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A B S T R A C T

In the early stages of drug discovery, decisions regarding which experiments to pursue can be influenced
by computational models for quantitative structure–activity relationships (QSAR). These decisions are critical
due to the time-consuming and expensive nature of the experiments. Therefore, it is becoming essential to
accurately quantify the uncertainty in machine learning predictions, such that resources can be used optimally
and trust in the models improves. While computational methods for QSAR modeling often suffer from limited
data and sparse experimental observations, additional information can exist in the form of censored labels that
provide thresholds rather than precise values of observations. However, the standard approaches that quantify
uncertainty in machine learning cannot fully utilize censored labels. In this work, we adapt ensemble-based,
Bayesian, and Gaussian models with tools to learn from censored labels by using the Tobit model from survival
analysis. Our results demonstrate that despite the partial information available in censored labels, they are
essential to reliably estimate uncertainties in real pharmaceutical settings where approximately one-third or
more of experimental labels are censored.
1. Introduction

Drug discovery is a challenging field of research where experiments
are time-consuming and expensive. In addition, the development of
therapeutic agents bears a high risk of failure resulting in the aban-
donment of a drug candidate during the later stages of the drug
discovery pipeline, which leads to an extensive waste of money and
time. To optimize the use of resources and accelerate the drug de-
velopment workflow, machine learning models are often applied to
support a smart allocation of these resources [1]. In the context of
machine learning-assisted drug discovery, uncertainty quantification
enables safer and more reliable deployment of computational models
by increasing human confidence in the models [2]. The effects are
highly relevant for the drug discovery pipeline as they allow users to
judge results based on the predicted uncertainty quantification before
deciding how to progress in the experimental workflow [3]. Applying
machine learning models to early-stage drug discovery requires mod-
eling the complex chemical space where data availability is typically

∗ Corresponding author at: Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, 431 83, Sweden.
E-mail address: svensson@ml.jku.at (E. Svensson).

limited. This low-data problem is another effect of the time-consuming
and costly experiments needed to generate data. As such, there is a
continuously increasing need for application-specific uncertainty quan-
tification methods in molecular property prediction, particularly in the
modeling of affinity scores and drug side effects through quantitative
structure–activity relationships (QSAR) [4].

Uncertainty quantification in machine learning is typically disentan-
gled into its underlying sources, which provide a deeper understanding
of the factors contributing to overall predictive uncertainty [2]. The
two primary sources of uncertainty are aleatoric and epistemic uncer-
tainty [5,6]. Aleatoric uncertainty refers to the inherent stochastic vari-
ability within experiments. It is often considered irreducible because it
cannot be mitigated through additional data or model improvements.
In drug discovery specifically, aleatoric uncertainty can reflect the
inherent unpredictability of interactions between certain molecular
compounds as a result of either biological stochasticity or human
intervention. As such, proper quantification of aleatoric uncertainty can
https://doi.org/10.1016/j.ailsci.2025.100128
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lead to better risk management in drug discovery by highlighting areas
here outcomes are inherently uncertain [7].

On the other hand, epistemic uncertainty encompasses uncertain-
ies related to the model’s lack of knowledge, which can stem from
nsufficient training data or model limitations [5,6]. Unlike aleatoric

uncertainty, epistemic uncertainty can be reduced by acquiring addi-
tional data or through improvements to the model. Understanding and
uantifying epistemic uncertainty in drug discovery allows researchers

to strategically guide data collection efforts, focusing on areas of the
chemical space where the model’s predictions are less certain [8]. By
further separating these individual aspects of epistemic uncertainty,
targeted enhancements to the machine learning model itself can be
achieved. Recent work by Gustafsson et al. [9] emphasizes the im-
portance of uncertainty quantification in out-of-distribution scenarios,
highlighting how epistemic uncertainty can inform about when a model
will likely fail due to a lack of relevant training data. In real-world
drug discovery, it is especially advantageous to understand the various
sources of epistemic uncertainty, as navigating the vast chemical space
efficiently and effectively can significantly impact the success of a
project.

Approaches that quantify uncertainty in machine learning regres-
ion tasks can be broadly categorized into several types: Bayesian
earning [10], ensemble-based methods [11–14], distance-based ap-
roaches [15,16], mean–variance estimation [17–19], evidential learn-
ng [20], conformal prediction [21], and quantile regression [22],

among others. Recent studies have compared and benchmarked these
methods on publicly available datasets for modeling of molecular prop-
erties [8,23–27]. Despite these efforts, no single method has emerged
s consistently superior across all evaluation metrics and tasks [3,28].

The prior research mentioned above has primarily been performed
on publicly available datasets using random or scaffold-based ways to
split the data for evaluation. These means have been shown to either
overestimate machine learning models, in the case of the random split,
or underestimate the performance with the scaffold-based split [23,27,
29]. Hirschfeld et al. [23] stress the need for a more realistic evaluation,
uch as a temporal data split, to gain insights into the real implications
nd nuances between the approaches. Additionally, Yin et al. [27] point

out that public benchmarks do not allow proper temporal evaluation
as they lack relevant information and sufficient replications for reliable
tatistics. Temporal evaluation based on information available in public
ata, such as ChEMBL, for molecular property prediction can be mis-

leading [30]. The reason is that the time stamp of data points in public
data relates to when the compound was added to the public domain
rather than when the experiment was performed. Instead, modeling
the real evolution of experiments in a pharmaceutical company is

hat makes a temporal evaluation truly useful [31]. Earlier work
n internal pharmaceutical assay-based data from Merck compares a
emporal splitting strategy with random and structure-based splitting
trategies [32]. Sheridan [32] concludes that the temporal option best
pproximates the true predictive performance, but they do not explore
ncertainty quantification.

In addition to the limited amount of precise data in drug discovery,
partial information in the form of censored labels is often gener-
ated during experiments. Censored labels arise when the experiment’s
measurement range is exceeded, such that the exact value cannot be
ecorded. For instance, a fixed range of compound concentrations is

typically used to test the compound’s effect on biochemical processes
in an assay. If no response is observed within this range, the experiment
may only indicate that the response lies above or below the tested
concentrations rather than providing a specific value. This results in
 censored label, where the true value is known only to exceed or
all below a certain threshold. While censored labels can be easily
ncluded in classification tasks by categorizing observations as active
r inactive [33], integrating them into regression models that predict

continuous values is far less trivial. Due to this challenge, censored
data has not yet been properly utilized in regression tasks within
 S

2 
drug discovery, despite its potential to enhance model accuracy and
uncertainty quantification.

The problem of censored regression has been widely studied in other
ields, particularly in survival analysis, where Hollander et al. [34]

demonstrated that the information contained in data decreases after
censorship. Despite the reduced information in censored labels, Hüttel
et al. [35] further showed that these labels are crucial in Bayesian
active learning due to their contribution to increased entropy and
mutual information between the predicted and true data distributions.
Additionally, censored labels have enhanced quantile regression in
survival analysis, as demonstrated by Pearce et al. [36]. In the context
of drug discovery, limited work has explored ways to incorporate
censored labels for regression tasks. Arany et al. [37] proposed an
adaptation of the mean squared error (MSE) to account for censored
labels by using a one-sided squared loss. However, their approach did
not address uncertainty quantification. This approach was first explored
for uncertainty quantification in an earlier version of our work on
a smaller subset of the datasets provided here [38]. To the best of
our knowledge, no prior work has yet adapted both the MSE and the

ore general Gaussian negative log-likelihood (NLL) for uncertainty
quantification in predictive modeling for drug discovery. Therefore,
further exploration of how censored labels can be effectively integrated
into regression models to improve prediction accuracy and uncertainty
estimation in drug discovery is needed.

In this work, we address the challenge of effectively utilizing cen-
sored regression labels during QSAR modeling in drug discovery, a
domain where data is often scarce, and uncertainty quantification is
critical for decision-making. While previous approaches have primarily
focused on high-quality data, our work expands the ability of ma-
chine learning models to incorporate partial, yet valuable information
provided in censored labels, thereby enhancing the reliability of the
uncertainty estimates. To achieve this, we develop and extend existing
methods, adapting them to the unique demands of drug discovery tasks.
We also refine evaluation techniques to rigorously assess the impact of
incorporating censored labels, ensuring that the benefits are demon-
strated across relevant metrics. Our contributions are summarized as
follows:

• We derive extended versions of ensemble-based models, Bayesian
models, and Gaussian mean–variance estimators capable of learn-
ing from additional partial information available in censored
regression labels.

• Similarly, we adapt available evaluation methods to compare
models trained with and without the additional censored labels.

• Furthermore, we provide a large-scale comparison between the
resulting censored regression models in a comprehensive tempo-
ral evaluation using internal pharmaceutical assay-based data.

• Finally, we showcase how the resulting model predictions can
be used in practical applications to streamline and aid the drug
discovery process in a case study.

2. Methods

The methodologies employed in our study are divided into two parts
detailing the data and the modeling approaches. First, we describe the
ata used in our analysis, including the sources and types of biological

assays explored. Following this, we outline the models and techniques
implemented to leverage this data, focusing on how they are adapted to
handle the unique challenges presented by censored regression labels.

The analysis in this work was performed on data from 15 internal
biological assays, categorized into two distinct groups: project-specific
target-based assays and cross-project assays related to side effects,
such as Absorption, Distribution, Metabolism, Excretion, and Toxicity
ADME-T) properties [39]. This division allows us to explore the effects
f censored labels on uncertainty estimation using different assay types.
imilar datasets were utilized in the recent study by Friesacher et al.
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Table 1
Data overview. A detailed overview of the assays used in this analysis, including the short name used throughout the results. For each assay,
key properties are shown, such as the proportion of the censored data, the end-point, the assay size, and the experimental standard deviation
derived from a control compound. Due to proprietary constraints, detailed descriptions of target-based assays cannot be disclosed.

