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Cancer is a manifestation of dysfunctional cell states. It emerges from an interplay of intrinsic and
extrinsic factors that disrupt cellular dynamics, including genetic and epigenetic alterations, as well as
the tumor microenvironment. This complexity can make it challenging to infer molecular causes for
treating the disease. This may be addressed by system-wide computer models of cells, as they allow
rapid generation and testing of hypotheses that would be too slow or impossible to perform in the
laboratory and clinic. However, so far, such models have been impeded by both experimental and
computational limitations. In this perspective, we argue that they can now be achieved using deep
learning algorithms to integrate omics data and prior knowledge of molecular networks. Suchmodels
would havemany applications in precision oncology, e.g., for identifying drug targets and biomarkers,
predicting resistance mechanisms and toxicity effects of drugs, or simulating cell-cell interactions in
the microenvironment.

Cancer is a diverse neoplastic disease, wheremutations andother alterations
drive phenotypes such as sustained cellular proliferation, and evasion of the
immune system1. Safe and effective cancer treatments could in principle be
attained by targeting these specific deviations, i.e., precision medicine2.
However, in practice, this is challengingbecause cellular processes are highly
interconnected and furthermore depend on themicroenvironment (Fig. 1).
This complexity hampers our ability to establish causal relations between
genetic alterations and disease phenotypes, such as which mutations are
driving the disease and which are passengers3. It has been found that
inhibiting cancer-specific signaling proteins can be highly effective4, but
such treatments can also be thwarted by negative feedback loops, e.g., an
ERK-dependent feedback loop that attenuates the effects ofRAF inhibition5.
Even if a treatment is successful at first, there may emerge cells that are
resistant to treatment due to cellular heterogeneity, which may originate
from both genomic and epigenetic differences6. Furthermore, cancer cells
interact with other cells in their microenvironment, which expands their
signaling repertoire7. Overall, this interplay between mutations, drugs,
resistance mechanisms, feedback loops, and environmental factors, gives
rise to a combinatorial number of possible causes, which can be challenging
to investigate experimentally. A computation approach would therefore be
advantageous.

Living cells are dynamical systems that depend on biochemical inter-
actions between a vast number of molecules, which are governed by
physico-chemical laws of kinetics and transport. Such systems can be
described using mathematical models, and for this, models based on

ordinary differential equations (ODEs) have commonly been used. They
can be applied to model interactions between proteins and metabolites,
enable predictions of disease-associatedmolecules, andprovidemechanistic
explanations of perturbations8–11. In principle, if allmolecular relationswere
known and stochastic effects were disregarded, the activity of a cell could be
derived from its initial condition, i.e., bottom-upmodeling12. However, this
remains severely daunting for both practical and theoretical reasons13, and
an appealing alternative is to fit model parameters to systems-level data, i.e.,
top-down modeling.

Machine learning (ML) and specifically deep learning (DL)models are
now becoming broadly employed in biology and medicine. These algo-
rithms are trained, i.e., parameterized, on data to make rapid predictions
that generalize to unseen conditions. Together with large-scale high
throughput screening datasets14–16, thesemodels have been successfully used
in a wide variety of tasks17, including predicting drug synergy18, response to
therapy19, survival probabilities20, disease outcomes21, and for cancer
histology22. Somemodels includemolecular structure in their description of
the input, which allows them to extrapolate their predictions to untested
molecules17,23. Many of these models predict phenotypes of interest without
accounting for the underlying mechanisms, and they have therefore been
criticized for their lack of biological interpretability24. Recently, prior bio-
logical knowledge has been integratedwith theMLmodels, e.g., in the form
of molecular networks, thereby making them more structured and inter-
pretable, and has shown promising results at both the patient- and cellular
level25–28.
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The utility of network-based approaches for studying cancer has long
been appreciated. These have been used to map the cell’s functional
organization29, for causal integration and mechanistic hypotheses-
generation on cancer data30, and to characterize the response to drug
therapies and their mechanism of action31. A plethora of network-centric
tools has been created for interrogating the biology of diseases and the
mechanism of action of therapeutic solutions32. For example, in Cytoscape
researchers may integrate large molecular networks and omics data, to
performnetwork statistics and visualization in a fast and simpleway33. Some
approaches, such as CausalR34 CARNIVAL35, andCOSMOS30, utilize omics
data and prior knowledge to propose causal networks that underlay the
observed condition. Additionally, some approaches simultaneously infer
gene regulatory networks from single-cell RNA sequencing data and use
them to perform in silico perturbations, thus interrogating the potential
effect of the perturbation of specific molecular species36,37. However, most
network-based approaches are primarily descriptive; i.e., they are not con-
structed to make quantitative predictions about unseen conditions, such as
combinations of mutations that have not previously been observed. This
may therefore require manual interpretation. Furthermore, they do not
generally encode the structure of the molecules that induce the observed
biological effect, and therefore cannot directly predict the effects of pre-
viously untested molecules.

