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Lattice models featuring the non-Hermitian skin effect have attracted rapidly growing interest due to their
nontrivial spectral topology and the exotic field dynamics they enable. Such non-Hermitian lattices provide a
promising paradigm for engineering exotic light-matter interactions which benefit from the intrinsic chirality
and unconventional (non-Bloch) band theory. Here we study a series of unconventional light-matter interactions
between quantum emitters and the prototypical Hatano-Nelson model, and briefly discuss the case with an
extended lattice model dubbed the bosonic Kitaev chain. We focus on the robustness of the dynamics against
various imperfections and elucidate the underlying mechanisms. We consider both small emitters, which interact
with the lattice at single sites, and giant emitters, coupling at multiple sites. The latter exhibit an exclusive
amplification mechanism, which we find enables decoherence-free dynamics even in the presence of extra
dissipation in the system. The protection from dissipation arises from the cooperation of the non-Hermiticity
and the self-interference effect, and is therefore lacking for small emitters. These results not only provide deeper
insights into the interplay of non-Hermiticity and various interference effects, but also have potential applications
in engineering exotic spin Hamiltonians and quantum networks.

DOI: 10.1103/PhysRevResearch.7.013140

I. INTRODUCTION

Photonic lattices provide a promising platform for en-
gineering the electromagnetic environments of quantum
emitters [1–3], enabling the simulation of exotic spin
Hamiltonians and quantum many-body systems [4–9]. For
instance, photonic lattices enable atom-photon bound states
when the atomic frequencies lie within the band gaps, provid-
ing a mechanism to mediate protected interactions between
quantum emitters [10–16]. Moreover, photonic lattices with
nontrivial topological features can serve as structured baths
which endow quantum emitters with unique properties, in-
cluding chiral atom-photon bound states with topological
protections [14,17,18] and exotic classes of quantum entan-
glement between emitters [19–21].

Moreover, photonic lattices can be engineered to feature
various non-Hermitian band structures, as gain and loss are
ubiquitous and controllable in photonic systems [22–26].
These systems can be described by non-Hermitian Hamilto-
nians, which give rise to a variety of peculiar phenomena,
such as the coalescence of both the eigenvalues and the corre-
sponding eigenstates at exceptional points [27,28], anomalous
topological features governed by the non-Bloch band theory
[29–34], and the non-Hermitian skin effect [35–41]. This thus
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opens a new frontier of quantum optics (and beyond) along the
idea that shaping the field structure can lead to novel quantum
optical paradigms with promising applications for quantum
technologies.

On the one hand, recent progress has demonstrated that
the seemingly detrimental (structured) losses in photonic lat-
tices can sometimes play a constructive role and even lead
to counterintuitive optical phenomena [42,43]. On the other
hand, lattices featuring the non-Hermitian skin effect, such
as the Hatano-Nelson (HN) model [44] and its dissipative
version, do not obey the conventional Bloch theorem and thus
affect the emitter dynamics in a way with no Hermitian analog
[45–47]. Considering the fact that the HN model features both
exceptional points and the non-Hermitian skin effect [48,49],
it appears to be an excellent candidate for engineering uncon-
ventional light-matter interactions.

In particular, giant emitters (atoms) [50–54], which fea-
ture multiple separate coupling points with the bath, exhibit
properties that are closely related to the dispersion rela-
tion of the field and the separations between the coupling
points [55–61]. Indeed, non-Hermitian lattices can endow
giant emitters with even more peculiar properties [62]. For
example, two carefully arranged giant emitters (i.e., with
an appropriate braided coupling structure) can exhibit a
decoherence-free exchange interaction when they are cou-
pled to a Hermitian lattice [57,59]. This decoherence-free
interaction (DFI), however, becomes nonreciprocal in the non-
Hermitian case, with the nonreciprocity (chirality) exactly
determined by the non-Hermiticity of the lattice [62]. Such
chiral features are essentially distinct from those induced by
the additional phase difference between different coupling
points of a giant emitter [63–67], as will be elucidated in this
paper.
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Despite these intriguing phenomena, one may wonder
whether these results are robust enough against system dis-
orders and imperfections, and whether giant emitters can
outperform small ones in this context. This concern arises
from the fact that non-Hermitian systems can be highly sen-
sitive to external perturbations [68–70] and, in particular, the
unconventional giant-emitter effects associated with the HN
model are closely related to the carefully matched emitter-
lattice coupling strengths [62].

In this paper, we study the unconventional light-matter
interactions between quantum emitters (both small and giant)
and an HN model. We reveal the mechanisms behind a series
of exotic dynamics that are related to the non-Hermiticity
of the bath and discuss the robustness of the results. We
find, strikingly, that the decoherence-free dynamics of giant
emitters are robust against several types of disorders and
perturbations, and can be preserved even in the presence of
intrinsic dissipation of the lattice and the emitters themselves,
implying a better dynamical protection than in the Hermitian
case. Moreover, we discuss the extremely fragile dynamics of
quantum emitters coupled to a bosonic Kitaev chain [68,71–
73], which can be mapped to two independent and opposite
HN models in the ideal limit. The results in this paper provide
deeper insights into the interplay among non-Hermitian band
structures, self- and collective interferences, and the non-
Hermitian skin effect, paving the way for developing novel
paradigms of quantum technologies based on non-Hermitian
physics.

II. RESULTS AND DISCUSSION

A. Basic model

We first consider a standard HN model, which can be
described by the one-dimensional (1D) tight-binding Hamil-
tonian (h̄ = 1 in this paper)

HHN =
∑

j

(JRa†
j+1a j + JLa†

j a j+1). (1)

Here, a j (a†
j ) is the bosonic annihilation (creation) operator

of the jth lattice site; JR = J + γ and JL = J − γ (without
loss of generality, we assume both J and γ to be real) are the
rightward and leftward hopping rates, respectively, which ac-
count for the nontrivial non-Hermitian topology of this model.
In experiments, this type of non-Hermitian lattices has been
implemented based on real-space photonic [74] and acoustic
[75] systems, electric circuits [76,77], discrete-time quantum
walks [78,79], and photonic synthetic dimensions [80,81].
Some other promising implementation platforms, such as op-
tomechanical [72,82] and coupled-resonator [83–85] arrays,
have also been suggested.

