CHALMERS

UNIVERSITY OF TECHNOLOGY

FedGT: Identification of Malicious Clients in Federated Learning with
Secure Aggregation

Downloaded from: https://research.chalmers.se, 2025-04-16 22:13 UTC

Citation for the original published paper (version of record):

Xhemrishi, M., Ostman, J., Wachter-Zeh, A. et al (2025). FedGT: Identification of Malicious Clients
in Federated Learning with Secure Aggregation. IEEE Transactions on Information Forensics and
Security, 20: 2577-2592. http://dx.doi.org/10.1109/TIFS.2025.3539964

N.B. When citing this work, cite the original published paper.

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

2577

FedGT: Identification of Malicious Clients in
Federated Learning With Secure Aggregation

Marvin Xhemrishi"”, Graduate Student Member, IEEE, Johan Ostman®,
Antonia Wachter-Zeh", Senior Member, IEEE, and Alexandre Graell i Amat", Senior Member, IEEE

Abstract—Federated learning (FL) has emerged as a promising
approach for collaboratively training machine learning mod-
els while preserving data privacy. Due to its decentralized
nature, FL is vulnerable to poisoning attacks, where malicious
clients compromise the global model through altered data or
updates. Identifying such malicious clients is crucial for ensuring
the integrity of FL systems. This task becomes particularly
challenging under privacy-enhancing protocols such as secure
aggregation, creating a fundamental trade-off between privacy
and security. In this work, we propose FedGT, a novel framework
designed to identify malicious clients in FL. with secure aggrega-
tion while preserving privacy. Drawing inspiration from group
testing, FedGT leverages overlapping groups of clients to identify
the presence of malicious clients via a decoding operation. The
clients identified as malicious are then removed from the model
training, which is performed over the remaining clients. By choos-
ing the size, number, and overlap between groups, FedGT strikes
a balance between privacy and security. Specifically, the server
learns the aggregated model of the clients in each group—vanilla
federated learning and secure aggregation correspond to the
extreme cases of FedGT with group size equal to one and the
total number of clients, respectively. The effectiveness of FedGT
is demonstrated through extensive experiments on three datasets
in a cross-silo setting under different data-poisoning attacks.
These experiments showcase FedGT’s ability to identify malicious
clients, resulting in high model utility. We further show that
FedGT significantly outperforms the private robust aggregation
approach based on the geometric median recently proposed by
Pillutla et al. and the robust aggregation technique Multi-Krum
in multiple settings.

Index Terms—Al security, federated learning, group testing,
malicious clients, poisoning attacks, privacy, secure aggregation,
security.
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I. INTRODUCTION
EDERATED learning (FL) [1] is a distributed machine
learning paradigm that enables multiple devices (clients)
to collaboratively train a model while preserving data privacy
by sharing only local model updates instead of raw data. This
approach has gained attention due to its potential to safeguard
sensitive client data.

In its original form, FL is susceptible to model-inversion
attacks [2], [3], which allow the central server to infer clients’
data from their local model updates. As demonstrated in [4],
such attacks can be mitigated by employing secure aggregation
protocols [5], [6]. These protocols guarantee that the server
only observes the aggregate of the client models instead of
individual models. However, they also limit the server’s ability
to detect malicious or faulty updates, potentially enabling
adversarial behavior to go undetected [7].

A salient problem in FL is poisoning attacks [8], where
malicious and/or faulty clients corrupt the jointly-trained
global model by introducing mislabeled training data (data
poisoning) [9], [10], or by modifying local model updates
(model poisoning) [11]. Poisoning attacks pose a serious secu-
rity risk for critical applications. Defensive measures against
these threats generally fall into two categories: robust aggre-
gation and anomaly detection. Robust aggregation techniques
[12], [13], [14] are reactive approaches designed to mitigate
the effect of poisoned models, whereas anomaly detection
techniques are inherently proactive and aim to identify and
eliminate corrupted models [15], [16], [17]. Robust aggrega-
tion techniques can introduce bias, especially when clients
have heterogeneous data [15], and their effectiveness tends
to diminish with increasing number of malicious clients [18].
Moreover, a recurring issue with defense mechanisms is their
reliance on accessing individual client models, leaving clients
vulnerable to model-inversion attacks. Thus, a fundamental
trade-off emerges between privacy and security, where privacy-
preserving techniques aim to obscure individual client updates,
while security-focused schemes seek to identify anomalies by
inspecting these updates [19].

In this work, we tackle this privacy-security trade-off by
addressing the critical question: How can poisoning detection
schemes be designed to effectively identify malicious clients
in a privacy-preserving manner? Our main contributions are
as follows:

e We propose FedGT, a novel framework for identifying

malicious clients in FL with secure aggregation. Our

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0001-5341-9954
https://orcid.org/0000-0003-4138-0508
https://orcid.org/0000-0002-5174-1947
https://orcid.org/0000-0002-5725-869X

2578

framework is inspired by group testing [20], a paradigm
to identify defective items in a large population that sig-
nificantly reduces the required number of tests compared
to the naive approach of testing each item individually.
FedGT’s key idea is to group clients into overlapping
groups. For each group, the central server observes the
aggregated model of the clients and runs a suitable
test to identify the presence of malicious clients in the
group. The malicious clients are then identified through
a decoding operation at the server, allowing for their
removal from the training of the global model.

e We introduce two distinct variants of FedGT, named
FedGT-n, and FedGT-A, that differ in the decoding rule
used in the inference process. FedGT-n, relies solely
on the estimated number of malicious clients, whereas
FedGT-A employs a Neyman-Pearson-based inference
method. While FedGT-n, minimizes false alarms at
the cost of higher misdetections, FedGT-A prioritizes
reducing misdetections with a higher tolerance for false
alarms. Notably, both versions are hyperparameter-free
and make no assumptions on the nature of the adversaries.

e FedGT trades-off client’s data privacy, provided by secure
aggregation, with security, understood here as the ability
to identify malicious clients. It encompasses both non-
private vanilla FL. and privacy-oriented methods, e.g.,
secure aggregation, by selecting group sizes of one and
the total number of clients, respectively. However, by
allowing group sizes between these two extremes, FedGT
strikes a balance between privacy and security, i.e.,
improved identification capability comes at the cost of
secure aggregation involving fewer clients. We quantify
the privacy implications of a given assignment matrix and
devise an algorithm to group clients in a way that ensures
privacy is not violated.

e We showcase FedGT’s effectiveness in identifying mali-
cious clients without a significant impact on model utility
through experiments on the MNIST, CIFAR-10, and
ISIC2019 datasets under both targeted and untargeted
offline data-poisoning attacks. Our focus is specifically
on the cross-silo scenario, wherein the number of clients
is moderate (up to 50 [21]) and offline data-poisoning is
the predominant attack vector [22]. Real-world examples
of this critical setting include collaborations among banks
developing anti-money laundering models or hospitals co-
training models for medical diagnosis [23], [24].

Organization: The paper is organized as follows. In Sec-

tion II, we discuss the related work and Section III sets
the notation and discusses the preliminaries. We introduce
our framework and its ingredients in Section IV. Section V
describes two different strategies of inferring the identity of
malicious clients. In Section VI we describe the experimental
setup and present the empirical results. Section VII concludes
the paper and discusses the limitations of this work.

II. RELATED WORK

To the best of our knowledge, only the works [25], [26],
[27] address resiliency against poisoning attacks in conjunc-
tion with secure aggregation. The work [25] is the first
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single-server solution to account for both privacy and security
in FL. The protocol is based on dropout-resilient secure
aggregation, where the server utilizes secret sharing to first
obtain the pairwise Euclidean distance between client updates
and then selects which clients to aggregate by means of
multi-Krum [12]. However, it is not clear whether pairwise
differences can leak additional information. In [26], a robust
aggregation protocol, dubbed RFA, is proposed. This protocol
is based on an approximate geometric median, computed by
means of secure aggregation. However, RFA lacks the capabil-
ity to identify malicious clients and is known to be inferior to
other robust aggregation techniques, especially when dealing
with heterogeneous client data [28]. The work [27] presents
a privacy-preserving tree-based robust aggregation method.
In particular, each leaf in the tree consists of a subgroup
of clients who securely aggregate their local models. To
achieve privacy between subgroups, masking is done on all
but the last parameters in the aggregated models. By using
the Euclidean distance between the unmasked parameters and
the corresponding parameters in the global model, an outlier
removal scheme, based on variance thresholding, is used
iteratively to determine what groups should contribute to the
global model. The approach in [27] is the method closest to
ours as it relies on dividing clients into subgroups and testing
the group aggregates. However, contrary to FedGT, it is unable
to identify malicious clients and leverage the information of
overlapping groups.

III. PRELIMINARIES
A. Notation

We use lowercase bold letters and uppercase bold letters
to denote row vectors and matrices, respectively, e.g.,  and
X. The i-th element of vector x is denoted as x;. We use
calligraphic letters to denote sets, e.g., X'. For an integer x, we
use the notation [z] to denote the set of all positive integers
less than equal to x, ie., [r] = {1,2,...,2}. The empty set
is denoted by &. N denotes the set of natural numbers. The
logical disjunction operator is represented by V and the logical
conjunction operator by A. For a matrix X and a vector
@, we use the notation & V X' to denote a matrix-vector
operator, similar to the multiplication, where the dot product
is performed using the logical conjunction and the addition is
computed using the logical disjunction. Finally, we denote by
wy(x) the Hamming weight of vector @, i.e., the number of
nonzero entries of . For convenience, the key variables used
throughout the paper are summarized in Table I.

B. Group Testing

Group testing [20], [29] encompasses a family of test
schemes aiming at identifying items affected by some partic-
ular condition, usually called defective items (e.g., individuals
infected by a virus), among a large population of # items (e.g.,
all individuals). The overarching goal of group testing is to
design a testing scheme such that the number of tests needed
to identify the defective items is minimized. The principle
behind group testing is that, if the number of defective items
is significantly smaller than n, then negative tests on groups (or
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TABLE I
NOTATIONS
Notation Representation
n Total number of clients
Nm Total number of malicious clients
m Total number of groups
Pi Set of the members of the i-th group
d The defective vector realization
d Estimated defective vector
M The set of malicious clients
d; The status (malicious “1” or benign “0”) of client 4
A The assignment matrix for group testing
s The syndrome vector (computed as in (1))
Si The status of group 7 (“1” contaminated group, “0” otherwise)
t The test vector
t; The test value for group 4,7 € [m)]
1) The prevalence
0 The estimated value for prevalence
nax The maximum number of malicious clients for FedGT as in (4)
Tom The estimated number of malicious clients by FedGT as in (17)
K Probability constraint of having only malicious groups
Pup The probability of misdetection (see (2))
Pea The probability of false alarms (see (3))
B Weighting parameter between Pyp and Pra
A Neyman-Pearson thresholding of the a posteriori LLR
A Neyman-Pearson thresholding of the LLR (see (7))
A (nm) The values of A used for different 7oy, by FedGT-A (see (16))
Q(t]s) Binary model for the test noise
P Crossover probability of a binary symmetric channel
Kkmax Maximum number of clusters computable as in (5)
s(k) Silhouette score for a clustering outcome with & clusters
dy Dunn index for a clustering outcome with k clusters
gthres Threshold on the silhoutte score
k Estimated number of clusters as in (6)
v Vector of utility metric (e.g. accuracy, recall) per group
P Vector of the first principal component representation per group
L Label of a data point
Ne Total number of classes
a Parameter for the Dirichlet distribution that controls the heterogenity

pools) of items can spare many individual tests. Following this
principle, items are grouped into overlapping groups, and tests
are performed on each group. Based on the test results on the
groups, the defective items can then be identified—in general
with some probability of error—via a decoding operation.

