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Symmetry-informed transferability of optimal parameters
in the quantum approximate optimization algorithm

Isak Lyngfelt®” and Laura Garcia-Alvarez
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® (Received 5 July 2024; accepted 17 January 2025; published 11 February 2025)

One of the main limitations of variational quantum algorithms is the classical optimization of the highly
dimensional nonconvex variational parameter landscape. To simplify this optimization, we can reduce the search
space using problem symmetries and typical optimal parameters as initial points if they concentrate. In this
article, we consider typical values of optimal parameters of the quantum approximate optimization algorithm
for the MAXCUT problem with d-regular tree subgraphs and reuse them in different graph instances. We
prove symmetries in the optimization landscape of several kinds of weighted and unweighted graphs, which
explains the existence of multiple sets of optimal parameters. However, we observe that not all optimal sets
can be successfully transferred between problem instances. We find specific transferable domains in the search
space and show how to translate an arbitrary set of optimal parameters into the adequate domain using the
studied symmetries. Finally, we extend these results to general classical optimization problems described by Ising
Hamiltonians, the Hamiltonian variational ansatz for relevant physical models, and the recursive and multiangle

quantum approximate optimization algorithms.

DOI: 10.1103/PhysRevA.111.022418

I. INTRODUCTION

Variational quantum algorithms (VQAs) are among the
most popular and accessible quantum algorithms for solving
classically hard problems, with a notable example being the
quantum approximate optimization algorithm (QAOA) [1],
used to tackle combinatorial optimization problems (COPs).
The QAOA is a hybrid algorithm consisting of a quantum
circuit with several layers of parameter-dependent operations
applied iteratively, followed by a classical optimization of
the parameters. The quality of the solutions output by this
algorithm depends on these classically optimized variational
parameters and the depth of the quantum circuit. In theory,
the solution improves as the circuit depth increases but, in
practice, deep circuits introduce noise that affects the quan-
tum state. However, shallow depth QAOA is often inferior
to state-of-the art classical algorithms [2—6]. Therefore, we
have to choose an algorithm depth that achieves an acceptable
solution while maintaining quantum coherence. Alternatively,
one can modify the standard QAOA to mitigate the effects of
decoherence. Multiple alternative QAOA inspired algorithms
adapted to specific COPs show better theoretical performance
at lower depths, like the recursive QAOA (RQAOA) [7] or
the multiangle QAOA (ma-QAOA) [8]. Yet their success also
depends on finding good variational parameters.
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The number of variational parameters scales linearly with
the depth of the circuit, and the number of random initializa-
tion points needed to find the global optima is exponential
in the number of parameters [9]. All QAOA variants suffer
from this curse of dimensionality and, in general, the classical
optimization routine of QAOA is known to be an NP-hard
problem [10]. Barren plateaus in the optimization landscape
further increase the difficulty in finding the optimal parame-
ters [10-13], and it has been suggested that problems that are
classically hard to simulate will always have these plateaus
[14]. As a result, efficient strategies for finding optimal pa-
rameters are vital in the viability of QAOA [15].

Optimizing the variational parameters is an active field
of research, and a multitude of techniques have been
studied, including standard classical optimizers [16], gradient-
free optimizers [16,17], classical genetic algorithms [18],
machine-learning assisted optimization [19-22], and extrap-
olation techniques [9,23]. Furthermore, we can benefit from
prior knowledge of the problem, either by initializing a quan-
tum state close to the solution [24-26], finding a better initial
ansatz by an efficient classical optimization over Clifford
gates [27,28], or bypassing the optimization by transfer-
ring pretrained optimal parameters [29-38]. The optimization
can also be simplified by employing fixed schemes such
as Fourier-series extrapolation [9], discrete adiabatic paths
[9,23], or linear ramp schedules [39]. While the main pur-
pose of QAOA is finding approximate solutions to COPs,
the sampling from the output quantum state is related to
pseudo-Boltzmann distributions that are classically intractable
[40,41]. In these cases, the quality of the algorithm parameters
affects the effective temperature of the probability distribu-
tion, with the optima leading to the lowest temperature.

In some cases, the optimal parameters concentrate on typ-
ical values in parameter space. This behavior was initially

Published by the American Physical Society
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observed for MAXCUT on 3-regular graphs [42], i.e., graphs
where every vertex is connected to 3 vertices, and later
for MAXCUT on other kinds of graphs [9,33,40,43]. This
phenomenon has been linked with the locality of QAOA at
shallow depths, where the cost Hamiltonian of a graph can
be reformulated as a sum of local Hamiltonians of subgraphs
[1,9]. The typical optimal parameters are those optimal to
the local Hamiltonian that dominate the expectation value
of the total cost Hamiltonian [29-31,44]. At algorithm depth
p = 11, numerical studies show that MAXCUT on 3-regular
graphs with typical parameters has performance guarantees
superior to the best classical algorithms [45], and a recent
work by Ref. [46] suggests that the QAOA with typical pa-
rameters already has an advantage at p = 8. Furthermore,
it is possible to achieve near-optimal QAOA performances
by transferring the typical values from a donor problem in-
stance to a receiver problem instance drawn from a different
ensemble. These successful transfers have been numerically
confirmed between regular graphs with either even or odd de-
grees [30,47], between the Sherrington-Kirkpatrick model and
MAXCUT on high-girth graphs [42,43], between unweighted
and weighted graphs [32,33], and between the MAXCUT
problem and other COPs [34]. Additionally, the transferred
parameters can be used as initial guesses for a warm-start local
optimization of QAOA parameters, significantly accelerating
the classical loop [9,19,35,48]. Warm-start optimization is a
promising heuristic method to mitigate the challenge of barren
plateaus. Unlike other methods to avoid barren plateaus which
often inadvertently imply that the problem at hand is effi-
ciently solvable by classical computers, warm-start techniques
are not believed to have this limitation [14].

The classical optimization can also be simplified by iden-
tifying symmetries in the parameter space and limiting the
search space accordingly [9,37,49]. In principle, any optimal
parameters related by symmetry operations output the same
quantum state and, thus, perform equally when solving the
classical problem. However, when transferring these parame-
ters to other instances, not all sets of optimal parameters are
suitable [30,47]. In particular, one should consider domains in
the search space containing optimal parameters for both the
donor and the receiver instances. To this end, it is essential to
study the symmetries in both the donor and receiver problem
instances.

In this article, we identify symmetries in the optimization
landscape of QAOA for Ising Hamiltonian with certain inte-
ger coefficients previously not addressed in the literature. In
addition, we study the performance of QAOA for MAXCUT
using transferred parameters between problem instances for
circuit depths p = 1 and 2. We define a function characteriz-
ing the transferability of parameters and provide an analytical
closed-form expression for triangle-free regular graphs. Such
graphs are said to have a girth higher than 3, i.e., the shortest
cycle length is longer than 3. We observe that, in general,
these transferred parameters reach a high performance if they
belong to certain domains in the search space. Our analysis ex-
tends to d-regular graphs with integer weights and unweighted
random graphs from different models: graphs with a fixed
number of vertices, and edges generated by different proba-
bility distributions. We show that when specific parameters
are transferable, all parameters can be effectively transferred

by applying translations based on the symmetries of the vari-
ational state’s expectation value. This result appears to extend
to higher algorithm depths, suggesting a scalable approach
to parameter optimization. Furthermore, while our numerical
study focuses on particular problem instances, our work pro-
vides tools to analyze the symmetries and transferability of
parameters, which can help to identify successful initialization
or optimization schemes in general VQAs. Building on this
idea, we extend our symmetry results to the Hamiltonian
variational Ansatz (HVA), a relevant quantum heuristic for
physical models in the context of variational quantum eigen-
solvers (VQEs), as well as the RQAOA and the ma-QAOA.
For the latter two, we also discuss the potential of parameter
transferability.

Different initialization or optimization schemes have
unique strengths and weaknesses that make them more suit-
able for specific VQAs. For hardware-efficient Ansdtze, a
classically efficient search over Clifford-gate constructed An-
sdtze has proven effective for finding good initializations
[28]. However, this approach is less suitable for struc-
tured Ansdtze that utilize problem-specific features, such as
QAOA or HVA circuits. Indeed, in QAOA circuits, Clifford
gates constrain the parameters to integer multiples of m /4,
which are typically far from the optimal values [27], un-
less one considers hardware-efficient QAOA variants, like
ADAPT-QAOA [50]. Conversely, our results are not directly
applicable to hardware-efficient Ansatz circuits, as we rely on
integer-valued coupling constants in the spin model to derive
parameter space symmetries. These assumptions suggest that
our findings will improve parameter training in structured
quantum circuits for specific problems with integer-valued
coupling constants in the Hamiltonians.