One of the most important hallmarks of this non-Hermitian
lattice model is the non-Hermitian skin effect under open
boundary conditions [48,49], i.e., all the eigenstates are
squeezed toward either open end of the lattice, depending on
whether JR or JL is larger. More specifically, the real-space
eigenstates of the HN model can be expressed as ψn( j) =
φn( j)β j , where φn( j) is the usual extended Bloch wave func-
tion as in the Hermitian case (i.e., JR = JL) and β = √

JR/JL

describes the degree of the non-Hermiticity. It is clear that

FIG. 1. (a) Schematic diagram of a (giant) quantum emitter c
coupled to a Hatano-Nelson (HN) model with asymmetric hopping
rates JR and JL . (b) The field coupled to the quantum emitter is equiv-
alently subject to an imaginary gauge potential and is thus amplified
along the direction of the larger hopping rate. The amplification
is determined by the degree of non-Hermiticity, β = √

JR/JL . This
corresponds to the non-Hermitian skin effect under open boundary
conditions.

the field is amplified, with the amplitude scaling as β j , along
the direction of the larger hopping rate. As long as JR and
JL have the same sign, e.g., J > γ > 0, a finite HN model
is dynamically stable [45,71,82] and can be mapped to a 1D
pseudo-Hermitian lattice model described by the Hamiltonian

H ′
HN = √

JRJL

∑
j

(ã†
j+1ã j + ã†

j ã j+1), (2)

where the effective hopping becomes symmetric by perform-
ing an imaginary gauge transform, ãn = anβ

n [45]. When JR

and JL have opposite signs, however, the HN model becomes
absolutely unstable such that any quantum emitters coupled
to this lattice, no matter how weak the coupling strengths are,
always show secular energy growth [45,62].

Now we introduce a giant quantum emitter, which is able
to interact with more than one lattice site of the HN model, as
illustrated in Fig. 1. For concreteness, we consider a quantum
harmonic oscillator (described by a bosonic mode c) rather
than a two-level system, such that the dynamics are still linear
when the emitter displays energy growth (i.e., amplification)
[62]. If we assume that the emitter is coupled to the sites j = 0
and j = N of the HN model with coupling strengths g0 and
gN , respectively, the total Hamiltonian of the system is given
by Htot = Hc + HHN + Hint, where

Hc = �cc†c, (3)

Hint = (g0a0 + gN aN )c† + H.c., (4)

with �c the detuning between emitter c and the energy-band
center of the bare HN model (assumed to be zero for sim-
plicity). One can easily access the small-emitter case by, e.g.,
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FIG. 2. Time evolutions of occupation |〈c(t )〉|2 of the quantum
emitter c in (a) the small-atom case with gN = 0 and (b) the giant-
atom case with gN �= 0 and N = 2. Other parameters, except for
those given in the legends, are J/g0 = 10, γ /g0 = 5, and Mtot = 800.

assuming g0 �= 0 and gN = 0, and compare the resulting be-
haviors with those in the giant-emitter case of {g0, gN } �= 0.

We study the dynamics of the mean amplitudes 〈c〉 of the
emitter and 〈aj〉 of the lattice sites by solving the Heisenberg
equations of motion,

〈ċ〉 = −i�c〈c〉 − i(g0〈a0〉 + gN 〈aN 〉), (5)

〈ȧ j〉 = −κ〈a j〉 − i(JR〈a j−1〉 + JL〈a j+1〉)

− i(g0δ j,0 + gNδ j,N )〈c〉, (6)

where κ accounts for the (practically unavoidable) on-site
energy loss of the HN model. At the quantum level, en-
vironmental fluctuations can lead to the breakdown of the
non-Hermitian skin effect [86]. In the above equations, we
have omitted the intrinsic dissipation of the emitter since it can
typically be made very small (compared to other characteristic
scales) in many platforms. Nevertheless, as will be discussed
below, the intrinsic dissipation of a small emitter inevitably
leads to a trivial damping of the dynamics, while for a giant
emitter it can be offset under specific conditions.

B. Dynamics of a single emitter

We first study the dynamics of a single emitter, i.e., the
emitter c introduced above, in both the small- and giant-
emitter cases. For a Hermitian lattice, it is known that a
small emitter shows complete (fractional) decay, i.e., the emit-
ter will eventually lose all (a fraction of) the excitation, if
its frequency is within the energy band (band gap) of the
lattice. This behavior is slightly modified, however, for the
non-Hermitian HN model considered here. In this case, the
effective band edge is determined by the hopping rate

√
JRJL

of the pseudo-Hermitian model in Eq. (2) rather than the maxi-
mum real part |JR| of the spectrum [45]. As shown in Fig. 2(a),
even though the lattice enables directional field amplifica-
tion, the small emitter with gN = 0 shows complete (frac-
tional) decay when |�c| < 2

√
JRJL (|�c| > 2

√
JRJL), and the

dynamics become almost dissipationless when |�c| �
2
√

JRJL. The small emitter can never exhibit energy growth
as long as JR and JL have the same sign.

In the giant-emitter case, the dynamics are sensitive to the
ratio gN/g0 of the two coupling strengths. Different from the
Hermitian case, where a giant emitter can be decoherence-free
(i.e., immune to radiating into the lattice) if, e.g., �c = 0
and N = 2 [57], in the non-Hermitian case, decoherence-free
dynamics also require carefully matched coupling strengths
[62]. Otherwise, the giant emitter exhibits either complete
decay or secular energy growth, as shown in Fig. 2(b). The
matching condition for the coupling can be analytically iden-
tified by calculating the self-energy of the giant emitter (see
Appendix A for more details), i.e.,

	c(z) = ∓ 1√
z2 − 4JRJL

× [
G2

0 + G2
N + G0GN yN

±(βN + β−N )
]
, (7)

where y± = (z ±
√

z2 − 4JRJL )/(2
√

JRJL ) and Gj =
g j/

√
2π . The upper or lower sign is selected depending

on whether y+ or y− is located within the unit circle in the
complex plane [57].

