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A B S T R A C T

Machine-learning-enabled systems are becoming increasingly common in different industries. Due to the impact
of uncertainty and the pronounced role of data, ensuring the quality of such systems requires consideration
of several unique characteristics in addition to traditional ones. This range of quality attributes can be
achieved by the implementation of specific architectural tactics. Such architectural decisions affect the further
functioning of the system and its compliance with business goals. Architectural decisions have to be made with
attention to possible quality trade-offs to prevent the cost of mitigating unintended side effects. A related work
analysis revealed the need for a thorough study of existing architectural decisions and their impact on various
quality attributes in the context of machine-learning-enabled systems. In this paper, to address this goal, we
present comprehensive research on the quality of such systems, architectural tactics, and their possible quality
consequences. Based on a systematic literature review of 206 primary sources, we identified 11 common quality
attributes, and 16 relevant architectural tactics together along with 85 potential quality trade-offs. Our results
systematize existing research in building architectures of ML-enabled systems. They can be used by software
architects and researchers at the system design stage to estimate the possible consequences of decisions made.
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1. Introduction

Machine-learning-enabled (ML-enabled) systems (Hulten, 2018) are
currently in high demand among various spheres. The design, develop-

ent, and implementation of such systems are widespread now since
L technologies allow organizations to reach results that are difficult

o achieve through traditional solutions. Machine learning systems
ypically work with large volumes of data, adapt, learn, search for, and
rocess complex correlations. The development of AI-based systems is
n extremely relevant strategy for the world’s largest vendors: Meta is
mplementing ML components for content moderation and feed person-
lization, Microsoft is focused on developing the AI companion called
‘Microsoft Copilot’’, the use of large language models is conquering
ew frontiers. However, designing such systems remains a non-trivial
nd non-standardized task due to the lack of detailed system-level
uidelines and instructions for constructing appropriate architectures
ith a consideration of system specifics.

The construction of ML-based software architecture starts with
he collection of requirements, particularly, non-functional ones, also

known as quality attributes. They must be considered at the stage of
architectural design to align the system with the intended goals. As
Monson stated: ‘‘You don‘t drive the architecture, the requirements do. You
do your best to serve their needs’’ (Monson-Haefel, 2009).
2

There are several detailed specifications and standards (e.g., ISO/
IEC 25010 International Organization for Standardization, 2011a and
ISO/IEC 45010 International Organization for Standardization, 2011b)
for traditional software that makes it possible to predetermine the
fundamental quality attributes of the designed system without con-
ducting any deep research. Some of their quality characteristics can
e adapted, updated, and extended to directly meet the needs of ML-

based software due to its unique characteristics compared to traditional
nes. Specifically, ML-enabled systems operate in environments of high
ncertainty and depend on the quality and quantity of data used for
odel training, validation, and testing. This fact and its relevance
ere confirmed by the ISO/IEC 25059 (International Organization for

Standardization, 2023) issued in June 2023, which adjusted some of
the existing qualities from ISO/IEC 25010 to ML contexts and addition-
ally considered several ML-specific aspects (e.g., ethics, transparency).
While this new standard presents an important initiative for addressing
the specific quality aspects of ML-enabled systems, it has not been
investigated to which extent it characterizes the relevant aspects of this
domain exhaustively. Such an investigation could be supported by a
systematic study, as we perform in this work.

Quality attributes can be achieved by architectural and non-
architectural tactics. Non-architectural ways of achieving quality are
based on organizational non-technical management and on technical
decisions that do not affect software architecture. Such decisions are
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too dependent on the system specifics and are out of our scope. Archi-
ectural tactics, on the contrary, are general design decisions. They are
esigned to improve one specific target quality attribute. In practice, it
s very common that architectural tactics entail unanticipated tradeoffs
n other quality attributes. To raise awareness of the consequences that
ome with a selection of architectural tactics, it is important to make
hese tradeoffs explicit. This is one of the contributions of this paper and
ill enable architects to more deliberately select architectural tactics

or ML-enabled systems in the future.
For example, there is an architectural tactic to implement a real-

time data monitoring module. In the context of ML-enabled systems, by
implementing this architectural tactic, the operator gets an opportunity
to monitor all the data used for model training, testing, and validation
s well as dynamic input data. Such a decision can increase fairness,
eliability, maintainability, accuracy, and security. However, the main
rade-off after the implementation of this tactic appears in terms of
esource efficiency when operating with big data (Wang and Miao,

2022), Hassan et al. (2019), Wanganoo and Shukla (2020) .
In this paper, we give a comprehensive picture of architectural

actics for the engineering of ML-enabled systems along with quality
ttributes affected by them. We report on the results of a systematic

literature review, in which we extracted information from 206 pri-
mary sources about these aspects. Specifically, we made the following
contributions:

1. We propose a quality model for ML-enabled systems, focused
on the most commonly reported quality attributes in the lit-
erature, and compare it to the relevant standards of ISO/IEC
25010 (International Organization for Standardization, 2011a)
and ISO/IEC 25059 (International Organization for Standardiza-
tion, 2023).

2. We present a range of architectural tactics that can help achieve
identified common quality attributes.

3. We present an analysis of the quality trade-offs of the identified
architectural tactics, summarized as an impact matrix.

This paper is accompanied by a supplementary artifact1 which
contains search queries and data extraction sheets.

The rest of this paper is structured as follows: Section 2 discusses
related work and introduces the used terminology. Section 3 describes
ur research methodology. Section 4 presents our results, including the

identification and analysis of quality attributes, architectural tactics,
nd quality trade-offs. Section 5 discusses implications concerning
pecific attributes, other quality standards, and threats to validity.
ection 6 concludes and outlines future work. Section 7 provides a data

availability statement. Section 8 presents the acknowledgments.

2. Background

2.1. Context

A quality attribute (QA) is a measurable or testable property of
a system that is used to indicate how well the system satisfies the
needs of its stakeholders (Bass et al., 2003). In ISO/IEC 9126-1:2001,
uality attributes are described as a ‘‘checklist to determine software qual-
ty’’ (International Organization for Standardization, 2001). According
o Lundberg et al. (1999), the quality attributes should guide the design

of the software architecture. While stakeholders, usage contexts and,
therefore, relevant quality attributes differ from one system to another,
one can identify the most widespread quality attributes applied to
systems of different natures. In the context of this work, we call them
the ‘‘common quality attributes’’ (CQAs).

Quality attributes are related to the term ‘‘architecturally signifi-
ant requirement(s)’’. However, the latter is entirely specialized to a

1 Supplementary Artifact: https://figshare.com/s/57b4fa3f53caecd4a5b1
3

q

particular system, based on the needs of certain stakeholders, technical
capabilities, internal regulations, etc. ‘‘In gathering [architecturally sig-
nificant requirements], we should be mindful of the business goals of the
organization’’ (Bass et al., 2003). In this paper, we seek to generalize
existing experience, putting the specifics of individual systems aside.

An architectural tactic (AT) is a ‘‘technique an architect can use to
achieve the required quality attributes’’ (Bass et al., 2003). By defini-
tion, the connection between tactic and certain quality attributes is
mplied. However, our study goes further and analyzes the impact of

its influence on all identified common quality attributes. Balance or
ompromises between them are called quality trade-offs.

2.2. Related work

The study of software quality for ML-enabled systems is an in-
demand topic among researchers and practitioners (Serban and Visser,
2022), Santhanam (2020). Despite the relatively small number of stud-
es published at the time of writing the current paper, a steady positive
rend in this domain was noted. The space for interpreting the quality
f AI systems has only been partially explored and a conclusive view
s yet to form, which is proved by the emergence of different quality
odels based on industrial experience (Siebert et al., 2022; Kuwajima

et al., 2020; Gezici and Tarhan, 2022). Such studies work with non-
functional requirements relevant to a certain system and most often
receive them from domain experts. The generalizability of such models
can be debatable due to context dependence. Their systematization
and the identification of the most common quality attributes is a way
o build a more generalized picture based on real examples. Such a

strategy supports a collection of the most recent materials and makes
current research more independent from external inputs.

There are also plenty of review papers on architectural issues in
the context of AI-based systems (Franch et al., 2022; Bhat et al., 2020;
Muccini and Vaidhyanathan, 2021). These papers explore a collection
f existing architectural design decisions without a clear reference
o system qualities or with a focus on the impact of decisions on
ndividual quality attributes and their metrics in isolation from the
verall quality picture of the system. As a result, possible trade-offs
ften remain unnoticed. In contrast with such studies, we strive to
nvestigate the effects of architectural tactics (ATs) on all the identified
uality attributes to provide insights at the architectural level.

3. Methodology

The methodology of systematic literature review (SLR) allowed us
o work with a large amount of scientific information, find common
pproaches to different systems, and effectively extract information
rom different sources. Such opportunities suit the research in the

chosen domain. We decided to perform an SLR according to Kitchen-
ham’s guidelines (Kitchenham and Charters, 2007) as we found them

ost detailed and highly applicable to the current study of software
rchitectures.

3.1. Review questions

To achieve the research objectives, three fundamental review ques-
ions (RQs) were identified.
RQ1: What are the most frequently reported quality attributes for
L-enabled systems? This question aims to identify the most often

mphasized QAs in scientific literature.
RQ2: What architectural tactics have been reported to be effective

or ML-enabled systems? This question aims to identify ATs to achieve
uality attributes defined in RQ1. If the quality attribute cannot be
atisfied by any AT, then it is out of scope for RQ2 and RQ3.
RQ3: For each architectural tactic, what is the reported impact on

ll the identified quality attributes? This question aims to identify
uality trade-offs when ATs defined in RQ2 are implemented.

https://figshare.com/s/57b4fa3f53caecd4a5b1
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3.2. Inclusion and exclusion criteria

Only scientific literature was analyzed in this work, leaving gray lit-
erature outside the scope of this study. We used the following inclusion
riteria:

1. Research scientific papers containing lists of QAs for specific or
general ML-enabled system(s);

2. Research and review scientific papers with the description of
ATs and their influence on the QA(s) of specific or general
ML-enabled system(s).

We used the following exclusion criteria:

1. Gray literature;
2. Scientific papers about QAs of non-ML-enabled systems;
3. Scientific papers about ATs in non-ML-enabled systems;
4. Scientific papers about applying ML to address software quality

concerns of non-ML-enabled systems;
5. Scientific papers about applying ML to address architectural

concerns of non-ML-enabled systems;
6. Exclusively for RQ1: secondary research (literature reviews).

For our investigation of RQ1, in which we counted the number of
occurrences of specific quality attributes in the literature, we delib-
erately excluded secondary studies. This is to avoid bias that would
arise if the same primary study and its contained quality attributes
re considered several times: through considered secondary studies

and through our own data collection. For RQ2 and RQ3 we found it
reasonable to leave secondary research included to expand the search
and collect architectural tactics as much as possible. The limitation on
gray literature is justified by the availability of a sufficient amount of
‘‘white’’ literature for the current study.