The article is structured as follows. In Sec. II, we review
the formulation of QAOA and the COP MAXCUT, as well as
the known symmetries of the variational parameters. We prove
a generalization of these symmetries to include a wider family
of graphs. Then, in Sec. III, we analyze the transferability of
optimal variational parameters and identify which optimal sets
are suitable for reuse. In Sec. IV, we generalize our symme-
tries to encompass more VQAs and discuss the parameters’
transferability in those cases. Lastly, we summarize our results
in Sec. V.

II. SYMMETRIES OF QAOA FOR MAXCUT

We begin by reviewing the formulation of QAOA, an al-
gorithm that can be easily adapted to tackle the optimization
of classical functions, and introducing the notation we use
throughout the paper. In this work, we consider a fundamental
NP-complete problem in graph theory, namely MAXCUT,
whose solution is also hard to approximate. This problem
seeks to divide the vertices of an undirected graph into two
sets to maximize the total weight of edges, or the number
of edges in the case of unweighted graphs, crossing between
these sets. That is, given an undirected graph G = (V, E)) with
weights w;; on the edges (i, j) € E joining the vertices V, we
seek to maximize

1
C(x) = 3 Z w;; (1 — x;x;), (1)

(i,))eE
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with x € {—1, 1}" the length-n string to be optimized, and
n the order of the graph |V|. For a given problem instance,
the quality of a feasible solution x can be quantified by the
approximation ratio

_ C()C ) - Cmin
Cmax - Cmin

which is equal to one for optimal solutions and approaches
zero as the quality decreases. For MAXCUT, the best classical
algorithms guarantee an approximation ratio of at least 0.8785
[51].

The MAXCUT problem can be encoded on a quantum
computer by rewriting the cost function of Eq. (1) in terms of
quantum operators. We replace each variable x; by the Pauli
operator 6; to obtain the cost Hamiltonian

He = > Z wij (1 —68/67), 3)

r(x) , 2

where the problem’s solutions are related to the measure-
ment outcomes 1 of each qubit in the computational basis.
The QAOA leverages the problem structure by encoding
it in the cost unitary Uc(y) = e~Hc. The algorithm itera-
tively applies this cost unitary and a mixer unitary Uu(B) =
e~y with the mixer Hamiltonian Hy, = Y~ 6., to the sym-
metric superposition of computational basis states |+)®" to
prepare the n-qubit variational state |y, B). The state de-
pends on the real-valued parameters y = (y1,...,¥,) and
B = (Bi, ..., Bp) assigned to the cost and mixing operations
for the total p iterations, depth p, and aims to optimize the
expectation value of the cost Hamiltonian He,

C(y,B) = (y, BlHcly, B). %)

We can thus consider the approximation ratio over the distri-
bution of QAOA solution outputs as a quality measure
vy gy — C¥B) = Con. -
Cmax - Cmin

The cost landscape represents the relationship between the
objective function of Eq. (4) and the parameters y and 8. The
classical optimization of y and B is generally challenging due
to highly nonconvex landscapes containing several local min-
ima and maxima. The landscape symmetries help simplify the
optimization process by restricting the search space. In other
words, these symmetries help divide the search space into
domains containing optimal parameters that perform equally
when finding good approximate solutions to a COP or creating
final states from which one can perform “pseudothermal”
sampling [40,41].

First, we notice that the cost and mixer Hamiltonians are
real symmetric matrices in the computational basis and, there-
fore, QAOA exhibits a “time-reversal” symmetry (y, f) —
(—=y, —p) [9,37]. This symmetry inverts the sign of all ele-
ments of the vectors simultaneously and is valid for any graph
with real weights. Second, we consider the standard mixer
Hamiltonian Hy = ), 6! and MAXCUT problem instances
with integer weights so that the cost Hamiltonian has integer
eigenvalues and only two-qubit interactions. Therefore, we
begin by restricting the parameter optimization to the domain
AP, suchthat y € [—m, w)? and B € [—n /4, w /4)P (as shown

OWS symmetry

/4
AN |
299 9.9,

EWS symmetry
O] U KO
Vi
w/2 ™

—7/4

w/4

_ﬂ-/éﬁ —7/2 0
Y

FIG. 1. Symmetries for optimal QAOA parameters (y, B) at
depth p = 1 for unweighted regular graphs with odd (top) and even
(bottom) degrees, which follow OWS and EWS symmetries, respec-
tively. Each solid green area contains one set of optimal parameters,
while they do not appear in red-crossed areas. The domains /; and
U, contain optimal parameters in both cases.

in Fig. 1 for p = 1) since the QAOA cost function for MAX-
CUT remains unchanged when any y; and 8; parameters shift
by integer multiples of 27 and 7 /2, respectively.

In the following, we review additional symmetries of
the optimal parameters within A = [—w, w) X [—7 /4, 7 /4),
summarized in Table I, and extend the known results for
MAXCUT unweighted graph instances [9,37] to specific fam-
ilies of weighted graphs.

Graphs where the sum of weights connected to each vertex
is even. The cost in Eq. (4) is invariant under parameter
changes y; — y; £ for any layer i in QAOA, for graphs
where the sum of the weights connected to each vertex is even,
ie., Ljwj € 2Z, Yk €V (see proof in Appendix B). This
even weight sum (EWS) symmetry captures the previously
known result for unweighted graphs where all vertices have
even degree [37]. More examples that exhibit this parameter
pattern include graphs with only even weights and graphs
where all vertices have even degrees with only odd weights,
for instance, w;; € {—1, 1}.

Graphs where the sum of weights connected to each vertex
is odd. The cost in QAOA is invariant under the simultaneous
parameter change y; — y; =7 and B; — —f; in all layers

TABLE 1. Transformations of (y,8) — (¥, 8) such that
C(y, B) = C(¥, B'). The EWS symmetry refers to integer-weighted
graphs where the sum of weights connected to each vertex is even,
ie., Xjwjy €2Z, Yk € V. Analogously, OWS symmetry refers to
integer-weighted graphs where the sum of the weights connected to
each vertex is odd, i.e., Xwj, € Z\2Z, Vk e V.

Graph Symmetry
EWS W1y ees Vi e Vo) = V1 s ViE 0, 0 V)
W1y e Vir s Vp) = V1 e ViR, 0 V)
OWS
{(/31, weos Bis ooy Bp) = By ooy =Bis s —Bp)

Integer weights Vs oo Vis s ¥p) = W1y e Vi E 27, 0 0p)

(B oer Bis ovos Bp) = (Bis oo Bi £ /2, o0, By)
V1 vos Vis oo V) = = (V15 e Vi oo ¥Vp)

Real weights Brovoos B oo By) = —(Bro oo Brv oo )
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Jj =i, for graphs where the sum of the weights connected to
each vertex is odd, i.e., Zjwy € Z\2Z, ¥ k € V (see proof
in Appendix B). This odd weight sum (OWS) symmetry con-
tains the case of unweighted graphs when all vertices have
odd degree [37]. Moreover, we also include graphs where each
vertex has an odd degree and all weights are odd, for example,
w;j € { —1, 1}

As previously mentioned, these symmetries relate to pat-
terns in the optimization landscape and help identify sets
of optimal parameters that lead to the same QAOA perfor-
mance for a given MAXCUT problem instance. The optimal
parameters are known analytically for unweighted d-regular
triangle-free graphs at depth p = 1 [52], and empirically for
the unweighted 3-regular tree subgraph up to p =11 [45].
Similar empirical results are known for unweighted regular
graphs of degree d < 11 at depth p = 2 [45], and exhaustive
sets of small graphs with n < 9 vertices at depths p < 3 [37].
In Fig. 1, we show the parameter space domains that contain
the optimal sets for unweighted regular graphs with even and
odd degrees. We observe that, in both cases, the domains
U =10,7/2) x [0,r/4) and Up = [—7/2,0) x [-7 /4, 0)
contain a set of optimal parameters.

Symmetry patterns at higher depths. At higher algorithm
depths p, graphs that obey either the even weight sum (EWS)
symmetry or odd weight sum (OWS) symmetry will have 27+!
areas containing an optimal set of parameters within A”. As
shown in Table I, the cost function will be invariant under
the mth algorithm layer parameter changes y,, — y,, = 7 for
instances with EWS symmetry, and y,, — ¥, = 7 and 8; —
— B, for i > m for instances with OWS symmetry. These sym-
metries provide two optimal parameter choices at each layer,
either the initial set or the symmetric one, which results in 27
possible combinations of optimal parameters. Lastly, the cost
also remains invariant under the “time-reversal symmetry,”
which changes the sign of all parameters in the algorithm, thus
doubling the number of optimal choices. In total, there are
27+1 sets of optimal parameters within A” providing the same
QAOA performance. We could visualize them as different
domains in the energy landscape, as shown in Fig. 1 for p = 1.