C. Threat Model

We consider a cross-silo scenario with an honest-but-curious
server and n clients out of which ny are compromised
(referred to as malicious clients). The number of malicious
clients and their identities are unknown to the server.

A client may be compromised due to hardware malfunction
or adversarial corruption. In the latter case, we assume that
the malicious clients can collude and perform coordinated
attacks against the global model. In this paper, we focus
on offline' data-poisoning attacks, which represent the most
realistic type of attack in cross-silo FL [22]. In cross-silo FL,
clients are typically large established entities, making offline
attacks—where erroneous data is used unintentionally or due
to malicious tampering—the primary concern. Online attacks,
like model poisoning or online data poisoning, are considered
less feasible in this context since adversaries are unlikely to
gain control over the client behavior during training [22].

IWe use the terminology “online” and “offline” attacks to describe the
behavior of malicious clients. Offline attacks occur before training begins,
where malicious clients manipulate the static dataset used for training. In
contrast, online attacks occur progressively during the training process, where

malicious clients continuously introduce poisoned data, dynamically refining
their attack strategy.
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Fig. 1. The bipartite graph of the matrix A in Example 1. The circles represent
variable nodes and the squares represent check nodes.

IV. FEDGT: GROUP TESTING FOR FLL WITH SECURE
AGGREGATION

We consider a population of n clients, ny, of which are
malicious. We define the defective vector d = (dy,da, .. .,d,)
with entries representing whether a client j is malicious (d; =
1) or not (d; = 0). It follows that Z?zl d; = nm. Note that
d is unknown, i.e., we do not know a priori which clients are
the malicious ones.

Borrowing ideas from group testing [20], the n clients are
grouped into m overlapping fest groups. We denote by P; the
set of client indices belonging to test group ¢ € [m], i.e., if
client j is a member of test group i, then j € P;.

Definition 1 (Assignment Matrix): The assignment of clients
to test groups can be described by an assignment matrix A =
(ai ), t € [m], j € [n], where a; ; = 1 if client j participates
in test group i and a; ; = 0 otherwise.

The assignment of clients to test groups, i.e., matrix A,
can also be conveniently represented by a bipartite graph
consisting of n variable nodes (VNs) vy, ..., V,, corresponding
to the n clients, and m constraint nodes (CNs) Cq,...,Cpm,
corresponding to the m test groups. An edge between VN v;
and CN ¢; is then drawn if client j participates in test group
i, i.e, if a;; = 1. Matrix A—and hence the corresponding
bipartite graph—is a design choice that may be decided offline,
analogous to the model architecture, and shared with the
clients for transparency.

Example 1: The bipartite graph corresponding to a scenario
with 5 clients and 2 test groups with assignment matrix

1 1.0 1 0
A‘(01101>

is depicted in Fig. 1.

In FedGT, for each test group, a secure aggregation mech-
anism is employed to reveal only the aggregate of the client
models in the test group to the server. Let u;, i € [m], be
the aggregate model of test group ¢. For each test group i,
the central server applies a binary test on the corresponding
aggregate model, t: u; — {0,1}. Let ¢; = t(u;) € {0,1} be
the result of the test for test group i, where ¢; = 1 if the test is
positive, i.e., there is at least a malicious client in the group,
and ¢; = 0 if the test is negative, i.e., no malicious clients are
in the group. We collect the result of the m tests in the binary
vector t = (t1,ta,. .., tm).

We propose a suitable test in Section IV-C. However, we
remark that the proposed framework is general and can be
applied to any test on the test group aggregates.

We define the syndrome vector s = (s1,..., Sy, ), where
s; = 1 if at least one client participating in test group i is
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malicious and s; = 0 if no client participating in test group i
is malicious, i.e.,

8; = \/dj and s=dv AT, (D
JEP;

For perfect (non-noisy) test results, it follows that ¢ = s.
However, note that the result of a test may be erroneous, i.e.,
the result of the test may be ¢; = 1 even if no malicious clients
are present (i.e., s; = 0) or ¢; = 0 even if malicious clients
are present (i.e., s; = 1). In general, the (noisy) test vector ¢
is statistically dependent on the syndrome vector s according
to an (unknown) probability distribution Q(%|s).

Given the test results ¢ and the assignment matrix A, the
goal of FedGT is to identify the malicious clients, i.e., infer
the defective vector d. The design of the assignment matrix
A and the corresponding inference problem is akin to an
error-correction coding problem, where the assignment matrix
A can seen as the parity-check matrix of a code, and the
inference problem corresponds to a decoding operation based
on A and t. Thus, a suitable choice for A is the parity-
check matrix of a powerful error-correcting code, i.e., with
good distance properties. Furthermore, d can be inferred by
applying conventional decoding techniques. We denote by
d= (cfl, cee czn) the estimated defective vector provided by
the decoding operation, and define M = {i : d; = 1}.
Once d has been obtained, clients 7 € M are excluded
from the training and the server aggregates the models of
the remaining—flagged non-malicious—clients by means of
secure aggregation.

The performance of FedGT, measured in terms of the utility
of the model, is affected by two quantities: the misdetection
probability, i.e., the probability that a malicious client is
flagged as non-malicious, and the false-alarm probability,
i.e., the probability that a non-malicious client is flagged as
malicious, defined as?

1 R
B éfEPd,-: di=1), 2
MD 02 r( 0] ) 2
1 n R
A
PFA:ﬁizélpr(dl:Hdl:O) (3)

A high misdetection probability will result in many malicious
clients poisoning the global model, hence yielding poor utility,
while a high false-alarm probability will result in exclud-
ing many non-malicious clients from the training, thereby
also impairing the utility. The misdetection and false-alarm
probabilities depend in turn on the assignment matrix A, the
decoding strategy, and the nature of the test performed. We
discuss the decoding strategy to estimate d in Section V.

A. Privacy-Security Trade-off

Vanilla FL [1] and FL with full secure aggregation [5] can
be seen as the two extreme cases of FedGT, corresponding to
n (non-overlapping) groups and a single group with n clients,
respectively. In vanilla FL, tests on individual models can be
conducted, facilitating the identification of malicious clients.

2As in other works, we use the normalization factor 1 /n. Hence, Pyp and
Pra are not strictly probabilities, as their values do not lie between 0 and 1.
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However, this comes at the expense of clients’ privacy. In
contrast, full secure aggregation provides privacy by enabling
the server to observe only the aggregate of the n models, but
it does not permit the identification of malicious clients.
Under FedGT, the server observes m aggregated models
Uy U, With w; = 350 aj j¢; and ¢; being the local
model of client j. The privacy of the clients increases with
the number of models aggregated [30]. Hence, FedGT trades
privacy for providing security, i.e., identification of malicious
clients. Furthermore, there might be additional privacy loss
due to the aggregates being from overlapping groups. This
loss depends on the assignment matrix A and is agnostic to
the number of malicious clients participating in the training.
The privacy of FedGT is given in Proposition 1. We write the
proposition assuming the malicious clients follow the threat
model as in Section III-C, i.e., the malicious clients perform
offline attacks and cannot control the client’s behavior during
the training, which is a realistic assumption for cross-silo FL.

Proposition 1: Let the assignment of clients to test groups
be defined by assignment matrix A and let r be the smallest
non-zero Hamming weight of the vectors in the row span of A
(in the coding theory jargon, the minimum Hamming distance
of the code generated by A as its generator matrix). Then
FedGT achieves the same privacy as a secure aggregation
scheme with r clients.

Proof: Due to the overlapping groups arising from matrix A,
there might exist a vector b € R™ such that > | b;u; = ¢,
for some j € [n], or equivalently bA = e;, where e; is the j-th
unit vector. This will occur if e; € Sp,(A), where Sp,(A) is
the row span of A. Generally speaking, for a subset R C [n]
of cardinality r, if ), 5 f.e, € Sp,(A) where f, # 0, there
exists a vector b" such that >/ bju; = > .er fic.. Thus,
we conclude that FedGT achieves the same privacy as a secure
aggregation scheme with r < n clients, where 7 is the smallest
non-zero cardinality of the subset R. In other words, r is the
smallest non-zero Hamming weight of the vectors in the row
span of A. ]

Note that no aggregation of less than r client models can
be revealed to the server. Aggregation of > 1 client models
has been shown to effectively mitigate model-inversion attacks
from the server [4, Table 10].

B. The Choice of Assignment Matrix A

The assignment matrix A should be carefully chosen to
balance the trade-off between privacy and security: To improve
the identification of malicious clients, one should choose A as
the parity-check matrix of an error-correcting code with good
distance properties, while to achieve a high privacy level, A
should correspond to the generator matrix of a code of large
minimum Hamming distance.

On the other hand, for FedGT to effectively detect malicious
clients with a low probability of false alarm, it is essential that
some group tests yield negative results: If all tests are positive,
ie., t =1, FedGT will flag all clients as malicious, resulting
in the highest probability of false alarm of Prp = ===,

As the number of malicious clients grows, the likelihood of
observing only positive test outcomes, i.e., ¢ = 1, increases.
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Furthermore, the choice of A highly impacts the probability
of having all groups contaminated. More precisely, the proba-
bility of having all groups contaminated is fully determined by
A and np. For small matrices A, this probability can be com-
puted exactly, while for larger ones, it can be approximated
using a Monte Carlo approach.

The assignment matrix A should be chosen such that the
probability of having all groups contaminated is small (note
that ny, is out the designer’s control). Alternatively, one can
impose a constraint on the probability of all groups being
contaminated and find the assignment matrix A that supports
the maximum number of malicious clients, n;?*, such that
this constraint is satisfied. The value nj®* is intrinsic to A
and can be obtained offline, as outlined next.

