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Cancer cells survive treatment through mechanisms that remain unclear. This study investigates the

chemical changes that occur in cancer cells after treatment, focusing on lipid metabolism as a potential

marker for survival and resistance. Using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

and advanced multivariate statistical analysis, we compared the chemical profiles of untreated and

surviving cancer cells. Region-of-Interest (ROI) analysis revealed distinct differences in the lipid

compartments, with surviving cancer cells showing significant accumulation of lipid droplets. While

Principal Component Analysis (PCA) was able to differentiate the chemistry of untreated and surviving

cancer cells as well as their cellular components, Multivariate Curve Resolution (MCR) provided a clearer

and more detailed distinction, enabling the identification of specific cellular features such as the

cytoplasm, nucleus, and lipid droplets within the surviving cells. The separation of the chemistry in

nucleus and lipid droplets emphasizes the effectiveness in complex spectral analysis. Furthermore, the

ability to map the distribution of lipid droplets in surviving cells can advance our understanding of how

these structures contribute to cancer cell survival during treatment. The study highlights the importance

of lipid droplets as potential biomarkers for cancer cell adaptation and survival post-treatment, with

implications for developing new therapeutic strategies.
Introduction

Chemical signatures play a crucial role in tracing diseases,1,2

including cancer, beyond the scope of traditional genetic
mutations. Various studies have shown how cancer affects the
chemistry of elements and their isotopes. For example, tumor
growth and metastasis have been linked to increased copper
requirements.3 This suggests the potential of high-precision
metal isotope analysis to enhance our understanding of
cancer and its biochemical pathways.4 Alteration to the
composition of stable isotope elements including carbon,
nitrogen, and sulfur have been demonstrated to indicate the
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of Chemistry 2025
presence of breast cancer5 and endometrial cancer.6 In addition,
the cholesterol prole has been demonstrated to be altered in
cancer tissues.7 These ndings collectively demonstrate the
potential of chemical signatures as powerful tools for unravel-
ing the complexities of cancer biology.

Mapping the distribution and properties of molecules of
tissues and cells requires mass spectrometry (MS) methods.8–10

MS has proven effective in bulk analysis of chemistry in
tissues,11,12 blood,13 and cells,14,15 revealing disease-specic
chemical alterations. Although the analyses can map the
distributions in tissue samples, such as lipids and fatty acids in
breast cancer16 and glioma tissues,17,18 only a few studies have
utilized MS to map the chemistry at the cellular level including
subcellular imaging of snow algae.19 Since the spatial resolution
of most MS techniques is at the boundary of being able to track
the chemical composition in a typically sized human cell, i.e.,
approximately 20 mm.20

Cellular spatial chemical mapping offers immense potential
for enhancing our understanding of cancer but also presents
signicant challenges. Matrix-Assisted Laser Desorption/
Ionization Mass Spectrometry (MALDI-MS), which generally
provides a spatial resolution of around 10–20 mm, may lack the
precision needed to capture ne cellular structures in detail.21,22
Anal. Methods
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In contrast, techniques like Time-of-Flight Secondary Ion Mass
Spectrometry (ToF-SIMS) and Nanoscale Secondary Ion Mass
Spectrometry (NanoSIMS) offer signicantly higher spatial
resolution, ranging from submicron to nanometer scales,
allowing researchers to visualize molecular distributions at the
subcellular level with remarkable clarity.22,23 While NanoSIMS is
limited to molecules that are labelled with stable isotope, ToF-
SIMS is particularly valuable when examining the distribution
of molecules within cancer cells.24,25 Orbitrap Secondary Ion
Mass Spectrometry (Orbi-SIMS), despite its slightly lower lateral
resolution (2 mm), has demonstrated potential in cancer
research due to its high mass resolution. For instance, it has
been used to distinguish metabolic proles between tumor and
stromal cells in murine cancer models, complementing existing
spatial imaging methods.26 In response to environmental
stressors like chemotherapy, surviving cancer cells exhibit
larger nuclei and cell sizes.27 Since these cells play critical roles
in cancer progression, therapeutic resistance, and recurrence, it
is key to understand their survival mechanisms.28 By mapping
the chemical differences between untreated cancer cells and
those that have survived cisplatin treatment, spatial mapping
via mass spectrometry has the potential to shed new light on
chemical and biological changes.