In summary, we have identified parameter symmetries in
QAOA for weighted MAXCUT instances that explain opti-
mal parameter patterns from numerical simulations. Given the
proven symmetries, for a given instance, all sets of optimal pa-
rameters can be retrieved knowing a single set, provided there
is a single optimum in the domain [0, 7 /2) X [—7 /4, T /4).
The choice of parameters in the algorithm determines the
quantum circuit. Therefore, a higher number of optimal pa-
rameter sets results in more choices of quantum circuits and
gates, potentially improving the hardware implementation of
the algorithm.

III. TRANSFERABILITY OF OPTIMAL PARAMETERS

In this section, we analyze the performance of QAOA when
transferring the different sets of optimal parameters identified
in Sec. II from one problem instance to another. To that end,
we define a figure of merit to quantify how transferable the
parameters are. We study this transferability property both
analytically and numerically for several families of graphs,
with different degree and weight distributions.

Previous research showed the viability of transferring opti-
mal parameters of QAOA for MAXCUT between unweighted
3-regular graphs of different sizes [29,45], from unweighted
to weighted graphs [32,33], between graphs with different
degrees [30,47], and between different COPs [34,39]. The
transferability of optimal parameters can be explained by the
decomposition of a given graph instance into local subgraphs
at shallow QAOA depths. Following a light cone argument,
one can show that the algorithm sees a sum of local subgraphs
instead of the whole graph. Thus, the QAOA cost function
only depends on these subgraphs, and the algorithm will
perform similarly for two different problem instances with
similar local subgraphs. For example, the cost function of
Eq. (4) for all unweighted 3-regular graphs for QAOA with
depth p = 1 is a sum of the cost of three subgraphs, times their
respective multiplicity [1]. Such locality arguments for shal-
low algorithm depths also explain concentration properties of
QAOA, and have been linked to performance limitations for
certain problems [2,5,7,14].

The number of possible subgraphs for a d-regular graph
grows exponentially with the algorithm depth p, if QAOA
does not see the whole graph, i.e., if p ~ O(logn) with n
the number of vertices. However, despite this exponential
growth, in a sufficiently large random d-regular graph, almost
all subgraphs will be tree subgraphs [2,25,44], i.e., connected
subgraphs graphs with no cycles. Consequently, the optimal
QAOA parameters for a d-regular graph will be close to the
optimal parameters of the d-regular tree subgraph, which ex-
plains the successful parameter transferability between them
at shallow depths. However, this argument fails to explain
whether we can reuse optimal parameters between graphs
with different degrees (or average degrees). Particularly, prior
research suggests that, on average, we can successfully trans-
fer any optimal parameters between regular graphs with the
same parity (both have either odd or even degrees). However,
for graphs with opposite parity, we can only reuse a subset of
the optimal parameters [30,47].

Transferability error. To measure the success of reusing
parameters of QAOA, we define the transferability error
NRr.p aS

NR.D = VR()’;}’ ﬂfe) - VR()’B ,sz))- (6)

The error ng p is the difference between the approximation
ratios rg for a receiver problem instance R, defined in Eq. (5),
when using its optimal parameters (y%, Bz), and when using
parameters that are optimal to a donor instance D, (y},, /3;5).
A low error indicates a successful transfer.

Analytic expression of the transferability error for sim-
ple cases at p =1. We begin our study of the parameters’
transferability with the simplest example of unweighted d-
regular graphs, for which we can rely on previously known
analytical results. Given the locality of QAOA at shallow
depths, we choose the d’-regular tree subgraph, the most
common subgraph, as the donor instance. Indeed, using the
optimal parameters for the 3-regular tree subgraph is known
to give performance guarantees for arbitrary 3-regular graphs
at p=1 [1] and p =2 [45]. Furthermore, the cost value
for MAXCUT with triangle-free graphs at depth p = 1 has
a known closed form [52]. Using the closed form, we can
derive an analytical expression for the transferability error
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FIG. 2. Transferability error 175;3, from Eq. (7) for d-regular bi-
partite graphs (k = 1) with a donor tree subgraph with degrees d’ = 3
(red solid line), d’ = 4 (blue dashed-dotted line), and d’ = 5 (green
dotted line). The black dashed line represents the transferability
error when QAOA with donated parameters is equivalent to random
guessing.

between a d’-regular tree subgraph and a d-regular graph with
girth g > 3, i.e., triangle-free regular graphs. Thus, following
our definition of Eq. (6), and identifying the receiver (R) and
donor (D) graphs by their degree d and d’, we have for depth

p=1

-1 -1
g>3 1 d—1 2 _ li d -1 2 (7)
nd,d’ - 2k\/3 d d’ d’ ’

with k = Cpa/|E|, the fraction of edges cut in the maximum
cut. In general, k € (%, 1] and k£ = 1 for bipartite graphs, and
Eq. (7) is valid for sufficiently large graphs [1], that is, graphs
of order larger than n ~ (d — 1)*” (see Appendix E for a
detailed derivation).

The function in Eq. (7) allows us to calculate the transfer-
ability error for regular graphs up to an arbitrary degree. We
visualize this expression in Fig. 2 for bipartite receiver graphs
with degrees up to d = 70 and tree donor subgraphs of degree
d € {3,4,5}. We also include a reference line where QAOA
with donated parameters is equivalent to random gueslsing,

that is, when QAOA gives an approximation ratio of 3, or

equivalently ng p = rr(¥%, Br) — % Note that if we shift this
line by %, it corresponds to the approximation ratio of QAOA
with optimal parameters, rg(y%. Bz)., for increasing graph de-
grees. The transferability error nffj/ is minimized for donor
and receiver graphs with the same degree d = d’, in agree-
ment with previous results [29,30]. We observe that as the
difference between the receiver and donor degrees d and d’
grows, QAOA with the parameters transferred from the tree
subgraphs performs as random guessing with an approxima-
tion ratio of r = % [53]. Therefore, while the error tends to O
as d — oo, transferring parameters becomes pointless in the
large-d limit. Moreover, when the error eventually reaches
0 for large d, it also indicates that the approximation ratio
of QIAOA with depth p =1 for any optimal parameters is
r=~s|[2].

I T r : I
0.3_ ___—-—____________
\10.2 - — d' = 3, analytic d =3
g — d' = 4, analytic d =4
== Random
0.1F -

FIG. 3. Average transferability error n, » of Eq. (6) at depth p =
1 for d-regular receiver graphs with n = 120 vertices and donor tree
subgraphs with degrees d’ = 3 (red circle) and d’ = 4 (blue cross).
The error bars overlap with the symbols and denote the 25th and 75th
percentiles. Comparison with the analytic results ;75?33 (red solid line)
and 77523 (blue dashed-dotted line) of Eq. (7). The black dashed line
indicates the average transferability error when QAOA with donated

parameters performs as random guessing.

A. Numerical analysis

Here, we simulate and study the transferability of optimal
QAOA parameters, characterized by Eq. (6), for different fam-
ilies of graphs.

Transferability from the d'-regular tree subgraph to
d-regular unweighted graphs at p = 1. This case is approx-
imated by the analytic expression in Eq. (7), visualized in
Fig. 2. Here, we consider 10 instances of order n = 120 of
receiver regular graphs for each degree ranging from d = 3 to
9. We use the optimal parameters for the triangle-free graphs,
equivalent to the optimal parameters of the tree subgraphs,
vy =arctan(1/+/d’ — 1) and B, = w /8 [52]. In Fig. 3, we
observe that Eq. (7) reproduces the numerical simulations
of Eq. (6), and that the transferability error increases when
the difference between the degrees of the donor and receiver
graphs grows.

We note that, in this case, the success of the transfer does
not depend on the relative parity between the degrees d and
d’. Indeed, the set of optimal parameters from the donor graph
lies in the domain U (see Fig. 1) and, as discussed in Sec. II,
U, contains optimal parameters for regular graphs with both
odd and even degree. Previous works also suggest that only
parameters from such shared domains, U/; and U4, are the ones
transferable between unweighted regular graphs with degrees
of different parity [30]. However, considering the problem
symmetries, if we instead have access to an optimal set of
parameters from a different domain, it can be easily translated
into either U, or U, following the rules of Table I. In view of
this, knowing the problem symmetries and the shared domains
between instances, we can transfer any optimal parameter
between any d-regular graph independently of the graphs’
degrees.

