot_rotation), and naturally discrete vari-
ables (competence, intention).

2.1.2 Variable Preprocessing
Before beginning the CBN learning step, the data must undergo a preprocess-
ing step to discretize the variables. This is essential for two main reasons.

First, many structure learning algorithms impose specific assumptions when
handling continuous data [99]. In particular, some algorithms cannot con-
struct CBN graphs where a continuous variable acts as a parent of a discrete
one. However, such relationships are common in our CBNs. For example, a
continuous variable like xOffset (representing the horizontal displacement of
a cube) might influence a binary task success variable such as onTop, which
indicates whether a cube was successfully stacked. To address this, all con-
tinuous random variables in X are discretized into intervals (Xint).

28



2.1 Learning Causal Task Models

Variable Name Formula Interpretation &
Type

robot_rotation_change

 θrobot_goal
0 − θrobot_goal

0 ,
. . . ,

θrobot_goal
8 − θrobot_goal

0

 Is the robot rotating
towards or away from
the goal? (time-series)

total_robot_rotation
∑t=8

t=0 |θrobot_goal
t |

Total robot rotation
over 8-second

period (continuous)

initial_robot_rotation θrobot_goal
0

Initial robot-goal
angle (continuous)

robot_pos_change

 distrobot_goal
0 − distrobot_goal

0 ,
. . . ,

distrobot_goal
8 − distrobot_goal

0

 Is the robot moving
towards or away from
the goal? (time-series)

competence {0, 1}t=8

Perceived competence
at the end of an

observation (categorical)

intention {0, 1}t=8

Perceived intention
at the end of an

observation (categorical)

human_pos_change

 disthuman_robot
0 − disthuman_robot

0 ,
. . . ,

disthuman_robot
8 − disthuman_robot

0

 Is the human moving
towards or away from

the robot? (time-series)

Table 2.1: CBN variables X. θrobot_goal
t denotes the angle between robot and goal

and distt denotes the Euclidean distance at time t. Source: Adapted from Paper G.
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Algorithm 1 GetVariableIntervals function
1: function GetVariableIntervals(D, Λ)
2: Xint ← []
3: for all i ∈ |X| do
4: if Di is not categorical then
5: if Di is time-series then
6: Xinti

← Add(Xinti
, Cluster(Di, Λi))

7: else
8: Xinti ← Add(Xinti , Discretize(Di, Λi))
9: else

10: Xinti ← Add(Xinti , Val(Di))
11: return Xint

Second, for the chosen variable set from Example 3, our model needs to
integrate both single-valued variables and time-dependent (time-series) data.
To handle this complexity, we proposed a generalized discretization algorithm
in Paper G, which effectively discretizes time-varying and static variables in
a unified Bayesian network framework, increasing the flexibility of existing
models.

The inputs to Alg. 1 include training data-set D, which consists of K Inde-
pendent and Identically Distributed (IID) samples ξ. Each sample ξ is a fully
observed instance of all network variables X. Di are all training values in D
of the i-th variable Xi and Λ is a vector with the number of discretization
intervals for each Xi. The output of Alg. 1 is a list of discretization inter-
vals Xint for each variable in X. If Di represents time-series data, we apply
K-means clustering, as implemented in scikit-learn [100] (Line 6 of Alg. 1).
Specifically, we treat each time-series as a sequence of data points and use Eu-
clidean distance to group similar time-series into clusters. Let the Euclidean
distance between two time-series instances of the i-th variable of our dataset
y, z ∈ Di as:

dist(y, z) =

√√√√ T∑
t=1

(y(t)− z(t))2 (2.3)

where y(t) and z(t) are the values of the time-series at time t, and T is
the length of the time-series. The K-means algorithm then partitions all
instances of each Di that is a time-series into Λi clusters {I1, I2, . . . , IΛi

} such
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that each cluster Ij is a set that contains time-series that are similar to each
other in terms of their Euclidean distance. The centroids of these clusters,
{c1, c2, . . . , cΛi

}, are used as the discretization intervals, where each centroid
cj represents the average pattern of the time-series within that cluster.

For variables Di that are single-valued but continuously distributed, we
perform quantile discretization [96] (Line 8 of Alg. 1). In this method, Di is
divided into Λi intervals such that each interval contains approximately the
same number of data points. The intervals Ij are determined by sorting the
data and splitting it into equal-sized groups based on the quantiles of the data
distribution. Then, each interval contains approximately the same number of
data points.

Finally, if Di consists of categorical data, we directly assign the unique
values found in Di as the discretization intervals (Line 10 of Alg. 1).

In Papers B, C, and D, we chose the number of discretization intervals
heuristically. In Paper G, we performed a hyperparameter search to identify
Λi that performs optimally w.r.t. the task success prediction. Please refer
to [101] for more automated discretization methods.

2.1.3 Learning Cause-Effect Models: Causal Discovery
Given the preprocessed dataset, we learn the Causal Bayesian Network (CBN)
via the two steps of structure learning and parameter estimation.

2.1.3.1 Structure Learning

The purpose of this step is to learn the graphical representation G (as defined
in Eq. 2.1) of the CBN.

There are different approaches to learn the graph: Constraint-based meth-
ods, such as the Grow-and-Shrink (GS) algorithm [102] and the PC3 algo-
rithm [96], identify conditional independencies within the data to construct
a graph that reflects these relationships. The GS algorithm adopts a local
approach by iteratively building a Markov blanket for each variable, adding
or removing variables based on statistical tests. Conversely, the PC algo-
rithm begins with a fully connected graph and systematically removes edges
based on independence tests before trying to orient the remaining edges to
form a Directed Acyclic Graph (DAG) [103]. Score-based methods evaluate

3Named after its authors Peter Spirtes and Clark Glymour
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Figure 2.6: Obtained BN for a) the Cube-Stacking and b) the Sphere-Dropping
task. The blue edges have been detected by the structure learning algorithm but
had to be directed manually. Source: Paper B. © 2022 IEEE (RAL).

candidate graphs by using a scoring function S that measures how well a
graph fits the observed data. The goal is to find the graph that maximizes
this score, using measures like the Bayesian Information Criterion (BIC) or
the Bayesian Dirichlet equivalence (BDe) [103]. Another approach to struc-
ture learning involves continuous optimization-based methods, which reformu-
late the problem as a differentiable optimization task. For example, the NO
TEARS (Non-combinatoric Optimization via Trace Exponential Augmented
lagRangian Structure) learning algorithm introduces a differentiable acyclic
constraint, enabling gradient-based optimization to search for the graph struc-
ture [104]. For a comprehensive discussion of these methodologies, their
strengths, and their limitations, see [103].

Note that learning plausible assumptions about causal relations is one of the
biggest challenges in the whole process of causal inference [105]. For example,
in some cases, it is challenging to determine the direction of causal relations
purely from the joint distribution of the observational data without additional
interventional experiments, additional domain knowledge, or certain assump-
tions about the data distribution [106]. Structure learning is an active field of
research [105], and we will use the learned structure to generate causal-based
explanations of failures.

For Examples 1 and 2, we obtained causal graphs as visualized in Fig. 2.6.
However for Example 3 from Paper G, we opted to manually design the causal
model, due to the limited data size. The proposed Causal Bayesian Network
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(CBN) structure G for the Robot-Following task is illustrated in Fig. 2.7.
The set of variables X = {robot_rotation_change, total_robot_rotation,

initial_robot_rotation, robot_pos_change, competence, intention,

human_pos_change} is defined as in Table 2.1 and discretized according to
the procedure outlined in Alg. 1.

The variables robot_rotation_change, total_robot_rotation,
initial_robot_rotation capture different aspects of the robot’s orientation.
The key variable used to describe the robot’s rotational trajectory is
robot_rotation_change. However, this alone is insufficient for estimating the
competence reliably. Since each rotational trajectory is measured relative
to the starting point of an 8-second time interval, robot_rotation_change
does not capture the initial rotational difference toward the goal. However,
the robot’s initial orientation is crucial in determining whether its rotational
behavior leads to competent robot behavior. For example, if the robot is al-
ready facing the goal, it should maintain its orientation, whereas if it starts
misaligned, it should rotate toward the goal. To account for this, we in-
troduce initial_robot_rotation, which captures the robot’s initial orientation
at the beginning of each interval. Additionally, clustering methods struggle
to distinguish between trajectories that maintain their direction and those
that rotate around their own axis as, on average, these trajectories appear
to keep the same rotational difference toward the goal. This distinction
is important because a robot spinning in place may appear less competent
than one maintaining its orientation toward the goal. We, therefore, in-
troduce the total_robot_rotation variable, which captures the total accu-
mulated rotation over the 8-second interval. All three rotation variables,
robot_rotation_change, initial_robot_rotation, and total_robot_rotation,
contribute to predicting perceived competence. These variables are also inter-
dependent: the robot’s initial orientation influences its rotational trajectory,
as robots tend to rotate toward the goal when misaligned and maintain their
orientation when already facing it. Furthermore, the rotational trajectory di-
rectly affects the total accumulated rotation, as each change contributes to
the overall rotation over time.

Another key variable that significantly impacts the robot’s perceived com-
petence and intention is robot_pos_change, which indicates the robot’s move-
ment relative to the goal (whether it is moving toward or away from it). The
robot’s movement is partially influenced by its rotational behavior, as all three
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Figure 2.7: Proposed CBN graph for the Robot-Follower task. Source: Paper G.

rotational variables affect its ability to advance. For example, if the robot is
rotating in place, it cannot move toward the goal. Conversely, if it is oriented
toward the goal, it can reduce the distance based on its forward movement
speed.

Finally, human movement (human_pos_change) is modeled as a direct con-
sequence of perceived competence, perceived intention, and the robot’s behav-
ior (robot_pos_change, robot_rotation_change, total_robot_rotation). We
assume that initial robot rotation only affects the human movement indirectly,
via its influence on the robot’s rotational trajectory.

Since CBN learning is divided into structure learning and parameter esti-
mation, the structure learning phase allows for the integration of expert input.
For example, in Paper G, we handcrafted the causal model by explicitly defin-
ing the relationships between variables, and then learned the CBN parameters
using the available data.

2.1.3.2 Parameter Learning

Once G is obtained, the local probability distributions P (Xi|PaXi
) (Eq. 2.2)

can be represented using parameters θ, with their interpretation depending
on the probability distribution type of Xi. In our case, we model each Xi as
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a multinomial random variable due to variable discretization4.. Thus, θ takes
the form of a table. In this table, each θx|u ∈ θ represents the probability that
θx|u = P (Xi = x|PaXi

= u) for every x ∈ Val(Xi) and u ∈ Val(PaXi
), where

Val(Xi) signifies all possible values of Xi, and Val(PaXi) encompasses all
potential value combinations of PaXi

. The cardinality of |θ| = |x||u| increases
with the number of discretization intervals for each X and the number of
parent variables, directly affecting the number of data samples needed to
estimate the distribution of θ. For instance, if we double the number of parent
variables and use 5 intervals for each variable, the number of intervals grows
from |u| = 5 × 5 to |u| = 5 × 5 × 5 × 5 quadratically, leading to a quadratic
increase in the required data samples.

There are two main parameter estimation approaches: Maximum Likelihood
Estimation (MLE), and Bayesian estimation [107]. For both, we assume that
we have obtained a training data set D, which consists of K IID samples ξ.
Each sample ξ is a fully observed instance of all network variables X.

Maximum Likelihood Estimation aims to find the optimal parameters
θ̂ ∈ Θ of the parametric model P (D : θ) that represent the unknown CBN dis-
tribution P (X1, X2, ..., XN ). Due to the global likelihood decomposition [108],
the optimal CBN parameters can be obtained for each θ̂x|u individually by
maximizing the likelihood function

LXi
(θXi|PaXi

: D) =
∏

u∈Val(PaXi
)

 ∏
x∈Val(Xi)

θ
M [u,x]
x|u

 , (2.4)

where M [u, x] is the number of times Xi[k] = x and its parent variables
U [k] = u for k ∈ K in ξ. Then, LXi

is computed by maximizing each of the
θ

M [u,x]
x|u , individually:

θ̂x|u = M [u, x]
M [u] . (2.5)

Bayesian Parameter Estimation treats each θ as a random variable and,
unlike MLE, encodes prior information about θ, leading to the formulation of
the posterior distribution

P (θ|D) = P (D|θ)P (θ)
P (D) . (2.6)

4This subsection was adapted from Paper D.
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With the assumption that parameter priors for each of the local conditional
probability distributions of Eq. 2.2 are independent, we can show that the
posterior distribution of the CBN parameters θ can be decomposed into

P (θ|D) =
∏

i

∏
u∈Val(PaXi

)

P (θXi|u|D). (2.7)

Furthermore, in the case of a single multinomial variable Xi with Λi possible
outcomes, we can derive a predictive model for observing a new data sample
ξ[K + 1] where Xi[K + 1] = xj with j ∈ Λi, given that the parent variables
U [K + 1] = u and the previously observed data D = {ξ1, ξ2, ..., ξK}, as

P (X[K + 1] = xj |U [K + 1] = u,D) =
αxj |u + M [xj , u]

αu + M [u] , (2.8)

by modeling the prior distribution P (θXi
) as a Dirichlet distribution with

hyperparameters αx1|u, αx2|u, ..., αxJ |u. The advantage of using the Dirichlet
distribution is that the hyperparameters can be interpreted as an imaginary
count [108] of successful task executions in a prior data set D′. More formally,
we can set αxj |u = α[xj , u] where α[xj , u] is the number of times Xi = xj

and Val(PaXi
) = u in D′. Analogously, αu = α[u] where α[u] is the number

of times that Val(PaXi) = u in D′.