The dynamics in Fig. 2(b) can be well understood from
	c(�c + i0+), whose real and imaginary parts capture the
frequency shift and decay rate of the emitter induced by the
lattice [87,88], respectively. Clearly, one has 	c(0 + i0+) = 0
if, e.g.,

gN

g0
= β±N mod(N, 4) = 2, (8)

which is exactly the condition corresponding to the
decoherence-free dynamics (green line with asterisks) in
Fig. 2(b). The first half of Eq. (8) ensures the balance be-
tween the emitted and absorbed energies at the two coupling
points, a prerequisite for achieving perfect destructive inter-
ference, while the second half, in the ideal limit, enables
the destructive interference between the local decay channels
[terms proportional to G2

0 and G2
N in Eq. (7)] and the nonlocal

(cooperative) decay channels [terms proportional to G0GN in
Eq. (7)], thereby leading to effective light-matter decoupling.
Note that in the non-Hermitian case, 	c(0 + i0+) can have
a negative imaginary part, which accounts for the energy
growth of the emitter (red lines with circles). Moreover, the
giant emitter shows similar dissipationless dynamics when its
frequency completely falls within the band gap, similar to the
small-emitter case.

From the self-energy in Eq. (7), one can find another
interesting result: there are, at most, two decoherence-free
points (DFPs) where the giant emitter shows dissipationless
dynamics. In Fig. 3, we plot the dimensionless effective de-
cay rate for the above resonant giant-emitter case, which is
defined as

�̃eff = 2Im[	c(0 + i0+)]
√

JRJL

G2
0

. (9)

It is clear that emitter c shows complete decay (with a positive
�̃eff) if the coupling ratio g2/g0 is smaller (larger) than the
first (second) DFP, while otherwise it shows a secular energy
growth (with a negative �̃eff). At the two DFPs, the effective
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FIG. 3. (a) Dimensionless effective decay rate �̃eff of a resonant
giant emitter with two coupling points as a function of the coupling
ratio g2/g0, with the coupling separation N = 2. (b) Dimensionless
effective decay rate �̃eff,M of a resonant giant emitter with M equally
spaced coupling points as a function of the coupling-point separation
N . In (a), the gray dotted line indicates the position of zero decay
rate, while the cyan and red areas indicate the regions of complete
decay and secular energy growth, respectively. In (b), we consider
a coupling matching condition gjN/gj′N = β−| j− j′ |N (0 � j ′ < j �
M − 1) for all coupling points with β = 2.

decay rate vanishes such that the giant emitter is immune to
energy relaxation or amplification. We would like to point out
that the amplification regime is exclusive to giant emitters
and plays a crucial role in preserving the decoherence-free
dynamics from extra dissipations of the system, as will be
discussed in Sec. II F.

Before addressing multi-emitter cases, we briefly discuss
how the number of coupling points influences the results
presented above (so far we have considered only two cou-
pling points for the giant emitter). Without loss of generality,
we consider a simplified case where all coupling points are
equally spaced (e.g., with a separation of N lattice sites
between adjacent coupling points) and maintain the same cou-
pling matching condition as above, e.g., g jN/g j′N = β−| j− j′ |N
for 0 � j′ < j � M − 1. In this case, the dimensionless ef-
fective decay rate of a resonant giant emitter with M coupling
points can be expressed as

�̃eff,M = Re

[
M−1∑
j, j′=0

(±i)| j− j′|Nβ−( j+ j′ )N

×(β | j− j′ |N + β−| j− j′ |N )

]
. (10)

Note that the coupling matching condition considered above,
although convenient for analytical simplification, is not
strictly required when considering more than two coupling
points. This is somewhat similar to the Hermitian case, where
a giant atom with more than two coupling points can still
be effectively decoupled from the lattice even if the coupling
strengths are not equal.

Figure 3(b) shows the effective decay rate �̃eff,M as a
function of the coupling separation N for different numbers
of coupling points. One can find that the giant emitter al-
ways exhibits a periodic effective decay as N varies, similar
to the Hermitian case. Notably, increasing the number of
coupling points can introduce additional DFPs and trivially
enhance the maximum of the effective decay rate (due to more
coupling points). Nevertheless, the interplay between the self-
interference effect of the giant emitter and the non-Hermitian
skin effect of the lattice remains qualitatively unchanged.
Therefore, hereafter we will focus on giant emitters with two
coupling points for simplicity.

C. Dynamics of two small emitters

Now we consider an additional quantum emitter d , coupled
to lattice sites N ′ and N ′′ with coupling strengths ξN ′ and
ξN ′′ , respectively, and study the unconventional interemitter
interactions mediated by the HN model. Similar to emitter
c, we include in the total Hamiltonian the free-energy term
�d d†d of emitter d and the corresponding interaction terms
(ξN ′aN ′ + ξN ′′aN ′′ )d† + H.c.

We first focus on the small-emitter case where both c and
d are coupled locally to the HN model (i.e., gN = ξN ′′ = 0).
In this case, a very interesting result is that under specific
conditions, the two emitters will evolve into a long-lived

FIG. 4. Dynamics in the two-small-atoms case. Time evo-
lutions of occupations |〈c(t )〉|2 and |〈d (t )〉|2 with (a) dif-
ferent values of coupling imbalance γ , (b) different values
of on-site loss rate κ , and (c) different values of cou-
pling ratio ξ3/g0. We assume κ = 0 and ξ2/g0 = 1 in (a),
γ /g0 = 2.5 and ξ2/g0 = 1 in (b), and κ/g0 = 0.5 and γ /g0 =
2.5 in (c). Other parameters are J/g0 = 5, �c = �d = 0,
and Mtot = 800.
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FIG. 5. (a) Schematic diagram of two (small) quantum emitters coupled to a bosonic Kitaev chain (BKC). The BKC features a nearest-
neighbor hopping term with amplitude (phase) J (ϕ) and a pairing potential with strength �. When ϕ = π/2, the position (momentum)
quadratures Xc,d (Pc,d ) of the two emitters are coupled to an HN chain composed of the momentum (position) quadratures of the BKC site
modes. The two effective HN chains (i.e., the X and P chains) are opposite. (b), (c) Time evolutions of emitter quadratures |Xc,d (t )| and
|Pc,d (t )| (b) without (i.e., Wp/g0 = 0) and (c) with (i.e., Wp/g0 = 10−8) on-site potential disorder. Other parameters are J/g0 = 2, γ /g0 = 1,
�c = �d = 0, ξ2/g0 = 1, and Mtot = 800.

superposition state, with their final occupations determined
by the degree of the non-Hermiticity. As shown in Fig. 4(a),
while in the Hermitian case the two emitters exhibit identical
final occupations if N ′ = 2 and g0 = ξ2, in the non-Hermitian
case the right emitter d exhibits a larger final occupation
than the left emitter c under the same condition. This can
be clearly understood from the fact that the lattice field is
amplified towards the right. Note that in this case, the am-
plification direction of the emitter’s excitation is identical
to that of the field. This is very different from the situation
where giant emitters exhibit an unconventional (i.e., nonre-
ciprocal) DFI in the non-Hermitian case, as will be discussed
in Sec. II D.