3.3. Data sources

Our search procedure was targeted to enable precise investigation of
he identified research questions. To this end, we selected appropriate

digital libraries and determined a suitable publication time frame.
Literature databases. To build up a high-quality review, only publica-

ions from journals and conference proceedings indexed by at least one
lobally significant citation database (e.g., Scopus, Web of Science, etc.)
ere analyzed. The five most popular and largest online digital libraries
ere the sources for this research: IEEE Xplore (ieeexplore.ieee.org),
CM Digital Library (dl.acm.org), Springer (springerlink.com), Elsevier

sciencedirect.com), Wiley (onlinelibrary.wiley.com).
Time frame. Since this study seeks to explore the most relevant

xperience in the field of ML-enabled system design, we decided to limit
he number of papers with the earliest date of publication of 2011. This
ecision was made also in connection with the release of the most re-
ent version of the ISO/IEC 25010, which dates to 2011 (International
rganization for Standardization, 2011a). This standard is important

for the study since this research seeks, in some sense, to clarify the
ist of quality attributes from it with a consideration of the ML-enabled
pecifics and recent research experience. Thus, this review is based on
he papers from 2011 to 2024 (the year of writing).

3.4. Data collection

Each review question implies its own objective. The architectural
tactics are often not mentioned in works related to software quality
and the trade-offs are often not considered in the works on a certain
architectural tactic. Thus, we slightly moved away from the standard
approach to a systematic literature review with only one query for all
review questions and divided our search strategy into three queries,
each of which corresponded to its own RQ.

The research under RQ1 works with a set of scientific papers that
contains a list of QAs specific to ML-enabled system(s). In the literature,
4

they can be represented explicitly as a list (e.g., a study of Habibullah
et al. (2023)) or addressed when describing a certain problem or
proposing a solution on a system level (e.g., a study of Vojíř and Kliegr
(2020)). Preliminary research has shown that in the literature on deep
learning systems, neural networks, or artificial intelligence systems, the
term ‘‘machine learning’’ may not be explicitly stated in the text of
the work. Therefore, we decided to expand the query with the above
terms to cover a larger number of papers. The introduction of other
ML-related terms (such as ‘‘MLOps’’, ‘‘ML Engineering’’ etc.) could po-
tentially shift focus from architectural scope to a more operational one,

hile the introduction of other software engineering terms (such as
‘software quality’’) could exclude certain papers that did not explicitly

ention them. Therefore, we decided not to include those keywords.
he resulting query for RQ1 is presented below:
("machine learning" OR "deep learning" OR "artifi-
cial intelligence" OR "neural network" OR "AI" OR "ML"
OR "DL") AND ("system" OR software") AND ("quality
attribute*" OR "quality characteristic*" OR "non-
functional requirement*" OR "nonfunctional require-
ment*" OR "quality model" OR "quality requirement*")

Answering RQ2 identifies architectural tactics that improve certain
uality attributes. We used search queries based on the results obtained
rom RQ1, which included common quality attributes (for example,
ecurity), together with their sub-characteristics (respectively, privacy).
he difficulty of this task is that relevant tactics are not easily identi-
ied, since developers might introduce an architectural tactic without
eferring to it as such. To address this challenge we also included
he terms ‘‘design pattern’’ and ‘‘architectural decision’’ in the query.
owever, we still consider this challenge as a threat to validity and
annot argue that the list of collected architectural tactics is complete.
earch queries for RQ2 were built according to the template presented
elow with changing parameters of quality attributes together with
heir sub-characteristics:

The resulting query for RQ1 is presented below:
("machine learning” OR "deep learning" OR "artifi-
cial intelligence" OR "neural network" OR "AI" OR
"ML" OR "DL") AND (system" OR "software") AND ("common
quality attribute" OR "subcharacteristic[1]" OR...
OR "subcharacteristic[n]" ) AND ("*architectur* tac-
tic*" OR "design pattern*" OR "*architectur* design
decision*" OR "*architectur* decision*")

The research under RQ3 implies the study of all possible impacts
(predominantly positive, predominantly negative, or ambivalent) of
the identified architectural tactics from RQ2 on the common quality
attributes identified in RQ1. For RQ3 we wrote 16 queries (equal to
the number of identified architectural tactics). We expected that the
connections between some ATs and some QAs would not be addressed,
however, the papers that brought some insights are of special usefulness
for the current research. The structure of the search queries corresponds
to the template presented below and includes all of the studied common
quality attributes and their sub-characteristics together with a changing
parameter of architectural tactic:
("machine learning" OR "deep learning" OR "artificial
intelligence" OR "neural network" OR "AI" OR "ML" OR
"DL") AND ("common quality attribute[1]" OR ... OR
"common quality attribute[n]" OR "subcharacteris-
tic[1]" OR... OR "subcharacteristic[m]" ) AND ("ar-
chitectural tactic[i]" ) AND ("trade-off*" OR "trade
off*" OR "tradeoff*" OR "compromise*")

We executed the queries sequentially. The results of data extraction
from the sources found with the RQ1-query became the input data for
the RQ2-queries, the results of which, similarly, became the input for
the RQ3-queries. The full search queries for RQ1, RQ2, and RQ3 as well
as the process of data collection are presented in the supplementary
artifact1.
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Overall, applying the search procedure with the described queries
as well as exclusion and inclusion criteria led to the identification of
06 papers, 37 of which were studied under RQ1, 73 were under RQ2,
6 were under RQ3, and 7 were found for RQ2 but were also found for
Q3 and used to address it.

3.5. Data synthesis

We now discuss the dedicated data synthesis strategies used for
ach research question as well as our measures taken for ensuring
onsistency of the data synthesis process.

RQ1. The coding strategy for RQ1 is based on content analysis (Drisko
nd Maschi, 2016) together with basic frequency analysis and taxo-

nomic analysis (Reed, 2016). First, we employed content analysis to
crutinize the full-text papers to identify possible quality attributes
elevant to ML-enabled systems. In the context of our research, content

analysis is a manual research method that examines full texts and
oncepts of scientific papers, allowing us to comprehensively detect
elevant quality attributes across the studies. In order to extract a
ertain characteristic mentioned in a paper as a quality attribute, we
ntroduced two main conditions: ‘‘the characteristic must be explicitly
entioned in the paper ’’ and ‘‘the characteristic must describe the quality
f the overall system’’ (not a certain algorithm or component).

In parallel, we detected that the number of identified attributes was
oing to be quite large, however, some of them were mentioned only
n a few papers. This fact introduces a threat to the generalizability of
ur findings since such attributes can potentially describe the specifics
f only one specific system. To avoid this threat, we made a scoping
ecision based on the hypothesis: The more often an attribute is mentioned
n different independent papers, the more cases it covers, and therefore the
ore generalizable it is. To count those mentions we employed a basic

requency analysis. Our basic frequency analysis can be considered
s a form of coding, where the code of a quality attribute is defined

as the number of papers mentioning it. It is worth noting that all
the papers had equal weight when extracting attributes. One quality
ttribute could be mentioned explicitly either once or several times
n the text of the one paper, however, it did not affect the calculated
requency. This algorithm was applied to all papers found, resulting
n a ranked list of quality attributes. Based on the resulting counters,
 dividing line was drawn between the frequently mentioned and less
requently mentioned quality attributes. The latter were not included
n the common quality model.

We noticed that several frequently mentioned attributes were se-
mantically closely related (e.g., reliability and trustworthiness) or by
definition can be deemed a superset of several other quality attributes
(e.g., maintainability usually covered concerns connected to testability,
transparency, and maintainability itself). This observation motivated us
to employ taxonomic analysis and group quality attributes by semantic
similarity to structure the resulting quality model. First, we formulated
high-level definitions that discarded the specifics of individual papers,
while retaining the fundamental meanings of attributes. Where it was
possible, we directly referred to ISO standards (International Organi-
zation for Standardization, 2011a, 2023). In other cases we analyzed
extra literature to build proper definitions of found attributes. In the
studied papers the definitions of quality attributes usually were not
mentioned explicitly. Therefore, we analyzed the selected articles again
nd checked whether our definitions corresponded to the attribute
eanings that were implied in them and whether they were relevant in

he context of these papers. When the definitions were formulated in a
ay that satisfied all the cases, we systemized them. We distinguished
uality attributes of two levels based on a principle: ‘‘If one quality at-
ribute covers related concerns with certain other attributes and by definition
s broader than them, then such an attribute was considered a (‘‘top-level’’)
ommon quality attribute, while the other associated attributes were deemed
‘sub-characteristics’’. We note that during the research under subsequent
5

RQs, both common quality attributes and their sub-characteristics are
included in search queries. Therefore, the main goal of the taxonomic
nalysis was to build a clearer perception of the resulting quality model,
hich is presented graphically as a two-level diagram.

RQ2. Data synthesis and coding strategies for RQ2 were based ex-
clusively on content analysis. Our goal was to explore all relevant
ATs we could find with our search strategy for the scope of common
quality attributed as determined in RQ1. Therefore, we did not intro-
duce frequency analysis or taxonomic analysis for RQ2. We thoroughly
nalyzed full-text papers and followed three conditions for extracting

data as ATs: the decision must be explicitly mentioned in a paper,
the decision must be architectural in nature (it has an impact on the
architectural design principle or can be implemented as a part of the
overall system architecture) and the decision must be used to improve
some quality attribute(s). Those conditions were introduced with a
direct connection to the definition of AT used in this research (see
Section 2). If an AT is described as effective in achieving multiple qual-
ity attributes, it is associated with all affected attributes. To increase
generalizability and eliminate bias, the degree of ‘‘significance’’ of an
architectural tactic for a particular attribute was out of scope. For exam-
ple, if the literature found for RQ2 confirms that the architectural tactic
of ‘‘containerization’’ significantly improves both maintainability and
portability, then the tactic will be assigned to both attributes, without
investigation of which indicator is improved more significantly.

We noticed that some collected tactics only affect the training system
e.g., federated learning is usually referred to as a way of organizing
odel training exclusively), while others can additionally affect other
arts of the deployed system (e.g., componentization can be the approach
o overall system design or be used only to break down the ML pipeline
r even the model into components) or be applied to the model when
he system is already deployed (e.g., automated bias mitigation usually
onitor the outputs of model when it operates with certain inputs).

n this context, the training system is a system associated with the ML
ipeline, which operates with data for model training, testing, and
erification; while deployed system is a produced ML-enabled system
hat operates with certain inputs (e.g real-time data).

ML-enabled systems may include the training system into the overall
architecture to introduce continuous retraining and improvement based
on new data (Peldszus et al., 2023). However, in some cases, the
training system can be relatively independent. Therefore, we decided to
introduce a classification of the identified tactics depending on which
system they affect: training or deployed. Our findings were presented
in tabular format.

It is important to note that the results obtained to some extent
generalize the experience described in the literature, which means
if a tactic was described as effective for at least one type of ML-
enabled system (for example, an IoT system), it was included in the
table. Consequently, we cannot guarantee with full certainty optimal
efficiency for other types of machine learning systems, which is also
considered in the analysis of threats to validity.

RQ3. For RQ3, we employed content analysis to identify trade-offs that
ndicate the impact of implementing architectural tactics on quality

attributes. A full-text analysis of the papers identified through our
earch strategy was performed. We reported an impact of a tactic on
 quality attribute if at least one source indicated that applying the
actic influenced metrics or other indicators for that attribute. When all
ources agreed on the impact’s direction, either predominantly positive or
egative, we reported it as such. If sources reported both predominantly
ositive and negative impacts for the same tactic-quality attribute
ombination, depending on conditions of the environment or domain,
e marked the impact as ambivalent. In cases where no evidence of a

orrelation between an AT and a QA was found, we noted this absence
f evidence.