Short name Assay End-point Goal Assay Censoring Control
description size < > std

Target-based
Target 1 N/A pIC50 ↑ 5,082 32% 1% 0.13
Target 2 N/A pIC50 ↑ 5,237 43% 0% 0.24
Target 3 N/A pIC50 ↑ 10,465 0% 0% 0.36
Target 4 N/A pIC50 ↑ 10,624 12% 2% 0.20
Target 5 N/A pEC50 ↑ 12,612 35% 0% 0.32
Target 6 N/A pIC50 ↑ 13,093 0% 0% 0.31
Target 7 N/A pIC50 ↑ 14,605 25% 0% 0.32

ADME-T
ADME-T CYP 1 CYP3A4 pIC50 ↓ 12,875 61% 0% 0.11
ADME-T CYP 2 CYP2C9 (a) pIC50 ↓ 12,876 63% 0% 0.11
ADME-T CYP 3 CYP2C9 (b) pIC50 ↓ 14,062 58% 0% 0.12
ADME-T Perm. Permeability Log Perm. ↑ 16,511 8% 0% 0.17
ADME-T Solub. Solubility Log Solub. ↑ 47,607 5% 6% 0.21
ADME-T hERG Toxicity pIC50 ↓ 67,687 42% 0% 0.19
ADME-T LogD Lipophilicity LogD ≈ 2 88,114 0% 8% 0.10
ADME-T CLint Metabolic Stability Log 𝐶 𝑙int ↓ 92,161 8% 6% 0.14

The ‘‘Goal’’ column in the table indicates the desired performance of a drug candidate on this assay (↑ for high, ↓ for low values). While LogD
targets can be project-specific, a target value of 2 is generally assumed, as excessively high or low values are typically undesirable.
g
a
e
b
d
g

p
f

A

c

[33], providing a relevant benchmark for our work. An overview of the
assays used in this study is presented in Table 1.

The target-based assays are crucial for ongoing drug development
projects and, therefore, cannot be disclosed fully. They all model either
he half-maximal inhibitory concentration (IC50) or the half-maximal
ffective concentration (EC50), as seen in Table 1. ADME-T assays are

important in the pharmaceutical industry to test the pharmacokinetic
profile and safety of drug candidates. Four of the included ADME-
T assays also measure IC50. Three of the included ADME-T assays
measure the inhibiting effects on two isoforms of Cytochrome P450
to check for potential drug–drug interactions. Two CYP2C9 assays
are included, which differ in the methods used for measuring CYP
inhibition. In the CYP2C9 (b) assay, a fluorescent substrate is used
to determine CYP inhibition. The two other CYP assays, CYP2C9 (a)
and CYP3A4 apply an updated protocol, where the degradation of
a drug is measured using liquid chromatography-mass spectrometry
(LC-MS). The solubility assay determines aqueous solubility in a high
throughput fashion, starting from a dimethyl sulfoxide (DMSO) stock
solution where the organic solvent is evaporated to have a solid sample.
The result gives the maximum concentration of a compound in an
aqueous solution at pH 7.4. The included toxicity assay determines the
compound’s potential to inhibit the human Ether-à-go-go-Related Gene
(hERG) potassium channel. This hERG inhibition is correlated to severe
ardiac side effects by prolonging the time it takes the heart to contract
nd relax, i.e. the QT interval.

The remaining ADME-T assays model other important properties
that influence the pharmacokinetics of a drug candidate. The perme-
ability assay measures the flux of a compound across the Caco-2 cell
layer. The permeability is measured in 1E-6 cm/s and is related to in
vivo absorption. To obtain a compound’s lipophilicity, the logarithm of
the distribution coefficient between octanol and aqueous phase at pH
7.4 is obtained (LogD). Finally, the Clint assay assesses the metabolic
stability of a compound in μL/min/million cells. It measures how
fast the compound is metabolized in rat hepatocytes and enables the
predictions of in vivo hepatic clearance.

During the data preparation, the measurements of all target-based
assays and the ADME-T assays measuring CYP and hERG inhibition
were transformed to pIC50/pEC50 by taking the negative log base 10 of
the measurements after transforming them to molar units. In addition,
the measurements of the solubility, permeability, and Clint assays were
transformed to log10-scale. The assay measuring lipophilicity was not
modified, as it already comprised results on the log scale. Duplicated
 i
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measurements for molecular compounds in the data were then aggre-
ated using the median of the result. The standard deviation for this
ggregation was also used in the study to indicate the experimental
rror. For each assay, a control compound was available which had
een tested many times more than any other compound. The standard
eviation of the control compound was used as an indication of the
eneral experimental error of the assay, also presented in Table 1. The

control compounds were removed before modeling each assay.
All remaining molecular compounds were then encoded with RD-

Kit (version 2023.03.3) [40] from SMILES strings [41] to Morgan
Fingerprints (ECFP) [42] of size 1024 and radius 2. Other, more ad-
vanced ways to encode molecular compounds exist, such as the graph-
based ChemProp model [7] and the pre-trained language-based CDDD
model [43]. Models based on the resulting embeddings from these neu-
ral network encoders have been compared and shown improvements in
rior work [23,26,30]. However, Dutschmann et al. [26] showed that
ingerprints perform best in combination with random forest and are

close second to CDDD in combination with neural networks. Additional
prior work has similarly shown that neural networks perform better
in combination with fingerprints compared to other machine learning
methods [44,45]. While we employ the fingerprint representations
in this study for simplicity and computational reasons, we strongly
encourage considering state-of-the-art, learned representations before
deploying our proposed methods in practical applications.

Data censoring. Given that the determination of exact experimental
results is often connected with additional experimental efforts, a sig-
nificant proportion of the data is provided with censorship. We follow
the definition of censored regression proposed by Hüttel et al. [35].
Formally, if we define the true experimental label 𝑦∗𝑛 ∈ R of a molecular
compound with features 𝒙𝑛 ∈ R𝑑 of length 𝑑 from an assay, a censored
label provides only an observation of a threshold 𝑧𝑛 below or above
which the true result lies. In the case of right-censoring this means
that instead of observing 𝑦∗𝑛 we observe 𝑦𝑛 = min(𝑦∗𝑛 , 𝑧𝑛) and for left-
censoring we instead observe 𝑦𝑛 = max(𝑦∗𝑛 , 𝑧𝑛). As such, we introduce
a mask 𝑚𝑛 which is 1 if 𝑦∗𝑛 > 𝑧𝑛 and −1 if 𝑦∗𝑛 < 𝑧𝑛, otherwise 𝑚𝑛 = 0.

s a result, we get the dataset censored = {𝒙𝑛, 𝑦𝑛, 𝑚𝑛}𝑁𝑛=1 for each assay
with total number of labels 𝑁 . In particular, note that the censoring
threshold can vary for different labels which is different from fixed-
value censoring where the threshold is fixed [46]. Furthermore, we
assume that the true distribution and the censoring distribution are
onditionally independent given the molecular compound’s features,
.e. that 𝑦∗ ⟂ 𝑧 |𝒙 . Labels that are not censored are henceforth
𝑛 𝑛 𝑛
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Fig. 1. Five-fold temporal split. Illustrating the five folds created based on the date of the experiments and how they are used to create three temporal settings, each with more
training data. For each setting, the first subsequent fold is used for validation, and the second subsequent fold is used for testing. Note that the folds were created to have roughly
equal size, not based on fixed time intervals.
referred to as observed labels. An observed dataset was also prepared
for each assay to evaluate if the performance improved by including the
censored labels. These datasets contain only the observed labels defined
by observed = {𝒙𝑛, 𝑦𝑛, 𝑚𝑛}∀𝑛∶𝑚𝑛=0.

While prior work mentions the possibility of extending the defini-
tion of censored regression to include both right- and left-censoring
at once [35,37], the majority of previous applications focus only on
right-censoring. During the aggregation of duplicated measurements in
the data preparation for this work, observed labels were always pri-
oritized over censored labels. If no observed labels were available, the
compounds were assigned the most common censored threshold among
the potential duplicated measurements. Table 1 lists the percentage of
censored labels for each assay used in this work divided between left-
and right-censoring, according to the log-scale of the end-points. Note
that while many assays include only left-censored labels, i.e., 𝑦∗𝑛 < 𝑧𝑛,
two assays have a more balanced amount of censored labels, namely the
ADME-T assays for solubility and metabolic stability. There is also one
of the included assays that only have right-censored labels, namely the
ADME-T assay for lipophilicity. Finally, two of the target-based assays,
Target 3 and Target 6, do not have any censored labels. These two
assays are useful in the model comparison to determine how all of the
considered models compare when no censored labels are available.

Temporal split. Apart from the modeling of censored data, a key contri-
bution of our work relates to evaluating the uncertainty quantification
of molecular property prediction in a temporal setting. As such, we
simulated realistic assay-based modeling of pharmaceutical projects by
splitting the data of each assay into five folds based on the date of the
experiment. Where duplicated measurements were aggregated, the first
experiment date of all measurements was used. Fig. 1 illustrates the
folds and resulting three settings used to evaluate and compare trained
models as time evolves in this work, similar to how it was previously
done by Svensson et al. [38]. The time intervals were chosen to create
roughly equally sized folds regarding the number of observed labels.