Up to now, we have focused on the situation where the HN
model is completely lossless. In practice, however, the lattice
sites will also be subjected to unavoidable energy losses.
This dissipation effect is described by the on-site decay term
−iκ〈a j〉 in Eq. (6). In Fig. 4(b), we show that the long-lived
superposition state can be immediately broken in the presence
of the loss, with the damping rate of the emitter occupations
depending on the loss rate κ . This damping cannot be avoided
by tuning the coupling ratio ξ2/g0, as shown in Fig. 4(c). In-
stead, changing ξ2/g0 only affects the (maximum) occupation
of emitter d . This is very different from the decoherence-free
behavior of giant emitters, which, as will be discussed in
Sec. II F, persists even in the presence of such extra dissi-
pation. This difference can be understood from the fact that
small emitters can never show energy amplification (as long
as JR and JL have the same sign), which is able to balance the
extra dissipation of the system.

The above result has interesting extensions; for instance, if
we introduce a more advanced lattice model with a phase-
sensitive non-Hermitian skin effect. More specifically, we
consider a bosonic analog of the celebrated fermionic Kitaev
model [89], which is described by the Hamiltonian

HBKC =
∑

j

(Jeiϕa†
j+1a j + i�a†

j+1a†
j + H.c.), (11)

where J and ϕ are the amplitude and phase, respectively, of the
nearest-neighbor hopping coefficient; � is the strength of the
nearest-neighbor “two-mode-squeezing” interaction, mimick-
ing the p-wave pairing potential in its fermionic version.

This model is known as the bosonic Kitaev chain (BKC)
[68,71–73]. It enables phase-sensitive directional amplifica-
tions if ϕ = π/2 (modulo π ). As shown in Fig. 5(a), this
feature can be better understood if we define position x j =
(a†

j + a j )/
√

2 and momentum p j = i(a†
j − a j )/

√
2 quadra-

tures for the lattice sites and write their equations of motion in
the case of ϕ = π/2:

ẋ j = (J + �)x j−1 − (J − �)x j+1, (12)

ṗ j = (J − �)p j−1 − (J + �)p j+1. (13)

Clearly, the position and momentum quadratures form two
independent and opposite HN models, such that a wave packet
can be directionally amplified towards different directions
depending on its initial phase [71]. If we further introduce
two (small) quantum emitters and define similar orthogonal
quadratures Xo = (o† + o)/

√
2 and Po = i(o† − o)/

√
2 (o =

c, d) for them, as shown in Fig. 5(a), we can easily find
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that the momentum (position) quadratures of the emitters are
coupled to the position (momentum) quadrature HN chain of
the lattice sites (see Appendix B for more details).

As shown in Fig. 5(b), if two resonant small emitters (i.e.,
�c = �d = 0) are coupled to the BKC model with coupling
separation N = 2, one can expect state transfer between these
two emitters. The initially unoccupied emitter (i.e., emitter
d here) will eventually exhibit different occupations in its
position and momentum quadratures since the two effective
HN chains are opposite, such that the excitation is amplified
(attenuated) when transferring from Pc to Pd (from Xc to Xd ).
That is to say, while emitter c always maintains the quadrature
balance (i.e., Xc ≡ Pc), in emitter d most of the excitation is
“squeezed” into the momentum quadrature, with the quadra-
ture imbalance determined by both the emitter-lattice coupling
strengths and the non-Hermiticity.

We point out, however, that the dynamics of the emitters
are extremely fragile to on-site potential disorders of the BKC.
This is due to the fact that the two quadrature HN chains of
the BKC model are no longer decoupled in the presence of
on-site potential disorders [71],

ẋ j = (J + �)x j−1 − (J − �)x j+1 + δ j p j, (14)

ṗ j = (J − �)p j−1 − (J + �)p j+1 − δ jx j, (15)

where δ j ∈ [−Wp, Wp] is the on-site potential of the jth lattice
site, with Wp the maximum disorder strength. In this case, the
field can travel back and forth between the two opposite HN
chains, thus leading to indefinite amplification and instability.
As shown in Fig. 5(c), the emitters always exhibit secular
energy growth at long times, even if only an extremely small
disorder of Wp/g0 = 10−8 is introduced. This is quite different
from the end-to-end photon scattering of the BKC, which
can remain robust against weak enough on-site disorders if
the chain is sufficiently short [71]. Nevertheless, the inset in
Fig. 5(c) shows that for weak disorders, one can still expect
an initial transient stage where emitter d exhibits different
occupations in its position and momentum quadratures, before
significant energy growth appears.

The above result is a simple example that reveals the dy-
namical instability arising from the secular amplification of
the fields propagating in the lattice. In fact, similar results can
occur as long as the amplified emission fields have an oppor-
tunity to return to the emitters, such as in the HN model under
periodic boundary conditions [62]. This feature is closely
related to the sensitivity of the non-Hermitian skin effect to
boundary conditions, which has no Hermitian counterparts.
Nevertheless, unlike the HN model under periodic conditions,
the field amplification in a disordered BKC is completely in-
definite since the disorders, which determine the complicated
interchain couplings, are random.

D. Dynamics of two giant emitters

Now we turn to study the giant-emitter case, where each
of the emitters c and d is coupled to two lattice sites. With
a Hermitian 1D tight-binding chain, it has been shown that
two well-arranged “braided” giant emitters can exhibit DFIs
if the non-Markovian retardation effect is negligible [57].
In the non-Hermitian case, as shown in Fig. 6, the DFI be-

FIG. 6. Dynamics in the two-giant-atoms case. (a) Time evolu-
tions of occupations |〈c(t )〉|2 and |〈d (t )〉|2 for an ideal HN model
with (a) β = √

3 (i.e., γ /g0 = 7.5) and (b) β = √
2 (i.e., γ /g0 = 5).