Data extraction consistency. Towards ensuring data extraction con-
sistency, we took three measures.
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First, we followed the specific advice from the Kitchenham guide-
lines for performing SLRs (Kitchenham and Charters, 2007). According
to them, it sufficient to conduct ‘‘a test-retest process where the researcher
performs a second extraction from a random selection of primary studies’’.
This second extraction was conducted by Author 1 on a random sample
of 10 papers for RQ1, 15 papers for RQ2, and 20 papers for RQ3. The
esults of this extraction round were identical to the previous attempt
or all RQs.

Second, we continuously discussed the data synthesis and its results
in the group of authors. Author 1 strictly followed selected search
nd data synthesis strategies for RQ1, RQ2, and RQ3 sequentially.
henever a synthesis of results for a particular RQ was completed, a

roup discussion with all authors was organized. Author 2 and Author
 based on their expertise provided feedback on whether the search
trategy was executed correctly and whether extracted QAs, ATs, or
rade-offs corresponded to selected definitions and conditions for their
xtraction. At each meeting, the review protocol was presented and
pdated based on the results of the discussion.

Third, the used literary sources are shared in the publicly avail-
ble supplementary artifact allowing other researchers to follow our
lgorithm and analyze selected papers. This also enhances the repro-
ucibility of this research.

3.6. Results verification

All the results should be verified by the experts and practitioners to
check their relevance for industrial use. We followed several scenarios
of validation depending on the contribution.

Our findings for RQ1 which were compiled in the format of the
uality model were verified through:

1. Expert Validation. The model was presented at the Swedish
Requirement Engineering meeting (SiREN 2023). This event
brought together academic and practical experts with a back-
ground in the field of requirements engineering and machine
learning. An assessment was organized in a focus-group setting
with oral feedback. Six experts were surveyed sequentially on
three main questions:

• If the proposed model is complete, i.e. the identified qual-
ity attributes exhaustively characterize the quality of ML-
enabled systems.

• If the proposed model is general, i.e. the identified qual-
ity attributes are applicable to all types of ML-enabled
systems, not only to a certain one.

• If the proposed model is relevant, i.e. the identified quality
attributes respond to current challenges in ML-enabled
software quality assurance.

2. Practitioner Validation. The model was presented to four ML en-
gineers from Swedish AI software companies. They checked the
proposed model against the key quality characteristics used in
their enterprise when designing AI-based systems. The validation
used the same evaluation parameters as in the case of expert
assessment: completeness, generalizability, and relevance.

The findings for RQ2 which were combined in the final list of
architectural tactics and associated quality attributes were verified
hrough practitioner validation. The list of ATs was presented to four
L engineers from Swedish AI software companies. They assessed the

applicability of architectural tactics to solve problems encountered in
he design of AI-based systems within their company, as well as their
heoretical validity for improving system qualities.

The findings for RQ3 which were summarized in the resulting table
f trade-offs were verified through internal peer-reviewing, where each
o-author checked the plausibility of the identified impact (or absence
f such) based on their expertise. This review step did not result in any
6

a

changes to the findings. An additional verification by practitioners and
experts is desirable, however, it is overly laborious for the current study
due to the large number of impacts identified. In Section 5, we propose
nd discuss a strategy for such validation in future work.

4. Results

4.1. RQ1: Identification of common quality model

We examined 37 scientific sources to obtain a comprehensive list of
uality attributes that characterize various ML-enabled systems. Table 1

provides a list of all quality attributes found and the number of their
ccurrences in all the sources studied. The list is sorted in descending
rder of occurrences (#occ.) of the quality attribute in the papers.

4.1.1. Studies based on interviews and questionnaires
Several works built models based on the results of interviews,

questionnaires, and surveys with experts.
The work of Habibullah et al. (2023) contains the most complete

list of quality indicators among all the papers studied. The set of
QAs was formed through interviews with practitioners in the field
of developing ML-enabled systems. The authors collected 37 quality
attributes (system non-functional requirements) relevant to product
operation, product revision, and product transition, such as efficiency,
usability, portability, etc.

Vogelsang (Vogelsang and Borg, 2019) identified the structure of
common requirements for ML-enabled systems: functional and non-
functional based on the interview results of several data scientists. The
group of non-functional requirements (= quality attributes) included:
explainability, freedom from discrimination (= fairness), legality, data
quantity, and data quality.

To build sustainable AI architectures Kästner and Kang (2020)
indicated six main characteristics of quality assurance based on expert
assessment: performance, data quality, testability, safety, security, and
fairness.

Ağca et al. (2022) conducted a comprehensive survey on trusted
istributed artificial intelligence. The focus of that paper was not on
reating a certain quality model, however, the research addresses such
uality attributes as performance, robustness, and transparency.

Various quality models have been proposed by other authors: based
n an interview study with ML-project stakeholders (Liu et al., 2020;

Haindl et al., 2022), industry experts (Ishikawa and Yoshioka, 2019;
Serban et al., 2020), and based on the mixture of qualitative and
uantitative studies including a survey of practitioners (Wan et al.,

2019).

4.1.2. Studies based on expert assessments
There is a group of work presenting the quality characteristics of

ML-enabled systems axiomatically, i.e. the authors list them as relevant
or discuss their relevance based on their own expertise. Since we are
examining exclusively scientific ‘‘white’’ literature, we consider the
uthors as experts and find it reasonable to include such works in the
ist as well.

Yap (2021) stated that ML systems have unique requirements arising
from the interaction with humans such as fairness, privacy, safety, and
security (covering the ML component and overall system security). The
key quality requirement in that context was trustworthiness.

Ozkaya (2020) pointed out that all the knowledge and experience
in designing and reasoning about software systems does not immedi-
ately apply to AI-system engineering. The author suggested security,
usability, privacy, explainability, data quality, and quantity, testability,
and robustness as the critical attributes in the successfully designed
structure and behavior of AI-enabled systems.

Zhang et al. (2020) provides a comprehensive survey of techniques
for testing machine learning systems. Authors defined quality attributes
s testing properties, which included correctness, memory and energy



The Journal of Systems & Software 223 (2025) 112373V. Indykov et al.

e

a
a
b

t

t
f

r
s

s

t

d

b
q

Table 1
All retrieved quality attributes of ML-enabled systems.
QA #occ. QA #occ. QA #occ. QA #occ.

Fairness 19 Efficiency 12 Ethics 6 Completeness 2
Safety 19 Usability 11 Data quantity 6 Consistency 2
Security 18 Accuracy 10 Traceability 4 Compatibility 2
Explainability 18 Testability 10 Legal 3 Accountability 1
Privacy 17 Correctness 9 Reusability 3 Justifiability 1
Reliability 16 Func. suitability 8 Interoperability 3 Autonomy 1
Performance 16 Interpretability 8 Reproducibility 2 Modifiability 1
Transparency 14 Trustworthiness 8 Integrity 2 Elasticity 1
Robustness 13 Scalability 8 Repeatability 2 Resilience 1
Data Quality 13 Adaptability 6 Retrainability 2
Maintainability 12 Portability 6 Modularity 1
n

a

o
t

efficiency, robustness, and others.
Truong (2023) suggested applying the author’s R3E approach to

valuate the state of end-to-end ML systems. The R3E approach consists
of robustness, reliability, resilience, and elasticity.

Kuwajima and Ishikawa (2019), Kuwajima et al. (2020) state that
all quality attributes from the standard SQuaRE model could and should
be applied to the development of ML-enabled software with additional
quality attributes from ethics guidelines for trustworthy AI from the
European Commission.

Horkoff (2019) summarized a selection of quality attributes pre-
sented previously in the work of Habibullah et al. (2023) and created
nother quality model consisted of eight general quality attributes:
ccuracy, performance, fairness, transparency, security, privacy, testa-
ility, and reliability.

Various quality models have been proposed by other authors: par-
icularly for AI-chatbots (Chen et al., 2022), ML-based systems for

Automotive OEM (Poth et al., 2020), Deep Learning Systems (Challa
et al., 2020), IoT systems (Chakraborty et al., 2020), Regression-Based
ML-systems (Perera et al., 2022), and other types of AI-based sys-
ems (Nakamichi et al., 2020; Lwakatare et al., 2020; Smith and Clif-
ord, 2020; Yokoyama, 2019; Barzamini et al., 2022; Khan et al., 2021;

Balasubramaniam et al., 2022).

4.1.3. Studies based on the other methodologies
Some papers stem from methodologies, for example, experience

eports from particular companies, design science research of particular
olutions, applications of common standards to specific cases, or studies

of community trends.
Based on the priorities of a particular company in ML-enabled

ystems development, Cysneiros and do Prado Leite (2020) identified
several key quality attributes: trust (a.k.a. trustworthiness), ethics, and
ransparency.

Washizaki et al. (2019) collected ‘‘good/bad’’ software engineering
esign patterns for ML techniques to provide developers with a compre-

hensive classification of such patterns. Their patterns are implemented
to directly affect quality attributes, such as performance, reliability,
accuracy, and others.

Ahmad et al. (2023) noticed that industry practices use tools that
do not enforce requirements engineering for AI and that there are
gaps between research and practices in RE for AI. They conclude
that the engineering of AI-systems introduced new specs that did not
exist in traditional software, which include data quality, data quantity,
accuracy, and explainability.

Felderer and Ramler (2021), Felderer et al. (2019) brought together
est practices written by software engineers and data scientists. Key
uality attributes according to the studies above were: data quality,

system accuracy, correctness, interpretability, etc.
Arseniev et al. (2021) applied fundamental software engineering

principles to AI systems. They analyzed how various software teams
build software applications with customer-focused AI features and
which main problems they meet. The authors claimed that a substantial
amount of effort is usually spent on data collection and data prepa-
ration. Data quality characteristics also reflect the quality of the AI
7

system. In addition to data quality and quantity, the authors worked
with the reliability, scalability, and convenience of accompaniment (in
the context of the research equals maintainability).

Other practical-oriented solutions described in the scientific liter-
ature were a bug benchmark (Morovati et al., 2023) with key af-
fected attributes of testability, traceability and functional suitability,
quality assessment and criteria analysis for AI image recognition soft-
ware (Tao et al., 2019) with an emphasis on data quality and ro-
bustness, compositional approach to creating architectural frameworks
for distributed AI systems (Heyn et al., 2023), explaining models in
AI (Dodge et al., 2019), ontology-based modeling and analysis of trust-
worthiness (Amaral et al., 2020), ensuring dataset quality (Picard et al.,
2020) and other works that operated with quality attributes (Garbuk,
2018), Boenisch et al. (2021).

4.1.4. Synthesized quality model
A contextual cut-off line between ‘‘frequently mentioned’’ and ‘‘in-

frequently mentioned’’ attributes was drawn based on the number of
their mentions in the scientific literature according to the rule: ‘‘If the
umber of occurrences was greater than 4 then the quality attribute

was recognized as frequently mentioned, otherwise, as infrequently
mentioned’’.

The next step was to combine semantically similar frequently men-
tioned attributes into common quality attributes (CQAs).

Some authors used the term ‘‘performance’’, which implied ‘‘system
ccuracy’’ or ‘‘resource efficiency’’ depending on the context and to

avoid misunderstandings, we divided this term into the above two
groups during the data extraction process.

We noticed that the papers that mentioned the quality attribute
f ‘‘efficiency’’ used it to describe four different cases: efficiency in
erms of running time, efficiency in terms of memory costs, efficiency

in terms of energy consumption, or accuracy of system output. The
first three cases were exceptionally considered as subcharacteristics of
resource efficiency, while the last one was also included as the ‘‘system
accuracy’’.