Consider the best-case scenario of noiseless tests, i.e., t =
s and let the ny malicious clients be assigned uniformly at
random. Let S; be the random variable corresponding to the
syndrome of the i-th group (corresponding also to the test
outcome of the i-th group for noiseless group testing) and
S = (51,...,Sm) (the corresponding realizations are defined
in (1)). Then, for a fixed assignment matrix A, we can solve

nm™* = arg max {Pr(S = 1|Ny = nm) < &}, )
Nm
where Ny, is the random variable that represents the number
of malicious clients and ~ denotes the probability constraint
of all groups being contaminated. This approach provides a
systematic procedure of identifying assignment matrices that
are suitable for a given scenario.

Algorithm 1 The Search for the Assignment Matrix A
Input: n € N, desired privacy level r e N, r < n,
k €[0,1], A={A, Ay, ---}: set of parity-check
matrices of codes of length n.
Output: A or None
A «— @;
foreach A; € A do
pi <= MiNyeSp (A;).x£0 WHX) ;
if p; < r then
continue ; /+ Lower privacy than
required */
else
| A <~ A U{AL

end

end
if | A’|= 0 then
| A < None ;
else
A <« argmaxy, c 4 {n%‘”‘(A,-)} ;
np™(A;) as in (4)x/
end
return A;

/* No possible Ax/

/* Compute

In Algorithm 1, we provide a simple way to find the
assignment matrix A for the grouping of clients. The algorithm
takes as input the number of clients n, the desired privacy
level (equivalent to the privacy provided by secure aggregation
with r clients), the probability constraint x, and a set of
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assignment matrices corresponding to well-established error-
correcting codes (set .A). This set can be taken from online
databases [31], [32], [33]. The search in Algorithm 1 is
tailored toward a fixed privacy constraint and searches for the
assignment matrix in 4 that maximizes np**. We note that
the search could be reversed, i.e., a minimum requirement for
nm®* can be imposed and the search would find the parity-
check matrix yielding the highest privacy. Moreover, also a
hybrid search could be used, which is definitely application
specific. However, it is important to note that the parity-check
matrices of the codes are easily available and the search could
be tailored to any specific application.

C. Test Design

FedGT can be applied to any test on the test group aggre-
gates. However, it is essential to design an accurate test, as
the performance of FedGT is impaired by the noisiness of the
test. In this section, we propose a test that, as shown in the
numerical results section, yields low error rate.

To begin, we make the observation that the utility of an
aggregated model tends to decrease as it gets contaminated
by a larger number of poisoned models. Moreover, the work
in [9] shows that when using dimensionality reduction tools
like principal component analysis (PCA), the local models of
the malicious clients tend to cluster around similar values,
even in the first component.> Empirically, we observed that
the findings from [9] apply also to our group testing scenario:
the aggregated models of test groups with the same number
of malicious clients tend to cluster around the same value in
the first component.

Motivated by this observation, we propose a testing strategy
in which we first cluster the test groups (i.e., the corresponding
aggregated models) into clusters based on the number of
malicious clients involved in the test group. Then, for each
cluster, we compute the average utility of the aggregated
models using a small validation dataset at the server (a minor
assumption as motivated in Section VI), and finally, we declare
the result of the test for the test groups within the cluster with
highest average utility as negative ({ = 0) and the result of the
test for all other test groups as positive (¢t = 1). The details of
the proposed testing strategy are outlined below.

Let v; denote a measured utility metric of the aggregated
model of test group i evaluated on the validation dataset,
and let v = (v1,v2,...,0y). Also, let p; be the first prin-
cipal component representation of the aggregated model of
test group i evaluated on the fully-connected layer, and let
p=(p1,...,pm). We form m points ¢; = (v;, p;) and cluster
them using the k-means algorithm [34]. Since k-means requires
the number of clusters k, we compute the maximum possible
number of clusters,

kmax = min {m7 m[ax] |P;| + 1} , 5)
1em

and perform k-means clustering for all k € [kpyax]-
The next step is to determine the optimal number of clusters.
Two popular metrics for this purpose are the Silhouette score

3The first component captures the highest variance of the original observa-
tions (models).
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[35] and the Dunn index [36]. In scenarios like ours, where the
number of points is relatively small compared to the number
of clusters, the Dunn index tends to perform better than the
Silhouette score. However, the Dunn index is not effective
at determining if the data should be clustered into a single
cluster. To address these limitations, we propose a combined
approach: first, we use the Silhouette score to assess whether
the data should be clustered into one or several clusters. If
multiple clusters are indicated, we then use the Dunn index to
determine the precise number of clusters.

For a data point ¢; in cluster C,, the Silhouette score is
defined as

bi —a;
max{ai, bz} ’

0, ICu|=1,

ICul> 1,
S; =

where b; is the smallest mean distance of ¢; to all points in
any other cluster,

. 1
b, = min —
u’ #u
c; e€C/

|Cu’|

and a; is the mean distance of c; to all other points in the

same cluster,
1
c; €Cy,j#1

2
lei — el -

For each k, the Silhouette score of the corresponding clustering
result, denoted as s(’“), is then the average of the individual
Silhouette scores, i.e.,

1
(k) — — E 4
s\ = .
m S
i€[m]

The Dunn index [36] is defined as

i A _ a2
min G — €
i€ (k] jE[k]:i#] lei =<l

dk = 2
max max |[¢; — ;5
u€lk] ci,c;€Cy
where ¢; denotes the center point of cluster C;.
Based on the Silhouette score and the Dunn index, we
determine the number of clusters as

k = arg max{d; }1{Smax > 8™} 4+ 1{Smax < ST}, (6)
i€ k]

where Syax = maxyep,...) ). That is, we first threshold
the Silhouette score to decide whether the datapoints {c;}
should be clustered into one or several clusters and, if multiple
clusters are suggested, we identify the precise number of
clusters using the Dunn index (selecting the number of clusters
that maximizes the Dunn index).

We use the outcome of the clustering to determine the test
result for each test group. Note that each cluster corresponds to
a different number of malicious clients. In this paper, however,
we consider binary test results, i.e., for a given test group
the test is positive (t = 1) if the test determines that there
is at least one malicious client in the group and the test is
negative (¢ = 0) if there is none. Hence, we only need to
distinguish between clusters corresponding to test groups with
no malicious clients and clusters corresponding to test groups
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with malicious clients. To this aim, for every cluster C;, i € [£],

we compute the average utility as o; = —— > wv; and
‘C7| jic; €Cy
apply the decision rule
{0 j: c; € C, _
= . , where ¢ = arg max v; ,
1 j:c; ¢C ic[k]

i.e., our test strategy flags all test groups within the cluster
with highest utility as benign (¢ = 0) and all other test groups
as containing malicious clients (t = 1).

D. Communication Cost

FedGT introduces a communication overhead only in the
round(s) where group testing is performed. Considering a
single-round of FedGT, which is the setting of our experi-
ments, the overall communication cost of the FL consists of:

e Before group testing: Number of communication
rounds X communication complexity of secure aggrega-
tion with n clients.

e Group testing round: m x communication complexity of
secure aggregation with max;e,,,)|P;| clients (maximum
size of groups).

e After group testing: Number of rounds x communi-
cation complexity of secure aggregation with n — |M|
clients (number of clients classified as benign from the
group testing).

The overall communication cost heavily depends on the
scheme used for secure aggregation. In [37, Table I], the
communication cost for different secure aggregation schemes
is tabulated. For example, LightSecAgg [38] has a total
communication complexity per round of O(n(C+1)), where C
is the model size. In this case, over K training rounds, FedGT
yields a total communication complexity of O((C +1)(nK +
mmax;e[m]|P;|) where we have assumed M = @, the worst-
case scenario from a communication perspective.

V. DECODING: INFERRING THE DEFECTIVE VECTOR d

Given the test results ¢ and the assignment matrix A, FedGT
estimates the defective vector d. In this section, we present two
decoding strategies based on probabilistic decision metrics to
estimate the defective vector d.

A. Strategy 1: Neyman-Pearson Based Inference

In our first strategy, we consider optimal inference in a
Neyman-Pearson sense, which prescribes for some A’ > 1

czi:{o
1

The Neyman-Pearson criterion can be rewritten in terms of the
log-likelihood ratio (LLR) L; = log(Pr(t|d; = 0)/ Pr(t|d; =

1)) as
. if L. A
g =0 "> %)
1 if Li<A,

if Pr(t|d; = 0) > Pr(t|d; = 1)A’
if Pr(t|d; = 0) < Pr(t|d; = 1)A”.

where A = log(A’). Further, we can write the LLR L; as
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1-6
IR o (5 ) | ©)

where § is the prevalence of malicious clients in the population
of n clients, i.e., the probability of a client being malicious,
d = Pr(d; = 1). In a frequentist approach to probability,
d = nm/n. Using (8), the Neyman-Pearson criterion in (7)

can be rewritten in terms of the a posteriori LLR Lf\PP as
R 0 if LAPP > A
di=4 (10)
1 if LS <A,
where
1-9
A=A +log () . (11)

In general, if A increases, then Pra increases and Pyp
decreases. Note that A depends on the prevalence, i.e., the
number of malicious clients ny, which is in general not
known. In the following, we provide the means to estimate
the number of malicious clients 7.

1) Estimation of the Number of Malicious Clients: For
a given nym € [nm**] U {0}, we consider all patterns of
nm malicious clients and define Z as the random variable
representing the number of zero syndromes, i.e.,

Z:i]l{&; =0}, (12)
i=1
where 1{-} is the indicator function. Also, define
z=§m:]1{si:0} (13)
i=1
and -
i=> 1{t;=0}. (14)
i=1

Note that, for a noiseless test, Z = z.

The decoder has the vector of test results ¢ at its disposal.
This information can be used to estimate n,, via the maximum
likelihood criterion as

fim = arg max Pr(Z = z|Nm = nm) . (15)

Nm
The likelihood Pr(Z = z|Nm = nm) can be computed
exactly for small enough assignment matrices A. Note that
the accuracy of the estimate is expected to deteriorate with
increasing test noise.

We use the estimate 7y, to estimate the prevalence as 6=
fim/n. The estimated prevalence § can then be used in (11) to
obtain A. However, one must still choose A. To this end, we
consider an ideal setting, i.e., t = s and iy = nm, and find

A(nm) = arggnin {E[BPup + (1 — 8)Pra]},nm €

[nm™]

(16)
where § € [0, 1] weights between false alarm and misdetection
and their dependency on A is implicit. The expectation is with
respect to the ny malicious clients being sampled uniformly
at random and can be computed via Monte-Carlo estimation.
Notably, (16) can be solved offline. During decoding, we set
A = A(fm) + log (17_5
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Hereafter, we refer to FedGT with decoding strategy 1 as
FedGT-A. We remark that the number of clients flagged as
malicious by FedGT-A may differ from the estimated value
fim, 1.€., WH (&) is not necessarily equal to npm.