Transferability from the d'-regular tree subgraph to random
graphs at p = 1. In this case, we use again the unweighted
d’-regular tree subgraph as a donor graph, for general ran-
dom receiver graphs. Unlike regular graphs, random graphs
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do not have a fixed degree and, at low depths, QAOA sees
a local subgraph with a varying degree around each vertex.
The random graph models will have different distributions
of degrees. Here, we study three models of random graphs:
the Erd6s-Rényi (ER) model [54], the Barabési-Albert (BA)
model [55], and the Watts-Strogatz (WS) model [56]. While
these models can be tuned to have the same average degree,
they exhibit distinct properties that make them suitable for
describing different systems. The ER model generates random
graphs where edges appear independently with equal proba-
bility, resulting in a binomial degree distribution. In contrast,
the BA model generates scale-free networks characterized by
large hubs, where a few vertices have many connections and
most have few, following a power-law degree distribution. The
WS model produces graphs with local clusters of connected
vertices by rewiring edges in a ring lattice with fixed probabil-
ity. Both BA and WS graphs are representative of real-world
network structures.

We use ten instances of each type of random receiver
graph with order n = 200, and the same average degree d ~
6. The degree of the donor tree subgraph takes the values
d' =1{3,...,9}. In contrast to the previous case, these ran-
dom unweighted graphs have neither the OWS nor the EWS
symmetry described in Sec. II, and we find that a transfer is
only successful if the donor parameters are from the domains
U, or Up. As we observe in Fig. 4, the transferability error
is low for parameters from U/, and increases for parameters
from neither U; nor U,. Given the degree distribution of the
models, the random graphs have both odd and even degree
subgraphs. As a result, even the parameters optimal to the 6-
regular tree subgraph perform poorly if they are not included
in U; or U,. We can compare this result to Ref. [30], where
they fix the percentage of even-regular subgraphs in 20-node
graphs and find different QAOA performances for parameters
transferred from each domain. As in the previous case, the
transferability error is minimized when the donor and receiver
graphs have similar degrees d’ = d, that s, N6 ~ 0 when the
donor is a 6-regular tree in our analysis. Furthermore, for the
random graph models we studied, the impact of the variance
of the degree distribution compared to the average degree is
negligible. Additionally, the relative parity between the degree
of the donor subgraph and the average degree only affects
the transferability for the BA graphs, when using optimal
parameters outside U/ or Us.

Transferability from the d'-regular tree subgraph to d-
regular graphs with integer weights at p=1. We study the
transferability of parameters from unweighted tree donor sub-
graphs with degrees d’ =3 and 4 to d-regular graphs with
uniformly distributed integer weights w;; € {—1, 1}, and de-
grees d varying from 3 to 9. To this end, we use 10 instances
of 20-node receiver graphs for each degree d. We choose the
optimal parameter set of the donor graphs from the domain ¢/, .
Following the discussion in Sec. II, we know that the receiver
regular graphs with this weight distribution follow the EWS
or the OWS symmetry for even or odd degrees, respectively.

In Fig. 5, we observe a low transferability error, especially
when d ~ d’, confirming that the donor parameters are trans-
ferable to the integer weighted graphs. The small size of the
simulated graphs (n = 20) increases the numerical results’
variability and moves us out of the large graph regime with
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FIG. 4. Average transferability error n; , of Eq. (6) at depth
p = 1 for random receiver graphs with n = 200 vertices and average
degree d ~ 6, sampled from the ER model (red solid line), the WS
model (green dashed line), and the BA model (blue dashed-dotted
line). We consider donor regular tree subgraphs with degrees 3 <
d’ <9 and their optimal parameters from (a) U, and (b) neither
U, nor U,. The error bars overlap with the symbols and denote
the 25th and 75th percentiles. The black lines in (a) represent the
average transferability error when QAOA with donated parameters
is equivalent to random guessing for ER (solid line), WS (dashed
line), and BA (dashed-dotted line).
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FIG. 5. Average transferability error 5,4, of Eq. (6) at p=1
for d-regular receiver graphs with n = 20 vertices, and uniformly
distributed weights w;; € {—1, 1}. The donor graphs are unweighted
tree subgraphs with degrees d’ =3 (red circle) and d’ =4 (blue
cross). The error bars overlap with the symbols and denote the 25th
and 75th percentiles. The black dashed line shows the average trans-
ferability error when QAOA with transferred parameters behaves as
random guessing.

022418-6



SYMMETRY-INFORMED TRANSFERABILITY OF OPTIMAL ...

PHYSICAL REVIEW A 111, 022418 (2025)

1 T 1 T T 1 T 1
0.5F X X == Random 4
% -
| d=4
0.4 s
~ 03_- -------------------------- -
3 » »
s X %
0.2F .
0.1} J
* * * * * * * *
ook % o o o o o o ¥ ]
1 2 3 4 5 6 7 8

Parameter set

FIG. 6. Average transferability error n,, of Eq. (6) at depth
p = 2 for unweighted regular receiver graphs of degrees d = 3 (red
circles), d =4 (blue crosses), and d =5 (green stars), with an
unweighted tree donor subgraph of degree d’ = 3. The error bars
overlap with the symbols and denote the 25th and 75th percentiles.
We use the eight optimal sets of parameters of the donor graph (see
Table II), numbered from one to eight, as shown on the x axis. The
sets 1 and 8 lie in U, and U, respectively. The black dashed line
shows the average transferability error when QAOA with transferred
parameters performs as random guessing.

triangle-free graphs [2], especially for the higher degrees.
Without this large graph approximation, the tree subgraph is
a less suitable donor. As in all previous examples, the error
increases as the difference between d and d’ increases and,
in this case, it grows faster than for the unweighted d-regular
graphs. The smaller sizes of the receiver graphs can contribute
to this faster deterioration of the transferability. Additionally,
we confirm with an initial numerical exploration that the
transferability error increases when using parameters outside
U, and U,. Since the symmetries that apply are the same as
for the unweighted d-regular graphs, we can follow a similar
argumentation as in the unweighted graphs case. Namely, the
universally transferable domains for the weighted graphs are
those universal to the unweighted d-regular graphs, i.e., U
and U,. However, we know d-regular graphs with these integer
weights satisfy either the OWS or the EWS symmetry, and
using the rules in Table I we can shift a given set of parameters
so that the transferability becomes independent of the relative
parity between d and d’.

Transferability at higher algorithm depths. As we show in
Sec. II, at depth p =2, QAOA for MAXCUT on d-regular
graphs has eight sets of optimal parameters in A”, instead
of the four sets at p = 1. We present these parameters in
Appendix F (see Table II) for the 3-regular tree subgraph.
Here, we study the performance of QAOA for unweighted
regular graphs of order n = 120 and degrees d € {3, 4,5},
considering 10 graphs per degree, and using, without shifting
to a common domain, the eight sets of optimal parameters of
the 3-regular tree donor subgraph.

In Fig. 6, we observe an analogous behavior to the
case of p=1. That is, only parameters from the higher-
dimensional domains U = [0, 7 /2)* x [0, 7 /4)* and U} =
[—7/2,0)* x [-7/4,0)? can be transferred (without using
symmetry rules) independently of the relative parity between
the donor and receiver. When transferring these parameters

to a receiver graph of degree d = 3 or 5, i.e., with the same
parity, the error remains low for all eight sets of parameters.
Conversely, when transferring to 4-regular graphs, the error
is significantly higher for parameters from neither 4/ nor
U}. We notice that these six sets of parameters could be
translated into U12 or Z/{22 using the symmetry relations of the
cost function. Unlike the case of tree subgraphs at p = 1, there
is no analytically known set of optimal parameters in {; for
a general d-regular tree at p = 2. However, as mentioned in
Sec. II, previous studies show numerical evidence for optimal
parameters in U 12 ford < 11 and p = 2 [45]. When restricting
to the 3-regular tree subgraph, the same authors provide nu-
merically optimized values in /] at even higher depths, p <
11 [45]. Moreover, other works that consider interpolation
and pseudoadiabatic paths for finding parameters at higher
depths use the initial optimal parameters in {/; and find that
(y,pB) € Z/llp [9,23]. These adiabatic interpolation techniques
fail when considering initial optimal parameters to 3-regular
graphs outside U and Uy, (y*, B*) e [n/2,m) x [0, /4)
[23].