Because cellular processes are highly interconnected in cancer, system-
level models are required to predict the effects of mutations and other
alterations. In this perspective, we discuss the feasibility of constructing such
models in light of recent progress in DL algorithms, and data acquisition
methods, along with the accumulated prior knowledge of molecular net-
works.We also explore potential applications if such amodel is successfully
implemented.

Predictive deep learning models
ML, and in particular artificial neural networks (ANNs) facilitate the con-
struction of large-scale predictive models. ANNs approximate unknown,
complex functions through a sequence of linearmatrix operations and non-
linear transformations, with layers of latent variables between them. The
models are referred to as ‘deep’ if multiple layers are used. Thesemodels can
containmillions of parameters and can rapidly be fitted to paired samples of
input- and output data using automatic differentiation. The flexibility and
scale of DLmake it a promising candidate for fittingmodels of complex and
heterogeneous molecular data. For cancer specifically, DL has been used to
predict response to therapy19, and tumor phenotypes after perturbations
with high performance38, and other ML models have been used to predict

patient response using transfer learning approaches from pre-clinical
models39.

However, while DL models excel at predictions, their relation to the
underlying mechanisms that they approximate is often opaque, i.e., the
black box problem25. It has therefore been proposed thatmore interpretable
DL models should be used for biological systems, and explainable AI has
indeed gained a lot of interest over the last years40,41. For example, Keyl et al.
used an interpretation method termed layer-wise relevance propagation40,
coupled with an ANN model for predicting protein interaction networks
fromproteomic data for individual patients42. Laurie andLudeveloped aDL
architecture for survival prediction, whose components capture specific
aspects of tumor dynamics43.

We reason that, while purely predictivemodels can be useful for many
tasks, such as prioritizing perturbations for further experimental validation,
the development of safe and effective therapeutics, should be rooted in a
purposeful process. Particularly, they should be designed to affect specific
targets, with known mechanisms of action, and well-characterized
dynamics. This may be achieved by a model of the human cell. According
to a survey of the biomodelling community44, such a model should, at a
minimum, cover signal transduction, metabolism, and gene regulation,
including transcription, translation, and degradation processes. While this
survey pertained to a framework that mixed different model-types, an
integrated model using DL would be advantageous for automatizing para-
meterization using different types of experimental data.

DLmodels havenowbeendevelopedusingprior knowledge for eachof
the major cellular subsystems. For signaling, we developed a model that
predicts transcription factor (TF) activities or cell viability from ligand- or
drug stimulation27. This model simulates signal propagation using a
recurrent neural network (RNN) with a prior knowledge signaling network
as a scaffold. We recently expanded this approach to simulate cancer cell
signaling under perturbations with small molecule drugs, while simulta-
neously inferring their off-target effects28. Formetabolism, amodel has been
developed that predicts metabolic rates frommetabolite concentrations for
E. coli bacteria45. Finally, for gene regulation, a model has been developed
that reproduces the chemistry of TF-DNA binding and predicts gene
expression levels from TF concentrations46. Using similar formulations, an
integrated model of these processes could be reconstructed.