By comparing the feature-space and label distributions between
the three training folds and their respective validation and test sets,
we identified various scenarios of in- versus out-of-distribution cases
among the datasets. For the feature-space analysis, we created t-SNE
projections of the molecular compounds in each dataset shown in
Fig. S2 of the supplementary material. For the label-space analysis, we
compared the distributions of all observed labels of each fold as shown
in Fig. S1 of the supplementary material.

Generally, for the ADME-T assays no clear distribution shift is
present in either the feature-space or the label-space over time. On
the contrary, for the target-based assays both the feature-space and
the label-space shift over time. These observed trends are naturally
expected due to the fundamental difference between the two kinds of
4 
assays. ADME-T assays include final drug candidates from all kinds
of drug discovery projects that stem from a diverse chemical space.
Target-based assays, on the other hand, are more focused on a given
chemical space, which can shift over time as the focus of the project
changes. This important distinction would not be possible without the
temporal split proposed in this work, and the effects of it on model
performance, as well as calibration of predicted uncertainty, is explored
during the evaluation of the models.

2.1. Models for uncertainty quantification

In this work, we propose five models that extend existing techniques
to handle censored labels alongside two baseline models that only learn
from observed labels without accounting for censorship. Fig. 2 gives
an overview of all models and how they can estimate epistemic and/or
aleatoric uncertainty. Ensemble-based and Bayesian approaches, such
as Random Forests [11], ensembles of neural networks [13], Monte
Carlo (MC) Dropout [12] and the approximation of a Bayesian neural
network known as Bayes by Backprop [10] are commonly used to
estimate epistemic uncertainty. For aleatoric uncertainty, two primary
methods are available: the Gaussian mean–variance estimator [18]
and evidential deep learning [20]. By creating an ensemble of the
Gaussian model, we can also derive estimates of epistemic uncertainty.
Evidential deep learning, on the other hand, simultaneously models
four parameters that can be used to directly estimate aleatoric and epis-
temic uncertainty. We extend all of these models, except the Random
Forest and Evidential model, to learn from both observed and censored
data, while the two remaining approaches are used as baselines. A
detailed description of how the model selection is performed for each
model is provided in Table S1 of the supplementary material. While
the data used in this work is proprietary and cannot be disclosed,
the full methodology is available on GitHub at https://github.com/
MolecularAI/uq4dd. Our framework is inspired by the design pattern
proposed by Hartog et al. [47].

Ensemble-based approaches. In general, ensemble-based approaches are
useful to model epistemic uncertainty by estimating the model vari-
ance. An ensemble is defined as a set of 𝐾 base estimators 𝑓 (𝒙𝑛),
for which the average of the individual base estimators’ predictions is
taken as the final prediction by the ensemble and the variance of the
predictions as an estimate of the predictive uncertainty as follows,

𝜇𝑛 =
1
𝐾

𝐾
∑

𝑘=1
𝑓𝑘(𝒙𝑛), 𝜎2ep,𝑛 =

1
𝐾

𝐾
∑

𝑘=1
(𝑓𝑘(𝒙𝑛) − 𝜇𝑛)2. (1)

In a Bayesian framework, the uncertainty in model parameters 𝜽 re-
sults in the predictive uncertainty of the model 𝑝(𝑦𝑛|𝒙𝑛,𝜽). The true pos-
terior distribution of the model parameters for a given dataset can be

https://github.com/MolecularAI/uq4dd
https://github.com/MolecularAI/uq4dd
https://github.com/MolecularAI/uq4dd
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Fig. 2. Overview of models. Illustrations of all models used in this study. The top row shows ensemble-based and Bayesian methods for which epistemic uncertainty can be
obtained from the standard deviation in sampled predictions. All models in the bottom row produce aleatoric estimates of uncertainty. Additionally, epistemic uncertainty can be
derived from the Gaussian Ensemble and the Evidential model.
described as 𝑝(𝜽|), such that the predictive uncertainty of the Bayesian
model average is defined by 𝑝(𝑦𝑛|𝒙𝑛,) = ∫𝜣 𝑝(𝑦𝑛|𝒙𝑛, �̃�)𝑝(�̃�|)d�̃� [6,48].
As shown by Lakshminarayanan et al. [13] and Gal [48], the variance
of ensemble predictions approximates the epistemic part of this true
posterior distribution.

One of the simplest and most widely used traditional machine
learning methods for ensemble-based uncertainty quantification takes
the decision trees in a Random Forest as an ensemble [11]. We use the
implementation of decision tree regressors from Scikit-learn [49] where
each decision tree is trained independently using different sub-samples
of the training data. The final prediction is obtained by averaging the
predictions of all the trees and the variance constitutes the epistemic
uncertainty estimate. Similarly, ensembles can be created by training
multiple instances of the same neural network architecture with dif-
ferent random weight initialization [13]. We first consider the neural
network architecture with a single output, which means that each base
estimator makes a prediction such that the final prediction by the
ensemble again is the average of the individual predictions and the
variance estimates the epistemic uncertainty [50]. We use 50 randomly
initialized and independently trained neural networks to create this
ensemble and hence refer to it as Ensemble. All neural networks in this
work are implemented and trained with PyTorch [51].

Furthermore, MC-Dropout is another technique that uses dropout
in neural networks to approximate Bayesian inference [12]. Dropout
is typically used when training neural networks to prevent overfitting
by randomly setting a fraction of the neurons to zero. During MC-
Dropout, multiple samples are drawn from the model using dropout
during the inference phase. Similar to the ensemble-based approaches,
the variance between these predictions provides an estimate of the
epistemic uncertainty. We use the same neural network architecture
from the Ensemble in our MC-Dropout model but train only one model
and draw 500 samples from it during the inference step.

In a standard regression framework, the mentioned base estimators
of these models are trained using the MSE loss. We propose to use the
adapted CensoredMSE loss from Arany et al. [37] to allow the models
to learn also from additional censored labels where available. As such,
we define a one-sided error of a given prediction 𝜇𝑛 and the true label
𝑦𝑛 as follows,

𝜀𝑛 =

⎧

⎪

⎨

⎪

min
(

𝑧𝑛 − 𝜇𝑛, 0
)

, if 𝑚𝑛 = −1,
𝑦𝑛 − 𝜇𝑛, if 𝑚𝑛 = 0,

( )

(2)
⎩

max 𝑧𝑛 − 𝜇𝑛, 0 , if 𝑚𝑛 = 1,

5 
and get the CensoredMSE as MSE = 1
𝑁

∑𝑁
𝑛=1 𝜀

2
𝑛. The interpretation of

the proposed loss is that when the model correctly predicts a value
above the threshold of a right-censored label or below the threshold
of a left-censored label the error is set to zero. This reflects a perfect
prediction and does not result in any weight updates due to the zero
gradient of a constant.

Bayes by backprop. Blundell et al. [10] proposed a Bayesian version
of neural networks, known as Bayes by Backprop, that approximates
the posterior distribution of the network weights. In traditional neural
networks, the weights are deterministic, meaning that a single set of
values is learned during training. However, in Bayes by Backprop, the
weights are modeled as random variables with associated probability
distributions, typically Gaussian. This allows the network to maintain
a distribution over the weights, reflecting the uncertainty about the true
values of these parameters given the observed data.

To train the Bayes by Backprop model, the goal is to approximate
the posterior distribution 𝑝(𝒘|) of the weights 𝒘 given the train-
ing data . Since exact Bayesian inference is intractable for neural
networks, a variational approximation is used. The approach involves
defining a variational distribution 𝑞(𝒘|𝜽), parameterized by 𝜽, which
approximates the true posterior. The optimal variational parameters
𝜽 are learned by minimizing the variational free energy, also known
as the evidence lower bound (ELBO), which balances the trade-off
between fitting the data well and staying close to the prior distribution
𝑝(𝒘). The loss function used to train the Bayes by Backprop model is
therefore

BNN = KL[𝑞(𝒘|𝜽) ∥ 𝑝(𝒘)] − E𝑞(𝒘|𝜽)[log 𝑝(|𝒘)], (3)

where the first term is the Kullback–Leibler (KL) divergence between
the variational distribution 𝑞(𝒘|𝜽) and the prior distribution 𝑝(𝒘) and
the second term is the expected log-likelihood of the data under the
variational distribution. The KL divergence penalizes deviations from
the prior distribution while the expected log-likelihood encourages the
model to find weight distributions that explain the observed data well.

In our implementation, we convert the same neural network used in
the ensemble-based approaches into a Bayesian neural network and use
the CensoredMSE as the log-likelihood to allow the Bayes by Backprop
model to learn from censored labels. The KL divergence is unaffected
by censored labels as it relates solely to the learned weight distribution
with respect to the prior. During inference, we sample 500 sets of
weights from the learned distribution, and the resulting ensemble of
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models generates a distribution of predictions. As for the ensemble-
ased approaches, the spread of these predictions provides an estimate
f the epistemic uncertainty, which reflects the model’s uncertainty due
o limited data or model capacity.

Gaussian models. So far, the base estimators of all described models
produce only a prediction of the regression label. Next, we introduce
the mean–variance-estimator originally proposed by Nix and Weigend
[18]. More recent work by Choi et al. [19] suggests that the uncertainty
estimates by this model are related to the heteroscedastic aleatoric
uncertainty as it captures the noise inherent in data. As such, we define
the mean–variance-estimator as a neural network with two outputs:
one representing the predicted value 𝜇𝑛 and the other representing the
model’s estimate of the aleatoric uncertainty 𝜎2al,𝑛. The predicted vari-
ance is processed through a Softplus function to ensure non-negativity
and stability. This model is trained using the NLL, which in the case of
a presumed Gaussian distribution becomes the following,

NLL = 1
𝑁

𝑁
∑

𝑛=1
−log𝜑(𝑦𝑛|𝒙𝑛,𝜽)

= 1
𝑁

𝑁
∑

𝑛=1

1
2

log(𝜎2al,𝑛) +
(𝑦𝑛 − 𝜇𝑛)2

2𝜎2al,𝑛
+ constant,

(4)

where 𝜑(𝑦𝑛|𝒙𝑛,𝜽) is the probability density function for the Gaussian
distribution with parameters 𝜇𝑛 and 𝜎2al,𝑛 estimated by the model with
parameters 𝜽. Note that the constant term 1

2 log(2𝜋) is omitted from the
loss. Additionally, note that the variance is lower bound by a small
number (𝜉 = 1𝑒−6) for numerical stability as done in the PyTorch
implementation of the Gaussian NLL [51].