Summarizing, prior work confirms the existence of opti-
mal parameters in U,” for the tree subgraph up to p = 11.
However, more work is necessary to conclude whether these
parameters are universally transferable at depths p > 2 for
regular graphs of any degree, either odd or even. For depths
p > 11, it remains an open question whether optimal param-
eters (transferrable or not) exist in Z/II” . For instance, if we
consider a linear ramp interpolating the optimal values of the
parameters, we can expect that their values will eventually
lie outside U,”. Nevertheless, any optimal parameter at those
depths will follow the symmetry rules discussed in Sec. II.

IV. PARAMETER SYMMETRIES IN OTHER
VARIATIONAL QUANTUM ALGORITHMS

The quantum circuit of many hybrid classical-quantum
algorithms can be built through several iterations of simi-
lar quantum operations, e.g., any layer of QAOA contains
a parametrized mixing unitary operation and a parametrized
cost unitary operation. Such structured quantum circuit An-
sditze also appear in realizations of VQEs for finding ground
states of quantum many-body problems, as the HVA. Com-
pared to the hardware-efficient Ansatz, the problem-specific
HVA circuit provides an easier optimization, reducing the
challenges of barren plateaus while maintaining a high ex-
pressivity [57]. While in this paper our focus mainly lies on
the QAOA for different MAXCUT instances and the transfer-
ability of its optimal parameters between various ensembles
of graphs, we discuss here how these results can be extended
to other COPs and VQAs. The EWS and OWS symmetries
shown in Sec. II for the MAXCUT problem also apply to
all Ising Hamiltonians of the form H¢ = D Wij6767/2 +
> hi6/2 (see detailed derivation in Appendix C). The con-
dition on the coefficients w;; and h; change to » Wik + hy €
27, ¥k €V and ijjk+hk € Z\2Z, ¥V k € V for EWS
and OWS, respectively. This extension covers a wide range
of problems, including Karp’s 21 NP-complete problems [58]
and finding ground states of spin-glass models.
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The quantum unitary operations of the HVA use terms of
many-body Hamiltonians, analogously to the cost function in
QAOA and adiabatic quantum computation. Therefore, we
can identify similar symmetries in these VQAs. A notable ex-
ample is the HVA for the transverse-field Ising model (TFIM),
which coincides with the QAOA for solving MAXCUT in
the “ring of disagrees,” a 2-regular unweighted ring graph
[1]. Therefore, the HVA for the TFIM exhibits EWS, and the
parameters can be optimized over a smaller domain. In Ap-
pendix D, we show that EWS is valid for Ansdtze constructed
with operators of the form

~ Wi DA
U _ i’ NS PNy i 8
»=T] exp( i~ maa) ®)

(i,j)eE

where « € {x,y, z}, given that the weights w;; fulfill the cri-
teria of EWS described in Sec. II. In other words, any VQE
Ansatz with these terms and conditions follows the EWS.

We extend our results to other HVA based on different
Hamiltonian terms. In particular, we consider the general case
of a Heisenberg model on high-dimensional spaces, where the
connectivity between the spins is defined by the set of edges E
of a given graph. Moreover, we allow the coupling constants
between the spins to vary from site to site, thus introducing
disorder. The Hamiltonian reads as

~ 1 X AiAf Y ainaj L ALA
H= 5 Z (wi6i6] + w616 +wi6/67), (9

ijoxx ijoyy
(i, ))EE
with wy;, wfj, and wfj the coupling strengths associated with
the x, y, and z components of the spin interaction between
the sites i and j, given by the edge (i, j). This general case
reduces to well-known models for studying magnetic systems.
For instance, we can consider a quantum spin chain with real-
valued coupling constants, such that the Hamiltonian becomes

Axyz =Y (L6i6[ + 6i61T" + 1.6161"),  (10)
i=1

in which we assume periodic boundary conditions (1 =n +
1). This one-dimensional Heisenberg XYZ model corresponds
to a particular case of Eq. (9) for a 2-regular ring graph with n
vertices defining the connectivity of the interactions, and uni-
form coupling constants wf;/2 = J,, with o € {x, y, z}. When
Jy = J,, the model is called the one-dimensional Heisenberg
XXZ model, studied in the context of HVA [57]. Without
loss of generality, we can take J, = J, = 1 and J, = A, with
A controlling the spin anisotropy. The critical point A =1
becomes harder to approximate classically [57]. Interestingly,
optimal HVA parameters have been successfully transferred
from small to large instances of the Heisenberg XXZ model
for parameters in the domain U” [38]. We derive symmetry
results for all these models in the case of integer-valued cou-
pling constants wf;. In Appendix D, we base our derivations
on the fact that the HVA for the general Hamiltonian of Eq. (9)
comprises products of operators given by Eq. (8).

Finally, we also consider different versions of the QAOA,
namely, the RQAOA [7] and the ma-QAOA [8]. The RQAOA
reduces the original optimization problem size by imposing
constraints obtained from recursive applications of QAOA.

With each algorithm iteration, the weights and regularity of
the problem graph change, altering the cost Hamiltonian for
the QAOA subroutine. As we show in Appendix D, RQAOA
preserves the EWS of the original cost Hamiltonian through-
out every iteration, each reduced cost Hamiltonian adheres to
the EWS but breaks the OWS after the first iteration. This
behavior implies that all optimal parameters are directly trans-
ferable if the original graph obeys EWS. Otherwise, for initial
problem graphs with OWS, we can see from our discussion
on transferability to random model graphs in Sec. III, that
only optimal parameters from the domains {/; or U, can be
reused between iterations. Another version of QAOA is the
ma-QAOA, which uses a higher number of parameters at
shallow depths to create a more expressive Ansatz. Unlike
standard QAOA, which requires EWS or OWS for the entire
graph, with ma-QAOA we can focus on the weight sums of
individual vertices to analyze the transferability of the gate
parameters related to Hamiltonian terms of specific vertices
and edges. Both RQAOA and ma-QAOA improve the perfor-
mance of the standard QAOA at shallow depths, albeit with
increased demands on parameter optimization [7,8,59,60].
Therefore, insights from transferability analyses to improve
these optimization loops are especially valuable.

V. CONCLUSIONS AND OUTLOOK

Optimizing the variational circuits remains a big obstacle
for realizable and successful VQAs. One useful simplification
in the optimization task is limiting the search space using
symmetries in the energy landscape. Additionally, the op-
timal parameters concentrate on typical values for different
instances of certain problems. Thus, we can use these typical
values as pretrained parameters and transfer them between
instances, either to be used directly, or as initialization points
for a warm-start optimization. In this article, we extend the
known energy landscape symmetries of MAXCUT and show
how to leverage them to transfer optimal QAOA parameters.
While previous studies focus on unweighted graphs, we find
that for all graphs where the sum of the weights connected
to each vertex is even, the landscape follows the EWS sym-
metry (see Table I). Analogously, the landscape obeys the
OWS symmetry for all graphs where the sum of the weights
connected to each vertex is odd. Among the examples fol-
lowing these symmetries, we find regular graphs with weights
w;j € { -1, l}

Regarding the optimal parameters for p = 1, it is known
that unweighted triangle-free regular graphs have an optimal
set in the domain U; = [0, & /2) x [0, w /4) [52], and from
the symmetries, other optimal sets in the green solid areas of
Fig. 1, depending on the parity of the degree. Here, we analyze
the transferability of these optimal parameters, i.e., those of
a d’-regular tree subgraph, to triangle-free d-regular graphs,
d-regular graphs, different kinds of random graphs, and d-
regular graphs with integer weights. Our work shows that, in
all cases, the graphs are viable recipients for the transferred
parameters.

To measure the success of transferring parameters, we
define a transferability error in Eq. (6), ng p, as a function
of the approximation ratios of QAOA with the optimal pa-
rameters of the receiver (R) and donor (D) graphs. Using an
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analytically known set of optimal parameters to the d’-regular
tree subgraphs, we derive a closed-form expression for the
error when transferring to triangle-free d-regular graphs at
p = 1. The expression allows us to analyze the performance
of transferability for large graphs with high d without needing
to simulate large QAOA circuits. Furthermore, this approx-
imated expression reproduces the numerical simulations of
low-girth graphs. The transferability error is minimized and
close to zero if d ~ d’ for d-regular graphs with a d’-regular
donor tree subgraph. We also find that the error goes to zero
in the d — oo limit. However, we can explain the latter result
by QAOA performing equally poorly for all parameters.

We observe that the success of a transfer is independent
of the relative parity between the degree of the donor and
receiver when the transferred set of parameters comes from
U, or Uy (see Fig. 1), as already reported in previous works
[30]. However, we provide the rules to translate any optimal
set of parameters into these domains using the donor graph
symmetry, thus making all sets of optimal parameters trans-
ferable in practice.