2.1.4 Our Approach for Generating CBN Parameter Priors
In real-world environments, robots frequently encounter changes or variations
that require them to adapt dynamically. These changes can manifest as en-
tirely new tasks or as familiar tasks applied to new objects. For instance,
a robot may transition from stacking one cube to stacking two cubes, or it
might need to perform a task like dropping a sphere into a glass instead of a
bowl. Adapting to such variations is crucial, especially when the robot must
handle these new scenarios in a zero-shot fashion [59].

To enable robots generalize from one task to another, we explore the use
of CBN structures to detect similarities across different tasks or scenarios in
Paper D. For example, as illustrated in Fig. 2.8, the two stacking tasks share
variables such as xOff1 and xOff2, representing the stacking offset of the first
and the second cube that is stacked. Similarly, the Sphere-Dropping tasks
include xOff, which measures the offset between the sphere and its container
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Figure 2.8: Shows semantic similarity between different tasks a) Cube-Stacking
(single cube), b) Cube-Stacking (two cubes), c) Sphere-Dropping. Source: Adapted
from Paper D. © 2024 IEEE (RAL).

and is semantically related to the offsets in cube-stacking tasks. By identifying
such overlaps in causal structures, the robot can transfer knowledge from prior
tasks to new ones, enabling more effective adaptation and robust performance
in dynamic environments.

Our approach addresses the challenge of deriving the imaginary prior count
(hyperparameters from the Dirichlet distribution) α[xj , u] and α[u] in Eq. 2.8
from a prior CBN task model, which is already known or can be obtained with
significantly less effort (fewer samples or less time) due to a smaller cardinality
|θ|. To formalize the generation of parameter priors, we define a prior task
T ′ as a causal BN structure G′, with a set of network variables X ′, a set of
parameters θ′ and a dataset D′. Furthermore, we define the target task as T ,
with its own associated CBN structure G, network variables X, parameters
θ and dataset D, where generally G′ ̸= G and D′ ̸= D but X ′ ∩X ̸= ∅. We
denote X ′ ∈X ′ as the variable whose parameters θ′

X′ we want to transfer to
X ∈ X. In this paper, we then propose to use T ′ as prior information for
learning the BN parameters of T .

Challenge 1: Large number of pseudo counts. A naive parameter
transfer based on the notion of pseudo counts in Eq. 2.8 is problematic because
α[u] might be much larger than M [u], due to the easier availability of prior
data. Thus the new data D would barely play a role. We therefore reformulate
Eq. 2.8 as

αxj |u + M [xj , u]
αu + M [u] =

wpriorθ
′
xj |u + M [xj , u]

wprior + M [u] , (2.9)
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where θ′
xj |u either is the Maximum Likelihood estimate M ′[xj ,u]

M ′[u] in the prior
data D′ or the Baysian estimate P (X[K + 1] = xj |U [K + 1] = u,D′). Eq. 2.9
allows us to deliberately control the importance of the prior. By choosing
wprior = M [u], we would weigh the prior and the new data equally. For
example, with θ′

xj |u = 1
2 , M [xj , u] = 6 and M [u] = 24, we would obtain

24 ∗ 0.5 + 6
24 + 24 = 18

48 = 3
8 = 0.5× (1

2 + 6
24) = 0.5× (1

2 + 1
4).

In other words, wprior allows us to express Eq. 2.8 as a weighted sum between
the prior ratio, e.g.,

αxj |u

αu
= 1

2
and the Maximum Likelihood estimate of θxj |u in D, e.g.,

M [xj , u]
M [u] = 6

24 = 1
4 .

Challenge 2: Difference in number of parameters. So far in Eq. 2.9
we assume that we can find a corresponding prior parameter θ′

xj |u for each
M [xj , u]. However, if either the number of parent variables is not consistent

|PaX′ | ≠ |PaX |,

where |.| denotes the cardinality, or the number of values is different

|Val(PaX)| ≠ |Val(PaX′)|,

this could lead to a condition where |u′| ̸= |u|, which means we won’t find a
θ′

xj |u for every M [xj , u]. To illustrate this problem let’s consider Ex. 4.

Example 4. Assume the robot already knows how to stack a single cube, which
means it has learned the distribution P (onTop1|xOff1, yOff1) from prior data
D′. In a different situation, the robot has to stack two cubes and thus needs
to predict

P (onTop2 = 1|xOff1 = 0.5cm, yOff1 = 1cm,

xOff2 = 1.5cm, yOff2 = 2cm).
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That means we would like to transfer the distribution of onTop1 (X ′) to
onTop2 (X). The issue here is that there is no full correspondence between
u in D and in D′ because xOff2 and yOff2 do not exist in D′. Therefore,
we cannot query P (onTop1|xOff, yOff) for the exact same stacking configura-
tion. However, we can query P (onTop1|xOff, yOff) based on the offset of the
first cube xOff1 = 0.5cm, yOff1 = 1cm, thus we can estimate the chance of
succeeding in stacking both cubes as

P (onTop2 = 1|xOff1 = 0.5cm, yOff1 = 1cm,

xOff2 = 1.5cm, yOff2 = 2cm)
=P (onTop1 = 1|xOff = 0.5cm, yOff = 1cm).

(2.10)

Alternatively, we could query P (onTop1|xOff, yOff) based on the offset of the
second cube xOff2 = 1.5cm, yOff2 = 2cm, thus we can estimate the chance of
succeeding in stacking both cubes as

P (onTop2 = 1|xOff1 = 0.5cm, yOff1 = 1cm,

xOff2 = 1.5cm, yOff2 = 2cm)
=P (onTop1 = 1|xOff = 1.5cm, yOff = 2cm).

(2.11)

To formalize this idea, we proposed a generalization of Eq. 2.9 as

αxj |u + M [xj , u]
αu + M [u] =

wpriorf(θ′
xj |u′) + M [xj , u]

wprior + M [u] , (2.12)

where f(θ′
xj |u′) = θ′

xj |u and u′ is defined based on one of the following three
proposed prior generation and transfer approaches:

1) Direct-Replacement:

u′ = uPaX′ ∩PaX
∈ Val(PaX′ ∩PaX). (2.13)

That means the discretization intervals of the non-empty variable intersection
set PaX′ ∩ PaX ̸= ∅ in u′ are set to the discretization intervals of the sim-
ilar subset in u. In Ex. 4, the set of intersecting variables between onTop1
and onTop2 would be xOff1, yOff1. Thus to obtain the prior probability
parameters f(θ′

xj |u′), the direct-replacement strategy would query the prior
distribution model based on the respective interval values for xOff1, yOff1 as
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exemplified in Eq. 2.10.
2) Cross-Replacement:

u′ = urel(PaX′ ,PaX ) ∈ Val(rel(PaX′ , PaX)), (2.14)

where rel() returns a subset of variables X ′
rel ⊂ PaX′ that have a related

variable in PaX . We denote variables as related if they are semantically similar
but not the same. In Ex. 4, the variable xOff1 ∈ PaX′ is related to xOff2
which is one of the parent variables xOff2 ∈ PaX of the new task T . Thus
to obtain the prior probability parameters f(θ′

xj |u′), the direct-replacement
strategy would query the prior distribution model based on the respective
interval values for xOff2, yOff2 as exemplified in Eq. 2.11. The automatic
definition of related variables is left as future work. Possible solutions could
involve partially matching variable names and matching the variables based
on their distributions or value ranges.

3) Minimal-Replacement:

u′ =
{

u′
direct if θ′

xj |u′
direct

< θ′
xj |u′

cross

u′
cross else

, (2.15)

where u′
direct = uPaX′ ∩PaX

and u′
cross = urel(PaX′ ,PaX ). This strategy re-

gards both Direct- and Cross-Replacement parameter candidates and keeps
the smaller probability parameter value f(θ′

xj |u′) as prior for Eq. 2.12.
To validate our approach, we conducted several transfer experiments, in-

cluding sim-to-real transfer (for the Cube-Stacking task), transferring param-
eters to more complex tasks with a larger number of parameters (e.g., stacking
one cube to two cubes), and even transferring parameters between entirely dif-
ferent tasks (Cube-Stacking to Sphere-Dropping). For parameter estimation,
we employed a Bayesian Estimation approach that integrates priors derived
from three proposed transfer strategies. These estimates were compared to
Maximum Likelihood Estimation (MLE), which relies solely on data from the
new task.

Our results showed that MLE estimates generally converge faster toward
the ground truth compared to Bayesian Estimates, as measured by the mean
parameter difference. This result is expected since priors in Bayesian Estima-
tion induce an initial error. However, this error diminishes with more data,
and depends on the weight assigned to the priors (ωprior). Intuitively, a higher
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emphasis on the priors (i.e., a larger ωprior) slows convergence but provides
stability in data-scarce scenarios.

However, we are particularly interested in cases where little to no data is
available for the new task. In such situations (D = 0) we assigned a default
value of 0.5 to all parameters for the Maximum Likelihood Estimation (MLE),
whereas Bayesian Estimation leverages the priors we obtained. These priors
were subsequently applied in a decision-making task, specifically as input to
our failure prevention method (described in detail in Sec. 2.3). By incorpo-
rating priors, we observed a significant reduction in execution failures: a 50%
reduction in failures for stacking two cubes, and a 20% reduction when trans-
ferring knowledge between the Cube-Stacking and Sphere-Dropping tasks.
This demonstrates that utilizing priors allows robots to better handle vari-
ations or novel situations, improving their decision-making abilities in new
environments.

2.2 Our Approach to Generate Explanations for
Robot Task Execution Failures

With the obtained causal model, the robot is able to make predictions about
task success. However, without an additional layer, it cannot provide ex-
planations for why failures occur. To address this, Paper B introduces a
method that identifies contrastive and selective explanations [17] for task fail-
ures (RQ3), as outlined in Algorithm 2. This method enables the robot to
not only predict task outcomes but also to pinpoint and explain the specific
factors that contribute to failures, enhancing its ability to understand and
adapt in dynamic environments5.

In (L-2 Alg. 2)), a matrix is generated which defines transitions for ev-
ery single-variable change for all possible variable parametrizations. For ex-
ample, if we have two variables X and Y , each with five intervals (X =
{x1, x2, x3, x4, x5} and Y = {y1, y2, y3, y4, y5}), the possible valid transitions
from node = (X = x1, Y = y4) would be child1 = (X = x2, Y = y4),
or child2 = (X = x1, Y = y5), or child3 = (X = x1, Y = y3). In contrast,
child4 = (X = x2, X2 = x3) would not be a valid transition from node because
it involves changes to both variables simultaneously. Furthermore, transitions

5This subsection was adapted from Paper B.
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Algorithm 2 Failure Explanation
Input: failure variable parameterization xfailure, graphical model G, struc-

tural equations P (Xi|PaXi
), discretization intervals of all model variables

Xint, success threshold ϵ, goal parametrizations Xgoal
Output: solution variable parameterization xsolutionint , solution success

probability prediction psolution

1: xcurrentint ← getIntervalFromValues(xfailure, Xint)
2: P ← generateTransitionMatrix(Xint)
3: q ← [xcurrentint]
4: v ← []
5: while q ̸= ∅ do
6: node← Pop(q)
7: v ← Append(v, node)
8: for all transition t ∈ P (node) do
9: child← Child(P, node)

10: if child ̸∈ q, v then
11: psolution = P (child ∈Xgoal|Pachild)
12: if psolution > ϵ then
13: xsolutionint ← child
14: return(psolution, xsolutionint)
15: q ← Append(q, xcurrentint)
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are restricted to neighboring intervals only, for example, from x1 to x2, but
not directly from x1 to x3. Whether this ordering has any meaning depends
on the concept represented by the variable. For instance, if we consider a
continuous variable like xOff from Example 1, the transition from x1 to x2
represents two neighboring offset intervals, making x1 closer to x2 than to x3.
However, for a variable such as cubeColor, there may not necessarily be a
physical notion of distance between different parameterizations.

Lines 5-15 (Alg. 2) describe the adapted BFS procedure, which searches for
the closest variable parametrization that fulfills the goal criteria of P (child ∈
Xgoal|Pachild) > ϵ, where ϵ is the success threshold, which can be heuristically
set. The concept of our proposed method is to generate contrastive explana-
tions that compare the current variable parametrization associated with the
execution failure xcurrentint with the closest parametrization that would have
allowed for a successful task execution xsolutionint . Consider Figure 2.9 for a
visualization of the explanation generation, exemplified on two previously in-
troduced variables X = {x1, x2, x3, x4, x5} and Y = {y1, y2, y3, y4, y5}, which
are both causally influencing the variable Xout. Furthermore, it is known that
xout = 1 ∈ Xgoal. In this example, the resulting explanation would be that
the task failed because X = x1 instead of X = x2 and Y = y4 instead of
Y = y3.