Saturating knowledge and accumulating data
Our accumulated knowledge of molecular networks has now reached the
genome-scale, thus enabling the creation of genome-wide predictive mod-
els. Advancements in both experimental47–50 and computational51–54 tech-
niques have resulted in the curation of prior knowledge networks with
thousandmolecular interactions55,56. Prior knowledge ofmolecular relations
is in principle finite since it is limited to specifying which interactions can
take place if the participating molecules are present at appropriate con-
centrations. These relations place a structural constraint onwhich cell states
arepossible, although they arenot always in effect, sincenot allmolecules are
present in every cell and cellular condition. Using this type of knowledge,
large networks have been reconstructed for metabolism, signal transduc-
tion, and gene regulation55–58. An analysis of the first publication date for the
references behind each interaction suggests that the rate of newdiscoveries is
slowing (Fig. 2a). One interpretation may be that our prior knowledge of
molecular interactions is reaching completion, although other possible
interpretations may include a shift in research interests from basic bio-
chemistry, or a lag between discovery and addition to databases. In parti-
cular, for the gene-regulatory network, the low coverage of interactionswith
literature support (8%, corresponding to less than one interaction per gene)
may reflect a shift in the valuation of evidence, from individual published
studies to inclusion in public databases.

Simultaneously, the amount of well-annotated high-throughput data
continues to increase rapidly. It can in principle increase infinitely, as it
quantifies the cell state or phenotype under particular experimental con-
ditions. To successfully model these data, both the experimental design (or
metadata) and the cellular responses should ideally be recorded indatabases.

Fig. 1 | Interconnectedmolecular networks in human cells.Effects of amutation in
a signaling protein can propagate through gene regulation, andmetabolism, to affect
cellular growth.
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One such database, the Gene Expression Omnibus (GEO) database59, has
now surpassed a million human samples (Fig. 2b). There are public
datasets14–16,60–62, that cover numerous perturbations such as gene knock-
outs, and stimulation by different drugs and ligands, in thousands of cell-
lines, e.g., the CLUE platform hosts transcriptome profiles for more than
780,000 unique conditions16. These offer a vast amount of data to study and
model the transcriptomic profile of diseased and perturbed samples in bulk,
or even at the single-cell level.

Analyzing samples at the single-cell level, viamolecular barcoding (e.g.,
nucleotide barcoding), has enabled the characterization of groups of cells in

heterogeneous populations, which has allowed for a detailed characteriza-
tion of cell types in different organs63. This can be particularly useful for
clinical tumor samples, where the mixture of different cell types and their
individual states would be challenging to deconvolute from bulk
measurements64. After identifying individual cell types in a sample, it is
possible to perfumepseudo-bulking, an analysis where gene expression data
fromcells derived from the same cell type is aggregated into distinct pseudo-
bulk samples, reducing the impact of technical variability and dropout
effects, often present single-cell RNA sequence data. Single-cell analysis has
also allowed the exploration of variability in seemingly homogeneous cell

Fig. 3 | Model properties. a Neural networks can approximate input-output rela-
tions between biomolecules such as metabolite concentrations, phosphorylation
states of proteins, and transcription factor activities. b Integrated processes, the state
vector partitioned into classes such as metabolite concentrations, signaling states,
and protein concentrations. Each class is updated by independent functions that
interact through their dependencies on the shared state space. c State trajectories

constructed from repeated applications of a function on the state. d Inputs (x)
describing the samples’ condition are mapped into their corresponding state ele-
ments. Analogously, outputs (ŷ) are extracted from the state to omics data and
phenotypes. Prior knowledge ofmolecular networks is encoded into the architecture
that updates the state vector.

Fig. 2 | Saturating knowledge and accumulating data. a Prior knowledge by date of
discovery. Interactions for metabolism (biochemical reactions and transport in
Human179), signaling (protein-protein interactions in OmniPath56), and gene reg-
ulation (transcription factor-gene interactions in Dorothea58) by publication date of
the oldest reference in the database. The total number of interactions with at least

one PubMed reference is given in parenthesis and covers 50%, 98%, and 8% of the
total interactions respectively. b Human transcriptomics samples in Gene Expres-
sion Omnibus (GEO) using RNAseq technology. A majority are from studies that
include more than 250 samples, here labeled as high throughput (HT).
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populations65. Finally, the developments in molecular barcoding have also
enabled systematic screening of combinations of stimuli, e.g., the tran-
scriptomic response to 420 different drug combinations was measured in a
pooled experiment, by using unique barcodes for each drug66.