Similarly, our results with random receiver graphs show
that a transfer is only successful if the donor parameters come
from U or U;. In all the cases with random graphs, generated
from the ER model, the BA model, and the WS model, the
success depends on the closeness between the degree of the
donor and the average degree of the receiver graph, rather than
on the degree distribution of the model. In this case, we find
that a transfer is only successful if the donor parameters come
from U, or U, independently of the relative parity between
donor and receiver graphs. When considering weighted graphs
obeying either the EWS or the OWS symmetry, the trans-
ferability error behaves similarly to the case of unweighted
graphs. That is, the minimum error occurs when d = d’, and
the domains U and U, contain optimal parameters that work
regardless of the relative parity between the degrees of the
donor and receiver graphs.

At the higher algorithm depth p =2, we also find suc-
cessful transfers between any d-regular and d’-regular graph,
if the parameters come from the higher-dimensional do-
mains U2 = [0, /4)* x [0, 7/2)* or U} = [—7/4,0)* x
[—m/2, 0)2. Similarly, in this case, we can translate any opti-
mal set of parameters to these domains using symmetries. We
notice that the number of domains that contain an optimal set
of parameters within A” = [—m, )P X [—7 /4, w /4)P scale
as 2P*1, and our numerical simulations suggest that the num-
ber of shared domains suitable for transferring parameters is
two. However, more studies are needed to conclude this.

Finally, we discuss the applicability of our results to other
COPs and VQAs. We find conditions such that adding a local
field term to the cost Hamiltonian in QAOA preserves the
two symmetries EWS and OWS, thus including general COPs
described by Ising Hamiltonians [58]. Additionally, we show
that the EWS is valid for all unitaries associated with Hamil-
tonians with 6.6, 6,6,, or 6,6, interactions. Among these
Hamiltonians, we consider the general case of the Heisenberg
model on high-dimensional spaces with integer-valued cou-
plings. For specific coupling values, this model reduces to the
XYZ and XXZ models, previously studied with HVA [57]. We
also examine two QAOA variants, RQAOA and ma-QAOA,

which improve the performance of the standard QAOA but re-
quire more parameter optimizations. We find that the iterative
process of RQAOA only maintains the EWS, but breaks the
OWS after the first iteration. Furthermore, we observe that the
ma-QAOA could benefit from specific transferability schemes
based on the symmetries of individual subgraphs, instead of
the entire graph.

Our insights on the conditions of transferred parameters
and their relation to the problem symmetries set the stage for
a more comprehensive study of symmetry-based optimization
in quantum algorithms. Future work may seek to numerically
investigate the benefits of reducing the landscape size with
these symmetries and performing warm-start local optimiza-
tion with transferred parameters. For instance, the next steps
would involve characterizing the number of iterations in the
classical optimization compared to the current standard ap-
proaches.
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APPENDIX A: SIMULATION METHODS

In this Appendix, we detail the methods used to simu-
late the QAOA and perform the classical optimization. All
graphs are generated using the Python package NETWORKX
[61], and the figures are created with the Python package MAT-
PLOTLIB [62]. We simulate MAXCUT with d-regular graphs
and random graphs on QAOA using the tensor-network-based
package QTENSOR [63,64]. The optimization of the parameters
was done with the QTENSOR implementation of the Python
package PYTORCHS [65] optimizer RMSPROP, with 50 opti-
mization steps.

We simulated MAXCUT on weighted d-regular graphs
with QAOA using QISKIT [66], with 3000 shots per circuit
evaluation. Here, the parameters’ optimization was carried out
with the Python package SCIPYS [67] and the optimizer differ-
ential_evolution with a population size of 15, and a maximum
of 1000 function calls. For all optimizations, we used the
optimal parameters to the relevant d-regular tree subgraphs
as initial guesses.

APPENDIX B: SYMMETRIES OF OPTIMAL QAOA
PARAMETERS ON MAXCUT

Here, we provide detailed proofs for the QAOA parameter
symmetries presented in Sec. II, extending the results pre-
sented in Ref. [37] for unweighted graphs where all vertices
have either odd or even degree. We identify two symmetries
for regular graphs with integer weights that can be classified
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according to the parity of the weights’ sum on each vertex. In
the following subsections, we present the results for graphs in
which the weights of the edges connected to each vertex sum
to an even and odd quantity, respectively.

1. Symmetries for graphs where the sum of weights
connected to each vertex is even

In this section, we prove the symmetry called EWS in
Sec. II. We consider a variational state constructed by a QAOA
circuit of depth p. We focus on the mth iteration of the al-
gorithm, in which the operation 0M(,3m)0c()/m) acts on the
intermediate variational state

1
Wt = [ [ e e mte 1), (B1)

j=m—1

Let us now assume that all eigenvalues of the diagonal
cost Hamiltonian ﬁc are even, that is, for a computational
basis n-qubit state |y), with y = y1y, ...y, using the binary
representation Hcly) = 2¢,ly), for £, € Z. In this case, the
operations Uc(y,,) and Uc(y,, £ ) are equivalent, as we can
observe by their action on |V,,_;) = Z‘ZXZBI ¢yly). Explicitly,

—iYmH _ —iYm28,
eI "eyly) = Y eye 2 y)
y y

— che—iymﬂfveiﬂfyﬂ |y>
y

_ e—i(yﬂdmr)Hcchb,)7 (B2)
y
where we have introduced the global phases e2%7 = 1.
That is, the output of the QAOA is invariant under changes
Ym — Ym £ 7 if the costs associated with each computational
state |y) are even. For a graph instance of order n, the cost
associated with the MAXCUT problem introduced in Eq. (1)
evaluates to zero for the string of 7 ones x' = 17, cxhH =o.
Consequently, in the quantum formulation, He will have the
even eigenvalue zero for the product state |1)®”, He|1)®" = 0.
In the following, we consider an arbitrary string x € {—1, 1}"
and show that changing the value of one bit changes its cost by
an even amount. Therefore, since the cost of x! is even, all the
costs are even in both the classical and quantum formulations,
which in turn proves the symmetry.
The costs of Eq. (1) for two strings x and x’ that differ only
by the kth bit, such that x; = —x;, are

Clx) = Z > wi(1—xix)) + Z wi; (1 = x.x;)
l;ék J>i
and
Cx)= Z Z wi;(1 = xix)) + = Z we (1 = xx;),
l;ék Jj>i
respectively. Thus, the cost difference is
Cr) = C') = wyjxix;. (B3)

Since x;x; = %1, this difference will be an even quantity if
the sum of all weights connected to a vertex k is even. This

requirement is equivalent to saying that the number of edges
with odd integer weights connected to a vertex k is even.
For the symmetry to hold for all bit changes, we require this
criterion to hold for each vertex.

Particularly, any graph with only even integer weights
will show the parameter symmetry y,, — ¥, £ 7w, for any
layer m, regardless of each vertex degree. Moreover, graphs
with only odd weights where all vertices have even degree
(thus including regular graphs of even degree) will share the
same symmetry, with the specific examples of all odd weights
w;; € {—1, 1}, and unweighted graphs when all vertices have
even degree. This last example is already proven in Ref. [37].
In Sec. IIT A, we study numerically the transferability of the
parameters for regular graphs of even degree with weights
w;j € {—1, 1}

2. Symmetries for graphs where the sum of weights
connected to each vertex is odd

In this section, we prove the symmetry called OWS in
Sec. II. As in the previous case, we consider the general
case of a QAOA circuit of depth p and how the change
Ym — Ym £ 7 in the mth layer changes the final output state.
Given the cost Hamiltonian H¢ of Eq. (3) for MAXCUT on a
weighted graph, the algorithm operation of layer m is

Oc(ym £ 70)

=]]exp |:—l Ly £m)(1 — 55)}

(i,))eE

= Oc(ym) [ Jexp (?iw

(i,))eE

T Wi i
! )exp(:Fz 2j ! ZJ) (B4)

Here, we can ignore the global phase factors exp(Fiw;;m /2)
and focus on the operational terms differing from Uc (),
which can be rewritten as

T w; T Wi\ i
l Al A 13 P 13 Al A
5 ; Z’) = cos <Tj>:|:l s1n< é )a;azf.