A review of the literature showed that ‘‘correctness’’ and ‘‘functional
suitability’’ were often used as contextual synonyms; ‘‘usability’’ was a
separate attribute from any other; terms ‘‘trustworthiness’’, ‘‘reliabil-
ity’’, ‘‘safety’’, ‘‘robustness’’ and ‘‘scalability’’ were of the same nature;
‘‘privacy’’ was presented as a subset of ‘‘security’’, ‘‘maintainability’’
consisted of ‘‘system transparency’’, ‘‘testability’’ and ‘‘maintainability’’
itself; ‘‘portability’’ and ‘‘adaptability’’ were the attributes of the same
nature; ‘‘explainability’’ and ‘‘interpretability’’ described by highly-
related spectrum of issues, ‘‘fairness’’ and ‘‘ethics’’ were used as syn-
onyms with the rare exceptions of non-standard terminology when
‘‘fairness’’ characterized the ‘‘trustworthiness’’ of model’s predictions;
‘‘data quantity’’ was often considered as a special characteristic of the
overall ‘‘data quality’’.

The result of the semantic unification of frequently mentioned
attributes into common quality attributes and their sub-characteristics
is presented in Fig. 1.

Our quality model comprises the following high-level common qual-
ity attributes: Functional suitability is the degree to which a system
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Fig. 1. Proposed Quality Model for ML-enabled Systems.
corresponds to functional requirements. Resource efficiency is the degree
to which a system fulfills a given functionality within an existing
amount of hardware capacities. System accuracy is the degree to which
a system performs and analyzes the contextual environment and refers
to the performance of the entire system in real-world conditions, in-
cluding model inference and data post-processing. Particularly, system
accuracy is different from model accuracy, which specifically measures
the predictive performance of the trained machine learning model on
a given dataset. Usability is the degree to which a system can be
employed by end users to achieve specified goals. Reliability is the
degree to which a system performs specified functions under specified
conditions in the fixed domain. Security is the degree to which a system
protects information and data. Maintainability is the degree to which a
system can be modified and supported by developers and maintainers
to achieve specified goals. Portability is the degree of effectiveness
with which a system can be transferred from one domain, software,
or hardware basis to another. Explainability is the degree to which the
behavior of a system (primarily, the behavior of ML models) and its
output can be explained by humans. Fairness is the degree to which a
system can detect and prevent an algorithmic bias created by a model.
Data quality is the degree of integrity and sufficiency of data for model
training, testing, and validation, including the reliability of the related
data sources.

4.1.5. Verification of the quality model
The developed quality model was presented to six experts at the

Swedish Requirements Engineering Meeting (SiREN 2023) in Gothen-
burg, Sweden organized by Chalmers University of Technology. Four
experts out of six participants rated the model as fully complete, gen-
eral, and relevant. One participant pointed out that the proposed model
lacks the ‘‘compatibility’’ attribute (with reference to ISO 25010:2011
International Organization for Standardization, 2011a). According to
the used methodology, this attribute was rarely reported in the lit-
erature (only 2 times). This fact did not allow us to include it in
the final model. This fact was considered as a threat to validity in
Section 5. The last expert noted that the selection of terms for quality
characteristics is not as important as specific metrics and ways to
achieve them, however, they fully supported the proposed model in
terms of completeness, generalizability, and relevance.

Further, the model was presented to four ML engineers from
Swedish AI software companies. They conducted a theoretical com-
parison of the quality attributes we found with the system qualities
considered by them when designing real AI solutions. Three of the
practitioners concluded that the resulting model fully exhausts the
quality of all the systems developed in their company and is relevant
nowadays. The last expert noted the importance of compliance of
the developed solutions with all the quality attributes we identified,
as well as with the business goals of stakeholders. According to our
findings, meeting business requirements can be expressed in both
functional and non-functional requirements. Each NFR can be ranked
according to the identified quality attributes, while strict adherence to
8

the functional requirements corresponds to the identified ‘‘functional
suitability’’ attribute. After clarifying the context and terminology, the
expert agreed that the proposed model was complete, general, and
relevant.

4.2. RQ2: Architectural tactics

In Table 2 we present our findings under RQ2 and provide a corre-
spondence in the format of ‘‘quality attribute - architectural tactic(s)’’.
We highlight that the table presents only common quality attributes
without sub-characteristics, but they were considered in the search
strategy, the details of which can be found in the supplementary
artifact.1 Each AT is characterized by its scope as either training system
(TS), deployed system (DS) or both. Note that the TS can generally
be included as a subsystem in the DS (e.g., in systems that support
retraining); in such cases, DS refers to the tactic being applicable to
other subsystems than the TS.

We note that the ‘‘functional suitability’’ attribute was not included
in the summary table for two reasons: this attribute is general in
meaning (all ML-enabled systems must follow functional requirements),
but not general in the ways of its achievement (for each system there
is a unique set of functional requirements), and also because we were
unable to find common architectural tactics to satisfy this attribute with
the selected methodology.

Below we provide detailed explanations of all the tactics found.
To introduce a basic understanding of how each tactic can be im-
plemented, we supplement all the tactics with one example of its
implementation from the literature.

4.2.1. Tactics associated with resource efficiency
The ATs to increase resource efficiency were aimed at distribut-

ing and reducing resource-intensive processes. The first architectural
tactic we found was an approach to distribute the powers for model
processes among several computers as known as Distributed Learn-
ing. Shi et al. (2020) described distributed deep learning as a time
and resource-efficient approach to designing the machine learning
process. Considering the context in which this tactic is useful, Rao et al.
(2011) based on the experiments concluded that distributed learning
is effective when there is a need to allocate training loads evenly.
The implementation of distributed logic itself (building extra connec-
tions) does not sufficiently affect the overall resources consumed. Other
papers mentioned that traditional centralized architectures are time-
consuming in the domains of biomedical images (Zhao et al., 2023),
photonic nanostructures (Noureen et al., 2021) processing and could
be replaced with the distribution of loads.

For example, Rao et al. (2011) developed a distributed learning
mechanism that enables self-adaptive resource provisioning by treat-
ing each virtual machine as a highly autonomous agent that submits
resource requests based on its benefit.

The next explored tactic was Federated Learning (FL). In contrast
with the centralized approach, FL shifts the computational load to the
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Table 2
Architectural tactics to achieve Common Quality Attributes (CQA).

CQA Tactic Scope CQA Tactic Scope

Resource - Distributed Learning TS Data - Data Preprocessing TS/DS
Efficiency - Federated Learning TS Quality - Data Profiling TS

- Automated Data Reduction TS/DS

System - Automated Hyperparameter Tuning TS Explainability - Local Interpretable Models TS/DS
Accuracy - Automated Algorithm Selection DS - Rule-based Models TS/DS

Usability - Human-in-the-Loop TS/DS Maintainability - Componentization TS/DS
- Containerization DS

Security - Intrusion Detection TS/DS Fairness - Automated Bias Mitigation DS
- Automated Data Encryption TS/DS
- Federated Learning TS

Reliability - Automated Data Versioning TS/DS Portability - Containerization DS
- Human-in-the-Loop TS/DS - Componentization TS/DS

TS = Training System; DS = Deployed System.
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user equipment. While distributed learning involves training models
collaboratively across decentralized nodes with mostly shared data,
federated learning specifically focuses on training models mostly on
local data. Considering application contexts, FL can be profitable when
there is a need to lighten the load on the server (Drainakis et al., 2023)
uring model training.

For example, Brisimi et al. (2018) developed a federated learning
ramework that can learn predictive models through peer-to-peer col-
aboration without raw data exchanges solving a binary supervised
lassification problem to predict hospitalizations based on clients’ data.

Finally, we found the tactic of automated data reduction relevant for
resource efficiency. This tactic can be used in the ML pipeline to reduce
training data (Singh and Chaudhari, 2020) or to reduce large amounts
of input data in real-time when the system is deployed and operates (ur

ehman et al., 2016). Considering application context, this tactic is
useful in systems with massive amounts of data, such as those in the
Internet of Things (IoT) (Singh and Chaudhari, 2020) domain. The main
perspectives of big data reduction are noise-cleaning and addressing
the ‘‘curse of dimensionality’’ caused by millions of variables in big
atasets (ur Rehman et al., 2016). In terms of limited resources, this

tactic can be the only way to run the system (Hussein et al., 2022).
For example, ur Rehman et al. (2016) collected different methods

f automated data reduction in the form of big data compression
lgorithms, dimension reduction methods, and redundancy elimination.

4.2.2. Tactic associated with usability
With our search strategy we could identify only one AT for increas-

ing the usability of ML-enabled systems, which was the integration of
a human as a system component, so-called ‘‘human-in-the-loop’’ (HitL).
Petrelli et al. (2012) stated that usability indicators of AI-based systems

ere sufficiently improved after the integration of so-called ‘‘interac-
ion designers’’ into the processes. They acted as experts to coordinate
eciprocal understanding. Winter et al. (2023) and Kröll and Burova-

Keßler (2021) viewed close interaction and co-integration between
users and the model as mutually beneficial. The user becomes more
proficient in using machine learning for their tasks and gets a clearer
picture of basic AI principles, while their feedback can serve as a basis
for improving the system in terms of usability as well as fairness,
explainability, and data quality. According to Heimerl et al. (2012)
ntegration of experts in the training system (when the experts man-
ally evaluate and update training datasets) is as beneficial in terms of
sability as their integration in the deployed system (when they eval-
ate system outputs). Sperrle et al. (2021) proposed a human-centered

approach to the evaluation of ML-enabled systems and highlighted
he necessity of HitL to improve system usability. Considering the
pplication context, the tactic is especially relevant for accessibility-
ritical systems (Petrelli et al., 2012) or systems primarily oriented

towards the end users (Heimerl et al., 2012).
For example, Gómez-Carmona et al. (2024) noticed that the ML-

enabled system in a specific case overlooked human factors (such
9

as human workload or timing) which were critical for end-users. To
ddress this issue, the model was replaced with an adaptive one to

consider parameters provided by specific users.

4.2.3. Tactics associated with reliability
To address system reliability or its sub-characteristics we found an

AT of Data Versioning. Lewis et al. (2021) conducted a complex study
on architectural challenges in ML-enabled systems and among other
fundamental conclusions, stated that the technique of data versioning
can be effective in improving reliability and robustness that serves
s a safety net in case of unexpected failures during data processing.
his aspect covers mostly the training system. However, in addition to
ersioning of datasets, it is also important for architects to consciously
ersion related artifacts, such as parameters for model training, data
or model evaluation, and evaluation results (‘‘co-versioning’’) (Van Der

Weide et al., 2017). Warnett and Zdun (2022) proposed the versioning
f output data when the system is operating to ensure the traceability
nd integrity of results, allowing for the accurate tracking of changes
n outputs over time. Considering the application context, such a tactic
s relevant for all systems where multiple versions of a model could be
eployed, either over time or even in parallel (Rajendran et al., 2021).

For example, Van Der Weide et al. (2017) used data versioning
n the format of saving and storing different versions of end-to-end
achine learning pipelines (including datasets for data processing
ipelines and model coefficients for model training pipelines) to ensure
hat multiple versions of a pipeline can run in parallel.