In this study, we investigate whether ToF-SIMS can reliably
map the chemical distribution across different cellular
components of cancer cells that survive treatment. Surviving
cancer cells refer to those that remain viable following therapy,
while untreated cancer cells represent the control population
that has not been exposed to any therapeutic intervention. Here,
by analyzing the chemical proles of both treated and untreated
cells, we aim to identify specic molecular differences associ-
ated with treatment resistance. We evaluate the performance of
two advanced analytical techniques, principal component
analysis (PCA) and multivariate curve resolution (MCR), in
distinguishing between these two cell populations. Our results
contribute to a deeper understanding of the chemical alter-
ations that enable cancer cells to survive treatment.
Materials and methods
Cell culture

HCC-1806 breast cancer cells were obtained from ATCC and
cultured in DMEM GlutaMAX (Thermo Fisher Scientic, Swe-
den), supplemented with 10% FBS (Thermo Fisher Scientic,
Sweden), without penicillin/streptomycin. All cells were main-
tained in a humidied incubator at 37 °C with 5% CO2.
Treatment

The experiment involved three distinct cell sample types:
(1) Untreated cancer cells: HCC-1806 cells were cultured

under standard conditions without cisplatin treatment and
reseeded on cover slips for 24 hours.

(2) Surviving cancer cells: HCC-1806 cells (2 × 106 per T75
ask) were seeded overnight and treated with cisplatin at LD50

(3 mM) for 72 hours (dened as the day 0 timepoint). The culture
media was refreshed every 3–4 days. By day 10, surviving cells
Anal. Methods
exhibiting enlarged polyaneuploid characteristics were trypsi-
nized, size-ltered using a 10 mm mesh lter (Nordic Diag-
nostica, Sweden), and reseeded on cover slips for 24 hours.

(3) Mixed untreated and surviving cancer cells: a mixture of
untreated and surviving HCC-1806 cells were reseeded together
on the same cover slips for 24 hours.
Sample preparation

For ToF-SIMS analysis, all samples were prepared as follows: the
culture medium was aspirated from each cover slip, followed by
three washes with phosphate-buffered saline (PBS) (Fisher
Scientic, Sweden) and three additional washes with 0.15 M
ammonium acetate (Sigma-Aldrich, Sweden) at pH 7.4 (adjusted
with ammonia solution). Cover slips were then rapidly dipped
in isopropanol and ash-frozen in liquid nitrogen. Prepared
samples were stored at −80 °C until further analysis.
ToF-SIMS analysis

Prior to the ToF-SIMS analysis, all cover slips were placed on
pre-cooled metal blocks and dehydrated using a freeze-dryer
(Christ Alpha 1-2 LDplus, Germany) to remove water while
preserving the biological structure by gradually adjusting the
temperature. The ToF-SIMS measurements were then conduct-
ed at room temperature under high vacuum conditions using
a top-mount sample holder. The samples were investigated
using a ToF-SIMS V (ION-TOF, Munster, Germany), equipped
with a bismuth (Bi3) liquid metal ion gun (LMIG) as a primary
ion source (30 keV for Bi3

+ and 60 keV for Bi3
++) and an Ar-gas

cluster ion beam (GCIB) (5 keV) as a sputtering beam. The
current was approximately 0.4 pA in spectrometry mode with an
ion dose of 5 × 1012 ions per cm2, and 0.1 pA in the delayed
extraction mode (DEEX) with an ion dose of 1 × 1012 ions per
cm2. Both ion doses are below the static limit of 1013 ions per
cm2, ensuring that the surface molecular information remains
intact and minimizing surface damage during the analysis. In
spectrometry mode, the ToF-SIMS spectra of untreated and
surviving cancer cells were recorded separately in positive mode
and negative mode in total of 100 scans across three replicates.
The 100 × 100 mm2 FoV areas were measured by the Bi3

++ gun at
60 keV in a 1 shot per frame per pixel random mode raster to
produce a 128 × 128 pixels frame together with a non-
interlaced (1 s sputter, 0.5 s pause). In DEEX mode, the ToF-
SIMS spectra and images of the mix of untreated and
surviving cancer cells were recorded in negative mode in total of
180 scans across three replicates. The 220 × 220 mm2 FoV areas
were measured by the Bi3