Using different experimental techniques, molecular quantities of dif-
ferent modalities are now routinely characterized at the genome-scale67,
including metabolite concentrations (metabolomics), concentrations of
mRNA transcripts (transcriptomics), protein concentrations (proteomics),
and protein phosphorylation levels (phospho-proteomics), which relates to
their signaling state. It is also increasingly common toquantifymultiple data
types for the same group of cells or subjects (multi-omics)67 and, alter-
natively, to study the same set of cell lines with different techniques in
different studies, e.g., one study-related metabolic profiles to differences in
growth rate61, among the 60 cancer cell lines in the NCI60 panel, while
another quantified their signaling responses to different drugs using
phospho-proteomics62. However, so far it has proven challenging to inte-
grate data fromdifferent studies, datamodalities, and conditions67. This is in
part due to a lack of unified analysis frameworks and because of difficulties
in handling samples and subjects with missing data.

Proposed structure for an integrated model
The activity of a cell consists of a series ofmolecular interactions that alter its
molecular composition. Tomodel these processes, the interactions could be
represented by subfunctions that approximate the input-output relations
between the molecular quantities involved (Fig. 3a). These interactions can
be broadly classified as belonging to a particular cellular subsystem such as
metabolism, signaling, or gene regulation that interact through shared
molecular quantitates. A unified model may be constructed from a large
number of such relations (Fig. 3b). For example, an enzyme can synthesize a
metabolite that affects a signalingprotein in control of aTF that regulates the
expression of a gene. Such a modular structure with well-defined processes
acting on state variables corresponding to observable molecules would
ensure the model’s interpretability.

As for many other physical systems, it can be assumed that these
molecular functions do not directly depend on which cell type, or cellular
compartment they occur in, i.e., that they are space invariant. It can be
assumed that the de facto observed differences between cells and com-
partments originate fromdifferences inmolecular concentrations and post-
translational modifications that can all be considered inputs to the func-
tions. The use of invariances has been found useful in other neural network
applications as it allows parameters to be shared between seemingly dif-
ferent conditions17, e.g., for image recognition, where the same convolution
function is applied across all parts of an image.A potential challenge for this
is the existence of cell-type-specific versions of molecules, such as proteins
translated from genes with multiple splicing variants, i.e., isoforms. These
may either be represented by independent functions or integrated into a
unified function by using the isoform composition as an additional input.
Another challenge may be ambient environmental factors such as tem-
perature or pH that affect biochemical rates and thus the input-output
relations, but in principle, these could also be used as input.

It can also be assumed that onlymolecular quantities, not the functions
themselves, change over time, i.e., that they are time-invariant. This implies
that molecular trajectories can be constructed from repeated application of
the same functions (Fig. 3d), with different inputs at different times, starting
with some initial condition and potential perturbations. Based on this
assumption, time dynamics can be simulated using recurrent neural net-
works (RNNs), which are DL architectures that iteratively model sequential
operations17, and which have as output intermediate hidden states of a
model, that are used as input to calculate the next state. Black box RNNs
havebeenused to recapitulate predictions byODEmodels of signaling68 and
we have used an RNN to directly model signal propagation from ligands to
transcription factors, under the assumption that they reach a (pseudo-)
steady state27.

A unifiedmodel operating on definedmolecular quantitates allows for
a straightforward mapping of inputs, and extraction of outputs. In this

formulation, the cell state is expressed as vectors of molecular features, such
as transcription factors,metabolites, proteins, etc. The inputs encode the cell
type, environment, and perturbation of each specific sample (Fig. 3e). A
mapping submodule can then assign the inputs to the affectedmolecules, for
example drugs can be mapped to their targets, mutations to the affected
proteins, and ligands to their receptors. The differences between cell types
can be encoded through their basal molecular concentrations. Analogously,
predictions pertaining to experimental data can be extracted from the state
of the corresponding molecule, e.g., the expression of a gene from the
representation of its mRNA concentration (Fig. 3e). The cell state is also a
suitable input for submodules that predict cellular phenotypes, such as cell
viability. For this, the state as a whole may be used or a knowledge-based
subset, e.g., a core set of TFs that regulate cell proliferation has been used to
predict viability9. This general representation would allow virtually any
experimental conditions in any cell type to be integrated using the same
modelwith different inputs. Because cellular processes are known tooperate
at different timescales, it would sometimes be warranted to separate slower
processes into separate conditions, that can be simulated independently.