Another tactic to address reliability and safety concerns was pre-
iously introduced Human-in-the-Loop (HitL). Rajendran et al. (2021)

stated: ‘‘The involvement of humans during the training phase can play
a crucial role in mitigating some safety issues of autonomous systems’’,
although it can also lead to extra expenses for the vendor. Considering
application contexts, integrating expert users is reasonable to validate
solutions that need to be available at sufficient capacity (Rajendran
et al., 2021).

For example, Rajendran et al. (2021) explored different integrations
of experts as components to improve the reliability of deep learning
autonomous systems such as ‘‘learning from demonstration’’, ‘‘learn-
ing from intervention’’, and ‘‘learning from evaluation’’ to deal with
unforeseen circumstances and define safer policies.

4.2.4. Tactics associated with security
The most frequently considered AT for improving security was the

integration of Intrusion Detection. Sanju (Sanju, 2023) claimed: ‘‘The
rotection of IoT systems from attacks and the assurance of their
ecurity posture is ensured by intrusion detection systems’’. Liu et al.

(2022a), Qu et al. (2017), Laqtib et al. (2019), Rashid et al. (2023), El
Balbali and Abou El Kalam (2023) listed several fundamental benefits
of using intrusion detection as microservices in the architecture of
industrial IoT for enhancing security. Intrusion detection is mainly used
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for preventing data poisoning (where exclusively the training system
is under attack) (Rashid et al., 2023) and adversarial attacks (where
minor malicious changes in input data can cause the model to make
incorrect predictions) (Qu et al., 2017). In comparison with traditional
oftware, intrusion detection in ML-enabled systems is more flexible
nd adapted to changes due to possible different outputs produced
y the model over time or new behavior of the model caused by
etraining. Considering the application context, the tactic is useful for
ystems operating with large amounts of real-time input data or big
atasets consumed by training system (Laqtib et al., 2019), including

IoT systems (Sanju, 2023).
For example, Sanju (2023) introduced a hybrid metaheuristics-deep

learning approach with an ensemble of recurrent neural networks
to detect and prevent intrusions in real-time data processing in an
operating IoT system.

Another identified AT was Automated Data Encryption. McGraw
(2020), Bekri et al. (2024) when analyzing risks for the security of
ML-enabled systems, highlighted the important role of encryption of
training and testing datasets to protect from several threats primar-
ily. Wu et al. (2022a) found big data encryption efficient for system
ecurity, however, some encryption methods may not be optimal also
or privacy by default. Kantarcioglu and Shaon (2019) along with

several non-architectural decisions, found data encryption as one of
he ways to satisfy security requirements in industrial solutions when
t comes to ensuring the security of all data flows within a deployed
ystem. In addition to the encryption of datasets and input data, the
ncryption of the model parameters and weights should be conducted.
onsidering the application context, the implementation of this tactic

s especially relevant for highly sensitive systems that operate contin-
ously (Bekri et al., 2024), including privacy-preserving deep learning
ystems (Aono et al., 2017).

For example, Aono et al. (2017) proposed additively homomorphic
encryption to increase the privacy and security of neural networks
by allowing computations to be performed on encrypted data without
decrypting it, thus protecting sensitive information throughout the
processing stages.

Finally, an effective tactic to architecturally increase privacy and
ecurity is an implementation of Federated Learning (FL). In addition to
he benefits of this tactic for resource efficiency, it is commonly used to
‘train a massive amount of data privately due to its decentralized struc-
ure’’ (Kim et al., 2021). Zhou et al. (2022) proved the statement above:
‘The emerging federated learning (FL) offers a feasible solution for the
privacy preservation of users’ sensitive data in training AI models’’.
In other words, federated learning allows the benefits of data privacy
without the need for data to be shared with a central server (Kaur et al.,
2023), Zhang et al. (2021). Considering the application context, this
tactic is useful for privacy-critical systems (Kaur et al., 2023; Zhang
t al., 2021), including personalized big data systems (Zhou et al.,

2022).
For example, Zhou et al. (2022) implemented a federated learning

lgorithm that ensures that sensitive data is not disclosed during model
raining together with a user-level personalized differential privacy
echanism.

4.2.5. Tactics associated with maintainability
For both traditional and ML-enabled systems, the architectural tac-

ic of Containerization has shown its effectiveness in terms of main-
ainability and system transparency. Rovnyagin et al. (2020) explicitly

claimed the positive effect of containerization along with related tools
(such as docker or orchestrator) on system maintainability and oper-
ability. Kolltveit and Li (2022) stated: ‘‘Models packaged in containers
re simply run directly as standalone services’’ which contributes to
he enhancement of maintainability. According to Openja et al. (2022):

‘‘Docker (which is a containerization service) allows for convenient de-
ployment of websites, databases, applications’ APIs, and machine learn-
ing (ML) models with a few lines of code’’. Finally, containerization
10

a

allows applied scientists without advanced knowledge to deploy models
and access High-Performance Computing (HPC) (González-Abad et al.,
2023). Considering the application context, this tactic is useful for
systems that require more isolated dependencies and simplified up-
ates (Rovnyagin et al., 2020; Kolltveit and Li, 2022; Openja et al.,

2022)
For example, Openja et al. (2022) identified 21 major categories

representing the purposes of existing ML projects using Docker, includ-
ing those specific to ML models, which in turn reduces the complexity
f managing ML models.

Another efficient tactic for enhancement of system maintainability
was Componentization, which obviously contributes to more transpar-
ent testing (Braiek and Khomh, 2020). The componentization can be
applied to the overall deployed system architecture, or exclusively
to the training system, or even exclusively to a model. Singaravel
et al. (2018) stated that ‘‘Component-Based Machine Learning (CBML)
nhances the capabilities of the monolithic ML models’’ in terms of
ransparency. Considering the application context, this tactic is relevant

for systems that require constant monitoring and updates from the side
of developers or maintainers.

For example, Singaravel et al. (2018) transformed the monolithic
L model in the domain of space exploration into a set of connected

components which simplified its further maintenance.

4.2.6. Tactics associated with portability
According to the literature review, both tactics associated with

maintainability were also profitable for portability.
Componentization is a relevant architectural tactic for increasing

ortability (Wonsil et al., 2023). Shadab and Salado (2020) reported
that the development of AI logic in the format of reusable components
could be an adequate solution to increase portability, however, it
also may introduce new risks since ‘‘currently there is no framework
that guides the selection of necessary information to operate in a
system different than the one for which the component was originally
purposed’’. Geyer and Singaravel (2018) concluded that components
instead of one monolithic model extend reusability and generalization,
which in the context of our research directly contributes to the quality
of portability. In terms of portability, both componentization of the
overall architecture as well as dividing the ML model into components
are profitable. Considering the application context, this tactic is useful
for cross-platform compatible systems that are partly or fully trans-
ferred from one software or hardware base to another (Wonsil et al.,
2023) as well as to systems that are transferred from one environment
o another (Geyer and Singaravel, 2018).

For example, Geyer and Singaravel (2018) replaced monolithic
odels with a component-based approach that develops machine learn-

ng models not only for the parameterized design of the whole build-
ngs in the construction domain but also for the design of its semi-
ndependent parts on the lower level of abstraction.

The tactic of Containerization also improves the portability of ML-
nabled systems by encapsulating all dependencies and configura-
ions (Naydenov and Ruseva, 2022). Considering the application con-

text, this tactic is useful for cross-platform compatible systems, includ-
ing cloud-based services (Joshi et al., 2024).

For example, Naydenov and Ruseva (2022) studied different con-
tainer technologies used in ML-enabled systems, such as K8s, K3s,

ocker, Rancher, and others allowing the systems to run consistently
cross different platforms, such as local machines or cloud servers.

4.2.7. Tactics associated with explainability
Local Interpretable Models (LIME) are a tool for solving issues of

xplainability (XAI) and interpretability (Gongane et al., 2024; Minh
et al., 2022), by approximating the behavior of a complex underlying

odel around a specific prediction using a simpler local model that
an explain the prediction. The intended application context of LIME is
 system with a ‘‘black-box’’ model that is inherently non-interpretable,
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such as a neural network obtained by deep learning (Maan, 2022).
Such complex models cannot be avoided in domains that deal with
articularly complex phenomena, such as weather forecasting (Höhlein
t al., 2020) and intrusion detection (Gaspar et al., 2024), where

LIME is particularly useful. LIME is model-agnostic, which means it
can be applied to any ML model without knowing its internals as it
only requires access to prediction probabilities. Integrating LIME into a
training system can help explain how the model comes to conclusions
before deployment and help with the selection of the final model to be
used in production. It can be also used in an already deployed system
o explain the behavior of the existing model (Saadatfar et al., 2024).

For example, Saadatfar et al. (2024) proposed a LIME algorithm that
enerates more focused data samples close to the decision boundary

and simultaneously close to the original data point in comparison
with different LIME implementations, such as BayLIME, SLIME, and
LS-LIME.

Another widespread tactic found was the usage of Rule-based Mod-
ls (Burkart and Huber, 2021; Love et al., 2023). While LIME explains

individual predictions of complex models by fitting simpler models
locally around specific instances, rule-based models directly encode
rediction rules that are clear for a human (Moraffah et al., 2020).

The intended application context is one where that permits such rules
to be formulated, which then inherently leads to explainability and
nterpretability, and can make rule-based models favorable over more
omplex ones, especially for non-complicated tasks (Vieira and Di-
iampietri, 2022). Rule-based models can also be used for rule-based
pproximation and visualization (Soares et al., 2020). This AT can be
lso used in both training and deployed systems (Rajapaksha et al.,

2020).
For example, Rajapaksha et al. (2020) developed a model-agnostic

rule-based approach that obtains k-optimal association rules from a
eighborhood of the instance to be explained.

4.2.8. Tactics associated with system accuracy
Automated Hyperparameter Tuning can be especially profitable in in-

creasing model(s) accuracy resulting in the enhancement of the overall
ystem accuracy. It is well-known that the accuracy of machine learning
odels relies on hyperparameter tuning (Rimal et al., 2024). Daviran

t al. (2021) stated: ‘‘The predictive accuracy of models can signifi-
antly increase when the optimized hyperparameters are predefined
nd then adjusted to training procedure’’, which, in this tactic, is
n automated process. Considering the application context, this tac-
ic is especially valuable for systems with complex models or large
atasets where manual tuning is ineffective, including deep learning
ystems (Ottoni et al., 2023).

For example, Ottoni et al. (2023) proposed a framework for auto-
mated hyperparameter tuning and based on the experimental results
proved that this tactic sufficiently improved different accuracy metrics
of an image recognition deep learning system.

Another tactic for system accuracy is an Automated Algorithm Se-
lection. Kerschke et al. (2019) proposed their implementation of au-
omated algorithm selection from a pre-defined set of algorithms and
oted that the choice might be made not only to maximize the accuracy
ut also based on other contextual priorities. Pise and Kulkarni (2016)
isted several key factors that must be considered in a proper algorithm
election tactic. Such a tactic fundamentally improves accuracy in
ealthcare and medical systems as well (Rashidi et al., 2021; Deeba
nd Patil, 2021). Considering the application context, this tactic is

generally useful for the systems in which high accuracy is particu-
larly important (Kerschke et al., 2019; Pise and Kulkarni, 2016; Alissa
t al., 2023), and more specifically in systems operating in constantly
hanging environments (Alissa et al., 2023).