Panels (a) and (b) share the same legend. (c) Time evolutions of
occupations |〈c(t )〉|2 and |〈d (t )〉|2 for an HN model with β = √

2
(i.e., γ /g0 = 5) and different types of disorder. In all panels, the
yellow dot-dashed lines indicate the values of β2. Other parameters,
except for those given in the legends, are J/g0 = 15, �c = �d = 0,
ξ1/g0 = 1, g2/g0 = ξ3/g0 = 1/β2, and Mtot = 800.

comes nonreciprocal and the nonreciprocity is opposite to
that of the field [62]. Such nonreciprocal DFIs are realized
when the decoherence-free condition (8) is fulfilled for each
of the emitters and their coupling points are braided (i.e.,
N ′′ > N ′ > N > 0). In view of this, here we take g0 = ξ1 and
g2 = ξ3 = g0/β

2 in Fig. 6 as an example. It is clear from
Figs. 6(a) and 6(b) that the nonreciprocity is quantitatively
determined by β: the excitation is attenuated by β−2 when it is
transferred from c to d . Such a nonreciprocal DFI can be used
to realize non-Hermitian cooling [90], i.e., the steady-state
thermal occupation of one emitter is smaller than that of the
other, and the cooling effect can be exponentially enhanced by
integrating more (giant) emitters in this form.

The nonreciprocal DFIs can be explicitly understood from
the interaction parts (i.e., the off-diagonal elements) of the
2 × 2 level-shift operator of the emitter pair, which, under
the above parametric conditions, can be obtained as (see
Appendix C for more details)

	cd (0 + i0+) � −G2
0

JR
, (16)

	dc(0 + i0+) � −G2
0

JRβ2
. (17)

Similar to the self-energy in Eq. (7), the real and imaginary
parts of 	cd (	dc) describe the coherent and dissipative cou-
plings from d to c (from c to d), respectively. The effective
interaction between the two giant emitters is purely coherent,
and the coupling nonreciprocity, i.e., |	cd (0 + i0+)/	dc(0 +
i0+)| = β2, is exactly determined by the non-Hermiticity of
the HN model and the separations of the coupling points.
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Besides the intrinsic dissipations discussed above, the HN
model also suffers from unavoidable disorders of the hopping
rates and on-site potentials in practice. At first glance, the
nonreciprocal DFIs are implemented by judiciously match-
ing the emitter-lattice coupling coefficients with the global
non-Hermiticity of the lattice, and should thus be sensitive to
these disorders. However, we reveal in Fig. 6(c) that the DFIs
are actually robust against moderate disorders, which only
introduce minor damping and shifts to the evolution curves.
This robustness is reminiscent of how the HN model under
open boundary conditions remains in the skin phase for weak
disorders [91]. Here the on-site potential disorder is defined in
the same way as in Fig. 5(c), while the hopping disorder is in-
troduced by assuming position-dependent hopping differences
ν j = JR, j − JL, j ∈ [−Wh, Wh], with JR, j (JL, j) the rightward
(leftward) hopping rate connecting the jth and j + 1th lattice
sites. Compared with the hopping disorder, the dynamics are
more robust against the on-site potential disorder (note that
we have assumed a larger strength Wp for the on-site potential
disorder). This is consistent with the fact that the nonrecipro-
cal DFI is associated with the asymmetric hopping rates rather
than the on-site terms.

E. Giant emitters coupled to a bosonic Kitaev chain

Similar to the small-emitter case, an ideal BKC is also sup-
posed to be a promising platform for enabling phase-sensitive
interactions between giant emitters. More specifically, we
consider two identical giant emitters c and d (as in Sec. II D)
coupled to a BKC with the interaction Hamiltonian

Hint = (g0a0 + g2a2)c† + (ξ1a1 + ξ3a3)d† + H.c., (18)

where a j denotes the annihilation operator of the jth lattice
site of the BKC in this case. The emitter-lattice coupling
strengths are matched as in Fig. 6. Once again, according to
Eqs. (B3)–(B6) in Appendix B, the position and momentum
quadratures of each giant emitter are coupled to the P chain
and X chain, respectively, with identical coupling separation
and coupling strengths. Consequently, the two braided giant
emitters support two pairs of quadratures, which are respec-
tively coupled to two opposite HN chains with the same
braided coupling structure.

As shown in Figs. 7(a) and 7(b), the position |Xc,d (t )| and
momentum |Pc,d (t )| quadratures of the giant emitters exhibit
opposite nonreciprocal DFIs, which we attribute to the op-
posite chirality of the two effective HN chains. This implies
that the BKC can, in the ideal limit, support phase-sensitive
DFIs with the nonreciprocity depending on the initial phase
of the excitation. Different from the result in Fig. 6, here the
amplification (attenuation) factor is β (β−1) since we plot
the amplitudes of the emitter quadratures rather than their
intensities.

As in the small-emitter case, such an intriguing phe-
nomenon is, however, disrupted by the unavoidable on-site
potential disorders of the BKC. As shown in Figs. 7(c) and
7(d), the dynamics in the ideal case can be completely de-
stroyed by extremely weak disorders (similar results can be
obtained even with much weaker disorders, e.g., Wp/g0 =
10−20), showing instead secular growth in the long-time limit.
Different from the small-emitter case, where one can still

FIG. 7. Time evolutions of the position |Xc,d (t )| and momen-
tum |Pc,d (t )| emitter quadratures of two braided giant emitters
coupled to a BKC (a), (b) without and (c), (d) with on-site
potential disorder. We assume Wp/g0 = 0 in (a) and (b) and
Wp/g0 = 10−5 in (c) and (d). Other parameters are J/g0 = 15,
γ /g0 = 5, �c = �d = 0, ξ1/g0 = 1, g2/g0 = ξ3/g0 = 1/β2, and
Mtot = 800.

expect transient phase-sensitive dynamics before the energy
growth dominates, the timescale of the nonreciprocal DFI is
typically much larger than the onset time of the energy growth.
Therefore, the phase-sensitive DFIs shown in Figs. 7(a) and
7(b) can hardly be observed in practice.

F. Non-Hermiticity-enhanced decoherence-free dynamics

Since the giant-emitter dynamics discussed in Sec. II D are
closely related to the non-Hermiticity of the bath, one may
wonder how these results are influenced by intrinsic dissipa-
tions of the system, which appear as another non-Hermitian
source. Clearly, the presence of the on-site energy loss can
shift the spectrum of the HN model along the imaginary axis
in the complex plane and thus modify its non-Hermiticity.
Therefore, the coupling matching condition g0/gN = −β±N

introduced above will no longer apply. However, thanks to the
amplification regime of a giant emitter (as shown in Fig. 3),
the decoherence-free dynamics can be preserved even in the
presence of moderate on-site energy losses. It can be analyt-
ically verified from Eq. (7) that the dimensionless effective
decay rate �̃eff can still have zeros in this case.

