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ABSTRACT: Chalcogenide perovskites are lead-free materials for
potential photovoltaic or thermoelectric applications. BaZrS3 is the
most-studied member of this family due to its superior thermal and
chemical stability, desirable optoelectronic properties, and low
thermal conductivity. Phase transitions in BaZrS3 remain underex-
plored in the literature, as most experimental characterizations of
this material have been performed at ambient conditions where the
orthorhombic Pnma phase is reported to be stable. In this work, we
study the dynamics of BaZrS3 across a range of temperatures and
pressures using an accurate machine learning interatomic potential
trained with data from hybrid density functional theory
calculations. At 0 Pa, we find a first-order phase transition from
the orthorhombic to tetragonal I4/mcm phase at 610 K, and a
second-order transition from the tetragonal to the cubic Pm3̅m phase at 880 K. The tetragonal phase is stable over a larger
temperature range at higher pressures. To confirm the validity of our model we compare our results with a range of published
experimental data and report a prediction for the X-ray diffraction pattern as a function of temperature.

Chalcogenide perovskites have gained relevance as lead-
free photovoltaic absorber materials as they exhibit

strong light absorption and dielectric screening alongside
desirable defect properties.1−9 BaZrS3 is the most studied
member of this family with research efforts towards material
synthesis at moderate temperatures, band gap engineering, and
a proof-of-concept solar cell.10−19 BaZrS3 has also been
explored as a potential thermoelectric material as it displays
fast electronic transport coupled with low thermal con-
ductivity, leading to record-high zT values among reported
halide and chalcogenide perovskite materials.20−22

While BaZrS3 is reported to retain stability in a perovskite
structure above 1000 K, the vast majority of materials
characterization is carried out at ambient conditions.10,11,23−25

At room temperature, the consensus is that BaZrS3 is stable in
an orthorhombic Pnma perovskite structure, as confirmed by
both experimental and computational studies.13,21,26−30 Above
this temperature, the picture is less clear. Recent temperature-
dependent X-ray diffraction (XRD) measurements show a
discontinuous change in the lattice parameters at high
temperature, indicating a first-order phase transition.23,31,32

However a temperature-dependent Raman spectroscopy study
does not confirm this observation,33 likely due to the structural
and dynamic similarity of perovskite phases coupled with
significant thermal broadening.

Many ABX3 perovskites undergo tilt-driven phase transitions
to form lower-symmetry polymorphs with antiferrodistortive
displacement patterns.34 The prototypical high-temperature

perovskite phase is a cubic structure. As the temperature is
reduced, lower-symmetry tetragonal and orthorhombic perov-
skite phases can be formed through tilting of the BX6
octahedra.35,36 Therefore, it is likely that there are transitions
to higher symmetry phases at temperatures above ambient for
BaZrS3. Phase transitions may occur before reaching the
elevated temperatures required for BaZrS3 synthesis (>850
K).13 If this is the case it follows that samples grown at high
temperature may include mixtures of polymorphs, as has been
observed for halide perovskites.37,38 A phase transition within
the operating temperature range for thermoelectric generators
(400 to 1100 K) is also possible. An understanding of the exact
BaZrS3 perovskite structure is important as even small changes
to structure can impact key functional properties including the
band gap.39,40 Anharmonic dynamics are also crucial for
quantitative predictions of electron−phonon coupling and
related optical properties.

In this work, we use molecular dynamics (MD) to sample
the anharmonic free energy surface and simulate the finite-
temperature dynamics of the BaZrS3 perovskite. We accelerate
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the calculation of free energies, atomic forces, and stress
tensors necessary for MD by constructing a machine learning
interatomic potential with training data from density functional
theory (DFT) calculations using a hybrid exchange-correlation
functional. We apply known group-subgroup relationships to
systematically identify which octahedral tilt patterns can be
accessed during phase transitions. We identify two phase
transitions in BaZrS3 at 0 Pa: a first-order orthorhombic Pnma
to tetragonal I4/mcm transition at 610 K and a second-order
tetragonal I4/mcm to cubic Pm3̅m phase transition at 880 K.
We construct a phase diagram for BaZrS3 across a pressure and
temperature range of −4 to 10 GPa and 0 K 1200 K,
respectively. Lastly, we predict the Raman spectra and
temperature-dependent XRD patterns, and compare our
predictions against published experimental data.