Table 2.2 provides several examples that showcase how our method finds
explanations for robot failures.

Our method generates contrastive explanations by comparing the current
variable values with the closest solution that results in the minimal number
of interval changes. This approach adheres to Occam’s razor principle [17].
The advantage of using an uninformed Breadth-First Search (BFS) approach
is that it ensures this principle is always applied without requiring any human
domain knowledge. Additionally, the explanations are selective: among the
subset of causally relevant variables, only those that undergo changes are
included, as determined by the BFS procedure.

We compare our method of finding explanations of robot task failures with
the two closely related methods of Context-Based History (CB-H) [25] expla-
nations, and the ranked Semantic Scene Graph method (SSG-R) [109], based
on the criteria that are summarized in Table 2.3.

For CB-H all failures and their causes need to be manually defined in the
form of Fault Trees. In SSG-R failures are not modeled, but explained in
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Y = {y1, y2, y3, y4, y5}

initial parametrization
in which the action failed

closest parametrization
in which the action 
would have succeeded

X = {x1, x2, x3, x4, x5}

P(Χout=1|
X=x1,

Y=y4) < ε

P(Χout=1|
X=x2,

Y=y4) < ε

P(Χout=1|
X=x1,

Y=y3) < ε

P(Χout=1|
X=x1,

Y=y5) < ε

... P(Χout=1|
X=x2,

Y=y3) > ε

Search Tree Failure Explanation

a) b) 

Figure 2.9: Exemplifies how contrastive explanations are generated from the BFS
search tree with two variables X = {x1, x2, x3, x4, x5} and Y = {y1, y2, y3, y4, y5}.
The search procedure starts (see a-Search Tree - top box) with the initial
parametrization in which the robot task execution has failed P (XOut|X = x1, Y =
y4) < ϵ, where XOut is exemplary for the outcome variable that is used to mea-
sure the success for the task. The search proceeds in the second row by exploring
all single-variable interval changes as determined by the previously obtained transi-
tion matrix (L-2 Alg. 2). In this example a single interval change is not sufficient
and, given the causal model, would also have led to unsuccessful task executions
P (Xout = 1|...) < ϵ (indicated by the red boxes). The search terminates, once it
has found variable intervals which, based on the causal model, have a high success
chance greater than ϵ (see green box in third row). Because we are using BFS, we
are guaranteed to find the solution with the least number of interval changes. Thus,
the robot failed because X = x1 instead of X = x2 and Y = y4 instead of Y = y3
(see b-Failure Explanation). Source: Adapted from Paper B. © 2022 IEEE (RAL).

44



2.2 Our Approach to Generate Explanations for Robot Task Execution
Failures

Input Input Interval
Current
Success
Prob.

Closest
Solution
Interval

Expected
Success
Prob.

Cube Stacking - Example 1:
xOff = 1.5
yOff = 0.0
dropOff = 5.0

x4: [1.2, 1.8]
y3: [-0.6, 0.6]
z4: [4.5, 5.5]

0.58
x4: [1.2, 1.8]
y3: [-0.6, 0.6]
z3: [3.2, 4.5]

0.91

Explanation: The upper cube was stacked too high.
Cube Stacking - Example 2:

xOff = -1.5
yOff = -1.5
dropOff = 2.0

x1: [-1.8, -1.2]
y1: [-1.8, -1.2]
z2: [1.8, 2.2]

0.017
x2: [-1.2, -0.6]
y2: [-1.2, -0.6]
z2: [1.8, 2.2]

1.0

Explanation: The upper cube was stacked too far to the left and too far
to the back of the lower cube.

Sphere Dropping - Example 1:
xOff = 5.9
yOff = 5.9
ContSize = 21
ContHeight = 9

x5: [5.4, 6.4]
y5: [5.4, 6.4]
s4: [17, 22]
h3: [6.3, 9.5]

0.727

x4: [4.5, 5.4]
y5: [5.4, 6.4]
s4: [17, 22]
h3: [6.3, 9.5]

0.98

Explanation: The sphere was dropped too far to the right.
Sphere Dropping - Example 2:

xOff = -3.0
yOff = -3.0
ContSize = 15
ContHeight = 1.7

x2: [-3.6, -1.2]
y2: [-3.6, -1.2]
s3: [14, 17]
h1: [1.5, 2.9]

0.58

x2: [-3.6, -1.2]
y2: [-3.6, -1.2]
s4: [17, 22]
h1: [1.5, 2.9]

0.933

Explanation: The container (plate) was too small.

Table 2.2: Examples of failure explanations for Cube Stacking and Sphere Dropping
tasks. Intervals (in cm) subject to changes in the closest solution are highlighted
in bold. More examples can be found in Paper B. Source: Paper B. © 2022 IEEE
(RAL).
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form of a list of spatial relations (like close to or occluded) and object features
(like fragile or heavy), automatically detected through the semantic scene
graph model MOTIFNET [110]. We explain failures via contrastive variable
parametrizations. Due to these differences in failure representation, all three
methods have different requirements during the learning phase. For learn-
ing the encoder-decoder network that generates language failure explanations
for CB-H, simulations must be annotated with the respective failure cause.
In [25], 2100 annotated time-steps were used to train for six different failure
causes. However, the number of required samples will drastically increase
for the two discussed examples of cube stacking and sphere dropping due to
the increased number of failure possibilities. Additionally, samples are more
expensive than in our method since it is required to label the failure cause
instead of a simple binary action success label.

In SSG-R, pairwise ranking distinguishes between relevant and irrelevant re-
lations. Pairwise relation preferences must be provided via domain knowledge
of the failure scenario and which are more expensive than the automatically
retrievable binary action success labels from our method. Another difficulty in
terms of applicability to the presented scenarios of cube stacking and sphere
dropping provide the continuous variables (e.g., contSize or xOff), which are
discretized into more than two categories (as opposed to binary object rela-
tions). For these variables, MOTFNET is not applicable. While, in principle,
a range of variables was detected to influence the action outcome causally, it is
due to a specific variable parametrization that they lead to the action failure.
Our method automatically discerns between relevant and irrelevant relations.
Last but not least, neither CB-H nor SSG-R learn an action success model,
which can be useful for other tasks beyond failure explanation, e.g., failure
prediction and prevention.

2.3 Our Approach to Predict and Prevent Future
Task Failures

Papers C and G extend the contrastive Breadth-First-Search approach from
Paper B, to utilize the CBN to predict and prevent future failures proactively
(RQ2). When the probability of a failure is high given the current state,
our method identifies an alternative execution state expected to lead to a
successful action, allowing the agent to both prevent failures and provide
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Method Output
Detect. of
caus. relevant
variables

Learning
Prerequisites

Task
Succ. Predict.

CB-H
[25]

Fault trees
+ encoder-decoder
network

language model
(spoken failure
explanation)

no differentiation
between causally
relevant and irrelevant
variables

failure-cause
annotated
simulations

no

SSG-R
[109]

MOTIFNET [110]
+ pairwise ranking

list of relevant
spatial/object
relations

informally, through
pairwise ranking

relationship
ranking labels no

ours
causal BNs
+ contrastive
BFS

contrastive
failure
explanation

formally, through
BN structure
learning

task simulations
(incl. action
outcome)

MLE (or similar
like Bayesian est.)

Table 2.3: Comparison of our explanation generation pipeline with other ap-
proaches. Source: Paper B. © 2022 IEEE (RAL).
explanations for its corrective actions6.

Predicting and preventing errors becomes particularly challenging when the
consequences of an action are not immediately apparent but manifest in future
actions [111]. These cases, which we term timely shifted action errors, require
models to account for the history of preceding actions. For instance, consider
the task of constructing a tower with four cubes. If the second cube is not
stacked perfectly centered on the first cube, this specific action might still
be deemed successful. However, the misalignment compromises the overall
stability of the tower, potentially leading to failure after subsequent stacking
actions. In such scenarios, the system must incorporate past actions into its
reasoning to anticipate and mitigate cascading errors.

Alg. 3 describes the proposed failure prevention approach. In particular, we
first retrieve the discretization intervals for the current variable parametriza-
tion in (GetIntervalFromVal: L-2, Alg. 3)) and query the causal model
to predict the success probability for the current state (L-3, Alg. 3)). In case
the predicted probability is above a chosen threshold of ϵ, we continue with
the execution based on the current parameters (L-4, Alg. 3)). If, however,
the probability is below the threshold (L-5, Alg. 3)), we retrieve the closest
success parametrization through Alg. 2 (L-7, Alg. 3)). Finally, we use the
middle values of the corrected intervals as concrete parameters to retrieve
a corrected variable parametrization xsuccess (MiddleValFromIntervals:

6The first part of this subsection, including the description of Alg. 3 and the results
from the cube stacking failure prediction and prevention, is adapted from Paper C.
The second part, covering competence prediction and the prevention of low-competence
robot behavior, is adapted from Paper G.
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Algorithm 3 Predict and prevent failures
Input: current variable parameterization xcurrent, structural equations

P (Xi|PaXi
), discretization intervals of all model variables Xint, success

threshold ϵ, goal parametrizations Xgoal

Output: Concrete success variable parametrization xsuccess

1: procedure PreventFailures(xcurrent, P (Xi|PaXi
), Xint, ϵ, Xgoal)

2: xsolutionint ← GetIntervalFromVal(xcurrent, Xint)
3: psolution = P (xsolutionint ∈ Xgoal|Paxsolutionint

)
4: xsuccess ← xcurrent
5: if psolution < ϵ then
6: xfailure = xcurrent
7: psolution, xsolutionint ←

GetClosestSuccIntervals(xfailure, P (Xi|PaXi),
Xint, ϵ, Xgoal)

8: xsuccess ←
MiddleValFromIntervals(xsolutionint , xcurrent, Xint)

9: return(xsuccess)

L-8, Alg. 3)). The output parametrization xsuccess can then be used to ma-
nipulate the environment to ensure the action will succeed, e.g., by moving
the robot gripper into a different position.

To validate our approach, we applied the proposed failure prevention method
to the tasks of stacking a single cube and stacking three cubes, as described in
Paper C. Our method successfully prevented 97% and 95% of failures, respec-
tively. Figure 2.10 illustrates an example of a stacking execution performed
on the real robot. In the first row, the first cube (green) is stacked too far to
the right, leading to a failure in the third stack. In the corrected sequence, the
green cube is stacked more to the left, which allows the robot to successfully
stack all three cubes. This demonstrates the effectiveness of our method in
preventing task failures by adjusting actions based on the robot’s predictions.

In Paper G, we applied the proposed failure prevention method to the
Robot-Follower task from Example 3. The goal was to predict the human
follower’s competence rating of the robot. In cases where the predicted com-
petence was low, our method aimed to find an alternative robot trajectory
that would lead to a higher perceived competence. We first compared the
prediction performance of the causal model with a Random Forest (RF),
which was identified as the best-performing prediction method in the related
literature [112] (Table 2.4). Using accuracy as a metric, our model outper-
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Figure 2.10: Cube stacking failure prevention example. Source: Paper C. © 2023
Elsevier (RAS).
formed the RF by 2.1% for Competence and 2.9% for Intention. Similarly,
measured by F1-Score, our method outperformed the baseline by 0.047 and
0.044 for Competence and Intention, respectively. In conclusion, on average,
our method outperforms prior black-box machine learning approaches. Our
causal model has the additional benefit that it is interpretable and simpler,
using only a subset of the full feature set from the SEAN Together dataset,
where we exclude factors like the map or the behavior of other agents. More-
over, the model encodes causal information, which is crucial for generating
counterfactual behaviors for improving the robot’s perceived competence.

To evaluate whether our model successfully prevents incompetent robot be-
haviors by generating alternatives perceived as more competent, we conducted
an online user study using Prolific. We hypothesize that our method can
improve the perceived competence of robot navigation behavior, specifically,
that:

H1) When our causal model predicts the perceived competence correctly as
low, our approach generates navigation behaviors that are perceived as
more competent than the original robot behavior.
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Dimension F1 Accuracy Precision Recall
Causal Model (ours)

Competence 0.777± 0.09 0.835± 0.08 0.811± 0.12 0.768± 0.14
Intention 0.751± 0.1 0.788± 0.10 0.823± 0.11 0.713± 0.15
Random Forest (eye_follower_gaze_goal_lip_map_resnet18)

Competence 0.73± 0.12 0.814± 0.09 0.816± 0.13 0.686± 0.16
Intention 0.707± 0.12 0.759± 0.12 0.817± 0.11 0.654± 0.18

Table 2.4: Leave-One-Out Cross-Validation (LOOCV) (µ ± σ) on binary F1-Score,
Accuracy, Precision, and Recall for 2 classifiers and 2 dimensions (Competence or
Intention). The proposed Causal Model (ours) is compared to the best performant
baseline RF classifier. Bold indicates the highest performance by metric and dimen-
sion. Source: Adapted from Paper G.
H2) When our causal model predicts the perceived competence erroneously

low, our approach still generates navigation behaviors that are perceived
as more competent than the original robot behavior.