++ gun at 60 keV to produce a 256 ×

256 pixels raster in random mode with 2 shot per frame per
pixel, together with a non-interlaced (1 s sputter, 0.5 s pause)
Ar1500

+ GCIB sputter at 5 keV and 3.09 nA current to sputter
a raster crater of 400 × 400 mm2. All ToF-SIMS spectra and
images were analyzed with the Surface Lab soware (version
7.3; ION-TOF, GmbH). The mass spectra were internally cali-
brated to signals of [C]+, [CH]+, [CH2]

+, [CH3]
+, and [C27H45]

+ in
the positive ion mode and [C]−, [CH]−, [OH]−, [F]−, and [CN]− in
the negative mode. The achieved mass resolution, exemplied
This journal is © The Royal Society of Chemistry 2025
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by the [CN]− peak atm/z 26, was approximately 6500 (FWHM) in
the negative ion mode.
Multivariate analysis of negative images

The peak search function in SurfaceLab soware (version 7.3;
ION-TOF, GmbH) was applied to spectra from each region of
interest (ROI). Peaks within the m/z 10–420 range that had
counts exceeding 100, a signal-to-noise ratio (SNR) greater than
1, and a peak width of 0.8 Da were selected. For the analysis,
three replicate measurements from 30 × 30 mm2 of four ROI
spectra of cancer cells were used. The dataset included 190
negative ions, which were then subjected to Principal Compo-
nent Analysis (PCA) and Partial Least Squares Discriminant
Analysis (PLS-DA) using MATLAB. In the analysis of ToF-SIMS
image data, both PCA and Multivariate Curve Resolution
(MCR) were performed using the Multivariate Statistical Anal-
ysis (MVSA) function in SurfaceLab soware. The peaks within
the full mass range that had counts exceeding 100, a SNR
greater than 1, and a peak width of start at 1, end at 6 ns were
selected. Both PCA and MCR were applied to 2D ToF-SIMS
images using six factors, selected as optimal for distinguish-
ing chemical variations. No XY binning (without averaging
adjacent data points) was used, and variance spectral scaling
was applied to enhance feature differentiation and improve the
interpretation of chemical distributions.
Results and discussion
Surviving cancer cells and untreated cancer cells

To map the chemical distribution of untreated and surviving
breast cancer cells, HCC-1806 cells were treated with cisplatin
for 72 hours. By day 10, surviving cells exhibited the enlarged
cell size characteristics typical of endocycling cancer cells.27 As
visualized by phase contrast microscopy, treated HCC-1806 cells
presented a substantial increase in cell body size (Fig. 1). The
diameter of adherent surviving cancer cells is approximately 10
times larger than that of untreated cells.27 Along with the
increase in overall cell size, we also observed a signicant
enlargement of the nuclei within surviving cells.29,30 Addition-
ally, structural features, such as peroxisomes or lipid droplets,
appeared more prominent in the surviving cells compared to
Fig. 1 Detailed view of (A) untreated HCC-1806 breast cancer cell and
(B) surviving HCC-1806 breast cancer cell 10 days post-treatment
using phase contrast microscopy. The scale bar is 100 mm.

This journal is © The Royal Society of Chemistry 2025
the untreated cells, suggesting a potential connection between
these organelle changes and the survival mechanisms in these
cells.31–33

Spectrometry mode ToF-SIMS analysis

We initiated our analysis by separately examining untreated
cancer cells and surviving cancer cells using ToF-SIMS in both
positive and negative ion modes. By using a lower GCIB accel-
eration voltage, we optimized lipid signal detection while
minimizing fragmentation.23 This approach allowed us to
capture a comprehensive chemical prole of both cell pop-
ulations, providing insight into their molecular composition
and potential differences in their chemical distributions.