We only consider graphs with integer weights w;;, which
can be either even or odd. If a given weight w;; is even, only
the cosine differs from zero, which just adds a global phase.
Otherwise, if a weight w;; is odd, only the sine function is
different from zero, and the resulting operation of the mth
layer in QAOA changes. For convenience, we rewrite Eq. (B4)
as

exp (:Fz

Uc(ym £ ) = Uc(ym)ee”® [ | 6167 (B5)

(i,j)eE

w;; odd
where the global phases encompass all the phase factors that
do not change the final variational state. These phases include
the contribution of all edges with even weights and the phase

factors from the sine functions,
( Wk TT ) (B6)
> )

= Hexp (:Finn>1_[cos

(i,j)eE (k,0)eE
Wy even
is .. wij”)
e’ = i sin . B7
I1 (=2 (B7)
(@i,j)eE
w;; odd
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As we can observe from Eq. (B5), we recover the symme-
try ¥m — ¥Ym £ for any graph with even integer weights,
already proven in the previous section.

In the following, we address the case in which a graph can
have both even and odd integer weights. We denote the set of
edges connected to a vertex k as E; and focus on that vertex
and the weights of E;. The contribution of these edges to the
product in Eq. (BS) is

riak _ (ak\Mk ~d
I_IOQO} _'(O}) ]_IOQ’ (BS)
(i,k)eEy i|(i,k)eEy
wi odd wi odd

where p; is the number of weights of the set E; with an odd
integer value. Now, we require that p is either even or odd
for all vertices in the graph, k € V, that is, that every vertex
has the same parity for the number of odd weighted edges
connected to it. We can simplify Eq. (B5) as

Oc(ym £ m) = Ucyme*e® [ ] (65)",  (BY)
keV

and we have two cases: if u; is even, then (621‘ )4 = 1; oth-
erwise, if /1 is odd, then (6%)* = 6}. In the first case, with
i even for all k € V, we recover again the symmetry rule
¥Ym — ¥Ym £ 7 described in the previous section since the sum
of all weights connected to each vertex is even. We note
that if the cost Hamiltonian was expressed with 6,6, or 6,6,
products instead of 6,6,, similar derivations would hold. We
discuss this fact further in our analyses of other VQAs in
Appendix D.

We explore now the case in which w; is odd for all vertices
k € V and include the action of the entire mth QAOA layer,
also with the mixer unitary Uy (Bm)- In particular, we consider
changing its parameter §8,, — B,, such that we find algorithm
symmetries. The complete algorithm step is then given by

Ov(B)0c(ym £ 1) = [ [cos(B;,) — i sin(B;,)6+]

keV
x e 6XUc(ym). (B10)
Using the relation 66 = —6%6%, and ¢ = ¢e®, we can

rewrite Eq. (B10) as

Ou(B))0c(ym £ 70) = &’ [ [ 6£0m(=B,)0c(ym), (B11)
keVv

which allows us now to study the action of these parameter
changes in the final QAOA expectation value of the objective
Hamiltonian C(y, B) in Eq. (4). In particular, we recall the in-
termediate variational state |\V,,_;) of Eq. (B1), and construct
the final state for the modified parameters as

m+1
Y, B) =€’ [ OuB)Ocvp [ [ 6F
j=p kev
X Uy (= B,)Uc )| W), (B12)
W]th y/ = (Vl, R J/m—lv Vm :|Z7T, Vm+h L} yp) and ﬂ/ =
(Bis s Bu=1, Bus By1s - - - » By). Using again the commu-

tation relations of the Pauli operators, we can rewrite

Eq. (B12) as

V. B) =[] [[Om(=B)0ctyp)I¥n ).  (BI3)

keV j=p
The expectation value of the objective Hamiltonian for the
new parameters C(y’, ') can be constructed from the prob-
abilities of measuring each computational state |y), P'(y) =

(v Bl OIlY', B), with

p
P'O) = (Wt | [ Ol O (=B T 6519

Jj=m keV
< I [T65 T [ On(=BpOcypIWm—1).  (B14)
keV j=p

Given that the 6;‘ operators commute with |y)(y|, and
[Ticy (65)* = 1, the probabilities become

P'(y)=(y.BI») 0y B). (B15)
with
),:(yl"-',yp),
B = (Brr s Buts Brs Buu1s -5 By)-

We observe that the QAOA symmetry, for which P'(y) =
P(y), with P(y) = |{y|y, B)|?, occurs then for the simultane-
ous parameter changes

Y= Wi YT, V),

ﬂ_) (ﬂlv""ﬁm—lﬂ_ﬁma_ﬂm+]7"‘7_ﬂp)'

Thus, graphs where every vertex has an odd number of odd
weighted edges connected to it are symmetric under the pa-
rameter changes of Eq. (B16). In other words, graphs where
the sum of weights connected to each vertex is odd will exhibit
these parameter symmetries.

In particular, graphs with only odd weights where all the
vertices have odd degree (thus also regular graphs of odd
degree) will exhibit this symmetry, which includes the un-
weighted graphs studied in Ref. [37]. We study numerically
the transferability of the parameters for regular graphs of odd
degree with weights w;; € {—1, 1} in Sec. Il A.

(B16)

APPENDIX C: SYMMETRIES OF OPTIMAL QAOA
PARAMETERS ON GENERAL COPs

In this Appendix, we extend the results of Appendix B
and find the conditions for which the symmetries EWS and
OWS, introduced in Sec. II, still apply if the cost Hamil-
tonian includes local field terms. In other words, a general
cost Hamiltonian in the form of an Ising Hamiltonian can
result in the parameter landscape having EWS or OWS. Many
COPs can be mapped to an Ising Hamiltonian, including all of
Karp’s 21 NP-complete problems [58].

A general Ising Hamiltonian with local field terms reads as

N 1 o1 .
HC = E Z w,‘jUle'Zj + E ZhiO'Zl,
(i,))eE iV

(ChH

where E is the set of edges in an interaction graph, and V is
the set of spins. The QAOA unitary operation associated to
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this cost Hamiltonian is

UC(Vm) — HCXP (_ZTVmAZA1>

(@i,j)eE

h; ;
X H exp (—i;ymﬁz’).

eV

(C2)

We now consider the parameter shift y,, & , so that
T ..
Ucly £7) = Uc(¥m U gie!
cly £m) =Uc(y, )HCXP<$I I z)
(i,j)eE

xl‘[exp( B g )

eV

(C3)

Analogously to Appendix B, we assume that the coefficients
w;; and h; are integers. Then, we can rewrite the terms of
Eq. (C3) as

[ Jexp <:Fl w) = [] (65", (C4)
(i,))eE kev
ihm h . (i ©5)
ex —_— =cos| — sin | —
PlF ) a ) F1 ) O,
where
. Wy TT
¥ = , Co6
e 1_[ cos ( > ) (Co6)

(k,&)eE

Wy €ven
and e” is given by Eq. (B7). For integer coefficients A, the
right-hand side of Eq. (C5) is 1 if 4; is even, and Fi6; if h; is
odd. Thus, we get

ih,‘Tl’ Al z zv
1_[ eXp <:FTO'Z> i 1_[ s (C7)
ieV keV
with the global phases
]’l,‘ i hi
it — Hi sin (?%) and e = Hcos (%)
ieV ieV
hj odd hi odd
We can finally rewrite Eq. (C3) as
Ocym £ ) = e“Ocym) [ [65yH, (C8)
keV
with the global phase e® = e/*e®e™e’. Now, we can follow

a similar argument as in Appendix B considering the quantity
Wi + hi, instead of just pg, which was the number of odd-
valued weights connected to vertex k. We conclude that the
EWS applies if uy + Ay is even valued, and OWS applies if
Wi + hy is odd valued.

APPENDIX D: SYMMETRIES OF OPTIMAL
PARAMETERS IN OTHER VQAs

Here, we connect and extend the symmetries derived for
the QAOA for the MAXCUT problem to the HVA for con-
densed matter problems, such as those described by Eq. (9) in
Sec. IV. Moreover, we include a detailed derivation for similar

symmetry results in iterative quantum algorithms such as the
RQAOA.

1. Symmetries for interaction graphs where the sum of weights
connected to each vertex is even

We consider the unitary operator from Eq. (8),

N Wii s
Uaa — i Aiaj ,
) | |eXp< 175 %% a>

(i,j)eE

(D1)

with o = {x,y,z}, and E the set of edges in an interac-
tion graph. We assume that the weights satisfy Y Wik =
27, Vk eV, where V is the set of all spins with an inter-
action. Now, following the same line of arguments made in
Appendix B, we find that

DtC( + = - L6167
(y £m)= Hexp( 12 )

(i,))eE

= Uaa(y) [ Jexp <:Fl 7’ : j)

@, ))eE

'y iK id Al A

= aot()/)e € 1_[‘70/70{
(i,))EE
W j odd

= Oua(y)e™e® [ T (65)".

keVv

(D2)

The global phases ¢/ and ¢”® are given by Eqs. (B6) and (B7),
respectively, ;. is the number of odd-valued weights of the
set Ey. The initial assumption made on the weights imply that
i 1S even, SO (60’: )* = 1, and we retrieve that, up to a global
phase,

(D3)

00(0(()/ :|:T[) = Uaa(y)-

It follows that Ansdtze made up of products of operators on
the form of Eq. (D1) will have EWS, like the one-dimensional
Heisenberg XYZ model.