We refer to this model as Gaussian going forward and additionally
ake a Gaussian Ensemble from 5 independently trained Gaussian
odels. A similar approach was used by Busk et al. [52], who suggests

we get the aleatoric estimate from the expected value of all predicted
variances and the epistemic estimate from the variance of the predic-
tion. Furthermore, this decomposition of the sources of uncertainty is
similar to how it is done for Gaussian Mixture Models [53,54]. Hub-
chneider et al. [53] argues that this decomposition results in epistemic
ncertainty estimates that vanish with more data, thus being reducible,
n contrast to the aleatoric part which does not, thus being irreducible.
s such, these results also correspond to the definition of epistemic and
leatoric sources of uncertainty [2,5,6].

To adapt this learning objective to be able to handle additional
ensored labels where available, we take inspiration from the Tobit
odel [55] used more recently in Bayesian active learning for survival

nalysis by Hüttel et al. [35]. The intuition behind this method is that
or censored labels we use the integral of the probability density func-
ion that is within the correct censored region. Thus, for a left-censored
abel with threshold 𝑧𝑛 the objective is to maximize the integral of
(𝑦𝑛|𝒙𝑛,𝜽) below 𝑧𝑛, in other words to minimize the negative logarithm
f the cumulative distribution function 𝛷(𝑧𝑛|𝒙𝑛,𝜽). On the contrary, for
ight-censored labels with threshold 𝑧𝑛 the objective is to minimize the
egative logarithm of the complement to the cumulative distribution
unction 1 − 𝛷(𝑧𝑛|𝒙𝑛,𝜽). In summary, our proposed CensoredNLL is
efined as,

NLL = − 1
𝑁

𝑁
∑

𝑛=1
(1 − |𝑚𝑛|) log𝜑(𝑦𝑛|𝒙𝑛,𝜽)

+ |𝑚𝑛| log
{

𝛷(𝑧𝑛|𝒙𝑛,𝜽), if 𝑚𝑛 = −1,
1 −𝛷(𝑧𝑛|𝒙𝑛,𝜽), if 𝑚𝑛 = 1.

(5)

Evidential deep learning. Another probabilistic approach to uncertainty
stimation is through evidential learning using a neural network as

proposed by Amini et al. [20]. This approach leverages the principles
f evidential reasoning, where the network outputs parameters of a
istribution that characterizes both aleatoric and epistemic uncertainty.
n evidential deep learning, the neural network outputs four parameters
6 
𝛾𝑛 ∈ R, 𝜈𝑛 > 0, 𝛼𝑛 > 1, 𝛽𝑛 > 0, which together model the prediction 𝜇𝑛 ∼
(𝛾𝑛, 𝜎2𝑛𝜈−1𝑛 ) and variance 𝜎2𝑛 ∼ 𝛤−1(𝛼𝑛, 𝛽𝑛). In the implementation, the

utputs for 𝜈𝑛, 𝛼𝑛, and 𝛽𝑛 are all passed through a Softplus function, and
hen 1 is added to 𝛼𝑛. Through this hierarchical model, the parameters
xpress the epistemic uncertainty and aleatoric uncertainty estimates
s,

𝜎2ep,𝑛 =
𝛽𝑛

𝜈𝑛(𝛼𝑛 − 1) , 𝜎2al,𝑛 =
𝛽𝑛

𝛼𝑛 − 1 . (6)

The Evidential model is trained using the evidential loss, which
ptimizes the predicted parameter 𝛾𝑛, 𝜈𝑛, 𝛼𝑛, 𝛽𝑛 to balance their fit to the
ata and simultaneous calibration of uncertainty estimates. The loss is
efined as,

EL = 1
𝑁

𝑁
∑

𝑛=1

1
2

log
(

𝜋
𝜈𝑛

)

+ log
⎛

⎜

⎜

⎝

𝛤 (𝛼𝑛)

𝛤 (𝛼𝑛 +
1
2 )

⎞

⎟

⎟

⎠

− 𝛼𝑛 log
(

2𝛽𝑛(1 + 𝜈𝑛)
)

(7)

+
(

𝛼𝑛 +
1
2

)

log
(

(𝑦𝑛 − 𝛾𝑛)2𝜈𝑛 + 2𝛽𝑛(1 + 𝜈𝑛)
)

(8)

+ 𝜆|𝑦𝑛 − 𝛾𝑛| ⋅ (2𝜈𝑛 + 𝛼𝑛), (9)

where 𝛤 is the Gamma distribution and 𝜆 is a hyperparameter deter-
mining the level of regularization. The first part of the evidential loss
(Eq. (7)) corresponds to the log-likelihood of the predicted mean and
variance of the normal-inverse Gamma distribution. The second part
(Eq. (8)) optimizes the predictions toward the true target values 𝑦𝑛
while also accounting for the uncertainty in the predictions. Finally, the
last part (Eq. (9)) provides the regularization that penalizes the model
or being overly confident, we use 𝜆 = 1.

While evidential learning has been used previously to estimate
uncertainty in drug discovery-related tasks [27,56] its effectiveness at
disentangling aleatoric and epistemic uncertainty has recently been
uestioned Juergens et al. [57], therefore we decided not to provide

an extension of this model for cases with censored labels. Instead,
the Evidential model is used solely as a baseline to benchmark the
performances of the other approaches with that of this commonly used
model.

2.2. Evaluation

The focus of this work is to determine the performance of models
on realistic pharmaceutical data. As such all models are primarily
evaluated on the full test sets containing observed and, if available,
censored labels. The MSE loss is used to evaluate the performance of
the predictions made by the models, in cases of censored labels we use
the one-sided squared error from Eq. (2). Other metrics are required to
evaluate the accuracy and calibration of the predicted uncertainties. We
consider two ways to evaluate predicted uncertainty: one that evaluates
only the accuracy or calibration of the uncertainty and another that
evaluates predictive performance intertwined with how well-calibrated
the predicted uncertainty is.

A detailed way to evaluate the predicted uncertainties by them-
selves is by comparing the confidence-based calibration curve to the
identity function, which corresponds to perfect calibration [8,25,53,
54]. The confidence-based calibration curve is obtained by computing
he z% confidence interval (CI) for every predicted uncertainty in the

test set. Next, the observed fraction of errors within each CI is calcu-
ated for several expected fractions between 0 and 1. Again, we adopt
his evaluation technique for censored labels by using the one-sided

squared error from Eq. (2).
Furthermore, the Gaussian NLL [58] and the Expected Normalized

Calibration Error (ENCE) [59] are two global metrics that evaluate
he intertwined predictive performance and calibration of uncertainties.

e use the extended version of the Gaussian NLL from the Tobit model
hat can handle censored labels as defined in Eq. (5), and does not omit

any constant terms. The ENCE metric is derived from the error-based
calibration plot proposed by Levi et al. [59], which is made from a
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binned representation of the root MSE (RMSE) and the root mean vari-
ance (RMV), i.e., predicted uncertainty. In the case of censored labels,

e again employ the one-sided squared error before taking the root
of the mean. Computationally, the errors and corresponding predicted
ncertainties are ordered based on increasing predicted uncertainty and

split into a set  of bins. For each bin 𝑏 of size |𝑏| the RMSE and RMV
re calculated as,

RMSE𝑏 =
√

1
|𝑏|

∑

𝑖∈𝑏
(𝑦𝑖 − 𝜇𝑖))

2, RMV𝑏 =
√

1
|𝑏|

∑

𝑖∈𝑏
𝜎2𝑖 . (10)

The bins are then summarized to give the ENCE metric as follows,

ENCE = 1
||

∑

𝑏∈

|RMSE𝑏 − RMV𝑏|

RMV𝑏
. (11)

Other metrics have been proposed and used to evaluate uncertainty
stimates in drug discovery applications, such as Spearman’s Rank Cor-
elation Coefficient between predicted uncertainties and corresponding
rrors [23,25–27]. However, this score has been criticized due to the
tochasticity and unreliability of the result Rasmussen et al. [60].

Statistically, a data point with high predicted uncertainty can still
result in a prediction with low error and vice versa. Additionally, it
is non-trivial how to adjust this score for censored labels. Therefore,
we discard the metric from our analysis.

3. Experiments

We start our experiments by evaluating the effect of training models
with the additional partial information available in the real pharma-
ceutical assay-based setup in the form of censored regression labels.

his comparison is conducted as an ablation study, comparing the
ifference in performance between models trained with and without
ensored data for each assay. Next, we provide an in-depth comparison
etween the models on each temporal setting of every assay. The
odel comparison evaluates the predictive performance and calibration

eparately for aleatoric and epistemic uncertainty estimates. Finally, we
rovide practical illustrations of the resulting uncertainty estimates for
he best-performing model in terms of the aleatoric and epistemic parts
espectively.