In the positive ion mode, where the instrument detects
positively charged ions generated from the sample, both
untreated cancer cells and surviving cancer cells exhibited
a prominent cholesterol peak at m/z 369.3 (C27H45

+) (Fig. 2),
which is consistent with the known cholesterol ion signal.12,34

Cholesterol plays a critical role in processes such as maintain-
ing membrane structure and cell signaling, both in healthy and
cancer cells.35 Additionally, a phosphatidylcholine (PC) head-
group at m/z 184.1 (C5H15NO4P

+) and with one molecule of
water (m/z 18.0) removed at m/z 166.1 (C5H13NO3P

+) were
observed36 (Fig. S1†). However, distinct differences in peak
intensities and patterns were observed in the mass spectra—
representing the abundance of ions at various mass-to-charge
(m/z) ratios—between untreated and surviving cancer cells
within the m/z 400–600 range (Fig. 2). The surviving cancer cells
exhibited prominent peaks corresponding to monoacylglycerol
(MAG) lipids in the m/z 300–350 range and diacylglycerol (DAG)
lipids in the m/z 500–600 range.12,37 In contrast, these lipid
patterns were absent in the spectra from untreated cancer cells.
This difference suggests potential alterations in lipid metabo-
lism, particularly in lipid signaling pathways, in the surviving
cancer cells.

In the negative ion mode, both untreated and surviving
cancer cells exhibited characteristic fatty acid peaks, including
FA (16 : 0) at m/z 255.2 (C16H31O2

−), FA (18 : 1) at m/z 281.2
(C18H33O2

−), and FA (18 : 0) at m/z 283.2 (C18H35O2
−).38,39 These

fatty acids are integral components of phospholipids that make
up the cellular membrane and lipid droplets within the cyto-
plasm. Only the surviving cancer cells showed peaks corre-
sponding to PC 16 : 0/18 : 1 at m/z 419.3 (C21H40PO6

−)40 and
epoxidized phosphatidylcholine (PC) 16 : 0/18 : 1 at m/z 473.2
(C29H45O5

−) and m/z 489.2 (C29H45O6
−).41 These specic phos-

pholipid peaks were absent in the untreated cancer cells, sug-
gesting that the surviving cells underwent lipid modications,
potentially related to stress response or adaptationmechanisms
following treatment. The presence of epoxidized PC may indi-
cate oxidative stress or altered phospholipid metabolism,42

which could be crucial for the survival and persistence of these
cells (Fig. 3).

Delayed extraction mode ToF-SIMS analysis

To ensure consistent analytical conditions across all ToF-SIMS
analyses, we employed delayed extraction mode for the
Anal. Methods
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Fig. 3 The overlay spectra of untreated cancer cells (blue) and surviving cancer cells (pink) in negative ion mode in the range of m/z 200–400
(upper panel) and 400–600 (lower panel).

Fig. 2 The overlay spectra of untreated cancer cells (blue) and surviving cancer cells (pink) in positive ion mode in the range of m/z 200–400
(upper panel) and 400–600 (lower panel).

Anal. Methods This journal is © The Royal Society of Chemistry 2025
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Fig. 4 The ToF-SIMS images from negative ion mode of a mixed of cells that are untreated (small) and surviving cancer cells (large): (A) total ion
and (B) total ion with four regions of interests (ROI1-4).
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investigation of both untreated and surviving cancer cells. By
seeding both cell types on the same coverslip (Fig. 4A), we
minimized variability in sample preparation and environmental
Fig. 5 Dimensionality reduction and discriminant analysis of negative
untreated and surviving cancer cells, (B) the nucleus and lipid droplets of
cells, the nucleus from surviving cancer cells, and lipid droplets from sur
surviving cancer cells, (E) the nucleus and lipid droplets of surviving cance
from surviving cancer cells, and lipid droplets from surviving cancer cell

This journal is © The Royal Society of Chemistry 2025
factors, thereby enhancing the reliability of our comparisons.
The analysis was conducted in negative ion mode, which is
optimal for detecting relevant fatty acid signals in cancer cells.43
spectra from cancer cells regions: PCA of negative spectra from (A)
surviving cancer cells, and (C) untreated cancer cells, surviving cancer
viving cancer cells. PLS-DA of negative spectra from (D) untreated and
r cells, and (F) untreated cancer cells, surviving cancer cells, the nucleus
s.