The purpose of the model is to predict unobserved cell states and the
effects of untested perturbations for drug development. To train the model,
the difference between expected and predicted values of the molecular
quantities and phenotypes can be minimized usingMean Squared Error or
the negative log-likelihood. This can be done for the final steady state of the
model or alternatively across different iteration steps corresponding to
integration acrossmultiple time points. For single-cell data themodel could
be trained on pseudo-bulked profiles of each cell type, alternatively, the full
distributions of gene expression in each specific cell type may be used a
formulation inspired by evidential deep learning69, where the model esti-
mates the statistical moments of an output distribution. To confirm the
model’s ability to extrapolate to unseen perturbations, cross-fold-validation
should be utilized by holding out perturbations during training that are
dissimilar from the ones used in each training fold. Finally, experimental
validation is necessary to evaluate interesting results of perturbations and
states, where no experimental data exists, and to confirm these findings.

In the long term, one could envision that the neural networks could
also model the experimental setting so that much less preprocessing would
be required. Currently, preprocessing is a challenge due to differences in
sequencing depth (and dropout) as well as differences in experimental
protocol, such as RNA extraction, proteomics methods, etc. The cells of
individuals represent natural experiments that perturb the input to an
idealized cell. Cancer corresponds to a subspace of these perturbations. The
challenge that thesemodels could address is that the circumstances of every
specific cancer are slightly different, and the optimal treatment (such as a
currently existing or putative drug) will be patient-dependent (i.e., the
motivation for precision medicine). These models could act as a scaffold to
unify data from different circumstances to predict which treatment has the
potential to be effective in this particular case. Predictive models (such as
neural networks) have the advantage over descriptive (statistical) models
that they may extrapolate to make a prediction in a case that has previously
not been observed. Although in practice, models may not be directly
deployed in clinics, they may help provide biomarkers to stratify patients
into different treatment regimes that can be clinically tested.

Challenges and limitations
Formodels based onprior knowledge, the accuracy and completeness of the
networks are of high importance. It can be expected that the prior knowl-
edge both includes miss-annotated interactions and that it is incomplete.
Critical examinationandcurationof interactions that are found tohavehigh
importance for the model predictions, in combination with validation
experiments if the evidence is dubious, may be required to alleviate the
limitation of miss-annotations in the prior knowledge. The incompleteness
is expected to decrease as knowledge accumulates further, but this could also
be addressed by including terms that model the influence of unknown
factors70. If these terms significantly improve the model fit and general-
ization, they may constitute novel interactions to be experimentally
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validated, although inference of protein-protein interactions would not be
the main goal of this endeavor. Similarly, processes beyond the model’s
scope may manifest as missing interaction between molecular species, e.g.,
effects of splicing variants, microRNAs, or epigenetic modulation. An
analysis of which conditions cause the model to fail and which measure-
ments are affected may provide insight into the importance andmagnitude
of external influences.

Missingvalues andother irregularities oftenoccur inbiological data, and
can be problematic for modeling. This may involve data collected from
different cells at different timepoints, batch-batch variation betweendifferent
groups of samples, or failed phenotype measurements67. Although, not
apparentdirectly fromtheir formulation, byapplyinga fewmodifications,DL
models are well suited to handle these issues. Because ANNs estimate para-
meters using someversion of stochastic gradient descent (SGD),missingdata
points can be omitted from the gradient calculations and allowed to take on
any value. Furthermore, because SGD predicts gradients for the input vari-
ables, missing values can be automatically estimated to best agree with the
experimental observations. In principle, batch effects could be accounted for
by modeling differences in experimental equipment or other confounding
variables. This type of “end-to-end” parameterization compared to manual
feature selection, and standardization, simplifies the analysis and has proven
useful in areas such as image processing17. Furthermore, semi-supervised
learning approaches have been established to train models in cases where
output data is not available for all of the samples71.