B. Strategy 2: Flagging nm Clients

We propose an alternative strategy to infer the defective
vector d by relying entirely on the estimated number of
malicious clients ny,. This strategy is based on the observation
that the a posteriori LLRs LAPP indicate the likelihood of a
client being benign (see (8)), with higher values indicating to
a more confident guess. Accordingly, Strategy 2 declares the
A clients with smallest LAPP as malicious and the remaining

clients as benign.
Let L*P = LAPP) be the vector con-
~APP

taining the a posteriori LLRs for all clients and L =
(LAPP LAPP . L2PP) be a sorted version of LAPP w1th
LLRs ordered in ascending order, i.e., LAF>P > LAPP forj > k.
For an estimated number of malicious chents Tim, we define
the decision rule as

APP T APP
(LAPP, LA

if 7€ {il,ig,...,

i)t i }
"0 otherwise,

a7

where {i1,12,...,i5,} is the set of the indices of the 7im
smallest elements in LAPP. Note that using this decision
strategy, contrary to FedGT-A, the number of nonzero entries
in d is always 7, i.e., Wy (d) = fim. Henceforth, we refer to
FedGT with decoding strategy 2 as FedGT-7in,.

Both FedGT-A and FedGT-nnm, require the a posteriori
LLRs Lf\PP. For not-too-large matrices A, they can be com-
puted efficiently via the forward-backward algorithm [39],
which exploits the trellis representation of the assignment
matrix A. For large matrices A, the computation of the a
posteriori LLRs is not feasible, and one needs to resort to
suboptimal decoding strategies, e.g. belief propagation [40].

Given our focus on the cross-silo setting, where the number
of clients is limited, we next present how to obtain the a poste-
riori LLRs for this setting using the trellis representation of the
assignment matrix A and the forward-backward algorithm. In
Section V-C, we describe how to obtain the trellis diagram for
a given assignment matrix A, and in Section V-D, we discuss
the forward-backward algorithm to compute the a posteriori
LLRs to infer d.

C. Trellis Representation of Assignment Matrix A

In this section, we describe the trellis representation cor-
responding to assignment matrix A, which can be used to
compute the a posteriori LLRs as described in Section V-D.
The trellis representation was originally introduced for linear
block codes in [41] and applied to group testing in [42].

For a given defective vector d (not necessarily the true one),
define the syndrome vector 3 = (31,. .., 8,), where 5; is given
by 3; =V, jeps d The syndrome vector can be written as a
function of the defective vector d and the assignment matrix as
3 =dVA". Note that several defective vectors are compatible
with a given syndrome s. Let D be the set of all possible
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Fig. 2. Trellis representation of matrix A in Example 1. The dashed edges
correspond to the symbol “0”, while the solid edges correspond to the
symbol “1”.

defective vectors, i.e., all binary tuples of length n. We denote
by D; the set of defective vectors compatible with syndrome
vector s, i.e., Dz = {[i €eD:dVA = 3}

Let a; be the j-th column of matrix A. The syndrome
corresponding to defective vector d can then be rewritten
as 3 = \/_,(d; A a]). This equation naturally leads to a
trellis representation of the assignment matrix A as explained
next. A trellis is a graphical way to represent matrix A,
consisting of a collection of nodes connected by edges. The
trellis corresponding to matrix A in Example 1 is depicted in
Fig. 2. Horizontally, the nodes, called trellis states, are grouped
into sets indexed by parameter ¢ € {0,...,n}, referred to as
the trellis depth.

Let 3, be the partial syndrome vector at trellis depth ¢ € [n]
corresponding to d, given as 5, = \/1 1(al Aal). Tt is easy to
see that S, can be obtained from $,_1 as §; = S,_ 1\/(dg/\az)
with §y being the all-zero vector. The trellis representation
is such that each state in the trellis represents a particular
partial syndrome. The trellis is then constructed as follows: At
trellis depth £ = 0 there is a single trellis state corresponding
to 8p. At trellis depth ¢ € [n], the trellis states correspond
to all possible partial syndrome vectors $, for all possible
partial syndrome vectors (dy,...,ds), with d; € {0,1}. For
example, at trellis depth £ =1 there are only two trellis states,
correspondmg to partial syndromes 0Aal =(0,...,0) and
1A al = (al‘,l,.. alvm) fOI' d1 = 0 and Jl = 1,
respectively. Note that at trellis depth ¢ = n, there are
2™ trellis states, corresponding to all possible syndromes
s. For simplicity, we label the trellis state corresponding to
partial syndrome vector 8¢ = (sg1,. .., Se,m) by its decimal
representation » ., 5,2 1. Finally, an edge from the node
at trellis depth ¢ corresponding to partial syndrome S, to the
node at trellis depth ¢ + 1 correspondlng to partial syndrome
Sp1q is drawn if §p1q = Se\/(de+1/\ag+1) with dgy1 € {0,1}.
The edge is labeled by the value of d41 enabling the transition
between Sy and Sy 1.

Example 2: For the trellis of Fig. 2, corresponding to
the assignment matrix A in Example 1 with n = 5 nodes
and m = 2 tests, the number of trellis states at trellis
depth ¢ = 5 is 22 = 4, ie., all length-2 binary vectors
(in decimal notation {0,1,2,3}). At trellis depth £ = 2,
there are three states, corresponding to all possible partial
syndromes § = \/le(ciz Aal), i.e., all possible (binary) linear
combinations of the two first columns of matrix A, resulting in
states (0,0) v (0,0) = (0,0) =0, (0,0) v (1,1) =(1,1) =3,
(1,0) v (0,0) = (1,0) =1, and (1,0) v (1,1) = (1,1) = 3.

The trellis graphically represents all possible defective
vectors d and their connection to the syndromes § via the
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assignment matrix A. In particular, the paths along the trellis
originating in the all-zero state at trellis depth £ = 0 and
ending in trellis state s at trellis depth £ = n correspond to
all defective vectors d compatible with syndrome s.

D. The Forward-Backward Algorithm

The a posteriori LLRs can be computed efficiently using the
trellis representation of matrix A introduced in the preVious
subsection via the forward-backward algorithm [39]. Let &, (©)
and &, ™) be the set of edges connecting trellis states at trellis
depth E — 1 with states at trellis depth ¢ labeled by di =0
and d, = 1, respectively. The a posteriori LLRs LAPP can be
computed as

L =log > ara(0')y(0’,0)Bi(o)
(o",a)egéo)
—log Y ara(a)(0,0)Bio), (18)
(1:7’,0)6521>

where (0’,0) denotes an edge connecting state o’ at trellis
depth ¢ — 1 with state o at trellis depth £.

The quantities ay_1(0’) and S¢(o) are called the forward
and backward metrics, respectively, and can be computed
using the recursions

Zae 1(

Nelo', o),
Be-1(c’) =

with initialization of the forward recursion a((0) = 1 and of
the backward recursion f3,(c) = Q(t|s(o)), where s(o) is
the syndrome corresponding to trellis state o. The quantity
~ve(o’, o) is called the branch metric and is given by

o) = 1-0 if(a',a)eé’z(o)
] if (o/,0) € 85(1).

The a posteriori LLRs computed via (18) are then used to
make decisions on {d;} according to (10).

E. FedGT Hyperparameters

As discussed in the previous section, the decoder requires
the distribution @(t|s) and the prevalence d, which are in
general unknown. For the prevalence, we use the estimate
5 = /s as outlined in Section V-E. (For the case where the
estimated number of malicious clients is zero, ny, = 0, we do
not run the decoder and flag all clients as benign). On the other
hand, the distribution Q(t|s), i.e., the noisiness of the test, is
test-dependent and difficult to estimate. Here, we assume a
simple model for Q(¢|s) which, as shown in the experiments
section (Section VI), yields excellent results. In particular, we
assume that Q(¢|s) factorizes as Q(t|s) = [[;~, Q(¢;|s;) and
model Q(t;]s;) as a binary symmetric channel (BSC), i.e.,
Qti|si) =1 —pift; = s; and Q(t;|s;) = p if t; # s;. In
words, we assume that, for each group, the result of the test
is erroneous with probability p.

Our model for Q(t|s) requires a single parameter, p. Using
the correct value of p improves the decoder performance in
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terms of misdetection and false-alarm probabilities. However,
even with the proposed simple BSC model, accurately estimat-
ing p is challenging. Therefore, we arbitrarily select a value
for p and demonstrate that our decoder remains robust to this
choice (see Section VI-B). Specifically, we choose a small
value for the crossover probability p (as a relatively accurate
test is preferred), namely p = 0.05.

FedGT-A also requires choosing parameter 3 (see in (16)),
which balances the misdetection and false-alarm probabilities.
The impact of a higher false alarm or misdetection probability
depends on the scenario. For instance, when facing a powerful
attack, a near-zero misdetection probability is preferable. Con-
versely, in heterogeneous settings, a low false alarm is crucial
to avoid penalizing correct and unique data points. If prior
knowledge of the scenario is available, one can set 5 < 0.5
to empashize lowering the false-alarm probability or 8 > 0.5
to prioritize reducing the misdetection probability. Here, we
assume no prior knowledge and set 8 = (.5, meaning we
weight misdetections and false alarms equally.

Overall, since we fix p and (for FedGT-A) S independently
of the dataset and the nature of the attack, FedGT requires no
hyperparameter tuning.

VI. EXPERIMENTS
A. Setup

We consider a cross-silo scenario with n = 15 clients (all
participating in each training round) out of which ngy are
malicious. In Section VI-E, we also provide results for n = 30
clients. We remark that these numbers are aligned with current
cross-silo applications [21], [22], [43]. The goal of the server
is to prevent an attack by identifying the malicious clients
and exclude their models from the global aggregation. The
experiments are conducted for image classification problems
on the MNIST [44], CIFAR-10 [45], and ISIC2019 [46]
datasets for which we rely on a single-layer neural network,
a ResNet-18 [47], and an Efficientnet-BO [48] pretrained on
Imagenet dataset, respectively.

Similar to previous works [16], [17], [49], [50], [51], we
assume that the server has a small validation dataset at its
disposal to perform the group tests (the validation dataset
is not used for training). Such dataset is not required by
FedGT, but is used here due to our choice for the tests in
the experiments. The validation dataset should contain data
that are sampled from a distribution close to the underlying
distribution of the (benign) clients’ datasets, i.e., it should
be a quasi-dataset [16], [49]. For the experiments, we create
the validation dataset by randomly sampling 100 data-points
from the available data. As a result, the label distribution may
not be uniform. For MNIST and CIFARIO, the remaining
data points (of size 59900 and 49900) are split evenly at
random among the 15 clients, resulting in homogeneous data
among the clients, and used for training. We evaluate the
performance of FedGT under targeted attacks for scenarios
with heterogeneous client data distributions, modeled using
a Dirichlet distribution with varying values of «, and show
the results in Appendix C. For ISIC2019, we follow [21] and
randomly partition the dataset into a training and a test set
consisting of 19859 and 3388 samples, respectively. We then
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partition the training dataset into six parts according to the
image acquisition system used to collect the images. Finally,
we iteratively split the largest partition in half until we have
15 partitions. This procedure results in a heterogeneous setting
where both label distributions and number of samples differ
among clients (for the details of the ISIC2019 experiments we
refer the reader to Appendix A).