To test both of these hypotheses, we implemented two distinct study phases:
One phase studied scenarios (10 total) in which our model correctly predicted
low robot competence. The other phase studied scenarios (10 total) where the
model incorrectly classified the robot as low competent. We did not sample
examples from the dataset where our model predicted high perceived com-
petence, because our model only generates counterfactual behaviors in cases
where the predicted competence is low. We recruited a different set 20 of
participants for each study phase.

In both studies, the participants watched 20 videos where 10 showed the
original robot behavior and another 10 videos showed the counterfactual be-
havior. Both pairs came from the same scenario, so a participant would always
see the original and counterfactual video of each scenario (see Fig. 2.11 for
one example of original and counterfactual behavior for the same scenario).
After each video, participants rated how they believed the human follower per-
ceived the robot’s competence using a 5-point Likert responding format where
1 corresponds to “very incompetent” and 5 corresponds to “very competent”.
(H1) Competence of the Counterfactuals in cases where the model
correctly predicted the Original as low competent. We found a signif-
icant difference in participants’ ratings between the original trajectories and
our model’s proposed counterfactual trajectories when the model made a cor-
rect prediction, F (1, 199) = 153.28, p < 0.0001. Overall, participants rated
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t = 0s t = 2s t = 4s t = 6s t = 8s

(a) Original robot behavior
t = 0s t = 2s t = 4s t = 6s t = 8s

(b) Counterfactual robot behavior

Figure 2.11: The image series, extracted from two videos of a navigation task,
illustrate maps of the environment. The blue arrow represents the robot’s position
and orientation. The red arrow depicts the follower. Other people in the environ-
ment are indicated by grey arrows. The goal, located at the top of the images, is a
green rectangle. The black areas are static obstacles and the white area is navigable
space around the robot. The surrounding grey region is beyond the 7.2m public
space where the 2D map was recorded. The upper image series shows the original
robot behavior that our model classified as low competent. The lower series visu-
alizes the counterfactual robot behavior that our method generated to address the
low competence behavior. The images are centered around the new robot position
and orientation. The behavior of the human follower and the other pedestrians is
unchanged and displayed at its original location. Source: Paper G.
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the competence of counterfactual trajectories (3.60 ± .09) higher than the
original trajectories (2.09± 0.09) using the 5-point responding format (where
higher is better). This means that, on average, counterfactual trajectories
improved the perceived competence of the robot by 72%.

These results supported H1, demonstrating our method’s potential to im-
prove robot trajectories and enhance the perceived competence of a robot.
(H2) Competence of the Counterfactuals in cases where the model
erroneously predicted the Original as low competent. We found a
significant difference in participants’ ratings between the original trajectories
and our model’s proposed counterfactual trajectories when the model made
an incorrect prediction, F (1, 199) = 30.02, p < 0.0001. Overall, participants
rated the competence of counterfactual trajectories (3.50±.10) higher than the
original trajectories (2.80± 0.11). On average, this meant that counterfactual
trajectories improved the perceived competence of the robot by 25%.

These results supported H2, demonstrating our method’s potential to im-
prove robot trajectories and enhance the perceived competence of the robot,
even when the model makes an incorrect initial prediction regarding the
robot’s perceived competence.

Our results show that, across both study phases, the counterfactual trajecto-
ries were rated significantly more competent than the original robot behaviors.
Generally, we found that the counterfactuals help prevent low-competence be-
haviors by guiding the robot to rotate and move toward the goal.
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CHAPTER 3

Using Learning from Demonstration to Overcome Task
Planning Failures

Task planning failures occur when a robot’s existing set of actions is insuffi-
cient to generate a plan to achieve its goal because the robot lacks knowledge
of the complete task or specific subtasks required for its completion. These
failures are particularly prevalent in dynamic human environments, where
conditions and task requirements frequently diverge from those the robot was
originally trained or programmed to handle. For example, a robot is already
capable of storing a plate inside a kitchen drawer, but doesn’t know yet how
to remove a chair that obstructs the drawer.

To overcome such task planning failures, this thesis proposes leveraging
human demonstrations to teach robots tasks or individual capabilities they
cannot yet perform. Specifically, our work focuses on extracting symbolic,
robot-agnostic action descriptions from these demonstrations, which can then
be integrated into the robot’s existing action library. This approach enables
robots to continuously expand their capabilities and reapply learned actions
to future tasks. Such action models are commonly used in the well-established
field of Automated Planning (AP) [35]. This chapter introduces the founda-
tional principles of AP, particularly how action models are defined and utilized
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to plan robot tasks. We then formalize task planning failures and outline our
approach to learning tasks from human demonstrations (RQ5) and how we
extended this framework to multi-agent task planning (RQ6).

3.1 Automated Planning
Since the early days of AI, Automated Planning (AP) has played a crucial role
in enabling autonomous robot decision-making [113]. The STRIPS planning
system, developed in the 1970s for the Shakey robot [114], laid the groundwork
for numerous robotic applications, including autonomous spacecraft [115], ex-
ploration and rescue robots [116], and autonomous aerial vehicles (AUVs)[117].
More recently, planning has been used for collaborative robots in assembly
lines [118], benefiting from its ability to replan in response to unexpected sit-
uations or changes. Furthermore, the ROSPlan framework [119] integrates
planning capabilities into the widely used Robot Operating System (ROS).

3.1.1 Planning Domain
The core principle of AP is to abstract lower-level execution details, such as
joint trajectories or sensor readings, into high-level, symbolic actions. By
leveraging such descriptive models, robots can plan more effectively long-
horizon tasks. This approach has been proven especially important for robot
decision-making in complex scenarios, such as setting a table [113]. In AP, the
environment and the agent’s ability to interact with it are defined in the so-
called planning domain Σ = (S, A, δ) or Σ = (S, A, δ, c), where S is a finite set
of states in which the system can be, A is a finite set of actions that the agent
can perform, δ is a state transition function that describes how the system
state changes when an action is applied, and c is a function that represents
the costs of the possible state transitions [35]. The cost is a metric which can
be monetary, time, energy, or something else depending on the domain of the
environment.

3.1.1.1 Object and State Representation

In AP we need to define a finite set of objects that the planner can rea-
son about, which typically contains all task-relevant objects, thus, all the
objects an agent might interact with while executing its task. This set is task-
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dependent and usually needs to be provided manually. Formally, we define
a set B that contains all object names, and is typically further divided into
object-type-specific subsets [35]. For instance, for a robot tasked with cleaning
a kitchen, the environment could be described using the following objects:

Robot = {r1};
Table = {t1, t2, t3};
Fork = {f1, f2, f3, f4};

Knife = {k1, k2, k3, k4};
Spoon = {sp1, sp2};
Plate = {p1, p2};
Bowl = {b1};
Glass = {g1, g2, g3};

Drawer = {d1, d2, d3};
B = Robot ∪ Table ∪ Fork ∪Knife ∪ Spoon

∪ Plate ∪Bowl ∪Glass ∪Drawer,

where Robot is a the subset of B that contains one robot called r1, and Table

is a set of three tables named t1, t2, and t3.
To describe relations and properties for the previously defined set of objects,

First-Order-Logic predicates are used. Each predicate has a predicate symbol,
such as onTable or handClear, and comes with an arity that defines the num-
ber of arguments. Furthermore, each predicate symbol has an interpretation
that specifies what it means [120]. Typically relations refer to predicates with
arity >= 2 and properties refer to predicates with only one argument. When
we instantiate predicate symbols with objects, we call them ground atoms
g ∈ G. Ground atoms are boolean facts, such as:

• insideDrawer(f1, d2): True if fork f1 is inside drawer d2,

• onTable(b1, t1): True if bowl b1 is on top of table t1,

• inHand(p2, r1): True if robot r1 is holding the plate p2,

• handClear(r1): True if the gripper of robot r1 is free,
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• graspable(sp2, r1): True if spoon sp2 is graspable by a robot gripper
r1.

G is the set that contains all possible predicate instantiations:

G = {insideDrawer(f1, d1), insideDrawer(f1, d2), ..., insideDrawer(g3, d3),
onTable(f1, t1), onTable(f1, t2), ..., onTable(g3, t3),
inHand(f1, r1), inHand(f2, r1), ..., inHand(g3, r1),
handClear(r1),
graspable(f1, r1), graspable(f2, r1), ..., graspable(g3, r1)}.

The world state s ⊆ G is a set of ground atoms that are true at a given
moment. For example:

s = {insideDrawer(f1, d1), onTable(b1, t1)},

describes a state where insideDrawer(f1, d1) and onTable(b1, t1) is true and
all other ground atoms in G evaluate to false. The state space S has 2|G|

states s, which can be large but is always finite.

3.1.1.2 Action Representation

An agent interacts with the world through a set of symbolic actions A, which
are descriptive models that specify the preconditions and effects of those ac-
tions. Formally, each action a ∈ A is defined by a 4-tuple:

a = ⟨c(a), pre(a), eff+(a), eff−(a)⟩,

where

• c(a) is the cost of the action,

• pre(a) is the set of preconditions, which are ground atoms that must be
true in a state for the action to be applicable,

• eff+(a) and eff−(a) are the add effects and delete effects, respectively,
which define how the action changes the state. Add effects are ground
atoms that become true after applying the action and delete effects
ground atoms that become false after applying the action.
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Consider for example the pick action, where a spoon is picked by a robot
from a table:

• Pre(pick) = {onTable(sp2, t3), handClear(r1)}

• eff+(pick) = {inHand(sp2, r1)}

• eff−(pick) = {onTable(sp2, t3), handClear(r1)}

The action pick can be executed if the spoon sp2 is on the table t3 and the
robot’s gripper r1 is clear. Upon completion, the spoon sp2 is now in the
gripper of the robot r1, no longer on the table t3, and the robot’s gripper is
not clear anymore.

The transition function δ(s, a) describes how the system state s changes
when an action a is applied:

δ(s, a) =
{
⊥ if s ̸|= pre(a)
s ∪ eff+(a) \ eff−(a) otherwise

If the preconditions pre(a) are not met in s, the action cannot be applied,
therefore δ(s, a) |= ⊥ (indicating an invalid transition). Otherwise, applying
a updates s by adding the ground atoms in eff+(a) and removing those in
eff−(a).

The cumulative transition function applies a sequence of actions ⟨a1, a2, . . . , an⟩
starting from s, effectively chaining actions:

δ(s, ⟨a1, a2, . . . , an⟩) = δ(δ(s, a1), ⟨a2, . . . , an⟩)

These symbolic action representations provide a high-level abstraction of
the behavior, focusing on the desired outcomes of an action rather than the
specifics of its implementation. Translating these actions into real-world ex-
ecution typically requires lower-level processes, such as motion planning or
sensor processing, tailored to the robot hardware that embodies the agent.

3.1.2 Planning Problem
The goal of AP is to solve planning problems by determining a sequence of
actions that move a system from an initial state to a desired goal state.
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A Classical Planning Problem [121] is represented by the 3-tuple

M = ⟨Σ, I, G⟩,

where:

• Σ is the state transition system (or classical planning domain), as pre-
viously defined in Sec. 3.1.1.

• I is the initial state, describing the system’s starting conditions. An
initial state can, similarly to any other state s, be defined as a set of
ground atoms that are true at the initial state.

• G is the goal state, which the plan aims to achieve. It is defined as a set
of ground literals. A literal is either

– A ground atom (e.g., onTable(f1, t2)), or
– A negated ground atom (¬(onTable(f1, t2))).

Any ground atom not explicitly mentioned in the goal set, whether as
a positive or negated literal, is left unconstrained. This means that the
planner is not required to satisfy or avoid such atoms; their truth values
in the final state are irrelevant to achieving the goal.

A solution to a planning problem M is a sequence of actions, typically
called a plan, π = ⟨a1, a2, . . . , an⟩, that transitions the initial state I to a goal
state G, i.e.,

δ(I, π) |= G.

The cost of a plan π is calculated as the sum of the costs of all actions in
π:

C(π) =
∑
a∈π

ca.

If a plan cannot achieve G from I, we set C(π) = ∞. If a plan achieves the
goal with the minimum cost, then it is an optimal solution. That is, no other
plan exists that has a smaller cost.

3.1.3 Formulation of a Planning Problem - PDDL
To standardize the formulation of planning problems, the planning commu-
nity developed the Planning Domain Definition Language (PDDL) [122]. To
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formulate the previously discussed robot example in PDDL, two separate files
are needed:

• Domain Specification (domain.pddl): This file encodes the planning do-
main Σ. It encapsulates the general rules, actions, predicates, and object
types that apply across various problem instances.