Discrete RNNs that may be used to simulate cellular dynamics are
coarse-grained by design, which may pose a challenge for detailed simula-
tions. While this limitation could in principle be circumvented using con-
tinuous time RNN architectures, these have hitherto relied on ODE solvers
and thus suffer from issues with speed and scalability72. For some problems
there exist closed-form approximations of the dynamics that can be used
directly in the RNN, thereby achieving speedups by several orders of
magnitudes72. Notably, a direct correspondence has been established73

between an RNNwith specific architecture and a common numerical ODE
solver, thereby further reducing the gap between the two approaches.

Applications and outlook
If successfully implemented and trained, these models would provide a
succinct representation of cellular states and dynamics. This is expected to
have many applications. The structured relation between state variables
enables mechanistic interpretation of the modeling results (Fig. 4a). This
may provide insight into emergent behavior and non-trivial dynamics, such
as complex feedback structures that are not apparent in smaller-scale
models13.

Modelsmay also be used to predict responses to non-tested conditions
andcounterfactuals (Fig. 4b).Thismayhave applications fordrugdiscovery,

for example, drug resistance can be mitigated by drug combinations4,
however, this is challenging to screen for experimentally as it grows expo-
nentially for high-order drugs combinations.Another applicationmaybe to
predict the effects of drugs on healthy cells. Drugs normally have off-target
effects, and while this is sometimes important for their effectiveness74, it can
affect healthy cells adversely and prevent the drugs’ translation to clin-
ical use.

Yet another application may be to study cell-cell interactions (Fig. 4c).
It is common to interrogate this through the expression pattern of ligands
and their receptors in different cell types75, and this principle could be
advanced to predict the effects on downstream signaling targets and predict
which ligands andmetabolites are secreted. One way to simulate the effects
of cell-cell interactions at scale is through agent-based models (ABM) that
represent different cell types by rules that describe their input-output
relations76. However, the rules used in ABM models (such as Boolean
models of signaling) are typicallymanually encoded, which is laborious and
biases the result. It has been shown that these rules can be substituted byDL
models77, e.g., allowing an ANN to model the complete signaling structure
which incorporates multiple potential logical rules, which could relieve the
need for manually defining the interactions, thus allowing for rapid data-
driven model construction.

After constructingmodels that can simulate cellular responses and cell-
cell communication, -potentiallywith single-cell resolution, the next natural
step is tomake use of clinical data for patient-level predictions. For example,
the proposed framework may be used to map genomic mutations and gene
expression for individual cell types, via signaling, creating this way
interactome-based DL models that can include the transcriptomic and
genomic identity of cells as input. Then the model could leverage approa-
ches where given the single-cell gene expression profile of individual
patients and the identification of each cell type present, the patient response
can be predicted78.

The aim of constructing integrative models is to enable end-to-end
simulation of genotype-phenotype relations. Such a project may help
bridge the areas of metabolism, signaling, and gene regulation that are
currently mostly studied in isolation. Through simulations, models will
allow rapid generation and testing of hypotheses that would be imprac-
tical or impossible in the lab and clinical setting. This is anticipated to
have many applications, for identifying drug targets, biomarkers, and
treatment options.

Data availability
No datasets were generated or analysed during the current study.
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Fig. 4 | Applications for an integrative model. a Condition-specific functional
motifs may be extracted from larger models. Ensembles of models may address
model-model variability. b Synergistic effects of drug combinations may be pre-
dicted. Models of healthy cells could be used to anticipate toxicity effects. By
modeling the effects of drugs in both healthy and diseased cells of different types,

toxicity effects can be simulated. This can help estimate which drug combinations
and doses will be tolerated to select promising candidates for further experimental or
clinical validation. cThe functional exchange of metabolites or ligands between cells
of different types may be enquired. Artificial neural network models may act as
surrogates for rules in agent-based models of cell-cell interactions.
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