With finite on-site loss, the explicit form of the self-energy
	c(z) (and thereby �̃eff) should be modified by performing the
transformation z → z + iκ . In this case, we can identify the
modified coupling matching condition by finding the value(s)
of gN/g0 for which the effective decay rate of the giant emitter
c is zero, i.e.,

Im[	c(�c + iκ + i0+)] = 0. (19)

However, as shown in Fig. 8(a), this condition cannot be
fulfilled for a sufficiently strong on-site loss (e.g., κ/g0 = 4).
In that case, the effective decay rate is always positive so
that the emitter exhibits complete decay in the long-time
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FIG. 8. (a) Dimensionless effective decay rate �̃eff of a resonant
giant emitter as a function of the coupling ratio g2/g0 (N = 2) in the
presence of on-site energy loss and for γ /g0 = 5. The gray dotted
line indicates the position of zero. (b) The discriminant in Eq. (20) as
a function of on-site loss rate κ for N = 2 and γ /g0 = 5. The cyan
area indicates the region where the discriminant is negative (with no
DFP). (c), (d) Time evolutions of occupations |〈c(t )〉|2 and |〈d (t )〉|2
of the two giant emitters (c) with and (d) without the non-Hermitian
skin effect and for κ/g2 = 2. We assume γ /g0 = 5 and g2/g0 =
ξ3/g0 = 0.66 in (c) and γ /g0 = 0 and g2/g0 = ξ3/g0 = 1 in (d).
The yellow dot-dashed line in (c) indicates the value of β2. Panels
(c) and (d) share the same legend. Other parameters, except for those
given in the legends, are J/g0 = 15, �c = �d = 0, ξ1/g0 = 1, and
Mtot = 800.

limit. For the case in Fig. 8(a), where �c = 0 and N = 2, the
condition in Eq. (19) can be simplified to Re[1 + (g2/g0)2 +
y2
±(g2/g0)(β2 + β−2)] = 0. Clearly, the dimensionless

effective decay rate �̃eff has two different zeros (no zero) if
the discriminant,

(
iκ ± i

√
κ2 + 4JRJL

2
√

JRJL

)4

(β2 + β−2) − 4, (20)

is positive (negative). We depict in Fig. 8(b) the discriminant
as a function of the on-site loss rate κ , which shows that the
discriminant becomes negative for κ/g0 ≈ 3.2.

To verify the conclusion above, we examine in Fig. 8(c)
the dynamics of the two braided giant emitters with a finite
κ . Here, the coupling ratio g2/g0 = 0.66 is (approximately)
chosen as one of the two zeros of �̃eff, as shown in Fig. 8(a).
As expected, the nonreciprocal DFI is preserved under the
new coupling matching condition. This is in sharp contrast to
the conventional case without the non-Hermitian skin effect
(i.e., γ = 0 and g0 = g2 = ξ1 = ξ3), as shown in Fig. 8(d),
where the dynamics exhibit significant damping with the same
value of κ . We thus conclude that the decoherence-free feature
of a giant emitter can be enhanced by the non-Hermitian
skin effect in the sense that the decoherence-free dynamics
becomes more robust against moderate on-site energy loss of
the structured bath.

Finally, we point out that the HN model can also protect
the decoherence-free dynamics from extra decay channels of
the giant emitters (e.g., dissipation into the environment other
than the HN mode), which typically poses a challenge to
realize genuine decoherence-free (sub)spaces. For instance,
we have checked that a giant emitter with an extra decay rate
�ext/g0 = 0.02 can still exhibit fractional decay for β = √

3
and g2/g0 = 1.26. This condition is determined via balancing
the extra decay of the giant emitter by the effective negative
emitter decay induced by the HN model, i.e.,

�ext + Im[	c(�c + i0+)] = 0. (21)

Equation (21) clearly shows that the extra decay channels
of the giant emitters have effects similar to those of the lat-
tice. Specifically, the effective decay rate of the giant emitter
increases with �ext, and DFPs persist until �ext becomes suf-
ficiently large. Once again, this “gain-loss balance” is not
allowed in the absence of the non-Hermitian skin effect or in
the small-emitter case.

III. CONCLUSION AND DISCUSSION

In summary, we studied unconventional light-matter inter-
actions between quantum emitters and the HN model, i.e., a
minimal 1D structured bath that features the non-Hermitian
skin effect, and revealed the interplay between the non-
Hermiticity of the bath and various interference effects of the
emitters. Our results showed that giant emitters can exhibit
exclusive energy growth, which plays a crucial role in pro-
tecting the emitter dynamics from the unavoidable intrinsic
dissipation of the system. Such protection is not possible in the
absence of the non-Hermitian skin effect or with small emit-
ters. We further showed that these dynamics are robust against
several types of disorders, although some results seem to re-
quire well-matched parameters. However, unstable dynamics
always appear when the field of the HN model can return to
the emitters after being transferred away. This conclusion is
verified with the BKC, which can be mapped to two opposite
HN models under specific conditions but always exhibits dy-
namical instability in the presence of (infinitesimally small)
on-site disorders.

It is worth noting that the skin modes of the HN model,
which inherit the nontrivial point-gap topology, show a
topological correspondence to two-dimensional integer quan-
tum Hall states [92]. However, these two-dimensional chiral
modes still obey the conventional Bloch theorem, such
that they are dynamically distinct from the non-Hermitian
skin modes which are responsible for the directional field
amplification. Indeed, giant emitters show conventional self-
interference effects (i.e., without requiring the coupling
matching condition) when they are coupled to the chi-
ral boundary states of a two-dimensional Harper-Hofstadter
lattice [21].

The coupling matching condition considered in this paper
is within reach of state-of-the-art experiments. In circuit quan-
tum electrodynamics [93,94], the coupling strength between
quantum emitters, such as superconducting qubits and res-
onators, is typically determined by the design of the coupling
elements, such as capacitors or inductors. The effective cou-
pling strength can be tuned by adjusting parameters such as
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the size, spacing, or overlap of these elements [95]. Moreover,
tunable and switchable coupling between two superconduct-
ing resonators can be mediated by an auxiliary coupler, such
as a persistent current flux qubit [96] or a superconducting
quantum interference device [97]. Regarding the nonlocal
coupling structures, there have been many proposals in which
a single quantum emitter is able to interact with a lattice
(e.g., a coupled-waveguide array) at multiple separate cou-
pling points (see promising designs in, e.g., Refs. [98,99]).