■ METHODS
A machine learning interatomic potential was constructed
using the neuroevolution potential (NEP) method imple-
mented in the GPUMD package.41 The ASE and CALORINE

packages were used to prepare the training structures, set up
MD simulations, and postprocess the results.42,43 The training
set consists of 1187 perovskite structures. This includes cubic,
tetragonal, and orthorhombic phases with applied strain or
small random displacements, all 15 Glazer-tilt structures,44,45

and snapshots from NPT MD simulations. The training set
also contains 92 Ruddlesden−Popper structures, which will be
the subject of a future publication. Symmetry-constrained
geometry relaxations as implemented in ASE were performed
until the maximal force component was below 10−3 eV/Å.42

DFT calculations were performed using the FHI-AIMS code and
the HSE06 exchange-correlation functional.46,47 The root
mean squared training errors were 1.8 meV/atom, 72.2
meV/Å, and 28.9 meV/atom for formation energies, atomic
forces, and virials, respectively; see Figure S1 for the loss curves
and Figure S2 for the parity plots. Harmonic phonon
dispersions were evaluated using the PHONOPY package with 2
× 2 × 2 supercells and 0.01 Å displacements.48 For a
comparison of the NEP-calculated and DFT-calculated
harmonic phonon dispersions see Figures S3−S5.

Heating and cooling simulations with supercells of 40 960
atoms were run in the NPT ensemble in the temperature range
of 0 to 1200 K and a pressure range of −4 to 10 GPa using a
time step of 1 fs. To identify the symmetry group formed,
atomic displacements were projected onto the octahedral-tilt
phonon eigenvectors of the cubic structure, as outlined in ref
49. Mode projections amplitudes for the NEP-relaxed and
DFT-relaxed structures are given in Tables S2 and S1,
respectively. Free energy calculations were carried out using
thermodynamic integration (TI) with an Einstein crystal as
reference Hamiltonian.50 To calculate the XRD pattern I(θ)
the DYNASOR package was used to postprocess NVT MD
simulations.51 For more computational details see the
Supporting Information.

In Figure 1a and Figure 1b we plot the harmonic phonon
dispersions and crystal structures of BaZrS3 in the cubic Pm3̅m
phase and experimentally observed Pnma phase. The aristotype
cubic Pm3̅m phase is the simplest perovskite form. However,
perovskites often adopt lower-symmetry, distorted noncubic
phases.52 Distortions in the cubic perovskite give rise to a wide
range of structures which can be classified into three
categories: (i) BX6 octahedral tilting; (ii) distortions of the
BX6 octahedra; and (iii) B-site cation displacements.53,54

Octahedral tilting leads to 15 possible space groups as
identified by Glazer.44

BaZrS3 in the cubic Pm3̅m phase (a0 a0 a0 in Glazer
notation) is dynamically unstable indicating the presence of a
lower-symmetry stable structure at 0 K.55 The imaginary
phonon modes at the M point of the Brillouin zone correspond
to in-phase (+) tilting of the ZrS6 octahedra and are described
with the irrep M2

+ (for a unit cell with an origin at the Ba-
site).56 The imaginary modes at the R point correspond to out-
of-phase (−) tilting and have irrep R5

−. Both modes are triply
degenerate. Distortions along one M-mode and two
perpendicular R-modes result in a dynamically stable
orthorhombic Pnma phase (a+ b− b−). The dynamic and
energetic stability of the orthorhombic phase at 0 K is in
agreement with previous experimental and DFT studies
reporting it to be stable at low temperatures.57−59

Distortions along linear combinations of the M- and R-
modes result in 15 unique space groups. We display the group-
subgroup relationships and 0 K formation energies for BaZrS3
in Figure 1c. As expected, Pm3̅m is the highest energy phase
relative to the Pnma ground state. I4/mcm is 4.7 meV/atom