• Problem Specification (problem.pddl): This file specifies the initial state
I, the goal state G, and the specific set of objects B relevant to the
particular planning problem.

The separation into two files is advantageous because if the robot needs to
solve a new planning problem (e.g., the initial or goal state changes), only the
problem file needs to be adapted. The domain file remains unchanged. Below,
we provide an example domain.pddl file.

1 ( define ( domain kitchen )
2 (: requirements : typing : strips )
3 (: types robot object table drawer
4 fork knife spoon plate bowl glass - object )
5

6 (: predicates
7 ( onTable ?obj - object ?tab - table) ; Object is on

top of a table
8 ( insideDrawer ?obj - object ?draw - drawer ) ; Object

is inside a drawer
9 ( inHand ?obj - object ?rob - robot) ; Object is in

robot hand
10 ( handClear ?rob - robot) ; Robot hand is free
11 ( graspable ?obj - object ?rob - robot) ; Object is

within reach of the robot
12 )
13

14 ; Action to reach an object
15 (: action reach
16 : parameters (? rob - robot ?obj - object ?tab - table )
17 : precondition (and
18 ( handClear ?rob)
19 (not ( inHand ?obj ?rob))
20 ( onTable ?obj ?tab))
21 : effect (and
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22 ( graspable ?obj ?rob)
23 ( forall (?o - object ) ; makes all other objects

non - graspable
24 (when (not (= ?o ?obj))
25 (not ( graspable ?o ?rob)))))
26 )
27

28 ; Action to pick an object from a table
29 (: action pick
30 : parameters (? rob - robot ?obj - object ?tab - table)
31 : precondition (and
32 ( handClear ?rob)
33 ( graspable ?obj ?rob)
34 ( onTable ?obj ?tab))
35 : effect (and
36 (not ( handClear ?rob))
37 ( inHand ?obj ?rob)
38 (not ( graspable ?obj ?rob)))
39 )
40

41 ; Action to put an object into a drawer
42 (: action put -in
43 : parameters (? rob - robot ?obj - object ?draw - drawer )
44 : precondition (and
45 (not ( handClear ?rob))
46 ( inHand ?obj ?rob)
47 (not ( insideDrawer ?obj ?draw)))
48 : effect (and
49 ( handClear ?rob)
50 (not ( inHand ?obj ?rob))
51 ( insideDrawer ?obj ?draw))
52 )
53 )

The domain specification in PDDL begins with the domain name (line 1),
which serves as a reference in the problem specification. Line 2 specifies the
requirements or features used to define the planning domain. In this example,
we utilize :typing, which allows predicates to apply to groups of objects rather
than individual objects alone. In this example, we defined the object types
robot, object, table, drawer, as well as fork, knife, spoon, plate, bowl
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and glass which are subtypes (as indicated by the hyphen) of object. PDDL
also supports advanced features such as cost metrics (e.g., minimizing distance
or time), temporal constraints (e.g., scheduling actions with durations), and
numeric constraints (e.g., managing resources or quantities). However, not
all planning algorithms are equipped to handle these advanced features, and
the planning algorithm must evaluate whether it can support the domain’s
specified requirements.

Lines 5–11 define predicates. Note that the predicate definition in PDDL
allows to specify the range of its arguments. E.g., we can define that onTable
relates an object of type object with an object of type table. Starting at
line 14, action templates or operators O, generalized blueprints for actions,
are defined. Each operator includes a name, parameters (object types), pre-
conditions, and effects (add and delete effects). The three operators in this
domain, reach, pick, put-in, represent the robot’s actions and their effects. For
instance, the reach action requires the robot’s hand to be free and the target
object to be unheld. Upon execution, the target object becomes graspable,
while any object previously graspable by the hand becomes non-graspable.

The domain specification does not include details about the environments’s
initial state, or the goal conditions. It also omits particular object names.
Instead, these details are defined in the problem specification. Below is the
PDDL code for a potential kitchen problem:

1 ( define ( problem pickandplaceproblem )
2 (: domain kitchen )
3

4 ;; Object definitions
5 (: objects
6 r1 - robot
7 d1 d2 d3 - drawer
8 t1 t2 t3 - table
9 f1 f2 f3 f4 - fork

10 k1 k2 k3 k4 - knife
11 sp1 sp2 - spoon
12 p1 p2 - plate
13 b1 - bowl
14 g1 g2 g3 - glass
15 )
16

17 ;; Initial state
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18 (: init
19 ;; Objects initially on tables
20 ( onTable f1 t1)
21 ( onTable f2 t2)
22 ( onTable k1 t3)
23 ( onTable sp1 t1)
24 ( onTable p1 t2)
25 ( onTable g1 t3)
26

27 ;; Robot hand state
28 ( handClear r1)
29 )
30

31 ;; Goal state
32 (: goal
33 (and
34 ( handClear r1)
35 (not ( inhand f1 r1))
36 (not ( inhand f2 r1))
37 (not ( inhand k1 r1))
38 (not ( inhand sp1 r1))
39 (not ( graspable f1 r1))
40 (not ( graspable f2 r1))
41 (not ( graspable k1 r1))
42 (not ( graspable sp1 r1))
43

44 ;; Objects that are moved from the tables into the
drawers

45 ( insideDrawer f1 d1)
46 ( insideDrawer f2 d1)
47 ( insideDrawer k1 d2)
48 ( insideDrawer sp1 d3)
49 )
50 )
51 )

The :objects section lists all objects found in the environment. In this example,
these include the robot (r1), drawers (d1-d3), tables (t1-t3), forks (f1–f4),
knives (k1–k4), spoons (sp1, sp2), plates (p1, p2), a bowl (b1), and glasses
(g1–g3).
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The :init section describes the initial state using predicates associated with
these objects. For instance, objects like forks, knives, spoons, and plates might
initially be on specific tables (t1, t2, t3). The robot (r1) starts with its gripper
clear, holding no objects.

The :goal section defines the desired final state. For example, the goal might
require placing part of the cutlery from the tables into specific drawers with
the robot’s hand ending up clear.

3.1.4 Beyond Classical Planning
The previously introduced formulation of a planning domain and problem is
referred to as a classical planning domain, which assumes a discrete, fully ob-
servable world with deterministic actions. Extensions to the classical PDDL
formulation support more complex scenarios, including temporal planning (ac-
counting for time-dependent actions), probabilistic models, and multi-agent
systems 1. Planning tasks can also be formalized using alternative frameworks,
such as Markov Decision Processes (MDPs) or Hierarchical Task Networks
(HTNs).

In this work, we approach operator generation from human demonstrations
as a classical planning problem. While the associated assumptions (discrete,
fully observable, deterministic) may seem restrictive, they are necessary due
to the limited observation size compared to other data collection methods,
such as simulated environments. Moreover, these action models are utilized
only during the initial planning phase, prior to robot execution. They define
what needs to be done, while leaving the specifics of execution to lower-level
processes. For example, as in Paper K or [123], a Reinforcement Learning
policy can implement specific robot operators as low-level execution skills,
thereby managing environmental uncertainty at the execution level.

In Paper E, we leverage a multi-agent version of PDDL to model scenarios
involving multiple actors. This enables effective representation of complex,
collaborative behaviors, as illustrated in the following example:

1 (: action unscrew
2 : agent ?a - agent
3 : parameters (?l - lid ?bot - bottle )
4 : precondition (and

1A comprehensive overview of PDDL extensions is available at: https://planning.wiki/
guide/whatis/pddl.
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5 (not ( inHand ?l ?a))
6 ( closed ?bot ?l) ; bottle is closed by a lid
7 ( exists (hold ?bot ?l)))
8 : effect (and
9 ( inHand ?l ?a)

10 (not ( closed ?bot ?l)))
11 )
12

13 (: action hold
14 : agent ?a - agent
15 : parameters (? bot - bottle ?l - lid)
16 : precondition (and
17 ( inHand ?bot ?a)
18 ( closed ?bot ?l)
19 ( exists ( unscrew ?bot ?l)))
20 : effect (and
21 ( inHand ?bot ?a)
22 (not ( closed ?bot ?l)))
23 )

This example defines two interdependent actions, unscrew and hold, involv-
ing a robotic hand, a bottle, and its lid. These actions must be scheduled in
parallel to ensure the common goal of opening the bottle is achieved. The
Multi-Agent PDDL formulation captures this requirement using two addi-
tional features:

• Agent Specification (:agent): This feature allows the planner to assign
specific agents to execute each action. For example, with a dual-arm
robot, two agents could be defined, one for each arm.

• Existential Quantifiers (:exists): By adding an exists quantifier, we can
encode interdependent actions that must be scheduled in parallel. In this
example, the hold action references the unscrew action, and conversely,
the unscrew action references the hold action.

3.1.5 Planning Algorithms
To solve a planning problem, we aim to identify an (optimal) sequence of
actions, π = ⟨a1, a2, . . . , an⟩, that is a transition from the initial state I to a
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goal state G, satisfying
δ(I, π) |= G.

The literature typically distinguishes between two main approaches: search-
based methods and satisfiability-based (SAT) methods.

Search-based approaches use algorithms such as A* or Greedy Best-First
Search [120] combined with heuristic functions to compute π. Heuristic func-
tions h(s) guide the search process by estimating the cost from the current
state to the goal. In modern planning, heuristics are a cornerstone of efficient
plan search. Historically, heuristics were domain-specific (e.g., using Euclidean
distance for pathfinding) [120]. However, recent advances have enabled the
development of domain-independent heuristics [35]. Planning systems typi-
cally use these heuristics in two phases: first, computing heuristic values for
states in a simplified search; then, using these values to guide a full search to
find π. A good heuristic balances computational efficiency with accurate cost
estimation, often relying on relaxed problem formulations that simplify com-
putations while preserving the problem’s structure. For example, the Delete
Relaxation Heuristic [35] simplifies the problem by ignoring the negative ef-
fects of actions, making it easier to solve. Another popular approach is the
Landmark Heuristic [35], which identifies critical subgoals (landmarks) that
must be achieved to reach the goal. These landmarks guide the search process
by structuring the sequence of actions. For instance, in a block-stacking task,
stacking the first cube is a prerequisite for placing the second cube.

SAT-based approaches [124] encode the planning problem as a propositional
formula in Conjunctive Normal Form (CNF), where each state, action, and
transition is represented by a Boolean variable. A general SAT solver is then
used to check the satisfiability of the formula, determining whether there exists
a sequence of actions that transitions the system from the initial state to the
goal. If the formula is satisfiable, the solver provides a solution corresponding
to a valid plan.

While both search-based and SAT-based methods are effective for solving
planning problems, we chose search-based frameworks for our work. These
frameworks, particularly those utilizing PDDL, offer a human-readable and
modular representation of planning tasks, making debugging, modification,
and maintenance easier. For our work, we integrated the Fast-Downward
planning system [125], one of the most widely used tools due to its efficiency
in solving large-scale planning problems, support for numerous features, and
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flexibility in search methods and heuristics.

3.2 Planning Failures
Planning failures occur when no sequence of actions can lead the system from
the current state to the goal, i.e.,

̸ ∃π such that δR(IR, π) |= GR.

This is referred to as an unsolvable planning task. In this context, we use the
subscript R to denote plans related to a robot, and H to refer to human plans.
This distinction is consistently applied across all relevant domain artifacts
(e.g., δR, AR, δH , AH , etc.). To address planning failures, we propose a
human-in-the-loop approach, where a human demonstrates how to achieve the
robot’s goal, and the robot learns from that demonstration. In this scenario,
the human demonstrator is not pursuing their own goal but instead shows
how to accomplish the robot’s goal (which is assumed to be known to both
the robot and the human). In Paper F, we defined a human demonstration
as follows:

Definition 1. An (Unguided) Demonstration for an unsolvable task, is a
human plan πH that achieves the goal, wherein the robot can replicate parts
of the demonstration to achieve the goal itself from the original initial state:

δH(IR, π) |= GR such that δR(IR,M(π)) |= GR,

where M is a mapping function that translates the demonstrated human
actions into robot-executable actions, a process known as embodiment map-
ping [126]. From the obtained demonstration δH(IR, π), we need to extract
a set of actions AH which is then added to the robot’s current action set
A′

P = AP ∪M(AH). In this thesis, we assume M is the identity mapping, thus
A′

P = AP ∪ AH , which can be ensured by designing a state abstraction such
that actions are directly applicable to both human and robot domains.

3.2.1 Challenges
C1: Extracting AH from a human demonstration is not straightforward be-

cause demonstrations typically involve a continuous flow of states. There-
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fore, we need a method that can segment this continuous data stream
into individual actions (C1.1), and identify the relevant preconditions
and effects of each action (C1.2). Additionally, the method must trans-
late the observed actions, along with their precondition and effect predi-
cates, into general action templates, known as operators O (C1.3). These
challenges are addressed in Paper A.