Anal. Methods
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For detailed analysis, we applied ROI extraction, selecting
specic regions within the image. We dened 30× 30 mm2 ROIs
for untreated (ROI 1) and surviving (ROI 2) cancer cells (Fig. 4B)
and performed PCA and PLS-DA on their negative ion spectra
using MATLAB.

The PCA and PLS-DA analysis using MATLAB revealed a clear
separation between untreated (ROI 2, Fig. 4B) and surviving (see
ROI 1, Fig. 4B) cancer cells (Fig. 5A and D). This separation
indicates that each cell type has its distinct chemical proles.
Further analysis was conducted on two key components within
the surviving cancer cells, which were identied as likely rep-
resenting the nucleus (ROI 3, Fig. 4B) and lipid droplets (ROI 4,
Fig. 4B). PCA and PLS-DA of these regions demonstrated clear
separation as well (Fig. 5B and E). This separation suggests
unique chemical compositions between the nucleus and lipid
droplets, potentially linked to their roles in therapeutic resis-
tance and cellular adaptation. To further validate and rene the
interpretation of these ndings using limited regions of
interest, we proceeded with multivariate statistical analysis
(MVSA) using spectra from the entire negative ion images.
Imaging MVSA of ToF-SIMS data

In this study, negative ion images of the mixed untreated and
surviving cancer cells sample from ToF-SIMS were analyzed
using MVSA via the SurfaceLab soware. As opposed to the ROI-
approach, MVSA analyses uses spectra from the entire image.
This data can be binned into factors that represents different
Fig. 6 The six factors (F1–F6) of PCA analysis from negative ion images

Anal. Methods
groups of molecules. Using this data, we rst applied PCA fol-
lowed by MCR. PCA with six factors (F1–F6) was initially per-
formed to explore potential differences between untreated and
surviving cancer cells. PCA was able to distinguish some
differences between the two cell types and identify distinctions
between components such as lipid droplets and the nucleus,
but it did not clearly separate the cytoplasm (Fig. 6). PCA is
inherently limited in its ability to classify overlapping chemical
proles, as its primary function is to reduce data dimensionality
rather than to specically separate chemical components.

In contrast, MCR with six factors provided a much clearer
separation, effectively distinguishing between untreated and
surviving cancer cells and resolving major components within
the surviving cells, including the cytoplasm, nucleus, and lipid
droplets (Fig. 7). MCR is specically developed to handle this
complexity by separating pure spectra and their associated
concentration proles. Indeed, MCR was able to decompose the
spectral data into F1, F3, and F5, represents distinct chemical
proles between these regions (Fig. 7).

From F1, F3, and F5 of the MCR analysis, we identied three
major components in the surviving cells. We examined the
peaks with the highest loadings (Table S1†) in each of these
factors to determine their potential to represent specic cell
structures: the nucleus (F1), lipid droplets (F3), and cytoplasm
(F5), respectively.

From F1, we saw the high loadings from phosphate groups at
m/z 62.9 (PO2

−), 78.9 (PO3
−), and 158.9 (P2O6H

−)44 and the
cytosine (N-base) at m/z 134.1 (C4H5N3O

−). Since phosphates
which untreated and surviving cancer cells are mixed.

This journal is © The Royal Society of Chemistry 2025
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Fig. 7 The six factors (F1–F6) of MCR analysis from negative ion images which untreated and surviving cancer cells are mixed.
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and nitrogenous bases are a major component of DNA and RNA
backbones,45 their presence is likely indicative of nucleotide
being detected within the nucleus.46

From F3, we found the loadings at m/z 45.0 (CH3NO
−), 100.0

(C4H6NO2
−) that typically correspond to a fragment from amino

acids.47 This could point to alterations in protein or amino acid
metabolism, which are commonly observed in cancer cells
undergoing stress or adapting to treatments.48 Loadings at m/z
59.0 (C2H3O2

−), 71.0 (C3H3O2
−), 73.0 (C3H5O2

−), and 87.0
(C4H7O2

−), that indicated carboxylate-containing molecules,
potentially from fatty acids or lipid degradation products. This
may reect the fragmentation of stored lipids, particularly from
fatty acids or glycerol-based lipids. Loading at m/z 113.0
(C5H5O4

−) corresponds to citrate fragment.49 Citrate metabolism
is oen dysregulated in cancer cells, which tend to exhibit altered
energy production pathways (e.g., the Warburg effect).50 In addi-
tion, citrate metabolism may be altered to meet the demands for
biosynthesis and rapid proliferation in cancer cells.