Figure 1. DFT-calculated crystal and phonon band structures of the
(a) orthorhombic Pnma and (b) cubic Pm3̅m phases. Green, gray, and
yellow spheres represent Ba, Zr, and S atoms, respectively. (c) Group-
subgroup relationships and 0 K formation energies. The space group,
Glazer notation, and formation energy are specified for each phase
accessible through octahedral tilting. The formation energies (in
meV/atom) with respect to the ground-state (GS) Pnma phase
obtained from DFT and NEP model calculations (in parentheses) are
reported in the bottom rows. Connecting lines indicate group-
subgroup relationships. Dashed lines indicate transitions that must be
first order according to Landau theory.45 Red text denotes the
presence of phonon modes with an imaginary frequency, indicating
dynamic instability at 0 K. Blue text denotes dynamic stability. Gray
text denotes that the phase is symmetrically equivalent to a
supergroup structure after relaxation. There may still be a small
discrepancy in formation energy, which is discussed in the Supporting
Information. Figure adapted from Howard and Stokes.45
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above the ground state, indicating that it may form as a higher
temperature phase. The comprehensive mapping across all
possible structures ensures that we include all octahedral tilt
patterns that might be formed at high temperatures in our
training data for the machine learning interatomic potential.

Connecting lines in Figure 1c indicate group-subgroup
relationships between structures. In Landau theory, this
relationship is necessary (but not sufficient) for structures
connected through second-order (continuous) phase transi-
tions.60 Dashed lines indicate that, despite sharing a group-
subgroup relationship, the phase transition must be first-order
(discontinuous) in Landau theory.61

In Figure 2, we plot properties observed and derived from
MD simulations spanning 0 to 1200 K and with no applied
pressure. When heating the low-temperature Pnma structure
there are phase transitions at 650 and 880 K. The transition at
650 K is accompanied by a discontinuous and sharp change in
lattice parameters (Figure 2a). Two of the lattice parameters
become equal, indicating an orthorhombic to tetragonal
transition. In contrast, the transition at 880 K is gradual and
continuous. All three lattice parameters become equal,
indicating a tetragonal-to-cubic transition.

In Figure 2b,c we show projections of the M and R phonon
modes on structures sampled from the simulation. From 0 to
650 K one M-mode and two R-modes are active (have a non-
zero amplitude). This tilt pattern is described by a+ b− b− in
Glazer notation and corresponds to a structure in the Pnma
space group (see Figure 1 and the associated discussion). From
650 K to 880, only one R-mode is activated corresponding to
the tetragonal I4/mcm phase (a0 a0 c−). Above 900 K, no
modes are activated indicating the existence of a cubic Pm3̅m
phase (a0 a0 a0).

A sharp discontinuity is observed in energy (Figure 2d) and
heat capacity (Figure 2e) at 650 K. The 1 meV/atom energy
change is the latent heat associated with a first-order phase
transition and is comparable to that observed in other
perovskites.35,36 At 880 K a continuous change in energy is
observed, typical of second-order phase transitions, resulting in
a broader, less pronounced peak in the heat capacity. We
conclude that there is a first-order Pnma-to-I4/mcm transition
at 650 K, and a second-order I4/mcm-to-Pm3̅m transition at
880 K. These observations are consistent with the group-
subgroup analysis presented in Figure 1. The Pnma phase does
not share a group-subgroup relationship with I4/mcm,
necessitating a first-order phase transition. In contrast, is a
subgroup of the Pm3̅m phase, so can be accessed through a
second-order transition.

In the cooling runs, we start from the high-temperature
Pm3̅m structure and reproduce the heating behavior for the
second-order transition at 880 K. Significant hysteresis is
observed for the first-order phase transition at 650 K as the
system cannot overcome the free energy barrier required to
form the orthorhombic phase. Due to the stochastic nature of
MD simulations, we do recover the orthorhombic phase in
some of the cooling runs (Figure S6). Hysteresis in simulations
describing a first-order transition has been observed and
discussed in previous studies.35,36,62

In many materials transitions to new phases can be induced
through applied pressure or strain. In Figure 3, we present the
BaZrS3 pressure−temperature phase diagram across −4 to 10
GPa and 0 to 1000 K. Negative pressures correspond to triaxial
tensile strain. While this is difficult to realize experimentally,
tensile strain in a plane can be produced through coherent

interface formation with a suitably matched substrate.63 As
such, Figure 3 indicates the range of polymorphs which might
be accessed through interface engineering in a device stack. To
accurately predict the first-order Pnma-to-I4/mcm phase
transition temperatures we use thermodynamic integration to
calculate free energies. This still describes the full anharmo-
nicity of the material but avoids the kinetic limitations of a
cooling or heating simulation which must overcome the first-
order transition barrier.36