C2: When planning failures occur, the exact cause is often unclear. It could
be that the robot doesn’t know how to complete the entire task, for
instance, if AP = ∅, or because a single action is missing. In such cases,
a human must either demonstrate the entire task sequence, even if parts
of it are already known to the robot, or manually identify and demon-
strate the specific actions the robot is lacking. Re-teaching the entire
task sequence can become tedious and repetitive, which may diminish
the user’s willingness to continue teaching the robot. Moreover, requir-
ing the user to gain a deeper understanding of the robot’s action set
contradicts the purpose of learning from demonstration, as such insight
may not be readily available to the user, even if human-readable action
models provide some assistance. The underlying issue is that robots
typically lack the ability to reason about which sub-tasks are necessary
to complete the overall task, an issue we address in Paper F.
By addressing C1 and C2 this thesis contributes towards an efficient,
robot-agnostic, and interpretable way of learning new tasks from human
demonstrations (RQ5).

C3: Finally, most Learning from Demonstration (LfD) methods, including
the one presented in Paper A, focus on single-robot scenarios, despite
the fact that humans have two hands and often perform tasks in parallel
or require synergies to accomplish a task successfully. Moreover, many
industrial settings use multi-robot systems. However, applying current
LfD methods to multi-robot systems is not straightforward, as they do
not explicitly account for constraints related to shared spaces and action
synergies between robots. The key challenges2 in this context include:

C3.1 Sequential Plans: To solve tasks with newly taught robot ac-
tions, current PbD and LfD pipelines [30] integrate planning sys-
tems, such as FastDownward [125], for automatic action sequenc-

2Adapted from Paper E.
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ing. However, the resulting plans consist only of sequential actions,
making them unsuitable for concurrent multi-agent (MA) tasks.

C3.2 Space and Resource Constraints: Although transitioning from
single-agent to multi-agent PDDL (MA-PDDL) can generate multi-
agent plans, ensuring the feasibility of plan execution requires ad-
ditional precautions. A common issue arises when multiple robots
can reach a space, but only one robot can occupy it at a time.
Without properly modeling these shared spaces, where both agents
cannot be present simultaneously, the planner may generate a plan
that results in collisions as the robots attempt to place objects
onto the tray concurrently. Such resource constraints are common
in various industrial tasks and must be explicitly incorporated into
the operator-generation process.

C3.3 Action synergies: Actions requiring synergies between agents
are not effectively learned in current operator-learning methods,
as concurrency does not apply to single-agent scenarios [30]. For
example, a robot can only close the bottle if the Screw and Hold
actions are scheduled in parallel. Single-agent teaching methods
typically do not account for such synergies. Therefore, to success-
fully close the bottle, we must explicitly model the parallel actions
required to achieve the desired outcome.

We address challenges C3.1 - C3.3 in Paper E, thus contributing towards
RQ6.

3.2.2 Learning Planning Operators from Human
Demonstration

In Paper A, we proposed a demonstration tool that enables a robot to learn
semantic operator descriptions from human demonstrations in Virtual Real-
ity3.
C1.1: To extract AH from a human demonstration, our system first auto-
matically segments and recognizes the demonstrated human activities using a
state-of-the-art learning method that extracts semantic representations from
the demonstrations [127]. This method segments continuous hand motions

3This subsection is adapted from Paper A.
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features Granular Activity Idle Reach Put Take
handMove T T ∨ F T T F
actedOn ¬nil nil ¬nil nil nil
inHand ¬nil nil nil ¬nil ¬nil

Table 3.1: Hand activity classification rules. T and F stand for true and false re-
spectively, and ¬nil means an object as opposed to no-object (nil). Source: Adapted
from Paper A. © 2021 IEEE (IROS).

based on a minimalistic subset of hand-specific state variables such as inHand,
actedOn, and handMove (more details can be found in Table 2 of Paper A).
Each segmented motion is then labeled with a specific symbolic meaning rep-
resenting one of the recognized activities, such as IdleMotion, Reach, Put,
Take, and Granular. Granular activities refer to actions in which one object
held in the hand interacts with another (e.g., stacking two cubes or cutting
bread). The mapping between hand state variables and the detected activ-
ity is realized through a decision tree that is learned from human annotated
demonstrations in prior work [127]. The learned rules are presented in Ta-
ble 3.1.

One of the main advantages of this semantic-based recognition method is its
ability to segment and recognize continuous data without requiring additional
training. This means that for the scenarios analyzed in Paper A, Paper E, and
Paper F, we used the same set of rules from prior work [127]. Therefore, no
new training was necessary for activity segmentation and recognition. Another
advantage is that both the activity labels and the learned rules are human-
readable.
C1.2 To identify relevant preconditions/effects and generates operators, we
propose Alg. 4. The algorithm takes two inputs: a demonstration D, repre-
sented as a sequence of symbolic states st at time t, which is further subdivided
into hand state st,h and environment state st,e, along with the hand activity
classification at,h for each hand h ∈ H and time point t. We differentiate
between hand variables, which describe the state of the hand or its inter-
actions with objects in the environment (see features column in Table 3.1),
and environment variables, which describe the relationships between objects
in the environment. The second input is a list of existing operators O, which
corresponds to the existing set of robot capabilities AR.
C1.3: A new operator is generated when the segmentation and classification
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system detects a transition from one activity to another, i.e., at,h ̸= at−1,h

(L-4, Alg. 4). For example, when transitioning from Reach to Take, the Take
operator would be generated, as changes occur in the actedOn and inHand
state variables. It’s important to note that not all state transitions, especially
those involving environment state variables like onTop, result in a new classi-
fication, and therefore do not trigger the creation of a new operator. This is
because classification is based on a subset of the state variables.

The advantage of our activity recognition method is that newly generated
planning operators can be automatically named with human-understandable
labels (L-9, Alg. 4), providing a semantic description of the underlying func-
tionality. The preconditions of an operator are derived from the effects of
the last state before the activity transition, while the effects are based on the
last state of the current activity. For example, in the transition from Reach
to Take, the preconditions of the Take operator are based on the last state
of Reach, and its effects are based on the last state of Take. To account for
hand-state changes that do not lead to a new activity classification, operators
are not directly added to O. Instead, they are stored in a buffer list OBuffer
(L-10, Alg. 4), which is continuously updated (L-13, Alg. 4).

For selecting relevant environment predicates, we focus only on those that
change their value during the operator’s application. For hand state variables,
we additionally consider predicates that remain true throughout the activity.
The next step involves generalizing from specific objects, such as Cube_green1,
to the type of object, such as Wooden_cube (L-8, Alg. 4). This generalization
is based on the assumption that any activity applied to a specific cube can be
generalized to all objects of the same type.

The last step is updating the operator list O with the newly observed oper-
ators from the buffer OBuffer. Each newly observed operator is either added,
in case it is different from any other operator (L-19, Alg. 4), or the count is in-
cremented for operators who have been already observed before (L-21, Alg. 4).
The output list represents the new set, combining the existing operators with
the newly demonstrated ones: A′

R = AR ∪AH .
To test the functionality of the system, three participants were asked to

demonstrate how to stack cubes within our VR environment. Before the
first demonstration, each participant had an opportunity to familiarize them-
selves with the environment. Following this introductory phase, four different
demonstrations were collected from each participant, based on instructions to
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Algorithm 4 Operator generation & collection
Input: demonstration D = [s1, a1, s2, a2, ...sn, an], current list of opera-

tors O
Output: updated list of operators O

1: Obuffer ← {}
2: for t← 1, n do ▷ n = |D|
3: for all h ∈ H do
4: if at,h ̸= at−1,h then
5: pre← StateVarToPredicate(st−1,h)
6: eff← StateVarToPredicate(st,h)
7: RemoveIrreleventPredicates(pre, eff)
8: GeneralisePredicates(pre, eff)
9: o← Operator(at,h, pre, eff)

10: Append(Obuffer, o)
11: else
12: if st,h ̸= st−1,h then
13: UpdateOperator(Obufferh

[−1], st,h)
14: if st,e ̸= st−1,e then
15: h← ConnectEnvChangeToHand()
16: AddEnvPredicates(Obufferh

[−1], st,e, st−1,e)
17: for all o ∈ Obuffer do
18: if o ∈ O then
19: IncrementCount(O, o)
20: else
21: Append(O, o)
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stack either one or two cubes using either the left or right hand. No further re-
quirements were imposed, such as the speed of execution or the specific cubes
to be stacked.

To evaluate the operator generation process, four different stacking goals
were used (see Fig. 3.1). The first two goals were part of the experimental
instructions, though participants were free to select their own cubes. Goals
3 and 4, however, introduced new cube configurations to further assess the
system’s capability. For all goals, plans were generated by calling the Fast
Downward planner, which utilized the operators extracted from the human
demonstrations.

Two experiments were conducted: Plans were generated using the domains
from a single demonstration at a time (individual demonstrations). Plans were
generated using the operators from a domain that combined all 12 demon-
strations (combined demonstrations). The results showed that, with a single
demonstration, plan generation was successful in 11 out of 12 cases (92%).
When operators from all 12 demonstrations were combined, plan generation
was successful in all cases. These results suggest that while a single demon-
stration is typically sufficient to generate a plan that satisfies the goals, in-
corporating more demonstrations increases the likelihood of success. It is also
important to note that the plans generated were not simple repetitions of the
sequences observed in the demonstrations. The planner was able to discern
which actions from the demonstrations were essential for achieving the goal,
scheduling only those actions, and omitting extraneous ones.

Figure 3.1: Plan goals with corresponding plan generation success ratio. Source:
Paper A. © 2021 IEEE (IROS).
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3.2.3 Guided Demonstrations to Learn Missing Actions
In Paper A, we demonstrated that a single demonstration of the full task
was (in 11 out of 12 cases) sufficient to extract the necessary information
for generating a plan that the robot could execute. That approach required a
complete demonstration of the entire task. However, what if the robot already
possesses prior knowledge and only needs to learn a single missing action? In
Paper F, we introduce the concept of a guided demonstration, which seeks to
reduce the demonstration burden by automatically identifying missing gaps
in a plan that led to planning failures. The robot can then request specific
demonstrations to fill these gaps, thus addressing challenge C2. To formalize
the missing gap we define the concept of an excuse4.

The concept of an excuse was first introduced in the seminal work of [128]
as a method for providing open-ended feedback to address issues in plan-
ning tasks. Since then, this concept has been broadened to include general
revisions of planning tasks [129] and has been applied to debug planning
models across various domain authoring tasks. These applications include
goal-oriented conversational agents, decision support systems, and intelligent
tutoring systems [130], [131], [132].

Definition 2. An Excuse E = I∆I ′ is a change (symmetric difference) in
the state of the world with a new state I ′ that does not model the goal, such
that the unsolvable problem becomes solvable with the new state as the initial
state:

IR 7→ I ′
R, such that I ′

R ̸|= GR and ∃π δR(I ′
R, π) |= GR.

Definition 3. A minimal excuse Emin is the smallest excuse that satisfies
Definition 2: Emin = minI′ ||I∆I ′||. Unless otherwise mentioned, we will use
an excuse to mean a minimal excuse.

To identify the missing subtask(s), we use the approach in [133], originally
built for explanations in the form of model reconciliation. It mimics the excuse
generation algorithm in [128] but without a user mental model. The approach
performs combinatorial search in the space of possible models M to find a
model where the task is solvable. For Paper F, we only perform model edits
to the initial state IR of the unsolvable task, changing one ground atom at
a time until the task is solvable. Then the excuse is the set of model edits.

4This subsection is adapted from Paper F.
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(a) Kitchen - I (showing excuse: Open
PinkDrawer)

(b) Kitchen - I (ego perspective)

(c) Kitchen - II (showing excuse: Clear
PinkDrawer)

(d) Kitchen - II (ego perspective)

Figure 3.2: Kitchen Domain scenarios. Source: Adapted from Paper F. © 2025
IEEE/SICE (SII).
Since there are usually multiple alternative model edits that make the task
solvable, we stop the search procedure when we find the first solution.

Definition 4. A Guided Demonstration for an unsolvable task, is a human
plan πH that demonstrates how to negate the excuse from the current state,
wherein the robot can replicate parts of the demonstration to achieve the goal
itself from the original state: δH(IR, πH) |= IR + E such that ∃π δR(IR, π) |=
GR with ∃a ∈ π and a ∈M(πH).

We tested our method in the kitchen domain (3.2a-3.2d) which represents
the class of HomeWorld domains [134] where the robot has to store a plate
in a drawer, but initially does not know how to open a drawer (3.2a-3.2b)
and how to unblock the drawer from a chair (3.2c-3.2d). Instead of having to
demonstrate the full tasks, our proposed approach of guided demonstrations
facilitates the teaching process, by instructing the human to only teach how
to reach the automatically generated excuse states where the drawer is open
(3.2a) and the drawer is clear (3.2c). We directly communicate the obtained
excuse states by displaying its symbolic state description in the VR environ-
ment used for the teaching process (Open PinkDrawer - Fig. 3.2a and Clear
PinkDrawer - Fig. 3.2c) as seen at the top of the respective images.