For MNIST, we use the cross-entropy loss and stochastic
gradient descent with a learning rate of 0.01, batch size of
64, and number of local epochs equal to 1. For CIFAR-10,
we use the cross-entropy loss and stochastic gradient descent
with momentum and parameters taken from [1]: the learning
rate is 0.05, momentum is 0.9, and the weight decay is 0.001.
Furthermore, the batch size is set to 128 and the number of
local epochs is set to 5. For ISIC2019, we use the focal loss
in [52] and stochastic gradient descent with a learning rate of
0.0005, momentum of 0.9, and weight decay equal to 0.0001.
The batch size equals 64 and the number of local epochs is
set to 1. Furthermore, we use the same set of augmentations
as in [21] to encourage generalization during the training.
The results presented are averaged over 10, 5, and 3 runs for
MNIST, CIFAR-10, and ISIC2019, respectively.

For the experiments over ISIC2019, due to the hetero-
geneous client data (see Appendix), the identities of the
malicious clients, i.e., the realizations of vector d, significantly
impact the results. Therefore, for n, > 0, we run the
experiments 3 times with different realizations of d but the
same client data distribution. In particular, we evaluate three
different scenarios: i) the very heterogeneous clients (clients 4
and 10) are not malicious; ii) only one of them is malicious,
and iii) both of them are malicious.

In our experiments, we use the test strategy outlined in
Section IV-C within FedGT. In particular, for the experiments
over MNIST and CIFAR-10, we use 8™ = 0.6 (see (6)) and
due to the heterogeneity of ISIC2019, we use sthres — 0 je.,
the clustering solution is decided solely from the Dunn index.

We show the performance of FedGT using both FedGT-
nm and FedGT-A. We compare their performance to four
benchmarks: “no defense”, “oracle”, RFA [26] and Multi-
Krum [12] (MKrum). The no defense benchmark corresponds
to plain FL including all clients, i.e., disregarding some clients
may be malicious, while the oracle is an ideal setting where
the server knows the malicious clients and discards them. Note
that RFA belongs to a short list of defense mechanisms that
also provide privacy. Multi-Krum is a defense mechanism that
assumes a large Euclidean distance between malicious and
benign models. Though initially non-private, it can leverage
tools from secret sharing for privacy [25]. However, it also
requires prior knowledge of the number of malicious clients,
nm, which is not feasible in practice. In this work, Multi-
Krum is provided the true value of ny and therefore we do
not perform experiments for nm = 0.

To demonstrate the effectiveness of FedGT, we perform
the group testing step only once during the training. This
constitutes the weakest version of our framework as the group
testing may be performed in each round at the expense of
increased communication cost (see Section IV-D). In particu-
lar, for MNIST, we perform the group testing in the first round
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and for CIFAR-10 and ISIC2019, in the fifth round. We pick
as the assignment matrix a parity-check matrix of a BCH code
[53] of length 15 and redundancy 8, meaning that we create
a group testing scheme where the 15 clients are pooled into 8
groups, each containing 4 clients. This choice of A allows for
nme* =5, where « in (15) is set to 20%. Also, as discussed
in Section V-E we set 8 = 0.5 in (16) for FedGT-A. Tuning 3
may yield better performance, especially for the experiments
over ISIC2019, but would require prior knowledge. Hence, we
only restrict our focus to the general solution, where 8 = 0.5.

For the considered setup, FedGT yields a communication
overhead and privacy guarantee as follows.

e Communication cost. Considering a secure aggregation
scheme with linear communication complexity such as
LightSecAgg [38], the communication cost of the group
testing round is approximately 2x the complexity of
secure aggregation with 15 clients. Compared to RFA,
which requires 3x communication cost of secure aggre-
gation with 15 clients in each round, FedGT yields a
significantly reduced communication cost. The commu-
nication cost of the private version of Multi-Krum [25]
from the server side is only slightly higher than that
of secure aggregation, but from the client-side is much
higher, namely scales linearly with the number of clients.
Moreover, Multi-Krum has to be performed at every
round, which makes it computationally more expensive
throughout the learning.

e Privacy. With our choice of assignment matrix, FedGT
guarantees the same level of privacy of full secure aggre-
gation with 4 clients. This stems from the property that
any linear combination of the server’s group aggregates
leads to an aggregation involving no fewer than 4 client
models, as elucidated in Proposition 1.

B. Robustness Toward the Crossover Probability p

The decoding strategy employed in FedGT-A requires
selecting the optimal parameter A, which, due to the trellis-
based decoding approach, depends on the unknown crossover
probability p. In our experiments, we set p = 0.05. Next, we
empirically demonstrate that FedGT-A is robust to a mismatch
in the assumed p.

In Table II (upper half), we present the value of the objective
0.5 Pup + 0.5 Pga for different values of p and ny, when A
is obtained via (16) and p = 0.05 is believed to be the true
value, i.e., we assess the impact of a mismatch in p. It can
be seen that the objective function is robust to a mismatch in
p for all ny € [nR**]. Hence, p may be chosen to hedge for
the anticipated noise in the testing strategy and one does not
have to be concerned about the impact of a mismatch on the
choice of A. Similarly, we conducted a robustness analysis of
FedGT-ny, with respect to the crossover probability p in terms
of misdetection and false-alarm probabilities, and tabulated
the results in the bottom half of Table II. The analysis shows
that FedGT-ny, is robust to variations in p: for nm € [3] for
p < 20%, the values of the objective 0.5 - (Pyp + Pra) are
constant up two 2 decimal digits. For ny, = 4 and 5, the values
of the objective differ by at most 0.01. It is important to note
that the optimization of [ is relevant only for FedGT-A (see
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TABLE I

ROBUSTNESS OF THE OBJECTIVE, 0.5 Pyp + 0.5 Pra, WITH VARYING
p FOR A A OBTAINED FROM (16) WITH p = 5% FOR FEDGT-A
STRATEGY (UPPER HALF). SIMILARLY, THE SAME ANALYSIS
Is PERFORMED FOR THE OTHER STRATEGY, FEDGT-7y
(BOTTOM HALF)

Proag 25% 5% 75%  10%  125%  15%  17.5%  20%

Tm

FedGT-A strategy

1 0 0 0 0 0 0 0 0 0

2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
3 0.07 007 007 007 007 0.07 0.06 0.06 0.06
4 014  0.14 014 014 0.14 0.14 0.15 0.15 0.16
5 0.15 015 015 0.15 0.15 0.15 0.15 0.15 0.17

FedGT-nm strategy

1 0 0 0 0 0 0 0 0 0

2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.09 0.09
5 0.13 0.14 0.13 0.13 0.14 0.14 0.14 0.13 0.13

(16)), and we use the same 3 = 0.5 for the sake of comparison
and generality.

C. Experimental Results for Targeted Attacks

For targeted data-poisoning, we consider offline label-
flipping attacks. We refer to the attacked label as the source
label and the resulting label after the flip as the target label.
For MNIST, we consider malicious clients to flip source label
1 into target label 7. As such, the objective of the malicious
clients is to cause the global model to misclassify 1’s into
7’s. Similarly, for CIFAR-10, malicious clients change source
label 7, i.e., horse, into target label 4, i.e., deer. For the
ISIC2019 dataset, malicious clients mislabel source label O,
i.e., melanoma, into target label 1, i.e., mole. Note that this
attack has a significant medical impact, as the goal of the
attacker is to force the model to classify cancer into non-
cancer. Since the adversary’s goal is not to deteriorate the
global model but to make it misinterpret the source label as
the target label, we adopt the attack accuracy as the primary
metric of interest. The attack accuracy is defined as the fraction
of source labels classified as the target label in the test dataset.
Moreover, as a successful defense mechanism should not
compromise the overall utility of the model, we employ the
accuracy on the test dataset as a secondary performance metric.
While an online targeted data poisoning attack is not realistic
in cross-silo FL settings, we conduct experiments to evaluate
its impact. Details of the attack strategy and the corresponding
results are provided in Appendix B.

For the utility metric adopted in the testing strategy (see
Section IV-C), we consider the source label recall, i.e., the
fraction of source labels classified into the correct label, to flag
test groups containing malicious clients and perform PCA on
the weights of the fully connected layer incoming to the source
label. We remark that to identify a label under attack, one may
simply monitor, e.g., the recall of each label in the different
test groups, using the validation dataset. For a targeted attack,
the test noisiness obtained from our experiments is 5.41%,
9.16%, and 19.53% for MNIST, CIFAR-10, and ISIC2019,
respectively (we recall that we used p = 0.05 in all our
experiments). At first glance, the test results for ISIC2019
appear to be very noisy. However, we note that, due to the
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TABLE III

ATTACK ACCURACY (ATT) AND BALANCED ACCURACY (ACC) MEASURED AFTER SPECIFIED COMMUNICATION ROUNDS FOR MNIST, CIFAR10, AND
ISIC2019 DATASETS. ALL ENTRIES ARE PROVIDED AS MEAN AND STANDARD DEVIATION WITH VALUES IN %
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Oracle RFA [26] MKrum [12] FedGT-nm FedGT-A No defense

Nm ATT | ACC 1 ‘ ATT | ACC 1t ‘ ATT | ACC 1 ‘ ATT | ACC 1 ‘ ATT | ACC 1 ‘ ATT | ACC 1
MNIST (10 communication rounds)

0 0.07+0.07  90.324+0.09 | 0.07+£0.07  90.32+0.10 - — 0.08+0.06  90.18+0.10 | 0.08£0.06  90.18 £0.11 0.07+£0.07  90.32 4+ 0.09

1 0.044+0.04 90.324+0.17 | 0.10+£0.07  90.32+0.10 | 0.06 £0.06  90.19 £0.11 0.054+0.06 90.214+0.09 | 0.05+0.06 90.19+0.10 | 0.154+0.04 90.30 +0.17

2 0.044+0.04 90.334+0.19 | 0.13+£0.06 90.31+0.12 | 0.06+0.06 90.19+0.12 | 0.064+0.07 90.17+0.13 | 0.07+0.07 90.16+0.12 | 0.18£0.04 90.23 £0.15