3.1. Ablation study

We compare the performance of each model trained with and with-
ut the censored data to determine the impact of training uncertainty-
ware machine learning models with additional partial information
n the form of censored regression labels for molecular property pre-

diction. Each test set is kept the same, containing all available data
including the censored labels. However, the baseline models are trained
only on the observed labels from the training datasets, i.e. observed.
Similarly, the validation set, used for hyper-parameter optimization and
arly stopping, only contains observed labels for the baseline models.
e first evaluate the differences in NLL as a measurement of the in-

ertwined predictive accuracy and calibration of uncertainty estimates.
e define the test score from the model trained without censored data

as NLLobserved and the test score from the model trained with censored
ata as NLLcensored. As NLL is minimized for more accurate predictions

and better-calibrated uncertainty estimates, we define the evaluation
etric as 𝛥NLL = NLLobserved−NLLcensored such that a positive difference

indicates that the performance was enhanced for the model trained
with censored data. Next, we do the same analysis in terms of the MSE
o evaluate the effect of including the censored labels on the predictive
ccuracy independent from the uncertainty estimation.

We evaluate the difference in MSE and NLL for each assay and
emporal setting and test the statistical significance using a two-sided
ann–Whitney–Wilcoxon test [61]. Due to the vast number of statis-

ical tests required, we apply Bonferroni correction to counteract the
multiple comparisons problem [62]. As such, we use a significance level
7 
0.05∕𝑚 where 𝑚 is the number of datasets times the number of models in
the comparison. If the difference is positive and significant (𝑝 < 0.05∕𝑚)
the model trained with censored data is deemed best. Similarly, if the
ifference is negative and significant (𝑝 < 0.05∕𝑚) the model trained
ithout censored data is deemed best. The results of the ablation study

are summarized in Fig. 3. In addition, the results on test sets containing
only observed labels are provided in Fig. S3 of the supplementary
material. The magnitude of all underlying scores for Fig. 3 and Fig. S3
are also supplied in Fig. S4 and S5 of the supplementary material.

Throughout the ablation study, the assays are ordered according to
the percentage of censored labels available in the full dataset. Note
that the two assays without any available censored labels, Target 3 and
Target 6, have been excluded. Each star in Fig. 3 and Fig. S3 indicates
that the model trained with or without censored data was significantly
better in one of the three temporal settings. As such, each bar can
ave a maximum of three stars. If a star is located above the bar, the
odel trained with censored data is the best, and vice versa if it is

ocated below the bar. The dark gray stars mark the significance under
onferroni correction, but the uncorrected significances are also shown

as the light gray stars. The total number of significant cases under
Bonferroni correction is summarized in the legend for each model. Note
that the total number of datasets in this ablation study is 39, including
the 13 assays and 3 temporal settings. The error bars illustrate the
standard deviation between the temporal settings.

The 𝛥NLL results in the bottom panel of Fig. 3 show predominately
enhanced performances when the models are trained with the censored
regression labels. Particularly, the Ensemble and Gaussian Ensemble
models show significant enhancements in a majority of the datasets

hen trained with censored labels. All other models are enhanced
or comparable in all but a few datasets. By instead considering each
assay at a time, we see that for all assays apart from ADME-T Perm.
and ADME-T Solub. more models are improved by the censored labels
than hurt by them. The two exceptions are among the assays with
the smallest percentages of censored labels available. In this case, the
Bonferroni correction could be considered too restrictive given the
much smaller number of comparisons in each analysis. In terms of the
ncorrected significance, 8 out of the 13 assays see a strong majority

of enhanced performances with the censored labels.
Furthermore, the magnitudes of the 𝛥NLL scores in Fig. 3 generally

become larger for assays with higher proportions of censored labels,
with a more substantial shift occurring around 35%. A more detailed
nalysis of this trend for each model respectively is seen in Fig. S5 of the
upporting material. There, we see that for Ensemble and MC-Dropout
he improvements grow for assays with > 35% censored labels. For

these assays, the NLL is on average enhanced by 52% for the Ensemble
odel and 48% for the MC-Dropout. Similarly, the Gaussian model

nd both uncertainty sources of the Gaussian Ensemble model also see
ubstantial enhancements for assays with > 35% censored labels. For
he Gaussian model and the aleatoric part of the Gaussian Ensemble, the
LL is enhanced by 34% on average for these assays. The NLL for the

epistemic part of the Gaussian Ensemble for these assays on the other
hand is enhanced by 56% on average. Finally, the Bayes by Backprop
model is consistently improved already for assays with > 13% censored
labels although by a slightly lower average enhancement of 24%.

While the NLL provides an overview of the overall performance of
these uncertainty estimation methods, it is also interesting to evaluate
the effect of the censored labels on the predictive accuracy on its own.
The ablation study in terms of 𝛥MSE is presented in the top panel
of Fig. 3. Note that the Gaussian Ensemble only occurs once in this
result, as the different uncertainty estimates do not impact the MSE.
There appears to be a greater difference between the effects of the
censored labels on the two loss functions in terms of predictive accuracy
compared to the NLL. Recall that the Ensemble, MC-Dropout, and Bayes
by Backprop models are adapted using the one-sided squared loss,
whereas the two Gaussian models use the Tobit loss with similarities to

the NLL. Regarding the significant differences, the results for Ensemble,
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Fig. 3. Ablation study. Difference between MSE (top) and NLL (bottom) for models trained with and without censored labels. The error bars aggregate the three temporal settings.
For each temporal setting, a star indicates whether one of the models trained with or without censored labels was significantly better. As such, each bar can have a maximum of
three stars. Stars above a bar indicate that the censored model was significantly better, with Bonferroni correction (𝑝 < 0.05∕𝑚) in dark gray and without correction (𝑝 < 0.05) in
light gray. In contrast, the stars below a bar indicate the opposite. The legend summarizes the number of Bonferroni corrected significant differences per model.
MC-Dropout, and Bayes by Backprop are similar in terms of 𝛥MSE as
they were in terms of 𝛥NLL. The Ensemble model is enhanced for a
majority of datasets, and the other two are enhanced or comparable
in all but a few datasets. The improvements are however smaller in
magnitude, as seen especially in Fig. S4 of the supplementary material.
Proportionally, the enhancements of the MSE are still, on average,
around 20% for these models on the assays with > 35% censored labels.
The combined results of these models in terms of MSE and NLL, indicate
that the inclusion of censored labels during the training procedure
mostly impacts the uncertainty estimation abilities of the models rather
than predictive accuracy.

On the contrary, the predictive accuracy of the Gaussian models
trained with the Tobit loss is mostly not improved by including the
censored labels. The magnitude of the loss in predictive accuracy for
the Gaussian models is largest for Target assays with ≥ 25% censored
labels included for the adapted version of the models, as seen in Fig. S4
of the supplementary material. The proportional losses in MSE are
comparable to the enhancements in NLL, consisting of around −30%
on average for all assays. This is an unfortunate drawback of our
proposed adaption of the Gaussian models using the Tobit loss and
should be considered when using the models in practice. However, as
these machine learning approaches are most often used in applications
for high-throughput screening in the early stages of the drug discovery
pipeline, the ranking of molecular compounds is usually considered
more critical than the exact prediction of a given property. As such,
we believe the enhancement of the uncertainty estimates can outweigh
the loss in predictive accuracy. Furthermore, it is possible that a
weighting scheme included in the Tobit loss functions could make the
Gaussian models trained with censored labels favorable also in terms
of predictive accuracy.

As a final step in this ablation study, we analyze the impact of
training the models with and without the censored labels on solely
the observed test labels. Similar to the analysis of the 𝛥MSE, this
is useful to determine which impact the adapted training procedure
has on censored versus observed test labels. While this analysis is
8 
interesting, we believe it is secondary to the analysis performed on the
full set of test labels. The reason is that the full test set is the only
one that simulates the real scenario in the drug discovery process. In
reality, there would be no way of excluding the compounds that in
hindsight would result in censored labels when tested in the lab. Fig. S3
in the supplementary material shows the 𝛥MSE and 𝛥NLL on only
observed test labels (i.e. excluding the censored labels). These scores
are mostly not improved by including censored labels during training.
The performance of the Bayes by Backprop model is mostly not signif-
icantly affected by the inclusion of censored labels during its training.
The predictive accuracy of the Ensemble and MC-Dropout models is
typically worse when censored labels are included while the impact on
the NLL is more varying. The performance of the Gaussian models is
almost always negatively impacted by the inclusion of censored labels
during training.

By considering the full datasets, including the censored labels, as
the true underlying data distributions, we can conclude that the results
on the observed labels only illustrate a crucial point. Namely, that
the censored labels make up a critical part of the distributions, such
that machine learning models trained with or without them do not
transfer to the test set corresponding to the opposite case. Models
trained without censored labels do not perform well on test sets with
censored labels, and models trained on full datasets do not perform
well on test sets without censored labels. We believe this is a natural
consequence of the vast imbalance in the censored labels. As seen in
Table 1 most assays only include censoring in one direction. Only two
of the assays explored in this study have a more balanced occurrence
of left- and right-censored labels, namely ADME-T Solub. and ADME-
T CLint. However, the total proportion of censored labels for these
assays is not large enough to significantly impact the difference in per-
formance between the models trained with and without the censored
labels as discussed above. While the reduced performance of the models
trained with censored labels on observed test labels is unfortunate,
we argue that it is so far an unavoidable side-effect of the optimal
performance achieved on true test sets overall. In the future, other
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Fig. 4. Predictive accuracy. Comparing the predictive accuracy of all models in terms of MSE, aggregated over 10 experiments. For each dataset, the best model in terms of
mean MSE is marked with a start together with any other models not statistically worse based on a one-sided Mann–Whitney–Wilcoxon test with Bonferroni correction. Apart from
the Random Forest and Evidential models, all other models are trained with censored labels where available.
ways of incorporating censored training labels could be explored, such
as using the absolute values of censored labels without the additional
censored information.