For example, Alissa et al. (2023) proposed a technique for auto-
ated algorithm selection, applicable to certain optimization domains

n which implicit sequential information is encapsulated in the data.
pecifically, they trained two types of recurrent neural networks to
redict a packing heuristic.
11

l

4.2.9. Tactic associated with fairness
Automated Bias Mitigation is a common term for a set of algorithms

developed to increase the fairness of the deployed ML-enabled system
outputs. Lee and Singh (2021) conducted a review of so-called fair-
ness toolkits with the analysis of their relevance in improving system
outputs from the ethical perspective. Ferrara et al. (2024) suggested
hat ‘‘building specific methods and development environments, other
han automated validation tools, might help developers treat fairness

throughout the software lifecycle’’. Other algorithms for automated
bias detection and mitigation were proposed by Agarwal and Agarwal
(2023), Castelnovo et al. (2022) and Zhang et al. (2023). Considering
the application context, this tactic is primarily useful for the systems
operating with personal data and sensitive parameters (Maan, 2022),
n particular those that are not inherently interpretable, such as deep
earning systems (Maan, 2022).

For example, Maan (2022) proposed a method that evaluates the
fairness of deep learning model behavior against sensitive attributes
(i.e. age, race, gender, sex, and so on) to help mitigate biases without
compromising much on accuracy.

4.2.10. Tactics associated with data quality
The tactic of Automated Data Profiling is considered an effective tool

to increase data quality in the domain of ML-enabled systems (Siddiqi
et al., 2023). Data profiling contributes to the training system allowing
the identification of missing values and the detection of outliers and
anomalies. Considering the application context, this tactic is generally
useful for systems that deal with heterogeneous and complex data and,
therefore, require comprehensive evaluation to ensure sufficient data
quality for training a high-quality model, including domains such as
cybersecurity (Canbek et al., 2018), digital twins (Mostafa et al., 2021),
nd healthcare systems (Logothetis et al., 2022).

For example, Pansara et al. (2024) proposed to employ extra ma-
chine learning algorithms to automatically profile and cleanse master
data for complex model training operating in the domain of environ-
mental sustainability.

While data profiling implies examining the structure and the content
f data to understand its features, Automated Data Preprocessing includes
ata cleaning and data transforming to prepare it for analysis. Gawhade
t al. (2022) and Ramkumar et al. (2023) proposed computerized data

preprocessing algorithms to primary process input data before it enters
he ML model in the deployed system. Santos and Ferreira (2023) sug-

gested another implementation of automated data preprocessing used
for the preparation of training datasets in supervised machine learn-
ing. In terms of ML-enabled systems, data preprocessing includes data
splitting (dividing data into training, testing, and validation datasets).

onsidering the application context, this tactic is necessary for all types
of ML-enabled systems that are going to be trained on unprepared
datasets (Santos and Ferreira, 2023) or that operate with raw data on
he input (Ramkumar et al., 2023).

For example, Bilal et al. (2022) proposed an automated pipeline for
advanced data preprocessing steps of target discretization and sampling

hich are validated using RandomForest.

4.2.11. Definitions of architectural tactics
Below we present brief contextual descriptions of all architectural

tactics found. These definitions were built based on the experience from
iterature and brought to the common format (relevant for all studied

papers despite specifics and context).
AT1: Distributed Learning is an architectural approach to machine

earning aimed at parallelizing computing powers among several com-
uters (Rao et al., 2011).
AT2: Automated Data Reduction is an automated process aimed at

minimizing the complexity and size of datasets while preserving their
ssential information (widespread in IoT) (Singh and Chaudhari, 2020).
AT3: Federated Learning is an architectural approach to machine

earning aimed at training on local heterogeneous datasets (Drainakis
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et al., 2023).
AT4: Human-in-the-Loop (HitL) is an architectural approach where

 human (expert) is integrated into the ML-enabled system as a sep-
rate component aimed at monitoring and improving the system’s
ehavior (Petrelli et al., 2012).
AT5: Automated Data Versioning is an automated process aimed

at the creation, tracking, and management of different versions or
terations of datasets used for model training, testing, and valida-
ion (Warnett and Zdun, 2022).
AT6: Intrusion Detection is a tactic for complex systems (primarily,

oT systems) aimed at the detection and classification of network
ntrusions and anomalies (Sanju, 2023).
AT7: Automated Data Encryption is an automated process aimed at se-

uring sensitive data used for training, inference, or model deployment
o protect it from unauthorized access (McGraw, 2020).
AT8: Containerization is an architectural approach aimed at pack-

ging an entire system or model (incl. its dependencies and runtime
environment), into a standardized unit called a container (Rovnyagin
et al., 2020).

AT9: Componentization is an architectural approach aimed at break-
ng down a software system into modular components or building
locks that can be independently developed, tested, and deployed

(Wonsil et al., 2023).
AT10: Local Interpretable Models (LIME) is an approach to machine

earning aimed at explaining black boxes by approximating the behav-
ior of a complex model around a specific prediction using simpler (more
interpretable) models (Gongane et al., 2024).

AT11: Rule-based Models is a type of model that relies on explicit
rules (i.e. if-then) that are designed and specified by humans or domain
nowledge to approximate complex model behavior (Love et al., 2023).
AT12: Automated Hyperparameter Tuning (or Hyperparameter Opti-

mization) is a method aimed at searching for the best hyperparameter
values for the model based on certain criteria (Ottoni et al., 2023).

AT13: Automated Algorithm Selection (or Algorithm Configuration)
is an automated process aimed at searching the most appropriate
method(s) for a certain task or in certain circumstances (Kerschke et al.,
2019).

AT14: Automated Bias Mitigation is an automated process aimed
at identifying and reducing bias in algorithms, models, and datasets
by their evaluation through fairness metrics or ‘‘sensitive’’ feature
monitoring (Ferrara et al., 2024).

AT15: Automated Data Preprocessing is an automated process aimed
at preparing raw data for analysis and model training (Siddiqi et al.,
2023).

AT16: Automated Data Profiling is an automated process aimed at
analyzing and summarizing the characteristics of a dataset to gain
insights into its structure, quality, and distribution (Gawhade et al.,
2022).

4.2.12. Verification of the architectural tactics
All authors of this article were conducting constant peer-reviewing

of the resulting list of ATs. During weekly meetings, architectural
tactics were discussed against identified quality attributes based on the
expertise of each co-author. During the validation, issues related to the
architectural nature of the identified artifacts and the advisability of
classifying them as tactics were discussed. In other words, based on
the studied literature we checked if the artifacts affected the overall
rinciple of architectural design (e.g., componentization) or could be
ntegrated as constituent parts into the overall system architecture

(e.g., automated bias mitigation module). In this paper, we presented a
ist of ATs agreed upon by all co-authors of this work.

Further, the list of ATs was shared with four ML engineers from
wedish AI software companies. One practitioner stated that he had
xperience with all of the suggested tactics to ‘‘a greater or lesser

extent’’ except federated learning. He concluded that, based on his
experience, all of the tactics presented were relevant to the quality
12
attributes associated with them with an exception for federated learn-
ing. Due to insufficient expertise, the interviewee could not confirm or
eny this connection. The second practitioner had a similar background
nd experience with all of the tactics listed except federated learning.
e concluded that the list of tactics was accurate and consistent with
uality attributes, however, he noted that the list was not complete. He
roposed supplementing the list with the tactic of ‘‘code versioning’’
o improve reliability and maintainability. Using our methodology, we
ere unable to find this tactic relevant in the literature. However, from
 practical point of view, we see the importance of this remark. It
equires additional assessment and refinement of the search string. The
ther two experts confirmed their experience in employing all the listed
Ts and found all of them relevant in the context of corresponding
As. They provided several organizational decisions on how to improve

esource efficiency and fairness (e.g., evolution of developing culture),
owever, they struggled to propose any additional ATs to this list.

To enhance the generalizability of verification results, it is prefer-
ble to continue validating the list of ATs by experts and practitioners.

We anticipate that the list of architectural tactics will expand as we
receive feedback from experts. We see great potential in updating the
ist of tactics and further exploring new entries.

4.3. RQ3: Trade-off analysis

Table 3 represents the summary of our findings obtained during the
ystematic literature review to answer RQ3.

Below we provide an analysis of the papers which investigate
uality trade-offs of the identified architectural tactics.

4.3.1. AT1: Distributed learning
Distributed learning can have positive side-effects on system us-

bility by enabling learning across multiple nodes, thereby enhancing
esponsiveness and adaptability to diverse user needs (Nassef et al.,

2022). However, the impact of distributed learning on privacy (in
the current context: on security as well) is controversial. On the one
hand, due to their distributed nature such systems are more stable in
terms of security since they do not rely only on one server (Cheng
et al., 2019) and they can be profitable to preserve privacy due to the
ssence of decentralized nodes without a necessity to share sensitive
nformation centrally (Zerka et al., 2021). On the other hand, issues

with data confidentiality, security breaches, and potential misuse of
personal information are connected to increased exposure of sensitive
ata across those decentralized nodes (Guijarro-Berdiñas et al., 2011;

Mandela et al., 2023). The positive impact of distributed learning on
ortability is proved by its ability to transfer and deploy trained models
cross different computing environments and devices (Nassef et al.,

2022). The negative impact of distributed training on explainability
arises from the difficulty of tracking and understanding how individual
augmented data from different nodes influence the final results of the
model (Tuladhar et al., 2023). Finally, representation across decentral-
ized nodes can lead to biased model outputs and unequal treatment of
different demographic classes (Fan et al., 2021).

4.3.2. AT2: Automated data reduction
In addition to the obvious improvement in reducing the load on

system resources, automated data reduction tactics also have some
imitations. Any interventions in datasets can be risky, especially for
omplex (low-explainable) models. First of all, such a tactic may de-
rease system accuracy due to the potential loss of important data
uring the reduction process (Lane and Brodley, 2019). The risks of

incorrect perception of data by the algorithm and classification of useful
data as noise or outlier is an obvious risk for data quality and quantity
when implementing this tactic (Tomei et al., 2019; Bhuiyan et al.,
2019).
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Table 3
Trade-off analysis: impact of Architectural Tactics on Quality Attributes.

Quality Attribute AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9 AT10 AT11 AT12 AT13 AT14 AT15 AT16

Resource Efficiency + + + 0 0 − − − 0 + 0 − − − a 0
Usability + 0 0 + 0 0 0 0 0 0 0 0 0 0 + +
Reliability 0 0 a + + + + + + − 0 + + a − +
Security a 0 a a 0 + + − 0 0 0 + 0 0 + +
Maintainability 0 0 0 + + 0 0 + + + 0 0 + 0 + a
Portability + 0 0 0 0 0 0 + + 0 0 + 0 + 0 0
Explainability − 0 0 + 0 − 0 0 + + + 0 − 0 + 0
System Accuracy 0 − − 0 0 0 − 0 + − − + + − a +
Fairness − 0 − + 0 0 0 0 0 + 0 + 0 + a 0
Data Quality 0 − − + 0 + + + 0 0 0 0 0 a + +

+ = predominantly positive impact, − = predominantly negative impact, a = ambivalent impact, 0 = insufficient evidence either way.
o
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4.3.3. AT3: Federated learning
In RQ2 we identified that federated learning is often used for in-

reasing security and privacy particularly, however, some papers found
or RQ3 by Shen et al. (2022), Jeong and Chung (2022), Jagarlamudi
t al. (2023) and Shin et al. (2023) point to the practical insecurity

of existing implementations of federated learning and noted severe
vulnerabilities associated with data leakage or inference attacks during
the decentralized model training across multiple devices: ‘‘existing
ederated learning protocol designs have been shown to be vulnerable
o adversaries within or outside of the system, compromising data
rivacy’’ (Lyu et al., 2022). Therefore, based on the development level

of federated learning at the time of writing the current paper, its impact
n security and privacy is recognized as controversial. The reliability
f federated learning systems can be considered ambivalent. On the
ne hand, ‘‘federated learning resulted in a reliable strategy for model
evelopment’’ (Kirienko et al., 2021) due to its capability to incorporate
iverse and decentralized data sources. On the other hand, potential
ommunication bottlenecks and data heterogeneity across devices lead
o severe challenges in terms of robustness (Lyu et al., 2022; Sattler

et al., 2020; Lycklama et al., 2023). Some risks of federated learning
re also connected to system accuracy due to the aggregation of diverse
nd potentially noisy local data from distributed devices and fairness
ue to insufficient diversity of data collected (Gu et al., 2022). Such

challenges also affect overall system data quality.