3 0.04+0.04 90.314+0.17 | 0.15+£0.04 90.29+0.10 | 0.05+£0.06  90.17+0.11 0.06 £0.07  90.124+0.09 | 0.07£0.07 90.13+£0.08 | 0.36+0.13  90.10 £ 0.16

4 0.04+£0.04 90.324+0.16 | 0.16£0.04 90.29+0.09 | 0.08+0.06 90.16+0.12 | 0.19+0.13  90.05+0.13 | 0.074+0.05 90.11+0.11 1.03+£0.23  89.89+0.19

5 0.044+0.04  90.344+0.16 | 0.17£0.03  90.26+0.10 | 0.04£0.06  90.16 £0.11 1.53+£2.75 89.77+£0.45 | 0.07£0.05 90.07£0.10 | 3.154+0.40 89.49+0.18
CIFAR10 (30 communication rounds)

0 4104027 81.66+0.16 | 3.86+0.27  81.94+0.28 — - 4124028  81.494+0.40 | 4.28+0.49  81.23+0.91 4.10+£0.27  81.66 +0.16

1 3.36+0.56  81.694+0.22 | 5.44+0.67 81.65+0.20 7.62+1.87 81.35+£0.18 | 4.84+187 81.07+0.73 | 440+1.35 80.41+2.22 5.72+£0.68  81.45+0.06

2 4.104+0.83 81444022 | 7.74+1.84 81.49+0.39 11.1+£4.67 80.60+0.45 | 4.82+255 80.83+£0.41 4.54+1.75 78464197 | 9.62+1.72  81.11+0.30

3 3.56+0.32  81.134+0.32 | 11.06 £0.62 81.03 £0.21 14.9+8.03 80.23+0.87 | 432+231 80.82+0.43 | 492+1.23 79.01+222 | 17.62+2.23 80.12+0.55

4 3.944+1.07 81.074+0.18 | 16.924+3.07 80.52+0.56 | 40.24+21.8 77.21+2.09 10.7+£5.53  80.28+0.70 | 490+1.09 78.68+1.61 | 26.42+2.18 79.25+0.31

5 3.74+043 80.54+0.11 | 25.164+3.94 79.67+0.37 | 37.50+15.5 77.55+1.50 | 18.62+7.87 79.54+0.76 | 532+1.19 76.534+0.47 | 38.40+6.48 78124 0.64
ISIC2019 (40 communication rounds)

0 25.04 63.79 21.72 64.96 - - 16.09 62.91 15.92 60.70 25.87 63.29

1 21.724+1.76  63.14+0.24 | 23.27+0.83 63.24+1.61 | 21.17+2.68 62.27+0.25 | 16.97+0.16 63.28+0.73 | 17.69£0.75 62.174+1.45 | 2543 +2.78 62.00 4+ 0.61

2 21.234+2.51  63.19+0.81 | 24.71+1.86 62.63+1.37 | 2029+ 1.34 61.97+0.28 | 18.79+1.96 63.12+0.38 | 19.07+£1.64 62.47+0.97 | 26.70£3.16 62.52+0.51

3 21.284+2.54 6216 +£1.48 | 29.30+3.05 62.63+0.21 | 23.33+£3.14 61.044+0.29 | 18.74+2.84 62.89+0.75 | 19.134+2.52 5847 +£4.05 | 30.51 £4.62 61.92+0.68

4 20.18+2.13  61.65+£0.53 | 31.29+2.25 62.10+1.10 | 25.21£0.23 57.804+0.18 | 18.57+1.88 62.58+0.18 | 19.90+3.18 56.15+4.32 | 34.11£2.55 61.50+1.02

5 20.01 +1.85 61.01+£0.40 | 38.47+3.52 61.73+1.15 | 33.89£0.87 58.07+0.31 | 22.66 £0.55 61.41+0.19 | 17.69+0.86 54.90£2.85 | 38.70 £3.57 60.30 & 1.40

high heterogeneity, some benign clients may actually harm the
model due to their data distribution, even without containing
poisoned data. FedGT identifies some of these clients as
malicious—thus yielding higher utility—, which explains the
higher noisiness of the test results. To allow for a comparison
between our two schemes on a given dataset with respect to
Pyp and Pra, we empirically evaluate 5Pyp + (1 — ) Pea for
B = 0.5 (we optimized (16) for 8 = 0.5) by averaging our
experimental results over both independent runs and over npm.
For FedGT-nm,, we obtained 8.13%, 8.78% and 8.83%, and
for FedGT-A, we obtained 10.54%, 13.80% and 19.83% for
the MNIST, CIFAR-10 and ISIC2019 datasets, respectively.
Hence, based on this metric, Fed-ny, is the preferred version.
Recall that FedGT-A does not limit the number of clients
flagged malicious, i.c., the wy(d) and risks trading higher
false-alarm for lower misdetection.

In Table III, we give the attack accuracy and top-1 (or
balanced) accuracy of FedGT-n, and FedGT-A. For compar-
ison, we also provide results for no defense, oracle, RFA [26]
and Multi-Krum [12]. The results are shown as the mean and
standard deviation in % obtained from a Monte-Carlo-based
simulation approach. However, please note that the experiment
over ISIC2019 for ny, = 0 is performed only once, as we
do not investigate client data distribution other than the one
depicted in Appendix A.

For MNIST, we observe a modest impact of the label
flip, even for ny, = 5. Nevertheless, FedGT-A effectively
mitigates the attack accuracy compared to no defense. Notably,
it significantly outperforms RFA (which lacks the capability
of identifying malicious clients and entails a much larger
communication complexity) and performs close to the oracle.
FedGT-ny, outperforms RFA for 1 < ngy < 3, but falls short
for other values of npy. Multi-Krum [12] outperforms both
versions of FedGT for ny > 3 (FedGT-A only slightly). How-
ever, we stress that the results for Multi-Krum are obtained
by allowing the aggregator to know the number of malicious
clients nm, which is infeasible in practice.

For CIFAR10, the label flip attack has a significant impact,
as can be seen from the no-defense attack accuracy, nearing

40% for nm = 5. We observe that Multi-Krum performs very
poorly in terms of attack accuracy for all ny, > 1. Both
versions of FedGT significantly outperform RFA in terms of
attack accuracy for all ny, > 1, especially for larger values of
Nm, With FedGT-A performing very close to the oracle. For
example, for nm = 5, FedGT-ny, and FedGT-A reduce the
attack accuracy to 18.32% and 5.32%, respectively, compared
to 25.16% RFA. (We note that the pronounced reduction in
attack accuracy by FedGT-A is achieved at the expense of a
slight penalty in accuracy for larger values of np).

For ISIC2019, RFA performs poorly, achieving only a small
improvement in attack accuracy with respect to no defense
(RFA is known to underperform for heterogeneous data across
clients [28]). Similary, Multi-Krum performs slightly better
than RFA but still poorly, due to the heterogeneous data
distribution. Both versions of FedGT significantly diminish
the attack accuracy, even outperform the oracle. This can be
explained from the data heterogeneity across clients where
some clients, although not malicious, will be biased to output
a given label, e.g., client 4 and client 10 (see Appendix A).
Hence, due to the testing strategy, FedGT may identify benign
clients exhibiting extreme heterogeneity as malicious to be
removed from the training, ultimately reducing the attack
accuracy and benefiting the overall utility of the global model.
Compared to the experiments on MNIST and CIFARI1O0,
FedGT-nn, yields the strongest performance over the two
metrics. This is again attributed to heterogeneity, as FedGT-
A removes too many clients, resulting in a high false-alarm
probability.

In Fig. 3, we plot the attack accuracy of the label-flip attack
over communication rounds for different values of nm. From
the CIFAR10 and ISIC2019 experiments, the impact of the
group testing is clearly seen with the attack accuracy rapidly
dropping in round 5.

D. Experimental Results for Untargeted Attacks

Next, we consider a label permutation attack where mali-
cious clients offset their data labels by 1, i.e., Lyew = (Lola +
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Fig. 3. Average attack accuracy on the MNIST (row 1), CIFAR10 (row 2)
and ISIC2019 (row 3) datasets for varying number of malicious clients. These
results are obtained from FL experiments where nm clients out of n = 15
total clients act as malicious by deploying a label-flip attack.

1) mod n., where n. is the number of classes. The attack
aims at deteriorating the classification accuracy over all labels,
i.e., an attacker wants to lower the top-1 accuracy (MNIST
and CIFAR-10) or the balanced accuracy (ISIC2019). For this
reason, we use the top-1 accuracy (MNIST and CIFARI10)
and the balanced accuracy (ISIC2019) on the test groups’
aggregates as the qualitative metric in the testing strategy
(see Section VI-A) and perform PCA on the flattened weights
of the entire fully connected layer. The balanced accuracy
is the average recall per class, used to take into account
class imbalances, as in the case of ISIC2019 [21]. The test
error probability is 2.29%, 4.58%, and 3.91% for experiments
over MNIST, CIFAR-10 and ISIC2019, respectively. As in
Section VI-C, we evaluate S Pyp+(1—/3) Pea for 8 = 0.5 from
the untargeted attack experiments. For FedGT-ny,, we obtain
6.93%, 7.05% and 6.12% and for FedGT-A we obtain 8.55%,
10.33% and 11.50% for MNIST, CIFAR-10 and ISIC2019,
respectively. Similarly to Section VI-C, FedGT-7y, achieves
lower scores, suggesting it to be the preferred version.