The results presented in this paper can inspire a series
of intriguing investigations. For instance, introducing long-
range (i.e., next-nearest-neighbor) asymmetric hoppings to
the lattice can lead to bipolar (reciprocal) non-Hermitian skin
effects [75], which may mediate even more exotic interactions
between quantum emitters. Another interesting direction is to
study quantum emitters coupled to higher-dimensional exten-
sions of the HN model [39,100], which exhibit skin modes
localized at the edges and even corners. Such systems hold
promise for engineering unconventional higher-dimensional
interactions between quantum emitters. Moreover, many ex-
isting studies on quantum emitters coupled to topological
lattices [14,17–21] can be straightforwardly extended to their
non-Hermitian counterparts, where the interplay between the
band topology and the non-Hermitian skin effect can play an
important role in endowing the quantum emitters with addi-
tional unprecedented properties. It is also possible to modify
this interplay by coupling different edge states of a non-
Hermitian topological lattice through giant emitters [101].
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APPENDIX A: SELF-ENERGY
FOR A SINGLE GIANT EMITTER

In this Appendix, we provide a detailed derivation for the
self-energy in Eq. (7) in the main text. Before proceeding,
we would like to show that the Hatano-Nelson (HN) model
can be mapped to a pseudo-Hermitian lattice model, if it is
in the convectively unstable regime with |J| > |γ | [45,62].
Otherwise, if |J| < |γ |, the HN model enters the absolutely
unstable regime, where the quantum emitters always show
secular energy growth regardless of the coupling strength.

In the convectively unstable regime, the Hamiltonian of the
HN model can be rewritten as [83]

H ′
HN =

∑
j

(
√

JRJLβa†
j+1a j + √

JRJLβ−1a†
j a j+1), (A1)

and its eigenvalues are given by

Eq = 2
√

JRJL cos q, (A2)

where q = k − i ln(β ) = k − i ln(
√

JR/JL ) is a complex wave
vector. This implies that the HN model is equivalent to a 1D
pseudo-Hermitian lattice subject to an imaginary gauge field.
In view of this, by performing the transformation

aq = 1√
2π

∑
n

ane−iqn, (A3)

the total Hamiltonian Htot of the system can be rewritten as

H̃tot = Hc + H̃HN + H̃int, (A4)

where

Hc = �cc†c, (A5)

H̃HN =
∑

q

ωka†
qaq, (A6)

H̃int =
∑

q

[(
G0 + GN e−iNq

)
a†

qc + (
G0 + GN eiNq

)
c†aq

]
,

(A7)

with G0 = g0/
√

2π , GN = gN/
√

2π , and ωk =
2
√

tRtL cos(k) �= Eq. Here, aq is the q-space annihilation
operator of the lattice field, satisfying [aq, a†

q′ ] = δq,q′ and

[aq, aq′ ] = [a†
q, a†

q′ ] = 0. It is worth noting that the frequencies
ωk are real and, in general, not a function of β.

Now we use the resolvent-operator technique [102], which
allows us to analytically capture the influence of a (struc-
tured) bath on quantum emitters it interacts with. For the
giant emitter c considered in the main text, its self-energy is
given by [62]

	c(z) =
∑

q

(
G0 + GN eiNq

)(
G0 + GN e−iNq

)
z − ωk

= 1

2π

∫
dq

G2
0 + G2

N + G0GN
(
eiNq + e−iNq

)
z − 2

√
JRJL cos (k)

= 1

2π

∫
dk

G2
0 + G2

N + G0GN eiNk (βN + β−N )

z − 2
√

JRJL cos (k)
,

(A8)

where, in the last step, we have changed the integration vari-
able as

∫
dq → ∫

dk and replaced exp(−iNk) by exp(iNk)
(they have identical contributions since only even functions
contribute to the integral). By setting y = exp(ik) such that
2 cos(k) = y + y−1 and

∫
dk = −i

∮
y−1dy, and using the

residue theorem, 	c(z) can be finally obtained as

	c(z) = i

2π

∮
dy

G2
0 + G2

N + G0GN yN (βN + β−N )

−zy + √
JRJL(y2 + 1)

= ∓ 1√
z2 − 4JRJL

[
G2

0 + G2
N + G0GN yN

±(βN + β−N )
]
,

(A9)

where y± = (z ±
√

z2 − 4JRJL )/(2
√

JRJL ), with the upper or
lower sign chosen depending on whether y+ or y− is located
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within the unit circle in the complex plane [57]. The real and
imaginary parts of 	c(z) predict the frequency shift and the
effective relaxation rate of emitter c (induced by the lattice),
respectively. For weak emitter-lattice couplings, the dynamics
of the emitter can be well captured by 	c(�c + i0+), i.e., the
self-energy near the real axis [87,88]. Clearly, when GN/G0 =
β±N , N = 2, and �c = 0 for example, 	c(0 + i0+) = 0 im-
plying that the giant emitter is immune to relaxing into the
lattice.

APPENDIX B: A BOSONIC KITAEV CHAIN
INTERACTING WITH QUANTUM EMITTERS

We first consider a bosonic Kitaev chain (BKC) [68,71,73],
which is described by the one-dimensional tight-binding
Hamiltonian

HB =
∑

j

(Jeiϕa†
j+1a j + i�a†

j+1a†
j + H.c.). (B1)

Here, a j (a†
j ) is the bosonic annihilation (creation) operator

at the jth lattice site; J and ϕ are the amplitude and phase
of the nearest-neighbor hopping of the chain, respectively;
� describes the pairing potential (i.e., two-photon drive) for
every two adjacent sites.