All in all, this ablation study has shown that the inclusion of
censored labels during training of uncertainty-aware methods can in
some cases negatively impact the predictive accuracy as well as the
performance on observed labels separately. However, it has also shown
that including censored labels during machine learning is important to
accurately estimate well-calibrated uncertainties in real pharmaceutical
scenarios, where censoring occurs and cannot be avoided. The enhance-
ments are especially prominent when the proportion of censored labels
makes up roughly one-third or more of all available data for a given
assay. Given the overall majority of improvements in the NLL seen
with censored labels included during training on the full test sets, we
recommend the community utilize this data in the future during QSAR
modeling for regression tasks. Furthermore, we continue to compare
these models to each other and the additional baselines in the following
section.

3.2. Model comparison

We compare the proposed models trained with all available data,
including censored labels, on each dataset by obtaining their predictive
accuracy in terms of MSE, their local calibration in terms of the
confidence-based calibration curves, and their overall performance in
terms of NLL and ENCE. Where uncertainty estimates are evaluated,
we separate the aleatoric and epistemic parts. For each dataset, the
three temporal settings are evaluated separately such that the results
can be compared between different sizes of training sets, and as time
evolves. For instance, it is relevant to know if conclusions drawn
from the first temporal setting also hold throughout time, i.e. on the
following temporal settings. In this analysis, the assays are first ordered
by category and then according to the overall size of the dataset. For
the scores, MSE, NLL, and ENCE the model with the best average
score over 10 repeated experiments is marked with a star. Additionally,
any other performances not significantly different from the best model
according to a one-sided Mann–Whitney–Wilcoxon test are also marked
with stars [61]. Similar to the ablation study, we use Bonferroni cor-
rection to counteract the multiple comparisons problem [62]. Here the
significance level is 𝑝 < 0.05∕𝑚, where 𝑚 is the number of comparisons
per dataset. The two target-based assays without censored labels are
included. Apart from the proposed extended models, which are trained
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with censored labels, two additional baselines are included: a Random
Forest model and a model trained with evidential deep learning. These
models are trained without censored labels as explained in the Methods
section.

Predictive accuracy. The predictive performances of the models are
presented in Fig. 4 in terms of MSE. An initial observation is that the
MSE is generally lower for the models trained on the ADME-T assays.
This result is expected given the diversity and size of the ADME-T
assays, compared to the target-based assays. More data means that the
models can learn to generalize better and the lack of shifts in both
the feature space and the label space provides an easier prediction
task. For seven out of the eight ADME-T assays, the Ensemble model
is the best or among the best for all temporal settings. In a couple of
instances, the MC-Dropout model is comparable, and for the ADME-T
Perm. assay the Bayes by Backprop model significantly outperforms all
other models. In the target-based assays, there is a greater variation in
the best-performing models. For three target-based assays, the Bayes
by Backprop model is consistently among the best across all three
temporal settings, and in one target-based assay, the Ensemble model is
consistently among the best. However, for the remaining three assays
Target 1, Target 2, and Target 7 the best-performing model changes
drastically over time. This observation is of great importance, as it illus-
trates that, typically, the conclusions about the best-performing model
drawn early in the development of an ADME-T assay are reliable and
still hold throughout the later development of the assay. On the other
hand, as target-based assays might significantly shift in chemical space
over time the same is not always true for the model comparison on
these kinds of assays. For target-based assays, a new model comparison
might be needed later on in the development of the assays to keep the
best-performing model up-to-date.

For the most part, the Random Forest and Evidential models, which
are trained without censored labels, perform poorly compared to the
best-performing models. This is also true for the Evidential model on
the two assays that do not have any censored labels, meaning that
neither of the other models has the advantage of being trained on more
data. We interpret this as an indication that the poor performance of the
Evidential model compared to the other models is not primarily related
to the fact that the other models are trained with censored labels. The
Random Forest model, however, does reach comparable results to the
Bayes by Backprop model for some of the temporal settings on the
two assays, but it is never significantly better than all other models
on any datasets. As such, it might be interesting to try to extend the



E. Svensson et al. Artiϧcial Intelligence in the Life Sciences 7 (2025) 100128 
Fig. 5. Calibration curves. Full calibration curves for all uncertainty estimates on the third temporal setting containing three folds in the training set, aggregated over 10
experiments. The black line in each panel illustrates what a perfectly calibrated model would look like. Apart from the Random Forest and Evidential models, all other models
are trained with censored labels.
Random Forest model to also handle censored labels in the future. Note,
that this should be possible similar to how the one-sided square loss
was used for models originally trained using MSE. However, it would
require lower-level changes to the implementations in Scikit-learn [49]
which we deem out of the scope of this study given that it does not
significantly outperform any of the other proposed methods herein.
We do not believe it would be possible to simply include the censored
labels as they are during the training of the Random Forest, given the
non-fixed window of censoring per assay.

Considering all datasets, i.e. assays and their respective temporal
settings, the Ensemble model performs best overall, by being among
the best-performing models for 28 out of the 45 dataset instances.
The only approach that matches the performance of the Ensemble
model is the Bayes by Backprop model which is among the best for 19
dataset instances. From the remaining models, the MC-Dropout model
is only among the best-performing models for 9 dataset instances,
usually together with the Ensemble model. The Evidential model and
the Random Forest model are among the best together with the Bayes
by Backprop model in 7 versus 5 cases each. When training with two
folds of the Target 1 assay, the two Gaussian models perform best
together with the Ensemble model. However, this is the only instance
where these models are among the best.

It is reasonable and compatible with previous conclusions, that the
Ensemble model achieves the highest predictive accuracy, i.e. lowest
MSE [63]. The reason is that this model contains the highest number
of individually trained models. As such, the consensus in the predic-
tions by the base models can reach a higher accuracy in cases where
the problem is solvable by the available data. In comparison to the
Gaussian Ensemble, the regular Ensemble has a slight advantage in
terms of solely predictive accuracy because it is only trained to optimize
the MSE. The Gaussian model simultaneously needs to optimize the
calibration of the predicted uncertainty and thus might need to sacrifice
some predictive accuracy if they are miss-aligned. For the Random
Forest, the number of decision trees was optimized for each dataset in
the model selection, as such in some cases the ensemble contains more
than 50 trees. However, as the Random Forest is less complex than a
neural network it is still reasonable that the neural network ensemble
performs better. Out of the remaining models, the Evidential model
relies on a single trained base model, but the Bayesian models instead
learn an infinite set of model parameters.

Overall, our results show the Ensemble as the best-performing al-
ternative considering only the predictive accuracy of the considered
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models. However, for practical applications, the computational cost of
this model also needs to be taken into consideration. It is substantially
more demanding to train 50 individual models for the Ensemble com-
pared to the single model architecture used in the Bayesian approaches.
As such, it is worth keeping in mind, that when Bayes by Backprop
performs comparable to the Ensemble, it will also be significantly faster
to train.

Calibration. Next, we evaluate the local calibration of the uncertainty
estimates of each model in terms of the confidence-based calibration
curves described in the Methods section shown in Fig. 5. We focus this
analysis on the third and biggest temporal setting. The results from
the two earlier settings are provided in Fig. S8 of the supplementary
material. For the most part, we see that all aleatoric estimates are
much better calibrated than many of the epistemic estimates. This is
an interesting observation as it holds for models that produce both
epistemic and aleatoric uncertainty estimates including the Gaussian
Ensemble and the Evidential model, as well as the simple Gaussian
model which only produces aleatoric estimates. The observation is
true for ADME-T and target-based assays alike and thus irrespective of
distribution shifts or dataset size.

Among the epistemic uncertainty estimates, a clear trend shows
that the Evidential model is grossly under-confident, whereas many
of the ensemble-based models are over-confident, especially the Ran-
dom Forest model. This means that the Evidential model predicts CIs
that are far too wide and, on the contrary, that the ensemble-based
models predict very narrow CIs. For the three ADME-T CYP assays,
the Bayes by Backprop estimates of the epistemic uncertainty are well-
calibrated. Similarly, for many of the target-based assays, both the
Bayes by Backprop model and the MC-Dropout model produce well-
calibrated estimates of the epistemic uncertainty. These observations
corroborate previously reported findings that ensembles tend to be
under-calibrated in terms of the epistemic uncertainty compared to
Bayesian approaches [53].

As pointed out by Rasmussen et al. [60], these confidence-based
calibration curves can in some cases be misleading in determining
whether predicted uncertainties accurately depict small versus large
errors. Perfect calibration could in principle be achieved by a model
that always predicts the same level of uncertainty. As such, Levi et al.
[59] propose to additionally measure the dispersion of the predicted
uncertainties using the coefficient of variation, 𝑐𝑣, as follows

𝑐𝑣 =

√

∑𝑁
𝑛=1(𝜎𝑛−𝜇𝜎 )

2

𝑁−1
, where 𝜇𝜎 = 1

𝑁
∑

𝜎𝑛. (12)

𝜇𝜎 𝑁 𝑛=1
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Fig. 6. Combined accuracy of uncertainty estimation and predictive performance. Comparing the NLL of all epistemic uncertainty estimating models, aggregated over 10
experiments. For each dataset, the best model in terms of average NLL is marked with a star together with any other models not statistically worse based on a one-sided
Mann–Whitney–Wilcoxon test with Bonferroni correction. Apart from the Random Forest and Evidential models, all other models are trained with censored labels where available.
We provide these values for all models and datasets in Fig. S9 of
the supplementary material. According to these results, we deem that
all of the best-performing models exhibit sufficient dispersion in their
uncertainty estimates. There are some cases where the dispersion is
very low for the Random Forest model, but this is only the case on
some of the very smallest training sets where it is understandable that
the model struggled to learn regardless. Additionally, many previous
studies on uncertainty estimation have shown that the calibration can
typically be improved by recalibrating the uncertainties [25,60,64]. It
is, however, not straightforward how recalibration could be applied in
the context of censored labels. Thus, we leave this to be explored in
future work.