In Table IV, we show the top-1 accuracy versus nm
for MNIST and CIFAR-10, and the balanced accuracy for
ISIC2019. The results are tabulated as the mean and standard
deviation in %. For all cases, with no defense, a significant
drop in accuracy is observed as the number of malicious clients
grows. For MNIST, FedGT-A achieves similar performance
to RFA, Multi-Krum, and oracle for all considered nm,. On
the other hand, FedGT-ny, performs comparably to the other
defenses for nm < 3, but its performance declines for ny, = 4
and nm = 5. For CIFAR-10, both versions of FedGT perform
similar to RFA for ny < 4, but worse for nm = 5. The robust
performance of RFA is anticipated due to the untargeted attack
rendering malicious client models significantly different from
benign ones given the i.i.d. data distribution across clients.
Consequently, the geometric median—essentially performing
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TABLE IV

TopP-1 OR BALANCED ACCURACY (ACC) MEASURED AFTER SPECIFIED
COMMUNICATION ROUNDS FOR MNIST, CIFAR10, AND ISIC2019
DATASETS, FOR EXPERIMENTS WITH UNTARGETED ATTACKS. ALL
ENTRIES ARE PROVIDED AS MEAN AND STANDARD DEVIATION
WITH VALUES IN %

Oracle RFA [26] MKrum [12] FedGT-1im FedGT-A No defense
Tm ACC 1 ACC 1 ACC 1 ACC 1 ACC 1 ACC 1
MNIST (10 communication rounds)
0 90.18 £ 0.10  90.18 £ 0.09 — 90.18 £ 0.10  90.18 £0.10 90.18 +0.10
1 90.194+0.10 90.224+0.11  90.19+0.11  90.21+0.09 90.19 +0.10 89.96 + 0.08
2 90.18+0.12  90.20£0.11  90.194+0.12  90.144+0.19  90.10 £0.18 89.01 +£0.11
3 90.18+0.09 90.17+0.09 90.17+0.11 89.94+0.28 90.08 +£0.16 87.52+0.13
4 90.16+£0.10 90.17+£0.09 90.16+£0.12 88.72+£1.20 89.75+1.06  85.06 +0.21
5 90.174+0.12  90.16 £0.09 90.16 £0.11  84.96+5.20 89.61 +£1.34 80.36 & 0.26
CIFAR10 (30 communication rounds)
0 81.66+0.16 81.94 +0.28 — 81.40+0.48  80.47 +£2.32 81.66 + 0.16
1 81.944+0.27 81.64+£0.19 81.51+0.21 81.64+0.34 81.67£0.36 81.49+0.24
2 81.604+0.15 81.40+0.21 81.26+0.27 81.124+0.45 80.77£0.71 80.73 +0.08
3 81.284+0.17 81.13+0.31 81.154+0.26 80.90+0.40 79.78 + 1.86 77.73 £2.91
4 80.99+0.30 79.78£0.47 80.65+0.22 80.40+£0.46 78.92+1.75  56.49+ 1.82
5 80.944+0.39 78.52+243 37374352 T71.71+£870 76.79+0.76 49.07+19.31
ISIC2019 (40 communication rounds)
0 61.88 61.26 — 62.70 62.74 61.88
1 61.63+1.03 62.07+0.60 61.89+0.65 61.80+0.45 63.13+£0.78 61.03+1.17
2 62.53+1.40 62.86+0.66 60.73+2.04 63.58+0.19 62.48+1.66 59.13 + 1.06
3 61.844+1.80 60.15+1.55 56.35+1.72 61.48+1.46 57.01+4.03 54.02 + 1.51
4 61.344+0.80 58.87+1.17 51.37+0.55 58.88+3.27 53.27 £2.85 49.75 + 0.80
5 58.87+0.19 52.34+0.64 40.79+1.49 55.47+0.71 50.12+1.89 42.64 + 1.96

a majority vote—assigns the malicious models a very low
weight. Multi-Krum performs very good for nn < 4, but its
performance degrades drastically at ny, = 5.

For ISIC2019, FedGT-ny, performs better than RFA and
Multi-Krum for all values of nm, except nn, = 1. Moreover,
for nm = 0 and nyn = 2, FedGT-ny, performs even better
than oracle due to the heterogeneity of the data distribution
among clients. This means that some clients can be flagged
as malicious just because they deteriorate the utility of the
global model due to their data samples. FedGT-A performs
better or similar to RFA for n, < 2 but worse than
RFA for nym > 3, while it outperforms Multi-Krum for all
nm € [5]. We note that this result is due to some realizations
of defective vectors triggering the decoder to falsely flag
as malicious clients with more homogeneous data distribu-
tion and resort to learning with clients with heterogeneous
data.

In Fig. 4, we plot the top-1 accuracy for MNIST and
CIFAR-10 and the balanced accuracy for ISIC2019 over
different communication rounds. For n,, = 1, the attack is
not very powerful (regardless of the dataset), and the no
defense and oracle benchmarks have similar performance. For
nm € {3,5}, the impact on the top-1 accuracy of the attack
for MNIST and CIFAR-10 is significant, as shown by the
significant gap between the no defense and oracle curves.
FedGT-A closes this gap, but RFA outperforms our strategy,
due to its majority decision-based aggregation technique. For
nm = 5, FedGT-ny, suffers compared to the other techniques
for nm = 5. This is due to its reliance on an accurate
estimate 7y, something that becomes harder with a larger
nm as more test groups are contaminated. For the ISIC2019
dataset, FedGT-ny, outperforms RFA for n, = 3,5, while
FedGT-A performs poorly for nm > 3. This occurs due to
the heterogeneity of ISIC2019 where a false-alarm incurs a
significant penalty on the global model. Nevertheless, FedGT-
A outperforms Multi-Krum for all np,.
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Fig. 4. Average top-1 accuracy on the MNIST (row 1), CIFAR10 (row 2)
and ISIC2019 (row 3) datasets for varying mm.

Finally, we observe an interesting phenomenon for the
experiments over the CIFAR-10 dataset. For nm = 5, the
no defense curve exhibits significant fluctuations throughout
the rounds. Although the performance of FedGT-nn, also
fluctuates, it does so to a significantly lesser extent, while the
fluctuations are more pronounced in FedGT-A and RFA.

E. Federated Learning With More Clients

Hitherto, the experiments have focused on a cross-silo FL
scenario with 15 clients. Next, we investigate the performance
of FedGT for a cross-silo FL scenario with a larger number
of clients, specifically n = 30 clients. For this scenario, we
choose as the assignment matrix the parity-check matrix of a
(30, 18) cyclic code of length 30 and dimension 18, resulting
in 12 groups, each containing 6 clients. The dual of this
cyclic code has minimum Hamming distance 6, thus FedGT
preserves the same clients’ privacy of secure aggregation with
6 clients. This choice of A allows for nj,®* = 8, where the
probability in (4) is constrained to 20%, i.e., k = 0.2.

We investigate a scenario with ny = 6 malicious clients and
both a targeted attack and an untargeted attack. We conduct
experiments on the MNIST and CIFAR-10 datasets, with the
same hyperparameters as specified in Section VI-A. Due to
the relatively high number of clients, we do not run the
experiments over ISIC2019, as this dataset is tailored to FL
scenarios with a smaller number of clients.

In Fig. 5, we plot the attack accuracy of the targeted attack
(row 1) and the top-1 accuracy of the untargeted attack (row
2), respectively. For a targeted attack, FedGT-A performs very
close to the oracle and Multi-Krum (for MNIST) and outper-
forms RFA for both datasets and Multi-Krum for CIFAR-10,
with the improvement in performance being significant for the
CIFAR-10 dataset compared to Multi-Krum and RFA. For an
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Fig. 5. Experimental results for a federated learning with n = 30 clients out
of which nm = 6 of them are malicious. The attack accuracy of a targeted
attack is shown in row 1 and the top-1 accuracy of an untargeted attack
strategy is shown in row 2. We show the performance of FedGT along with
no defense, oracle, RFA [26] and Multi-Krum (MKrum) [12].

untargeted attack, FedGT-A performs similar to RFA, Multi-
Krum and oracle.*

VII. CONCLUSION

We proposed FedGT, a novel and flexible framework for
identifying malicious clients in FL that is compatible with
secure aggregation and does not require hyperparameter tun-
ing. By grouping clients into overlapping groups, FedGT
enables the identification of malicious clients at the expense
of secure aggregation involving fewer clients. Experiments
conducted in a cross-silo scenario for different data-poisoning
attacks demonstrate the effectiveness of FedGT in identifying
malicious clients, resulting in high model utility and low attack
accuracy. Remarkably, FedGT significantly outperforms the
recently-proposed robust federated aggregation (RFA) protocol
based on the geometric median (which is unable to identify
malicious clients and entails a much higher communication
cost) and the well-known robust aggregation technique Multi-
Krum (even though Multi-Krum assumes the unrealistic prior
knowledge of the number of malicious clients) across multiple
scenarios. To the best of our knowledge, this is the first work
that provides a solution for identifying malicious clients in FL
with secure aggregation.

In this paper, we focused on the cross-silo federated learning
scenario, where (offline) data poisoning attacks are particularly
prevalent, and the number of clients is relatively small (fewer
than 50). Extending FedGT to a cross-device setting, involving
thousands or more clients, presents significant challenges.
Specifically, the optimal decoder employed in our approach
has exponential complexity with the number of tests, rendering
it impractical for large-scale cross-device federated learning.
Future work could explore scalable adaptations of FedGT
to address these challenges, such as leveraging suboptimal
decoding strategies like belief propagation.

4The source code is available at https:/github.com/johanos1/FedGT


https://github.com/johanos1/FedGT
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APPENDIX A
DETAILS OF THE ISIC2019 EXPERIMENT

The ISIC2019 dataset [46] is a public dataset consisting
of images of various skin lesion types, including malignant
melanomas and benign moles, used for research in dermatol-
ogy and skin cancer detection. We use the ISIC2019 dataset
and follow [21] by first restricting our usage to 23247 data
samples (out of 25331 entries) from the public dataset due to
metadata availability and then preprocessing by resizing the
shorter side to 224 pixels and normalizing the contrast and
brightness of the images. Next, we randomly divide the data
into a test and a training dataset of size 3388 and 19859,
respectively. The server validation set is created by randomly
sampling 100 data entries from the dataset. Next, as in [21], the
remaining 19759 samples are partitioned into 6 partitions with
respect to the image acquisition system used. The 6 partitions
are then split into 15 partitions by iteratively splitting the
largest partition in half. This procedure results in partitions
with heterogeneity in the number of data samples and label
distribution (see Fig. 6), and in the feature distribution due to
different acquisition systems (see [21, Fig. 1.f]).

Due to the large imbalance in the dataset (label 1 cor-
responds to 48.7% whereas label 5 and 6 are represented
by about 1% of the entries), the focal loss is used in the
training [52] and we use the balanced accuracy to assess the
performance of the trained network. Furthermore, to encourage
generalization during training, we follow [21, App. H] and
apply random augmentations to the training data.

Finally, the heterogeneous data partitioning causes the
choice of malicious clients to significantly impact the outcome
of the experiment. For this reason, we let the set of malicious
clients M; C M; for j > i to ensure that results across
different values of ny are comparable.

APPENDIX B
ONLINE TARGETED DATA POISONING ATTACKS

Online targeted data poisoning attacks are a significant
threat, capable of substantially degrading the utility of global
models. While such attacks are not realistic in cross-silo FL, in
this appendix we demonstrate the resiliency of FedGT against
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this type of attack. Inspired by the online data poisoning
strategy described in [22], we implement the following online
targeted data poisoning attack: A malicious client receives
the global model from the server and generates the logit
values on its (unpoisoned) dataset. The attacker then targets a
specific class label (source) and constructs a poisoned dataset
as follows: i) if a data sample is classified correctly by the
global model, the poisoned label is set to the class with the
second-largest logit value; ii) if a data sample is misclassified,
the malicious client alters the original label to the most likely
label predicted by the global model.

The goal of this attack is to undermine the global model’s
ability to correctly classify the source label. The first poisoning
rule targets the model when it classifies correctly, aiming
to confuse it, while the second rule reinforces the model’s
confidence in its misclassifications. This attack is applied
in every communication round, with the malicious clients
dynamically updating their poisoned labels in each round.