Now let us consider the situation where an additional
bosonic mode c (e.g., a quantum harmonic oscillator) is cou-
pled to the BKC at sites j = 0 and j = N , as shown in the left
panel of Fig. 5(a). In this case, the total Hamiltonian of the
model becomes H = HB + Hc + Hint, with Hc = δc†c and

Hint = g0c†a0 + gN c†aN + H.c., (B2)

where δ is the frequency detuning between mode c and the
band center of the BKC; g0 and gN are the coupling strengths
of c to lattice sites a0 and aN , respectively. We refer to
mode c as a “giant emitter” if both g0 and gN are nonzero
and as a “small emitter” if gN = 0. By defining position
x j = (a†

j + a j )/
√

2 [Xc = (c† + c)/
√

2] and momentum p j =
i(a†

j − a j )/
√

2 [Pc = i(c† − c)/
√

2] quadratures for the lattice
(emitter) modes, the equations of motion for the whole model
are given by

ẋ j = (J sin ϕ + �)x j−1 − (J sin ϕ − �)x j+1

+ J cos ϕ(p j+1 + p j−1) + (g0δ j,0 + gNδ j,N )Pc, (B3)

ṗ j = (J sin ϕ − �)pj−1 − (J sin ϕ + �)p j+1

− J cos ϕ(x j+1 + x j−1) − (g0δ j,0 + gNδ j,N )Xc, (B4)

Ẋc = δPc + g0 p0 + gN pN , (B5)

Ṗc = −δXc − g0x0 − gN xN . (B6)

The hopping phase ϕ plays a crucial role in controlling
the phase sensitivity of the BKC. When ϕ = 0 (modulo 2π ),
Eqs. (B3) and (B4) become

ẋ j = �(x j+1 + x j−1) + J (p j+1 + p j−1)

+ (g0δ j,0 + gNδ j,N )Pc, (B7)

ṗ j = −�(p j+1 + p j−1) − J (x j+1 + x j−1)

− (g0δ j,0 + gNδ j,N )Xc. (B8)

In this case, the quantum emitter is effectively coupled to a
two-leg lattice, where the two sublattices (we refer to them
as the “X chain” and the “P chain”, respectively) are coupled
in an interlaced manner, i.e., with next-nearest-neighbor in-
terchain couplings. The position and momentum quadratures
of the quantum emitter are coupled to the P chain and the X
chain, respectively, and the two emitter quadratures, Xc and
Pc, are decoupled from each other if δ = 0. Although such
a model can be used to engineer the decay dynamics of the
quantum emitter and dipole-dipole interactions between mul-
tiple emitters, it does not support phase-sensitive dynamics
since the two quadratures of the lattice (i.e., the two sublat-
tices) are always mixed in the presence of a finite pairing
potential.

On the other hand, when ϕ = π/2 (modulo 2π ), Eqs. (B3)
and (B4) reduce to

ẋ j = (J+�)x j−1 − (J − �)x j+1+(g0δ j,0+gNδ j,N )Pc, (B9)

ṗ j = (J−�)p j−1−(J+�)p j+1−(g0δ j,0+gNδ j,N )Xc. (B10)

In this case, the position and momentum emitter quadratures,
Xc and Pc, are coupled to two HN chains with opposite chiral-
ity, respectively, as shown in the right panel of Fig. 5(a). Since
there are no interchain interactions in this case, when δ = 0,
the model is equivalent to two distinct “giant emitters” (cor-
responding to quadratures Xc and Pc) coupled, respectively, to
two independent HN chains. When considering two quantum
emitters, as discussed in Secs. II C and II E, the position (mo-
mentum) quadratures of the emitters are coupled to the P (X)
chain, following the same coupling structure as the emitters
themselves.

APPENDIX C: SELF-ENERGY FOR TWO BRAIDED EMITTERS

For the case of two braided emitters, it is easy to check that both emitters (i.e., c and d , which are assumed to be identical
here) do not decay into the lattice (if the non-Markovian retardation effect is neglected) by calculating their self-energies as in
Appendix A. Moreover, the nonreciprocal DFI between emitters c and d can be explicitly understood from the two off-diagonal
elements of the level-shift operator [57,62], which are obtained as

	cd (z) =
∑

q

(
G0 + G2e2iq

)(
G1e−iq + G3e−3iq

)
z − ωk

= 1

2π

∫
dq

G0G1
e−ik

β
+ G0G3

e−3ik

β3 + G1G2βeik + G2G3
e−ik

β

z − 2
√

JRJL cos(k)

= 1

2π

∫
dk

G0G1
eik

β
− G0G3

e3ik

β3 − G1G2βeik + G2G3
eik

β

z − 2
√

JRJL cos(k)
, (C1)
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	dc(z) =
∑

q

(
G0 + G2e−2iq

)(
G1eiq + G3e3iq

)
z − ωk

= 1

2π

∫
dq

G0G1βeik + G0G3β
3e3ik + G1G2

e−ik

β
+ G2G3βeik

z − 2
√

JRJL cos(k)

= 1

2π

∫
dk

G0G1βeik − G0G3β
3e3ik − G1G2

eik

β
+ G2G3βeik

z − 2
√

JRJL cos(k)
, (C2)

where G0 = g2
0/2π , G1 = ξ 2

1 /2π , G2 = g2
2/2π , and G3 = ξ 2

3 /2π . In the last steps of Eqs. (C1) and (C2), we have again replaced
exp(−ik) by exp(ik) like in the single-emitter case. With a similar calculation procedure, we have

	cd (z) = ∓ 1√
z − 4JRJL

(
G0G1

y±
β

− G0G3
y3
±

β3
− G1G2βy± + G2G3

y±
β

)
, (C3)

	dc(z) = ∓ 1√
z − 4JRJL

(
G0G1βy± − G0G3β

3y3
± − G1G2

y±
β

+ G2G3βy±

)
, (C4)

which, under the condition of G0 = G1 = β2G2 = β2G3, can be simplified to

	cd (z) = ∓ G2
0√

z − 4JRJL

(
2y±
β

+ y3
±

β5
+ y±

β5

)
, (C5)

	dc(z) = ∓ G2
0√

z − 4JRJL

(
2y±
β3

+ βy3
± + βy±

)
. (C6)

Once again, the upper or lower sign is chosen depending on whether y+ or y− is located within the unit circle in the complex
plane. For z = 0 + i0+ (i.e., with weak emitter-lattice interactions and in the resonant case of �c = �d = 0), we finally have

	P,cd (0 + i0+) � −G2
0

JR
, (C7)

	P,dc(0 + i0+) � −G2
0

JRβ2
. (C8)

The real and imaginary parts of 	cd (	dc) describe the coherent and dissipative couplings from d to c (from c to d)
[57,62]. Therefore, it is clear that the two braided giant emitters exhibit a nonreciprocal DFI (which is purely coherent) with the
nonreciprocity opposite to that of the HN model (where the fields exhibit rightward amplification).
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