Overall performance. In the final step of our model comparison, we
compare the models using the global scores NLL and ENCE which take
both the predictive accuracy and the calibration of uncertainties into
account. The results for NLL of the epistemic estimates are shown in
Fig. 6 while the results for NLL of the aleatoric estimates are provided
in Fig. S6 of the supplementary material. Additionally, the ENCE scores
are provided in Fig. S7 of the supplementary material, where similar
conclusions can be observed as for the NLL scores. The NLL scores
are highly varying for some of the poorly performing models, and
therefore the plots have been cut to show the NLL below 2.5 in the
case of the aleatoric models and 6 for the epistemic models. This
was done for readability and does not hide any information about the
best-performing models.

In terms of epistemic uncertainty, the Bayes by Backprop model is
overwhelmingly best in terms of NLL, with 35 out of 45 best-performing
scores. Only on the Target 4 assays, does the Ensemble model outper-
form Bayes by Backprop consistently throughout time. On 7 out of all
15 assays, the Bayes by Backprop model outperforms all other models
entirely in all temporal settings. For an additional 4 assays, Bayes by
Backprop is consistently among the best-performing models throughout
time. This observation means that in terms of the NLL, the conclusions
drawn early for an assay from both categories can oftentimes be trusted
to hold throughout time. We believe that this robustness for the target-
based assays, which exhibit distribution shifts, speaks to the reliability
of the epistemic uncertainty estimates in accounting for distribution
shifts where present. As such, the best-performing model in terms of
predictive accuracy might change over time, only due to differences in
how well the models handle the distribution shifts. Still, the overall
best-performing model is reliable for all assay types irrespective of
distribution shifts.
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Similarly to what was observed in the MSE, Fig. 6 shows that
the NLL scores are generally slightly lower for the ADME-T assays
compared to the target-based assays. Target 4 is again an outlier with
quite low NLL scores for the best-performing models compared to the
other target-based assays. Recall from Eq. (5) that the NLL includes a
term with the squared error. Thus, it is likely that this trend arises
from that source. In the ENCE scores presented in Fig. S7 of the
supplementary material, the same trend can be partially observed but
it is not as prominent. Apart from this, the Bayes by Backprop model
also outperforms all other models in all temporal settings for 8 assays in
terms of ENCE. Contrary to the NLL, the Ensemble is never among the
best-performing models in terms of ENCE, but the Evidential model is
consistently among the best for 3 assays. Regardless of which model is
the best, the one that is best in the first temporal setting is in most cases
also best in the subsequent temporal settings, also in terms of ENCE.

For the aleatoric uncertainty estimates, shown in Fig. S6 of the sup-
plementary material, the Evidential model is significantly outperformed
by either or both of the Gaussian models in all but 3 of the 24 ADME-
T dataset instances. Among the target-based assays, there are more
times that the Evidential model is comparable to or outperforms the
Gaussian models. However, the Target 5 assay is the only one where
the Evidential model is consistently among the best through time. On
the other hand, the Gaussian Ensemble is the single best or among the
best for the vast majority of datasets, namely in 39 out of 45. In the case
of the NLL for the aleatoric uncertainty estimates, like for the MSE, the
best-performing model is almost exclusively robust throughout time for
the ADME-T assays but not always robust for the target-based assays.
The same conclusions can be seen in terms of the ENCE score. Note also
that the NLL and ENCE scores for the aleatoric uncertainty estimates
are mostly lower than for the epistemic uncertainty estimates, similar
to the results seen in the calibration curves.

3.3. Case study

Finally, we perform a case study on one example assay from each
category to explore the practical implications and usefulness of the
epistemic and aleatoric estimates respectively. In the case study of
aleatoric uncertainty, we compare the predicted uncertainty estimates
with ground truth experimental error in the form of the standard
deviation between duplicated experiments. For this analysis, we cannot
include censored labels due to the aggregation strategy described in the
Methods section. Additionally, we exclude experiments repeated less
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Fig. 7. Epistemic estimates by Bayes by Backprop. A practical illustration of the epistemic uncertainty estimates by the Bayes by Backprop model on two assays: ADME-T hERG
without clear distribution shifts over time, and Target 7 with prominent distribution shifts over time.
than three times and those with no variation reported in the data. We
chose the assays with the most available compounds with duplicated
experiments, e.g. ADME-T hERG and Target 6. For the epistemic case
study, we instead pick Target 7 as a target-based assay due to its
particularly challenging distribution shift. Similarly to the aleatoric
case study, we compare the results with the ADME-T hERG assay, which
has no visible distribution shift in either the label or feature space as
seen in Fig. S1 and Fig. S2 of the supplementary material respectively.

This case study is solely possible due to the temporal split and
the additional information available through the internal pharmaceu-
tical data, which are generally not accessible or trustworthy in public
datasets. Similar remarks were made by Sheridan [32] and point to the
necessity of openness from the pharmaceutical industry to learn from
each other and push the field forward.

Epistemic uncertainty quantification. For the practical case study of the
epistemic uncertainty estimates, we illustrate the epistemic uncertainty
estimates averaged over the 10 repeated experiments of the Bayes by
Backprop model on the ADME-T hERG and the Target 7 assays. The
Bayes by Backprop model is chosen as it is significantly the best model
in terms of NLL across all temporal settings of both of these example
assays, as shown in Fig. 6. The case study compares the epistemic
uncertainty between different regions of the t-SNE projections of each
test set, as illustrated in the rightmost part of each panel in Fig. 7.
It also relates this to the full t-SNE projection including the folds
used for training and validation, as seen in the leftmost parts of the
same figure. Note, that this only accounts for distributional shifts in a
linear approximation of the feature space. As the fundamental nature
of the feature space is non-linear, this analysis cannot cover these non-
linearities. Similarly, we cannot evaluate any parts of the epistemic
uncertainty related to other factors than the distribution shift in this
analysis. The other factors might include epistemic uncertainty that
relates to the choice of model architecture or training procedures. We
have to rely on the metrics used in the model comparison section above
to account for these factors of epistemic uncertainty.

In the full t-SNE projections of each dataset containing all five folds,
we see the trend described in the Methods section. The chemical space
of the ADME-T hERG assay is highly diverse, already in the first fold,
and does not shift substantially over time. However, some clusters are
formed in the outer edges of the chemical space, where the different
folds are well separated. For the Target 7 assay on the other hand,
there is a clear shift in the chemical space from the right side of the
plot representing the initial measurements to the left side showing the
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later folds. Similar trends are also present in the label distributions
as seen in Fig. S1 of the supplementary material. Furthermore, the
label distribution for the Target 7 assays does not shift continuously
over time. Instead, it shifts greatly toward higher pIC50 values in the
second fold and then back toward lower values in the last two folds.
The remaining three plots to the right in each panel of Fig. 7 show the
t-SNE projections of each test set, i.e. folds 3, 4, and 5, separately. Here,
the size of the data points is determined by the averaged epistemic
uncertainty predicted by the Bayes by Backprop model trained on the
three temporal settings respectively, i.e. with an increasing number of
training folds. Note that the legends of these plots detail the respective
minimum and maximum predicted uncertainties on the given test set.

For the ADME-T hERG assay, only minor differences can be ob-
served between compounds positioned in various regions of the feature
space. This is expected given the lack of overall distribution shifts
between the folds. Additionally, we evaluate the span of uncertainty
estimates, according to the minimum and maximum values listed in
the legend of each plot. The third temporal setting has the largest
span of 0.3 compared to 0.24 and 0.2 for the first two settings. This
indicates that the model is better at separating the compounds in the
final temporal setting compared to the previous one, likely due to the
increased size of the training data. Another effect of the increasing
training data can be seen in the difference in the maximum predicted
uncertainty between the folds. For the model trained on three folds,
the maximum is 0.36, which is smaller than the values seen for the
models trained on less data, which are 0.4 for the model trained on
two folds and 0.48 for the model trained on one fold. This is a direct
and expected behavior of the epistemic uncertainty, that more data
results in more certain models i.e. lower predicted uncertainties. In the
case of the target-based assay, we note that the maximum estimated
uncertainty on each test set is very high, between 0.7–0.75. This can
be a result of the general distribution shift present between every fold
or the overall small dataset. In both cases overall high uncertainty is to
be expected.

Based on the distribution shift present in the feature space, and
considering that epistemic uncertainty should account for distributional
shifts, we expect that distribution shifts are reflected in the predicted
epistemic uncertainties. As such, our analysis provides empirical ev-
idence to support this claim, and it illustrates that the uncertainty
estimates cover additional sources of uncertainty related to the model
itself, such as poor generalization in cases when training data is lim-
ited. It is important to understand all sources of uncertainty when
basing future critical decisions on model predictions, such as in drug
discovery.
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Considering the cases addressed in this section of our study, we
can deduce practical suggestions on how the identified sources can
impact the continued drug discovery process. If poor generalization is
determined, indicated by overall high uncertainty estimates and low
redictive performance of a model, the model needs to be retrained
ith more data before deployment. Another alternative is to reconsider

he choice of model, but our temporal study shows that the Bayes
y Backprop model remains the best choice in the future, despite the
ddition of more data. When distribution shifts are identified, such as
n the target-based assay, further data exploration in chemical spaces
ith high uncertainty estimates is needed before deployment.