To measure the impact of guided demonstrations, we conducted an experi-
ment with 5 participants. The participants were informed that the goal of the
study was to demonstrate missing actions (referred to as excuses) for tasks
where the robot already had partial knowledge. However, the robot’s existing
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knowledge was not disclosed to participants, in order to assess whether the
method works without the users being familiar with the robot’s capabilities.
The experiment started with a training phase that allowed participants to
interact freely with blocks. Then, each participant performed three demon-
strations per scenario, as shown in Fig. 3.2 (excuse - full task - excuse). The
robot’s prior domain knowledge was pre-generated based on demonstrations
by one of the authors of Paper F, which enabled the robot to perform actions
like placing a plate in an open drawer. In the second scenario, this knowledge
also included the action of opening the drawer. During the experiment, par-
ticipants demonstrated minimal excuses, such as open PinkDrawer and clear
PinkDrawer, as well as the overall goal, RedPlate inside PinkDrawer. Both
the excuses and the goal were visually displayed in the VR environment.

The results showed that our method was effective, achieving a 61% and
72% reduction in time and demonstration size. It is important to note that
time savings may vary depending on the total length of the plan and the size
of the knowledge gap. If the robot is missing a single action in a lengthy
task (e.g., setting a table), we would expect even greater time savings. How-
ever, if the robot is missing multiple sub-tasks, the resulting savings might be
smaller. In the post-study interview, participants reported that the excuses
were generally easy to comprehend. They rated their confidence in respond-
ing appropriately to the excuses with a demonstration, as expected by the
robot, very positively, with a mean confidence score of 6.2 out of 7 (where 7
represents very high confidence). Furthermore, although participants had the
opportunity to reconsider how to address the excuse after learning the full
task goal, none of the participants changed their excuse demonstration. All
participants also reported that they did not require prior knowledge of the
overall task goal or the robot’s existing knowledge in order to understand how
to perform the demonstration.

3.2.4 Learning Robot Actions from Demonstration for
Multi-Agent Planning

To address the challenge of extending state-of-the-art Programming by Demon-
stration (PbD) and Learning from Demonstration (LfD) methods to multi-
agent tasks, Paper E proposes guidelines with three key enhancements to the
existing action learning and planning pipeline. As illustrated in Fig. 3.3, the
gray portion represents the standard PbD and LfD approach, while the blue
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C3.1 MA-PDDL

C3.1 Furelos-BlancoC3.2 constrainedMove1(Agent,Spot)

 constrainedMove2(Agent,Spot)

C3.3 Hold(Agent, Bottle)

Action Generation Plan Generation

actions

Figure 3.3: State-of-the-art pipeline from action demonstration to plan generation
(gray) compared to the modified pipeline following our guidelines (blue). Source:
Adapted from Paper E. © 2024 IEEE (CASE).
part highlights the modified pipeline incorporating our three contributions5.
Single to Multi-Agent planning

To address C3.1, our guideline proposes an adaption of the action model
representation from PDDL to MA-PDDL [135] (see C3.1 in the Action Gen-
eration step in Fig. 3.3). Typically LfD methods like [30] or the one presented
in Paper A contain a step where the action, learned from a demonstration,
are parsed into a PDDL domain. We changed this step such that the result-
ing output is a MA-PDDL domain. Our method furthermore introduces an
additional step during the Plan Generation: As few planning systems are ca-
pable of solving MA-PDDL problems, we integrated Furelos-Blanco’s method
to recompile MA-PDDL back to classical planning [136] (see C3.1 in the Plan
Generation step in Fig. 3.3), which then allows the usage of traditional off-
the-shelf planning systems (e.g. FastDownward [125]) to solve the original
multi-agent problem and produce plans where actions can be scheduled con-
currently.
Constrained Movement Actions To address C3.2 our guidelines propose
to manually replace any existing standardMove action with two constrained
movement actions during the Action Generation Step of the PbD pipeline
(see C3.2 in Fig. 3.3). A standardMove action requires only that the robot
is currently at some spot Spot1 (isAgentAtSpot) and can reach another spot

5This subsection is adapted from Paper E.
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Spot2 (reachable). The constrainedMove1 checks that Spot2 is not being
occupied at the moment and that no other robot is moving towards Spot2.
The constrainedMove2 would allow a robot to move to Spot2 if any other
robot that is currently at Spot2 is moving away (Spot3). Adding these two
actions makes the planner regulate the occupancy of the shared areas of the
workspace, preventing any robot from moving into an area already occupied
by another robot and consequently acting on any shared resources.

1 ( :action standardMove
2 :agent ?a − agent
3 :parameters (? spot1 − spot ? spot2 − spot )
4 :precondition (and
5 ( isAgentAtSpot ?a ? spot1 ) ; agent ?a i s at ? spot1
6 ( r eachab l e ? spot2 ?a ) ) ; ? spot2 i s r eachab l e by agent ?a
7 : e f f e c t (and
8 not ( isAgentAtSpot ?a ? spot1 )
9 ( isAgentAtSpot ?a ? spot2 ) ) )

10

11 ( :action constrainedMove1
12 :agent ?a − agent
13 :parameters (? spot1 − spot ? spot2 − spot )
14 :precondition (and
15 ( isAgentAtSpot ?a ? spot1 )
16 ( r eachab l e ? spot2 ?a ) )
17 ( f o r a l l ?a2 − agent (and
18 not ( isAgentAtSpot ?a2 ? spot2 ) ; no other agents are at

? spot2
19 ( f o r a l l ? spot3 − spot ; no other agents are moving towards

? spot2
20 not ( constrainedMove1 (? a2 ? spot3 ? spot2 ) ) ) ) )
21 : e f f e c t (and
22 not ( isAgentAtSpot ?a ? spot1 )
23 ( isAgentAtSpot ?a ? spot2 ) ) )
24

25 ( :action constrainedMove2
26 :agent ?a − agent
27 :precondition (and
28 ( isAgentAtSpot ?a ? spot1 )
29 ( r eachab l e ? spot2 ?a )
30 ( exists ?a2 − agent (and
31 ( isAgentAtSpot ?a2 ? spot2 )
32 ( exists ? spot3 − spot
33 ( constrainedMove1 (? a2 ? spot2 ? spot3 ) ) ) ) ) ) ; the re i s

an agent ?a2 at ? spot2 that moves away from ? spot2
34 : e f f e c t (and
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35 not ( isAgentAtSpot ?a ? spot1 )
36 ( isAgentAtSpot ?a ? spot2 ) ) )

Listing 3.1: PDDL description of the move actions.

Our Approach to Detect Action Synergies
To address C3.3, our guidelines propose an adaptation of the Action Gen-

eration step (see C3.3 in Fig. 3.3) to explicitly encode action synergies. MA-
PDDL provides the required formalism, as it allows to define actions as pre-
conditions. Concretely during the parsing step, any actions that have to be
performed concurrently are therefore added to each other’s preconditions. Our
guidelines also propose automated methods for detecting, during the demon-
stration, when two actions indeed have to be performed in parallel to achieve
a common goal. For the kinesthetic teaching method [30], this can be detected
via the existing user interactions. For example, if the user wants to perform
a demonstration on both arms of a YuMi robot (as shown in Fig. 3.4-a), the
user has to enable the teaching mode for both arms by pushing a button.
We then used this signal as a flag during the Action-Generation step to add
the demonstrated actions of both arms as preconditions of the other in the
MA-PDDL action description. We modified the VR LfD method in Paper
A such that it automatically detects the necessity for concurrency, based on
the obtained activity classifications. Activities are classified as Idle if a hand
does not act on any object or holds an object in its hand. Thus, any action
observed in parallel with an idle action (e.g., Left Hand: Reach, Right Hand:
Idle Motion) is saved as a single-agent action. However, when two parallel
non-idle actions are identified, we incorporate them by adding each action to
the other’s precondition in the MA-PDDL action description.

In the experimental validation, we aim to demonstrate that our proposed
guidelines can successfully extend state-of-the-art Programming by Demon-
stration (PbD) and Learning from Demonstration (LfD) methods, enabling
non-experts to teach actions for Multi-Agent (MA) tasks, even when these
tasks involve shared space constraints and action synergies between two robots.
To this end, we applied our guidelines to two single-robot teaching methods:
the kinesthetic teaching method presented in [30] and our VR teaching system
presented in Paper A. Subsequently, we conducted a user study where non-
experts used the extended version of [30] to teach the robot new actions for an
adapted version of the Tower-of-Hanoi task, using cubes instead of discs (see
Fig. 3.4-a), and the MA version of Paper A for opening and closing a bottle
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Figure 3.4: Shows the user study environments: a) Kinesthetic teaching of the
Tower-of-Hanoi task: b) INIT & c) GOAL. d) VR teaching of the Close-Bottle task:
e) INIT & f) GOAL. Source: Paper E. © 2024 IEEE (CASE).
(see Fig. 3.4-d). Results showed that our method can correctly encode the
MA action models leading to 90% and 95% plan feasibility in the two tasks
respectively. In contrast, current non-MA methods result in plans that are
unfeasible or are up to 40% less efficient in plan length.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Diehl Maximilian, Paxton Chris, Ramirez-Amaro Karinne
Automated Generation of Robotic Planning Domains from Observations
Published in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Prague, Czech Republic, pp. 6732-6738,
Sep. 2021.
©2021 IEEE DOI: 10.1109/IROS51168.2021.9636781.

This paper presents a method for automatically generating planning domains
for robots based on human demonstrations, eliminating the need for manual
domain definition. The method involves segmenting and recognizing actions
from demonstrations, identifying relevant preconditions and effects, and gen-
erating planning operators. A symbolic planner then uses these operators to
create action sequences that achieve user-defined goals. The approach was
tested with the TIAGo robot in a simulated environment, achieving a 92%
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success rate with a single demonstration and 100% success when using multi-
ple demonstrations, even for new tasks.

Maximilian Diehl: Conceptualization, Methodology, Software, Data cu-
ration, Writing- Original draft preparation.
Chris Paxton: Supervision, Writing- Reviewing and Editing.
Karinne Ramirez-Amaro: Supervision, Writing- Reviewing and Editing.

4.2 Paper B

Diehl Maximilian, Ramirez-Amaro Karinne
Why Did I Fail? A Causal-Based Method to Find Explanations for
Robot Failures
Published in IEEE Robotics and Automation Letters (RAL), vol. 7, no.
4, pp. 8925-8932, Oct. 2022.
©2022 IEEE DOI: 10.1109/LRA.2022.3188889.

This paper presents a method for enabling robots to explain task failures
in human-centered environments, which is essential for enhancing trust and
transparency. We tackle two main challenges: obtaining sufficient data to
learn a cause-effect model of the environment and generating causal explana-
tions based on that model. We address the first challenge by training a causal
Bayesian network with simulation data. For the second, we introduce a novel
approach that allows robots to provide contrastive explanations by compar-
ing the failure state with the nearest state that would have led to success,
identified through breadth-first search. This method was tested on tasks like
stacking cubes and dropping spheres, achieving sim-to-real accuracy rates of
70% and 72%, respectively. The approach also scales across tasks and enables
robots to offer specific explanations, such as “the upper cube was stacked too
high and too far to the right of the lower cube.”

Maximilian Diehl: Conceptualization, Methodology, Software, Data cu-
ration, Writing- Original draft preparation.
Karinne Ramirez-Amaro: Supervision, Writing- Reviewing and Editing.
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4.3 Paper C
Diehl Maximilian, Ramirez-Amaro Karinne
A causal-based approach to explain, predict and prevent failures in
robotic tasks
Published in Robotics and Autonomous Systems (RAS), vol. 162, Apr.
2023.
©2023 Elsevier DOI: 10.1016/j.robot.2023.104376.

This paper introduces a causal-based approach to help robots working in hu-
man environments adapt to unexpected changes and prevent failures by pre-
dicting and addressing errors. The method enables robots to foresee immedi-
ate failures and also future timely-shifted action failures, where current actions
may compromise future success. This is achieved by detecting cause-effect re-
lationships between tasks and their outcomes through a causal Bayesian net-
work (BN) trained on simulation data, which is then transferred to real-world
scenarios. The BN allows the robot to predict whether a current action will
succeed and, if a failure is likely, identify the closest success state using con-
trastive Breadth-First-Search. The method was tested in stacking tasks, single
and multi-cube stacks, and showed a 97% error reduction in single stacks, with
around 95% of stacking errors prevented in more complex cases. These results
indicate the method’s effectiveness in predicting, explaining, and preventing
execution failures, even in complex situations where the impact of previous
actions on future tasks must be understood.

Maximilian Diehl: Conceptualization, Methodology, Software, Data cu-
ration, Writing- Original draft preparation.
Karinne Ramirez-Amaro: Supervision, Writing- Reviewing and Editing.