We conduct experiments to evaluate the performance of
FedGT against this online targeted data poisoning attack, with
the results summarized in Table V. We perform experiments
on the MNIST, CIFAR-10 and ISIC2019 datasets. For the
source labels, we select label 1 for MNIST, label 7 (horse)
for CIFAR-10, and label O (melanoma) for ISIC2019. Since
the attacker aims to disrupt the model’s classification ability
for a specific label, we use the recall of the source label as
the primary evaluation metric. Additionally, as with the results
in Table III, we report the top-1 accuracy for the balanced
datasets (MNIST, CIFAR10) and the balanced accuracy for
ISIC2019 to account for its class imbalance. We compare the
performance of both FedGT variants—FedGT-n,, and FedGT-
A—against no defense, oracle, and the two robust aggregation
techniques RFA [26] and Multi-Krum [12]. For both FedGT
versions, we apply the same testing algorithm as explained in
Section VI-C.

Experiments on MNIST show that, in general, Multi-Krum
performs as the most effective defense mechanism (we recall
that Multi-Krum requires the knowledge of npm, which is
unrealistic); however, FedGT-A remains competitive across
all nym € [5]. In contrast, FedGT-7i, demonstrates strong
performance for nn € [3], and performs very close to the
oracle for n, = 1. Notably, FedGT-A performs very close
to oracle in terms of recall but suffers a noticeable drop in
top-1 accuracy for nym > 3. On CIFAR-10, both versions of
FedGT outperform Multi-Krum and RFA for all values of np.
In fact, Multi-Krum performs even worse than no defense,
highlighting its limitations. For the ISIC2019 dataset, both
versions of FedGT outperform RFA and Multi-Krum for all
values of ny. Moreover, FedGT-A performs better than oracle,
while FedGT-nm outperforms oracle for nm € [4]. This can be
attributed to the heterogeneous data distribution among clients,
as shown in Fig. 6. Some highly heterogeneous clients have a
deteriorating effect on the global model despite being benign.
FedGT effectively mitigates this issue by flagging these clients
as malicious, thus limiting their impact. It is important to note
that while FedGT-A achieves a good source recall, it comes
at the cost of reduced global balanced accuracy. However,
in this experiment, the source label is “melanoma”, which
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TABLE V

RECALL OF THE SOURCE LABEL (REC) AND Topr-1, (MNIST, CIFAR10) OR BALANCED ACCURACY (ISIC2019) (SHOWN AS ACC) MEASURED
AFTER SPECIFIED COMMUNICATION ROUNDS FOR MNIST, CIFAR10, AND ISIC2019 DATASETS. ALL ENTRIES ARE PROVIDED AS MEAN AND
STANDARD DEVIATION WITH VALUES IN %

Oracle RFA [26] M-Krum [12] FedGT-nm FedGT-A No defense
Nm REC 1 ACC 1 | REC 1 ACC 1 | REC 1 ACC 1 | REC 1 ACC 1 | REC 1 ACC 1 | REC 1 ACC 1

MNIST (10 communication rounds)

1 96.58 £0.10  90.19£0.10 | 96.41+0.14 90.19 £0.10 | 96.56 £0.17 90.194+0.11 | 96.58 £0.11  90.21 £0.11 | 96.57+£0.11  90.19 £0.10 | 95.84 £0.13  90.24 £ 0.10

2 96.55+£0.12  90.18£0.12 | 96.20+£0.13  90.22£0.12 | 96.57 £0.13 90.194+0.12 | 96.46 +£0.31  90.17+£0.12 | 96.33+0.31  90.19£0.13 | 94.41 £0.23 90.20 +0.11

3 96.57+0.10  90.18£0.09 | 95.90+0.18 90.24 £0.09 | 96.55+£0.16 90.174+0.11 | 96.17+0.69 90.16 £0.10 | 96.35+0.55 90.15£0.08 | 92.26 £0.30  90.05 +0.12

4 96.53+0.13  90.16 £0.10 | 95.30+0.28 90.24 £0.13 | 96.49£0.17 90.164+0.12 | 9440+ 1.79 90.12+0.11 | 96.06 =1.54 90.12+£0.11 | 89.47+0.48 89.78 £0.13

5 96.51+0.17  90.17+0.12 | 94.44+0.26 90.23+£0.10 | 96.49£0.18 90.16+0.11 | 90.224+5.43 89.76 £ 0.53 | 94.63+2.80 89.98£0.24 | 84.78 £1.64 89.26 +0.22
CIFAR10 (30 communication rounds)

1 8448 +1.45 81.54+0.12 | 79.78 £2.15 81.44+0.31 | 78.04+£1.92 81.194+0.21 | 81.12+5.48 81.16+0.67 | 84.324+2.72 80.77£1.28 | 77.04£2.83 81.25+0.21

2 83.64+2.30 81.07+£0.44 | 7276 +£2.89 81.02+0.17 | 64.92+£5.54 80.064+0.69 | 83.70+1.44 81.13+0.46 | 83.90+1.90 80.20+2.11 | 69.16 £3.42 80.64 +0.24

3 84.38+1.14 81.17+0.49 | 64.34+1.14 80.22+0.38 | 45.08 £12.5 77.934+1.24 | 77.36+£7.79 80.36 +0.62 | 79.70+2.70 7851 +£2.12 | 58.82+2.69 79.53+0.26

4 83.024+1.98 80.96+0.24 | 56.88+3.96 79.38£0.37 | 37.14£15.2 77.084+ 1.51 | 74.84+6.88 80.14+0.38 | 82.10+1.78 78.14 £1.66 | 48.54 £2.93 78.59 £+ 0.44

5 82.80+1.95 80.56 £0.40 | 45.56 £2.97 78.34+£0.40 | 38.06 £23.6 77.06+2.49 | 57.26+12.1 78.61+1.12 | 80.204+2.81 75.62+£0.60 | 38.04 £3.23 77.44+0.37
ISIC2019 (40 communication rounds)

1 5229+ 1.69 61.90£0.96 | 55.06 +1.64 61.71 £0.67 | 53.95£5.09 62.444+0.75 | 58.54 £ 1.97 61.74+£1.19 | 59.59 +£3.05 62.01 £0.58 | 43.06 £5.24 61.98+0.75

2 51.354+2.04 61.22+£0.29 | 50.25+5.38 61.46 £0.20 | 52.24 £6.33 60.89+0.28 | 62.63+2.31 59.94+0.58 | 61.30+1.05 57.13£2.48 | 37.53+£7.79 62.02+0.83

3 50.47+2.28 59.49+1.36 | 45.55+6.65 60.24 £0.27 | 40.96 £7.32 60.49+0.65 | 60.36 £1.17 59.97+0.63 | 61.03+5.45 51.85+£4.99 | 26.92+8.37 59.88+1.26

4 53.40+3.69 59.20+£1.82 | 41.40+5.51 60.18 £0.97 | 3543 £0.96 56.954+0.82 | 53.73+7.31 59.87+1.39 | 59.20+2.74 53.42+£6.19 | 20.34 £6.64 58.86 +2.08

5 51.02+5.48 58.60+£2.07 | 32.23+6.16 58.60+0.63 | 24.10£8.72 56.274+0.72 | 44.78 £5.69 5847+ 0.36 | 61.64+0.77 49.08 £0.29 | 11.11+£4.75 57.76 = 0.80

is a serious disease. Ensuring its correct classification is of
paramount importance, justifying the prioritization of source
label recall.

APPENDIX C
TARGETED ATTACKS ON THE CIFAR10 DATASET WITH
HETEROGENOUS DATA DISTRIBUTION

In this section, we demonstrate the performance of FedGT
for n = 15 clients under heterogeneous data distributions. To
model heterogeneity, we distribute each class in the dataset
among the clients following a Dirichlet distribution with
parameter « € {0.4,0.6,0.8,1.0}. The Dirichlet distribution is
widely used to model heterogeneous client data, with smaller
values of « corresponding to greater heterogeneity [54].

We conduct experiments on the CIFAR10 dataset for a
targeted attack strategy, following the approach described in
Section VI-C. For FedGT-A and FedGT-7ir,,, we use the same
testing strategy as outlined in Section VI-C and compare their
performance against RFA [26], Multi-Krum [12], no defense,
and oracle. Note that Multi-Krum requires prior knowledge of
nm, making it an impractical option in real-world scenarios.
The experiments are performed for ny, € {1,3,5}, and the
results are averaged over 5 independent runs. In Fig. 7, we
plot the attack accuracy as a function of « (first row) and
the top-1 accuracy as a function of « (second row), measured
after 30 communication rounds. Although the adversary’s goal
is to maximize the attack accuracy, we provide both the attack
accuracy and top-1 accuracy to ensure that the defense does
compromise the utility of the global model.

From Fig. 7, we observe that for nyn = 1 (first column),
both FedGT-7, and FedGT-A achieve lower attack accuracies
compared to RFA and Multi-Krum, with FedGT-A performing
very close to oracle. However, in terms of top-1 accuracy,
FedGT-A performs worse than the other strategies, making
FedGT-ny, the best-performing defense overall for nym = 1.
For n,m, = 3 and 5, FedGT-A achieves the lowest attack
accuracies (excluding the oracle), and the impact of the
defense on the top-1 accuracy is negligible, making FedGT-
A the best-performing defense across all values of o =
{0.4,0.6,0.8,1.0}.

[=o-no defense o~ RFA [26] -6~ MKrum [12] o= FedGT-it,, - FedGT-A == oracle ]

0, 0.8

053 55
17703 05 06 07 o8 09 1°bd 05 06 07 08 09 1
o a @

Experiments for np, = 1 Experiments for n, = 3 Experiments for np = 5.

Fig. 7. Experimental results over CIFARI0 dataset for a targeted attack
(see Section VI-C). The clients data distribution is non-identically and
independently distributed that follows a Dirichlet distribution with parameter
a € {0.4,0.6,0.8,1.0}. We show the impact of the attack on the attack
(first row) and top-1 accuracy (last row) for both versions of FedGT, RFA
[26], Multi-Krum [12], no defense and oracle. We plot the results for
nm € {1,3,5} measured after 30 communication rounds.

While both versions of FedGT perform well in hetero-
geneous settings, there remains room for improvement, as
their performance still falls short of the oracle. This gap is
particularly evident for nym = 3 and nm = 5, whereas for the
homogeneous settings, the gap is smaller (see Table III). We
believe that this discrepancy arises from our testing strategy,
which assumes that benign clients exhibit similar behavior—a
premise that does not hold in heterogeneous settings. There-
fore, a new testing strategy that accounts for non-iid scenarios
is necessary to further enhance the performance of FedGT in
such scenarios.
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