Further research is necessary to disentangle the sources of epis-
emic uncertainty, including distribution shifts and other model-related
ources. One alternative approach would be to quantify the distribution

shift using other means, either with distance-based approaches, such as
the average Tanimoto or cosine similarity [15] between an inference
compound and compounds in the training set, or the interpretable
method proposed by Kulinski and Inouye [65]. Additionally, more
advanced pre-training procedures can be used, that are trained to incor-
porate distribution shifts more effectively [66]. After the distribution
hift has been independently quantified, the predicted epistemic uncer-

tainty could be re-evaluated such that the remaining model uncertainty
is disentangled from this information.

Aleatoric uncertainty quantification. To examine the aleatoric estimates
by the best-performing model from the model comparison above, we
need a way of quantifying the true experimental error. As such, we
consider the variation between duplicated measurements of a single
compound on the assay to provide this information. However, note
hat this information was not provided to the models during training

because duplicated measurements were aggregated as part of the data
preprocessing described in the Methods section. This procedure of
ggregation is common when applying machine learning to molecular
roperty prediction, but an important question is if the available meth-

ods to estimate aleatoric uncertainty can learn the experimental error
rom such preprocessed data.

One potential issue with the described estimates of the true exper-
mental error is that the number of duplicated measurements varies

greatly between compounds. Some compounds are tested many times
whereas many are tested only a handful of times or only once. The
compounds for which there is only one measurement do not give any
indication about the experimental error and ones where only a few
uplicates are available might not be as reliable as those where the
xperiment was repeated many times. For this reason, we consider only
ompounds from the test sets that have more than 2 measurements and
nes where the variation was greater than exactly zero.

After filtering for duplicated experiments in the available data, the
ADME-T hERG assay contains 712 compounds with duplicated mea-
surements from the test sets of all three temporal settings combined.
The Target 6 assay similarly contains 1712 duplicated experiments in
total between the three test sets. In this analysis, we focus on the
aleatoric estimates averaged over the 10 repeated experiments of the
Gaussian Ensemble. In the previous experiments of this study, this
model emerged as the significantly best or top-performing model across
all temporal settings of the ADME-T hERG and Target 6 assay. Fig. 8
illustrates the relationship between the predicted aleatoric estimates
and the available experimental errors, colored by the three test sets.

In general, we cannot necessarily expect the model to learn the
correct scale of the experimental errors since the experimental error
is not included in the training data. Instead, we are looking to evaluate
if any upward trends can be observed, such that compounds with larger
experimental error also prompt greater predicted aleatoric uncertainty.
However, no such trend can be observed for any of the models or
est sets on the two assays. Given that the aleatoric estimates are
till well-calibrated according to the observed errors, as seen in the
alibration curves of Fig. 5 and the overall scores shown in Fig. S6
 p
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and Fig. S7 of the supplementary material, this could indicate that the
earned aleatoric uncertainties reflect something other than the exper-

imental error examined here. The model may be able to learn trends
n the label space given similar compounds in the feature space. For
nstance, activity cliffs can exist where very similar compounds prompt
ignificantly different responses in an assay [67]. Such relationships

could be explored in future research, but from our analysis, it would
lso be interesting to try modeling these molecular properties without

aggregating duplicated measurements.
Additionally, we compare the scale of the predicted aleatoric esti-

mates across different test sets and assay types. First, we see that the
stimates are significantly lower on the ADME-T hERG assay than the
arget 6 assay. This might relate to several factors that make the two
ssays distinctly different. It could simply be a result of the overall
ize of the datasets: recall from Table 1 that the Target 6 assay has
nly 13,093 labels compared to the 67,687 labels available for ADME-
 hERG. However, this trend also corresponds well with the observed

standard deviation of the control compounds on the two assays, which
as 0.19 for the ADME-T hERG assay and 0.31 for the Target 6 assay.
hese errors from the control compounds should be more reliable and

thus give a better general estimate of the overall homoscedastic noise
present in each assay.

Furthermore, an important discrepancy can be observed by com-
aring the distributions of the aleatoric estimates on each test set

between the first row and the second row of Fig. 8. In the first row, all
predictions are made by the same model, the one trained on only the
first fold. Here, the distributions of the aleatoric estimates are roughly
he same for each test set of the two example assays respectively. In
he second row, the illustrated predictions of each test set are made

by different models, trained on an increasing amount of folds. Thus,
these are the models used throughout all previous results of this study.
Apart from these models being trained on different amounts of data,
they are also optimized individually as explained in the model selection
of the supplementary material. Therefore, these models can have vastly
different model architectures and be trained using different training
procedures such as learning rate.

Crucially, none of these factors should have any effect on the
aleatoric uncertainty as it is often categorized in literature as irre-
ducible [2,5,6]. Despite this, we do see distinct differences between
most of the distributions of aleatoric estimates by each of these different
models in the bottom row of Fig. 8. Specifically, we see some instances
where increasing amounts of training data result in generally lower
aleatoric estimates. However, there is also one case where the opposite
is true, between test folds 3 and 4 of the Target 6 assay. We can only
ssume this relation to be because of the differences in model archi-

tectures. Therefore, our empirical results raise questions about whether
the explored models’ supposed estimates of aleatoric uncertainty are re-
ally fully disentangled from the epistemic uncertainty. Similarly, recent
theoretical work on deriving suitable measures for aleatoric, epistemic,
and total uncertainty has found that the aleatoric and epistemic parts
do not necessarily have to add up to the total uncertainty [68]. As such,
the disentanglement of the sources of uncertainty should be considered
an ongoing field of research that needs more work to fully determine
how these estimates should be categorized and how they relate to the
underlying noise in the data.

4. Conclusions

The low-data challenge in QSAR modeling during drug discovery is
ypically accompanied by additional, often overlooked, partial informa-
ion from censored labels. Despite their potential value, censored labels
ave not yet been fully utilized due to the lack of suitable methods
o incorporate them during machine learning. Recognizing this gap,
e have developed extensions to several established machine learning
odels, enabling them to effectively learn from censored labels while

roviding robust and reliable uncertainty quantification.
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Fig. 8. Aleatoric estimates by Gaussian ensemble. A practical illustration of the aleatoric uncertainty estimates by the Gaussian Ensemble on two example assays. Comparing
the predicted aleatoric uncertainty to the experimental error. (Top row) Predictions by the model trained only on the first fold. (Bottom row) Predictions by the respective models
trained on all folds up to the given test set.
Our results showed a particular advantage of including the censored
labels during training in cases where a high enough proportion of the
experimental labels are censored. For the Bayes by Backprop model,
the enhancements by including censored labels grew when they made
up > 13% of the data, whereas > 35% was needed for prominent
improvements with the other models. Despite these enhancements,
drawbacks such as potentially decreased predictive performance and
overall performance on specifically observed labels should be consid-
ered before adopting our suggested approach. These side effects are
likely a result of the commonly unbalanced nature of the censored
labels and should be addressed in future work.

Through a comprehensive temporal study using internal pharma-
ceutical datasets, we demonstrated the importance of these extended
models in reliably estimating uncertainties in predicted key affinity
scores, and side effects, of potential drug compounds. Our model com-
parison included approaches that estimate both aleatoric and epistemic
uncertainties, providing a more complete understanding of prediction
confidence. Specifically, we found that a straightforward ensemble of
individually trained neural networks achieves generally high predictive
accuracy. However, when accounting for the calibration of uncertainty
and computational cost, we recommend using the Bayesian Bayes by
Backprop model instead.

Thanks to the temporal evaluation, we were able to detect key
differences between the distributions of target-based assays versus
ADME-T assays. The ADME-T assays are more diverse in terms of
the chemical space and thus exhibit less of a shift throughout time
compared to the target-based assays where distinct differences could be
observed for different time points. In light of these trends, we showed
that the best-performing model in terms of predictive accuracy and
calibration of aleatoric uncertainty are typically robust throughout time
for ADME-T assays but not always for target-based assays. As such,
an evaluation of the best model for ADME-T assays can be trusted to
hold without reevaluation whereas target-based assays may need to be
reassessed occasionally.
14 
Finally, our case study showed how the uncertainty estimates from
the most effective models can be practically applied to inform and guide
ongoing drug development efforts, offering valuable insights for risk
management and decision-making. Herein, we found that the epistemic
uncertainty estimates correlate well with theoretical assumptions, but
that the aleatoric uncertainty estimates require further analysis to
understand their relation to the underlying, inherent noise in the data.
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Data availability

This work was conducted on internal data that cannot be disclosed
eyond the information provided in Table 1. Despite this, we believe

the work brings great value to the community by showcasing crucial
aspects of the data that could not otherwise be analyzed. First, the
temporal evaluation would not be possible to the same extent on public
data, which led to conclusions about how the models compare over
time. Second, while censoring in experimental labels are naturally
occurring in internal data, it is less common in public data. Therefore,
the key contribution of adapting and evaluating current uncertainty
quantification approaches to censored labels, would not be possible
without the proprietary data. All methodology is available in our code
on GitHub at https://github.com/MolecularAI/uq4dd. Instructions to
repare the programming environment, as well as how to run the train-

ing, inference, and evaluation procedures on similar public data from
herapeutics Data Commons [69] can also be found there. Throughout
his work, all experiments were run on a cluster of servers with diverse
vidia GPUs using Python 3.11 with PyTorch 2.0.1 [46].
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