4.3.4. AT4: Human-in-the-Loop (HitL)
The effect of HitL on security and privacy is controversial. On the

one hand, integration of human intelligence as a system component
can bring the benefit in guiding the XAI-enabled system and generate
refined solutions in terms of vulnerability detection (Nguyen and Choo,
2021; Jones et al., 2018), and on the other hand, ‘‘the involvement
f humans results in an external and unpredictable element that in-

creases security concerns’’ (Jena et al., 2022). Human-in-the-Loop is a
nique element that plays a crucial role in the human-centered system

qualities such as maintainability by intelligently tracking changes and
intermediate results over time (Xin et al., 2018), explainability by
everaging bidirectional symbiotic sensing feedback (Kang et al., 2021;

Rodríguez et al., 2024; Zhang et al., 2022) and fairness by identifying
ensitive data and parameters (Liu, 2022; Kalananthan et al., 2023;

Ghai and Mueller, 2022). Finally, data quality can be significantly
improved based on the feedback constantly provided by analysts and
ngineers (Priestley et al., 2023).

4.3.5. AT5: Automated data versioning
Automated data versioning can enhance the maintainability of

L-enabled systems by ensuring reproducibility and traceability of
odel training and inference, which simplify debugging and model
pdates (Jakubik et al., 2024; Yousefi et al., 2023).
13
4.3.6. AT6: Intrusion detection
Intrusion detection in IoT systems can negatively affect resource

efficiency due to the high computational and memory requirements
f deep neural networks (Tsimenidis et al., 2022; Devendiran and

Turukmane, 2024). While ‘‘an intrusion detection system is a promising
automotive security enhancement’’, it also improves anomaly detection
capabilities, thereby improving overall system robustness by reducing
the risk of non-security-related failures and errors (Lampe and Meng,
2023). The inherent complexity of deep neural networks for intrusion
detection negatively affects the explainability of the overall often low-
explainable IoT systems (Pawlicki et al., 2023; Shand et al., 2023).
inally, identifying and removing unnecessary data from the datasets
ignificantly contribute to the data quality on a system level (El Balbali

and Abou El Kalam, 2023; Naydenov and Ruseva, 2022).

4.3.7. AT7: Automated data encryption
Data encryption in ML-enabled systems can negatively impact re-

ource efficiency by increasing computational overhead and latency
ue to the additional processing requirements for encryption and de-
ryption (Aljawarneh et al., 2018; Weng, 2023). The positive side-effect

of data encryption in terms of reliability appears due to ensuring data
integrity and reducing the risk of data corruption (Cantoro et al.,
2020). Wang et al. (2021) noted a slight decrease in the system ac-
uracy of the encrypted model in comparison with non-encrypted so-
ution. Any data protection tactic also makes a significant contribution

to overall data quality (Gupta and Lakhwani, 2022).

4.3.8. AT8: Containerization
The main challenge of containerization in terms of resource effi-

ciency arises from the potential resource overhead of container orches-
tration and virtualization (Rovnyagin et al., 2019; Openja et al., 2022).

owever, such a tactic has a positive side effect on system reliability by
providing a consistent and isolated runtime environment (Rovnyagin
et al., 2019). Figueroa et al. (2023) claimed: ‘‘Combined with IoT,
ontainerization allows efficient allocation, fast execution, and deploy-
ent of hardware resources’’. According to Joraviya et al. (2024):

‘Containerization has introduced new security challenges including
loud data breaches in ML-enabled systems’’, which is also accom-

panied by increased attack surface and potential misconfigurations
including increasing risks of data breaches, model theft, and adversarial
attacks due to shared resources, image vulnerabilities, and insufficient
isolation, making strict access control and monitoring essential. Finally,
it has a positive effect on data quality due to its ability to facilitate
consistent data handling and processing environments (Arisdakessian
et al., 2023).

4.3.9. AT9: Componentization
With our search strategy we could not find any evidence that com-

onentization has any crucial impact on resource efficiency. However,
e found a positive impact of this tactic on the reliability of IoT

systems (Siddiqui et al., 2023) by enabling the implementation of
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safety-critical components with clear interfaces and well-defined behav-
iors. At the same time, this tactic is reasonable to isolate specific model
components to improve explainability and interpretability (Sarjoughian
t al., 2023). Finally, based on the experimental results Heisele et al.

(2011) concluded that ‘‘the component system clearly outperformed
lobal systems on all tests in terms of accuracy’’.

4.3.10. AT10: Local interpretable models (LIME)
The work of Kumarakulasinghe et al. (2020) significantly con-

tributed to the analysis of trade-offs when applying local interpretable
models. According to this study, LIME provides interpretable and sim-
ple local explanations without a need for resource-intensive global
model explanations, which in some cases is really profitable for re-
ource efficiency. This tactic of simplification also contributes to im-
rovements in maintainability. However, it goes in contrast with re-
iability, where LIME brings the risks of potentially incorrect local
xplanations that do not accurately reflect the overall behavior. Mori

and Uchihira (2019) also found this fact a reason for misleading in-
terpretations and decisions (which is considered a negative impact
on system accuracy). At the same time, LIME can be used to as-
ess a classifier’s fairness and to determine the sensitive features to
emove (Bhargava et al., 2020).

4.3.11. AT11: Rule-based models
The only impact of rule-based models found with our search strategy

was on system accuracy, which can suffer from limited adaptability
to complex and dynamic data patterns when scenarios lie outside the
predefined rules (Burkart et al., 2019; Soui et al., 2019; Rey et al.,
2017).

4.3.12. AT12: Automated hyperparameter tuning
When automated hyperparameter tuning (HPT) is aimed at increas-

ing system accuracy, the trade-off with performance efficiency occurs
most often (Liao et al., 2022; Romsaiyud et al., 2019). Liu et al.
(2022b) claimed: ‘‘The current resource provisioning approaches for

PT are unable to adjust resources adaptively according to the upward
rends of HPT accuracy at runtime. On the other hand, dynamic re-
ource provisioning approaches based on checkpointing are inefficient
or HPT, because of the high overhead of context switching and job
estarting’’. HPT can enhance reliability by optimizing model gener-
lization, reducing the risk of overfitting (Jain et al., 2023; Kunang

et al., 2021). The positive impact of HPT is also noted in terms of
ecurity (Wu et al., 2022b; Batchu and Seetha, 2021) by improving
esistance against adversarial attacks. Feroz et al. (2024) claimed that
PT can improve not only system accuracy and system reliability but
lso the adaptability and portability of the system in different real-life
cenarios. Finally, HPT can be used in the form of optimizing model

parameters to reduce bias and consider different demographic groups
or sensitive attributes (Perrone et al., 2021; Gao et al., 2022).

4.3.13. AT13: Automated algorithm selection
Automated algorithm selection like HPT often brings a trade-off

etween resource efficiency and system accuracy (Dagan et al., 2024;
Bossek et al., 2020). The main possible benefit of the automated algo-
ithm selection component lies in the recommendation of a promising
earning algorithm based on meta features computed from a given
ataset (Shahoud et al., 2021). Such analysis can be too complicated

and time-consuming for human data scientists and delegation of those
esponsibilities to ML is considered a valuable contribution to system
aintainability. Also, it in some sense minimizes human factors in algo-

ithm selection, which has a positive effect on reliability as well. How-
ver, existing automated algorithm selection methods for increasing
ccuracy rarely consider explainability as a factor for selection, which
eads to the complexity of automatically chosen algorithms (Trajanov
t al., 2022).
14

W

4.3.14. AT14: Automated bias mitigation
Hutiri et al. (2023) found the risks of computational overhead due

o the complexity of bias detection and correction algorithms in the
ontext of IoT systems. The impact of this tactic on reliability is am-
ivalent. On the one hand, such methods improve system stability when
orking with diverse datasets, however, they can also lead to potential
nintended model changes with risks of system failures (Hort et al.,

2023; Ghani et al., 2023). Increased adaptability of the ML-enabled
system also influences the common attribute of portability (Jain and
Kumar, 2023). The potential distortion or removal of relevant patterns
in the data introduced by this tactic harms system accuracy (Hutiri
et al., 2023; Chen et al., 2023). This fact also affects the attribute of
ata quality (Miceli et al., 2022).

4.3.15. AT15: Automated data preprocessing
This tactic has a controversial impact on resource efficiency. Ac-

ording to Ramírez-Gallego et al. (2017): on the one hand, the intro-
duction of automated data preprocessing contributes to a faster and
more precise learning process which can potentially save resources,
on the other hand, when it comes to big data systems such tactic
can lead to resource overload due to the large volumes of data being
processed. Rendleman et al. (2019) proposed a method to increase the
usability of a certain module when data preprocessing is conducted
according to the priorities of end users. Automated preprocessing offers
certain benefits in terms of model training, such as lowering the manual
effort required for data preparation and enhancing maintainability by
structuring and formatting data (Shivashankar and Martini, 2022),

hile it can also protect models against malicious inputs and data
poisoning (Hikal and Elgayar, 2020; Bouke and Abdullah, 2023). It
also improves explainability by ensuring consistent and standardized
ata transformation, which makes model behavior and decision insights

clearer to humans (Zelaya, 2019; Basha and Kuppusamy, 2022). The
impact of this tactic on system accuracy is ambivalent since it can
be either improved by standardizing input data and noise cleaning
r harmed by potentially introduced biases or distortions by the al-
orithms (Sun et al., 2022; Obaid et al., 2019). The complexity of

automated data preprocessing in the context of human-centered learn-
ing can also have different implications for fairness due to the same
reasons (Sun et al., 2022).

4.3.16. AT16: Automated data profiling
With our search strategy we were unable to find any evidence that

automated data profiling has any crucial impact on resource efficiency
as we expected. However, the personalization of certain data (which is
 subset of data profiling) can significantly increase usability according
o the needs of certain users (Sajid et al., 2019; Oppold and Herschel,

2020). Data quality improvements provided by automated data pro-
filing modules play a crucial role in overall system reliability (Ding
and Mit, 2023). In the context of IoT, data profiling can detect data
ulnerabilities and privacy risks as an improvement of system secu-
ity and upgrade feature understanding as an improvement of system
ccuracy (Seo et al., 2019). Finally, the impact of data profiling on
aintainability is controversial since it can reduce manual effort on
ata management, but brings the risk of over-reliance on automated
rocesses, which can be ‘‘black boxes’’ if they are executed by complex
L-algorithms (Epperson et al., 2023; Tverdal et al., 2023).