4.4 Paper D
Diehl Maximilian, Ramirez-Amaro Karinne
Generating and Transferring Priors for Causal Bayesian Network Pa-
rameter Estimation in Robotic Tasks
Published in IEEE Robotics and Automation Letters (RAL), vol. 9, no.
2, pp. 1011-1018, Feb. 2024.
©2024 IEEE DOI: 10.1109/LRA.2023.3339062.
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Robots in human environments often face new situations and can benefit from
transferring prior experience to handle tasks zero-shot and prevent costly fail-
ures. Causal Bayesian Networks (CBNs) are widely used for modeling cause-
effect relations, but while their structure transfers well, their probability dis-
tributions often require data-intensive relearning. This paper proposes three
strategies leveraging semantic similarity between CBN variables to generate
and transfer informed distribution priors. We evaluate their accuracy across
five transfer scenarios, including sim-to-real and tasks with increased com-
plexity. Results show our priors improve distribution estimates and enhance
failure prediction by up to 50%.

Maximilian Diehl: Conceptualization, Methodology, Software, Data cu-
ration, Writing- Original draft preparation.
Karinne Ramirez-Amaro: Supervision, Writing- Reviewing and Editing.

4.5 Paper E
Diehl Maximilian, Zappa Isacco, Zanchettin Andrea Maria and Ramirez-
Amaro Karinne
Learning Robot Skills From Demonstration for Multi-Agent Planning
Published in 2024 International Conference on Automation Science and
Engineering (CASE), Bari, Italy, pp. 2348-2355, Aug. 2024.
©2024 IEEE DOI: 10.1109/CASE59546.2024.10711439.

This paper addresses the limitations of Programming by Demonstration (PbD)
and Learning from Demonstrations (LfD) methods, which are commonly used
to simplify robot skill programming but traditionally focus on single-robot
tasks. In multi-robot systems, direct application of PbD/LfD methods is
challenging due to constraints related to shared spaces and action synergies
between robots. To overcome this, we propose guidelines for extending PbD
to Multi-Agent (MA) systems. We incorporate constrained movement skills
to prevent simultaneous actions on shared resources and use action classifi-
cation to identify and encode parallel actions for concurrent scheduling. The
guidelines were tested with kinesthetic teaching and Virtual Reality demon-
strations in a user study, focusing on tasks like a multi-agent Tower of Hanoi
and Opening/Closing-Bottle task. The method achieved 90% to 95% plan
feasibility, outperforming non-MA approaches that often result in unfeasible
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plans or plans up to 40% less efficient in length.

Maximilian Diehl: Conceptualization, Methodology, Software (VR LfD sys-
tem), Data curation, Writing- Original draft preparation.
Isacco Zappa: Conceptualization, Methodology, Software (Kinesthetic teach-
ing system), Data curation, Writing- Original draft preparation.
Zanchettin Andrea Maria: Supervision, Writing- Reviewing and Editing.
Karinne Ramirez-Amaro: Supervision, Writing- Reviewing and Editing,
Project administration.

4.6 Paper F
Diehl Maximilian, Chakraborti Tathagata, Ramirez-Amaro Karinne
Enabling Robots to Identify Missing Steps in Robot Tasks for Guided
Learning from Demonstration
Published in 2025 IEEE/SICE International Symposium on System In-
tegrations (SII), Munich, Germany, pp. 43-48, Jan. 2025.
©2024 IEEE DOI: 10.1109/SII59315.2025.10870986.

Learning from Demonstration (LfD) systems typically require users to pro-
vide full demonstrations, even when robots already know parts of a task.
This redundancy makes teaching inefficient. We propose a guided demonstra-
tion method that reduces user effort by identifying which sub-task the robot
still needs to learn. Using a combinatorial search, our approach determines
the smallest necessary adjustment (a state we refer to as excuse state), that
enables the robot to complete the task with its existing skills. Users then
only demonstrate the missing sub-task. Experiments show that our method
reduces demonstration time by 61% and decreases the size of demonstrations
by 72%.

Maximilian Diehl: Conceptualization, Methodology, Software (VR LfD sys-
tem), Data curation, Writing- Original draft preparation.
Tathagata Chakraborti: Conceptualization, Methodology, Software (Ex-
cuse State Generation), Data curation, Writing- Original draft preparation.
Karinne Ramirez-Amaro: Supervision, Writing- Reviewing and Editing.
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4.7 Paper G
Diehl Maximilian, Tsoi Nathan, Chavez Gustavo, Ramirez-Amaro
Karinne, Vázquez Marynel
A Causal Approach to Predicting and Improving Human Perceptions of
Social Navigation Robots
To be submitted to ACM Transactions on Human-Robot Interaction (THRI),
2025.

This paper addresses the challenge of enabling mobile robots to predict hu-
man perceptions of their competence and intent during navigation, which is
essential for socially adaptable interactions in human environments. The two
main issues are i) the need for prediction methods that can learn from lim-
ited data and ii) the importance of interpretability in these models to ensure
safer interactions. Interpretable models allow robots to explain their reason-
ing, particularly in situations where they may be perceived as incompetent.
To tackle these challenges, we propose a Causal Bayesian Network (CBN)
for predicting human perceptions and interpreting robot intent. Addition-
ally, they introduce a novel method that uses combinatorial search guided
by the causal model to identify alternative navigation behaviors, thereby im-
proving perceived robot performance when low performance is anticipated.
Our approach is designed to be more interpretable and capable of generating
counterfactual robot motions, achieving predictive performance comparable
to or better than state-of-the-art methods, with F1-Scores of 0.79 for compe-
tence and 0.75 for intention on a binary scale. User evaluations in simulation
demonstrated that their model produced motion trajectories that resulted in
72% increased competence.
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CHAPTER 5

Concluding Remarks and Future Work

Future robots are expected to take on challenging tasks such as cleaning,
washing dishes, and doing laundry, requiring them to operate in human envi-
ronments. However, to function effectively in these dynamic settings, robots
must flexibly adapt to unexpected changes and proactively predict and pre-
vent failures. Importantly, as robots will work alongside humans, who are
typically non-experts, they must foster trust and acceptance. Therefore, the
first goal addressed in this thesis was to develop new decision-making meth-
ods that not only enable robots to reason about and prevent failures but also
explain why they occurred.

Building on the central role of causality in human reasoning, decision-
making, and failure explanation, this thesis proposed using symbolic causal
models as a foundation for failure prediction, prevention, and explanation. We
introduced an approach to learning causal robot task models from simulation
data (RQ1). Subsequently, we proposed a new method that enables robots to
generate contrastive failure explanations using a breadth-first search proce-
dure. Guided by the causal model, this method identifies the closest variable
parametrization in which the robot would have successfully completed the
task (RQ3). Our explanations are selective, considering only causally relevant
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variables and incorporating only those that change during the breadth-first
search procedure. Moreover, the chosen abstraction layer of our causal mod-
els includes variables such as the x and y offset between two cubes that the
robot is tasked with stacking. This allows the robot to explain failures based
on external effects (e.g., “the cube was stacked too far to the right”) rather
than internal mechanisms (e.g., motion planning errors). Additionally, our
explanations do not rely on probabilities (e.g., “I failed because my success
chance in this configuration was only 20%”), making them more intuitive for
non-expert users.

Building on this foundation, we extended our method to allow robots to
proactively predict and prevent failures. Using causal models, the robot can
search for the closest configuration in which it is likely to succeed. Our results
show that this approach achieves a failure prevention rate of 95% (RQ2). We
further adapted this failure prevention method for a social robot navigation
scenario, where we used our causal model to predict perceived competence in
a navigation task (RQ4). Our model matched or surpassed state-of-the-art
performance while offering greater interpretability, and our method increased
perceived robot competence by 72%. Additionally, we proposed three novel
strategies for generating and transferring informed distribution priors based
on the semantic similarity between two causal Bayesian networks (CBNs).
We evaluated these methods in five transfer scenarios, demonstrating that the
transferred priors enhanced the robot’s ability to predict and prevent failures
by up to 50%, particularly in zero-shot transfer situations.

Proactive failure prediction and retrospective failure explanations are es-
sential for mitigating the negative effects of failures. However, given the com-
plexity of human environments, robots may still encounter failures that they
cannot resolve autonomously. In such cases, humans could assist robots by
teaching the missing action. Therefore, the second goal of this thesis was to
enable robots to learn how to perform these tasks by integrating and reusing
previous experiences alongside newly acquired knowledge. This knowledge
should be shareable among robots in different environments and adaptable to
various scenarios. To make this accessible to non-experts, we proposed a vir-
tual reality system that enables users to intuitively teach missing capabilities.
Our system automatically segments and classifies demonstrations, generating
symbolic, robot-agnostic actions that integrate into the robot’s action library.
This approach achieved a 92% success rate in learning task abstractions from
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5.1 Future Work

Research Questions Papers
RQ1: How can we detect and learn cause-effect relation-
ships in robot tasks involving timely shifted and erroneous
action effects?

B, C

RQ2: How can a robot use the previously obtained causal
models to predict and prevent future failures?

C, G

RQ3: How can a robot use previously obtained causal
models to generate contrastive and selective explanations
for task failures?

B

RQ4: How can we increase the data efficiency for learning
causal models? How can we transfer causal models be-
tween tasks?

D, G

RQ5: How can a robot learn tasks in an efficient, agnos-
tic, and interpretable way by observing human demonstra-
tions?

A, F

RQ6: How can we extend current Learning from Demon-
stration methods from teaching single- to multi-agent
tasks?

E

Table 5.1: Overview of Research questions and corresponding papers
a single demonstration. Additionally, guided learning from demonstration
reduced demonstration time by 61% by leveraging combinatorial search to
identify missing plan elements (RQ5). Finally, we proposed guidelines for
extending our current learning-from-demonstration (LfD) systems to multi-
agent scenarios, particularly for tasks that involve shared resources or require
synchronized actions. Our approach achieved a 93% teaching success rate
(RQ6). These contributions pave the way for future robots that can continu-
ously learn and develop new capabilities, enabling them to adapt to dynamic
human environments and evolving challenges.

Table 5.1 provides a summary of the addressed research questions and the
corresponding relevant papers.

5.1 Future Work
Personalized Explanations
This thesis laid the foundation for enabling robots to provide failure expla-
nations when needed by humans, which, as literature has shown, is key to
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building trust and acceptance of robots in human environments. In Paper
G, we began exploring interactive human-robot tasks, marking the first step
toward collaborative problem-solving scenarios. Moving forward, we aim to
expand this research to focus on tasks where explanations are crucial for tack-
ling complex challenges together. This approach emphasizes not only explain-
ing failures but also using those explanations to enhance teamwork between
humans and robots.

Another important step in this direction involves enhancing personaliza-
tion in failure explanations. By integrating high-level task descriptions with
low-level robot-specific details, explanations could be tailored to provide ei-
ther an external or internal perspective, depending on the user’s expertise
and needs. Inspired by Occam’s razor principle, our current approach delivers
the simplest explanations and preventive actions, minimizing interval changes
without requiring human domain knowledge. While effective, this uninformed
BFS approach assigns equal importance to all causally relevant variables, po-
tentially producing multiple equally optimal explanations. One concrete step
forward could be incorporating heuristic prioritization into the search pro-
cess. This would involve assigning higher weights to certain variables based
on specific criteria, as outlined in our Workshop Paper J. For example:

• Temporal priority: Variables linked to recent events might be considered
more relevant.

• Domain knowledge: Human preferences could guide the prioritization of
certain variables.

• Action-based insights: Investigating common causes across tasks (e.g.,
stacking, pouring) could help identify universally significant variables.

• Ease of manipulation: Variables that are easier to adjust, such as cube
positioning compared to cube size, could be given higher priority.

Additionally, we plan to investigate whether failure explanations align with
typical human reasoning or if they vary depending on the individual provid-
ing or receiving the explanation. If variability exists, we could personalize
the explanations by incorporating individual variable rankings into the search
process. Ultimately, these enhancements could make explanations more intu-
itive, human-like, and effective in collaborative human-robot interactions.
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Learning Execution Policies
Regarding RQ5 and RQ6, our primary focus has been on learning descriptive
models, which offer strengths such as explainability, transfer (because they
are robot agnostic) and the ability to reason about missing action. How-
ever, an open question remains: how can these models be effectively exe-
cuted? While this has not been the main focus of this thesis, we have begun
exploring one approach in Paper K. Specifically, we investigated how high-
level plans derived from descriptive models can guide reinforcement learning
(RL) agents to learn the lower-level execution policies for individual opera-
tors. Our experiments demonstrated that using high-level plans as guidance
enhances sample efficiency for RL agents. For example, in simulated robot
manipulation tasks like stacking cubes, our approach reduced training costs
by half compared to standard RL baselines and improved generalization to
unseen stacking task tasks (e.g., stacking a pyramid or stacking three cubes
instead of two). Furthermore, the kinesthetic teaching approach presented
in Paper E complements this by enabling the robot to save waypoints from
demonstrated trajectories. This allows the robot not only to learn from the
demonstrations but also to execute the trajectories directly, bridging the gap
between learning and execution. In future work, it would be interesting to ex-
plore bi-directional communication between high-level descriptive models and
low-level execution policies, where lower-level insights could refine high-level
symbolic descriptions and vice versa, ensuring a more cohesive and adaptable
learning-execution framework.
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