From F5, we saw high loading of m/z 26.0 (CN−) and 42.0
(CNO−). Molecules with these masses are oen detected in cell
and tissue samples,25 particularly in environments with rich
nitrogenous compounds. These molecules can originate from
amino acids, proteins, peptides, nucleic acids, or other
nitrogen-containing biomolecules commonly found in all part
of cells as the distribution in F2. We also found the loading at
m/z 97.0 (HSO4

−) which indicates sulfur-containing metabolites
within the cytoplasm.51 Moreover, there was the loading at m/z
94.9 (PO4

−) and at m/z 129.1 (C3H6PO4
−) in F4 which are oen
This journal is © The Royal Society of Chemistry 2025
from phospholipids from phospholipid metabolism. Phospho-
lipids are a major component of the cellular and organelle
membranes within the cytoplasm.52

The improved performance of MCR in comparison to PCA
can be attributed to several factors. While PCA identies vari-
ance in the data by capturing orthogonal components, it may
not always capture subtle or nonlinear patterns, especially when
the dataset involves overlapping chemical signals or complex
biological variations.53 MCR, however, is specically designed to
address such complexity by extracting pure spectra and
concentration proles, thereby minimizing residuals between
the original and reconstructed data.54 This capability allows
MCR to separate overlapping chemical proles effectively, even
in intricate environments, making it especially suitable for ToF-
SIMS imaging analysis of cells.55 This allows MCR to better
separate the molecular signatures of untreated and surviving
cancer cells, as well as the distinct components within the
surviving cells, such as the nucleus and lipid droplets (Fig. 8C).

The identication of lipids is particular interest since lipid
droplets have previously been associated to an increased
capacity to handle reactive oxygen species in surviving cancer
cells.31,33 However, lipid droplets may also confer an advantage
related to the diffusion of oxygen. Oxygen diffusion is inversely
correlated to distance, which means that diffusion of oxygen
into large surviving cells should be negatively affected as
compared to the rate in untreated cells. However, oxygen
diffuses faster in lipids than in aqueous solutions.56 We there-
fore ask if the presence of lipid droplets could facilitate intra-
Anal. Methods
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Fig. 8 Negative ion ToF-SIMS images of the mixed sample containing untreated and surviving cancer cells. (A) Total ion image, (B) PCA analysis,
and (C) MCR analysis showing the overlay of cytoplasm (red), nucleus (blue), and lipid droplets (red).
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cellular oxygen transport. To test this, we measured overall
oxygen consumption rates in the large surviving and in the
untreated cells. The data demonstrates that the larger cells
maintain a high respiration rate (ESI method and result in
Fig. S23†). Since a high respiration rate is maintained despite
the longer distance for oxygen diffusion in the large surviving
cells, this could point towards a role where lipid droplets
facilitate faster diffusion. If so, the distribution of lipid droplets
may aid these cells in their stress resistance.

In summary, the combined approach of ToF-SIMS and MCR
allows us to distinguish intra-cellular regions with increased
contents of phosphates, amino acids, lipids, and sulfur. We
interpret these regions to likely represent the nucleus (amino
acids and phosphates), the remnants of citric metabolism, and
lipid droplets. The distribution of droplets of lipids could
confer an advantage by facilitating faster diffusion rates of
oxygen and maintained aerobic metabolism.
Conclusion

This study provides valuable insights into the chemical alter-
ations that occur in cancer cells as they adapt to survive
following cisplatin treatment, specically through the distri-
bution of lipid droplets. Using ToF-SIMS imaging and multi-
variate analysis, we successfully detected distinct chemical
proles between untreated and surviving cancer cells. The study
highlights the strength of MCR in providing clear separation of
cells. These ndings have implications for the application of
ToF-SIMS in studying cancer biology and understanding
chemotherapy resistance. Future research should focus on
understanding the precise biochemical pathways involved in
lipid droplet formation, their role throughout different stages of
the cell cycle, and how this might contribute to increased
chemotherapy resistance and cancer cell aggressiveness.
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