4.3.17. Verification of the trade-off matrix
The resulting table of quality trade-offs was constantly being peer-

eviewed by co-authors of this paper based on their independent ex-
ertise. This paper presents a version of the table agreed upon by all
uthors of the article.

All identified trade-offs are supported with literature references,
however, more expert validation is desirable. Due to the large number
of identified impacts, it would be complex and lead to significant effort.

e present a strategy for such assessment in Section 5.
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5. Discussion

5.1. Observations regarding quality attributes

This study proposed a common quality model for ML-enabled sys-
tems. This model took a broader look at ML-enabled specific nature
nd suggested considering attributes related to ‘‘data quality’’ and ML-

unique ‘‘explainability’’, ‘‘system accuracy’’ and ‘‘fairness’’ along with a
tandard set of attributes.

The attribute of system accuracy is a complex indicator that goes
eyond model accuracy itself. In the context of quality, it is used to
nderstand whether the system can operate effectively in the existing

context with the existing accuracy (incl. metrics of precision, recall,
F-score, etc.).

Thirteen papers referred to data quality as an attribute of the overall
ystem quality. This attribute characterizes the quality of data sets

used for model training and testing, as well as the ways this data was
btained and the sources from which this data was collected from at
he system level. Working with unreliable or incomplete data causes a
igh risk of system failure due to its incorrect or insufficient perception
f contextual reality as well as legal issues.

Quality attributes rarely addressed in the reviewed literature may
till deserve further study. For any attribute named at least one time in

RQ1, we can assume that it is relevant for some specific ML-enabled sys-
tem(s). For example, the retrainability attribute can be very important
for systems operating in especially dynamically updated environments,
and the autonomy attribute could be relevant for systems that, for a
number of reasons, need to be isolated from all external influences.

Remarkably, the standard quality attribute of compatibility is em-
phasized in the literature as relevant to the quality of ML-enabled
systems only two times. For this reason, this quality attribute was not
included in the proposed model. According to studied papers, we no-
ticed that the considered works typically sought to study characteristics
onnected to external entities: resource efficiency as a result of interac-

tion with available resources, usability as the result of interaction with
end-users, maintainability - with developers and maintainers, system
accuracy - with context, fairness - with society, portability - with new
environments, etc. However, the interaction of ML-enabled systems
with other software systems (which is the basis for compatibility)
remains poorly described in the scientific literature and likely requires
additional attention.

5.2. Comparison to ISO standards

In 2023, the International Organization for Standardization (ISO)
issued a new standard ISO 25059:2023 (International Organization for
tandardization, 2023). This standard offers a quality model for AI
ystems, which can be seen as a possible alternative answer to RQ1. A
omparison of our quality model with ISO 25059:2023, as well as with
he traditional SQuaRE quality model (ISO 25010:2011 (International
rganization for Standardization, 2011a)), is presented in Table 4. The

able maps all high-level attributes from three quality models grouped
y semantic similarity. We now compare our obtained quality model
o those from two relevant ISO standards. Importantly, our goal is
ot to present a new, competing standard, but to reflect the results
f our literature review in comparison to existing quality models, in
articular, those from the standards.

Factually, neither of the previous standards considers system accu-
racy and data quality on the system level, whereas we found in RQ1
that the literature frequently mentions them as system-level concerns
and in RQ2 identified appropriate architectural tactics to address them.
Moreover, ISO 25059:2023 considers the ethical perspective (related
to fairness in the terminology of our research) as a high-level quality
attribute and combines transparency with explainability. In our model,
we decided to separate explainability and transparency. While system
15

transparency refers to the openness and accessibility of a system’s a
internal processes (which is mostly important for developers and main-
ainers), system explainability focuses on how clearly the system’s
ecisions and processes can be understood and interpreted by humans
which is more important for users, operators, and experts). The release

of ISO 25059:2023 confirmed the relevance of RQ1 and highlighted
the need to consider ML-specifics in assessing the quality of software
ystems.

5.3. Observations regarding trade-offs

The analysis of trade-offs proposes a comprehensive mapping of
different impacts after the implementation of certain ATs reported by
different researchers. The most frequently reported trade-offs appeared
between system accuracy and resource efficiency, system accuracy and
explainability, fairness, and resource efficiency. Also, notable posi-
tive ‘‘side-effects’’ include the facts that: architectural enhancement
of security can often increase data quality and reliability, enhancing
system accuracy positively affects reliability, and tactics to improve
data quality can have a positive impact on usability and security.

We met a remarkable situation with AT3 of Federated Learning.
While investigating RQ2, we found its wide application to increase
resource efficiency and security. However, during the work on RQ3, we
identified several significant vulnerabilities in existing implementations
f federated learning, which motivated us to characterize its impact on
ecurity as controversial.

Context analysis is critical when applying architectural tactics of
istributed learning in terms of security, automated data preprocessing
n terms of accuracy and fairness, and automated bias mitigation in
erms of reliability and data quality.

5.4. Threats to validity

The main threat to external validity is that the generalizability
of our architectural findings can be limited as we restrict our anal-
ysis to available literature, specifically, scientific papers. While the
analyzed literature stems from diverse domains and methodologies,
including those that analyze practical experiences from companies, we
cannot claim generalizability to all possible systems and sub-domains.
A planned mitigation is to conduct a gray literature study investigating
non-scientific literature such as blog entries and repository documenta-
tion. Another threat to external validity is caused by the complexity of
the search process for RQ2. We searched for architectural tactics with
corresponding keywords, however, it is possible that some architectural
tactics were not referred to as such in the literature. To mitigate this
we also included related terms (e.g., ‘‘design decisions’’) in the search
query. However, we still cannot state that the list of found ATs is
complete and to mitigate this threat, we plan to conduct some more
interview studies with practitioners and experts. Finally, the mapping
of quality trade-offs for RQ3 was complex and should take sufficient
resources for its validation from the side of practitioners. The possible
mitigation is to follow the proposed verification strategy described
further.

The main threat to internal validity associated with our approach
to consider all quality attributes of equal importance as well as ar-
chitectural tactics of equal value. Therefore, we do not weigh the
magnitude of the trade-offs between quality attributes and the scale of
the consequences of AT implementation. It can be mitigated by in-depth
research of each AT with the study of the specific contexts, leaving
generalizability behind.

The main threat to construct validity is our focus on commonly
reported quality attributes in the literature, which we implicitly as-
sume to be correlated with their generalizability and the need to
include these attributes in a common quality model for the domain
of ML-enabled software. Clearly, some of the less commonly reported
ttributes might still be important in particular domains and use cases.
o mitigate this threat it is possible to run a separate study of such
ttributes.
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Table 4
Comparison of proposed quality model and ISO standards.
Proposed Quality Model ISO 25059: AI systems ISO 25010: general software

Functional Suitability Functional Correctness Functional Suitability
Resource Efficiency – Performance Efficiency
Usability User Controllability Usability
Reliability Robustness Reliability
Security – Security
Maintainability Intervenability Maintainability
Portability Functional Adaptability Portability
Explainability Transparency –
System Accuracy – –
Fairness Ethical –
Data Quality – –
– – Compatibility
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5.5. Implications for practitioners

Our study has several implications for practitioners and researchers.
onsidering practitioners, our findings can be used in a checklist-like
anner during the system requirements and design stages. During

equirements elicitation, our quality model can guide practitioners in
dentifying relevant non-functional requirements for the overall system
hat then need to be addressed by the system architecture. The list of
rchitectural tactics provides them with insights into how to achieve
hose quality attributes architecturally. We especially highlight our
escription of context and examples we provide for each tactic, which
llows practitioners to match the tactics to their particular context
t hand. Finally, the table of trade-offs raises awareness of possible
nintended consequences of decisions made. These insights can be
specially valuable for start-ups and SMEs with limited resources for
iring ML engineering experts.

Our findings are also informative for the emerging area of MLOps,
which focuses on the integration of DevOps principles and practices
into the development and maintenance of machine learning systems
(Alla et al., 2021). While a dedicated literature study of quality at-
tributes and tactics for MLOps is outside our scope, we identify the
following potential applications of our findings in an MLOps context.
First, the identified quality attributes can help align the engineering
process with business goals and operational needs and contribute to

ore sustainable software development. For example, the consideration
f maintainability at the design stage can guide the optimization of
lanned resources for further maintenance, support, and updates of the
eployed system (Shivashankar and Martini, 2022). Second, treating

training and deployed systems as aspects of a single complex software
rchitecture along with appropriate tactics during the design phase, can
mprove operations associated with system retraining (Peldszus et al.,

2023). Finally, recognizing trade-offs can help allocate resources and
rioritize tasks within the common workflow (Barney et al., 2012). For
xample, if a team uses containerization to improve maintainability,
ur findings emphasize potential drawbacks for security, which need
o be addressed specifically within the roles and responsibilities of
he DevOps setting, for example, by actively planning and estimating
he effort arising for a security team within the company (Mohan and
thmane, 2016).

5.6. Implications for researchers

We suggest several directions for future work within the existing
rchitectural perspective. First, our list of trade-offs can be informative
or researchers to develop new architectural tactics. Given that our
umbers of identified tactics per quality attribute are between one and
hree, there is a potential for new tactics that complement the existing
nes to find a different ‘‘sweet spot’’ within the trade-offs, possibly
ddressing specific domains and application contexts. Second, more
enerally, while our study was broadly focused on ML-based systems,
t would be worthwhile to conduct additional studies that explore
he relevance and applicability of our findings in different domains
16
(e.g., automotive vehicles, healthcare systems, etc.). Third, our study of
trade-offs is based on literature sources; yet, the results could benefit
from follow-up research that verifies and refines the resulting table of
trade-offs based on insights in industrial settings.

While we conducted a first evaluation of our results with experts,
here is room for further evaluating our findings in complementary

ways, focusing on their real-world applicability in specific contexts.
As part of future work, we propose to conduct such evaluations with
mpirical methods, such as case studies, controlled experiments, and
urveys. As a promising direction, we highlight action research (Staron,

2020), which is dedicated to deploying solutions in a specific real-
world context—for example, in our case, specific quality attributes and
tactics in an industrial MLOps environment with multiple teams. In
such an environment, we aim to investigate if the introduction of a
quality model helps teams to allocate their priorities more efficiently,
if the identified architectural tactics can be applied to systems of
different natures and sizes and be generalizable to new contexts, and
how identified trade-offs affect the decisions made by MLOps teams.
Such an evaluation may shift the focus from our current architectural
perspective to a more operational one, which can be especially relevant
in the context of MLOps.

6. Conclusion

This work contributes to the methodology of building software
architecture for ML-enabled systems from the perspective of quality,
offering ways to define it and achieve it through common architec-
tural tactics with a consideration of possible side effects. Our focus
s on theory-building, as we systematically identified and synthesized
nformation from 206 research papers.

There are several worthwhile directions for future work. First, while
ur contributions are informed and validated by empirical insights from
ublished literature, additional validation, for example, through expert
eedback, is possible. Second, the selection of literature for analysis
an be expanded by including gray literature. As a result, the quality
odel and proposed architectural tactics can be refined. Third, one can

onduct complementary forms of evaluation highlighting the applica-
ility of our findings in specific real-world contexts, through action

research and other empirical methods. The emerging area of MLOps
provides a particularly promising avenue for such evaluations. Finally,
we suggest follow-up research to further investigate the role of quality
aspects mentioned infrequently in the literature (e.g., portability) and
to systematically study the impact of the identified tactics on all quality
aspects.
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