2. Symmetries for RQAOA

In this section, we show that RQAOA preserves EWS,
but breaks OWS. The RQAOA is a recursive algorithm in
which, after each iteration, one of the vertices with the largest
correlation magnitude is effectively removed from the graph.
Formally, if the maximal correlation is | My,|, with My, =
(y, ﬂ|€rz"&f|y, B), one of the vertices k or £ is removed by
imposing the constraint 6 = sgn(Mp, )6;‘ . For our purpose,
it is sufficient to consider & cr = :l:cr

With RQAOA, the dlmensmn ‘of the Hilbert space de-
creases every iteration. Thus, we can identify each distinct
cost Hamiltonian of different iterations by the systems’ size
or number of qubits n. Here, we label the initial Hamiltonian
as ﬁ,,, the Hamiltonian after the recursive step ﬁn_l, and so
on. We are interested in how the sum of integer coefficients
(weights and local field) connected to each vertex changes
with each iteration. We recall from Sec. IV that, for graphs
with EWS, the sum of coefficients connected to any vertex
kis even, Xjwjr + hy € 27, ¥ k € V. In contrast, for graphs
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with OWS, the sum of coefficients connected to any vertex k
isodd, Zjwj +h € Z\2Z, VkeV.

Now, we consider an initial cost Hamiltonian I—L related
to a graph that obeys either EWS or OWS. After the first
iteration, we impose the constraint 6 = +6* such that the
vertex £ is removed from the graph, or qubit £ is removed from
the system. To analyze the symmetry of the new Hamiltonian
H,_, we first examine the terms of the initial cost Hamilto-
nian related to each vertex i, that is, the terms in which qubit i
participates. We denote such terms as H i Z w;;j6167 + h;,

and the total cost Hamiltonian can be written then as H, =
Y. H,/2.

For a given vertex i, we find that there are three possibili-
ties: either i share no edge with the removed vertex ¢, or i share
one edge with the removed vertex ¢, or i = k, meaning that it
shares one edge with the removed vertex ¢, and that edge is
removed by the constraint. In the first case, if the vertex i does
not share an edge with vertex ¢, we observe that H' | = H.
Second, if the vertex i shares an edge with vertex £ with the
weight w;,, after the RQAOA iteration, this vertex i will share
a new edge with vertex k instead with weight +w;,. Then, the
initial Hamiltonian terms

Zw,jaa —l—u),gao +ha (D4)
J#t
will change to
Al = "w;;6l6] £ w6t + hi6l. (D5)
J#

Let us consider the difference in the sum of coefficients be-
tween Eqs. (D4) and (DS). The weights of the edges not
connected to vertex £ and the local field /; remain unchanged,
so the difference is given by w;, &= w;,. This quantity is always
even, as it is either equal to zero, or to 2w;¢. Thus, the parity
of the sum of coefficients around a vertex i in this second case
does not change by the constraint imposed in the recursive
algorithm. Lastly, we consider the vertices directly subject to
the constraint, £ and k. The contribution to the initial cost
Hamiltonian related to vertex k is

Zwlka O’ +wgka O' +hk (D6)
J#L

while for vertex £ we have
A= " w;6)6! + wasts! + !, (D7)
J#k
As the graph follows either the EWS or the OWS, the parity

of the sums of coefficients in Egs. (D6) and (D7) is the same.
After the first RQAOA iteration, we get

A =Y wpblor £ wibl6k + (wa £ we)
J# J#k
+ (i = he)BY, (D8)
and 1-7,‘111 = 0. The term (wy; &= wy) in Eq. (D) is a constant
energy shift, and not a weight on an edge.

We focus now on the sum of coefficients connected to
vertex k in the Hamiltonian H k _, of Eq. (D8), denoted as

sp—1(k), which is

si1(k) =Y wix & > wje + (b + hy)
J# J#k
= ijk+wgk+hk:|:2wﬂ:tw5k:the
J# J#k
— Wy F Wek, (D9)

where we have added and subtracted wy; twice. The first three
terms of the second line in Eq. (D9) are equal to s,(k), the sum
of coefficients that connected to vertex k in ﬂ,’f Similarly, the
next three terms correspond to +s,(£). We get

Sp—1(k) = s,(k) £ 5,(£) — wer F wex.

As the graph in H, is assumed to be either EWS or OWS,
s,(k) and s, (£) have the same parity, so the sum, or difference,
of these quantities must be even. The quantity —wg F wyy is
also even, making Eq. (D10) even.

To summarize, after the constraint is imposed, all vertices
except one are related to coefficients that sum to a value with
unchanged parity. The exception is vertex k, the one directly
affected by the constraint in the previous example. Regardless
of the symmetry of the initial Hamiltonian H,, the sum of
coefficients associated with it after the iteration, s,_;(k), is
even. As such, RQAOA preserves EWS, but breaks OWS.

(D10)

APPENDIX E: DERIVATION OF THE ANALYTIC
EXPRESSION OF THE TRANSFERABILITY ERROR

In this Appendix, we show a detailed derivation of the
closed-form expression for % i d/ 3 from Eq. (7). The expression
is exact for unweighted triangle -free d-regular graphs, shown
in Fig. 2, and approximate for unweighted low-girth d-regular
graphs, shown in Fig. 3.

From Ref. [52], the objective function of an unweighted
triangle-free graph is given by

|E] . . .

C; = 7[1 +sin4B siny cos? ! y1, (ED)

evaluated at (v, B) = (arctan \/7, g Z) yields

c*:@HL(u)“' -
) Ja\ d '

The maximum number of edges that can be cut is |E|, and
the minimum number of edges that can be cut is %(1 + 5) —

1 . For our purpose it is sufficient to lower bound the cut to

half the edges, so l‘g‘lx =k € (0.5, 1]. The minimum cut value

1S Cpin = 0, so ry =
Eq. (6) we get

L4 From the definition of Nag.a from

‘max

na.ar = 77=1Ca(vy, Ba) — Calvg. Ba)l- (E3)

kIEI

Since we consider triangle-free receiver graphs, we re-
place Cy(y;,B;) with Eq. (E2). The donor graph is the
d’-regular tree subgraph so C;(y;,, B;) is Eq. (E1) evaluated
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TABLE II. Eight sets of optimal parameters to the 3-regular tree
subgraph at depth p =2 within A2 = [—7, 7)? x [—7 /4, 7w /4)%.
Sets 1 and 8 are in the domains /? and U;?, respectively.

Vi B V2 B2
Set 1 0.1567 01777 0.2867 0.09337
Set 2 0.1567 0.177n —0.714m —0.09337
Set 3 0.844m 01777 0.7147 —0.09337
Set 4 0.844m 01777 —0.2867 0.09337
Set 5 —0.8447m —0.177m 0.2867 —0.09337
Set 6 —0.8447 —0.1777 —0.7147 0.09337
Set 7 —0.1567 —0.1777 0.714x 0.09337
Set 8 —0.1567 —0.177m —0.2867 —0.09337

at (v, B) = (arctan \/%, g)- Then, we get

es L[ 1 fa—1\“""2
laa =5l ' Ja\"a

C L (d =1\
— COSd_d ]/;/ \/7 (T) . (E4)

Using the trigonometry relation

| n
n t = _— s
cos” (arctan x) < T x2)

we get the final expression

s 1 d—1 (d—l)/Z_ T /d —1\@-D2
7Id,d’ - 2]{\/3 d d’ d’ :

(ES)

Note that the exponent is % for both terms.

APPENDIX F: OPTIMAL PARAMETERS FOR THE
3-REGULAR TREE SUBGRAPH AT p =2

Here, we present the eight sets of optimal parameters to
the 3-regular tree subgraph at p = 2 that we used as donors
in Fig. 6 of Sec. IIl. The sets are taken from Ref. [45],
where the authors define the parameters (y*, g*) € [0, 27)? x
[0, w /2)2. However, to follow the convention used in this
article, we have translated the parameters into A” using the
OWS symmetry. We provide the optimal parameter values in
Table II.
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