The higher symmetry phases are stabilized with increasing
temperature or decreasing pressure. This indicates that the
ZrS6 octahedra are relatively rigid, with volume expansion
driven through decreased octahedral tilting;64 see the

Figure 2. Properties of the BaZrS3 perovskite from cooling (blue) and
heating (red) simulations: (a) pseudocubic lattice parameters; (b) M-
mode and (c) R-mode amplitudes (QM, QR); (d) energies (U); (e)
heat capacities (Cp). Energies are shown relative to the Pnma ground-
state energy at 0 K with the equipartition energy (3

2
kBT) subtracted.

The heat capacity is obtained by calculating the numerical derivative
of the energy with respect to temperature, Cp = dU/dT, and is
reported per degree of freedom in the system. The simulation time
scale is 200 ns. All quantities are averaged over a time period of 0.8 ns.
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discussion on perovskite bond compressibility in the SI. At
zero pressure the Pnma-to-I4/mcm phase transition temper-
ature is 610 K. For comparison, the phase transition
temperature in the harmonic approximation is 243 K (Figure
S8). Above 4 GPa, the transition temperature saturates at 690
K. Below 400 K there are no structural changes between −4 to
10 GPa. This is in agreement with a previous DFT study at 0 K
and Raman measurements across the pressure range 0 to 8.9
GPa.28,65

Our simulations show that BaZrS3 forms in the Pnma
structure at room temperature. This observation is supported
by experimental characterization in ambient conditions and
computational predictions at 0 K.2,19,28,66 A recent computa-
tional study predicts that the polar Pna21 phase is 0.05 meV
per formula unit more stable than Pnma at 0 K and 0 GPa.67

This instability has been observed across a variety of oxide
perovskites in the orthorhombic Pnma phase.68 For BaZrS3 the
small 0.05 meV energy difference follows small differences in
atomic coordinates, with an extremely tight symmetry
tolerance of 0.003 Å required to differentiate between the
phases.

A multimodal study combining synchrotron XRD, Raman
spectroscopy, optical measurements and thermal analysis as a
function of temperature identified three polymorphs when
BaZrS3 is heated in air.32 Rietveld analysis of the synchrotron
powder XRD patterns showed the I4/mcm phase to be stable
above 770 K and the Pnma phase to be stable below 570 K.
From 570 to 770 K indirect observations suggest that the
orthorhombic Cmcm space group co-exists as a minority phase.
Despite including the Cmcm phase in our training data, our
simulations do not predict Cmcm as a stable intermediate
phase. In fact, at 0 K our DFT calculations show that this phase
is kinetically unstable and relaxes to the higher symmetry I4/
mcm phase (Table S1).

In a separate study from Bystricky ́ et al., temperature-
dependent XRD data from a non-synchrotron source also
indicated an orthorhombic-to-tetragonal phase transition at
770 K.23,31 Full structure refinements were not presented and
the measurements were partially obstructed through oxidation.

According to the analysis of that data above 770 K, the two
unique lattice parameters converge,23 which we also observe
while approaching the second-order I4/mcm-to-Pm3̅m tran-
sition in our MD simulation (Figure 2a).

We present a prediction of the temperature-dependent XRD
pattern in Figure 4. At high temperature, the characteristic

peaks of a cubic perovskite are clearly identified (Figure 4a).
Below 900 K, we observe peak splittings of the cubic
diffraction lines. From 650 to 900 K the largest splitting
corresponds to a h00 reflection (200), and the hhh reflection
(111) remains a singlet, indicating a tetragonal distortion.54

Experimental XRD data from Bystricky ́ et al. is displayed in
Figure 4b for comparison against our predictions.31 The
structure was refined in the tetragonal space group I41/acd
which, to the best of our knowledge, has not been previously
reported for an ABX3 perovskite. We find good agreement

Figure 3. Phase diagram of BaZrS3 as a function of pressure and
temperature. To predict the first-order Pnma-to-I4/mcm phase
transition temperatures we use thermodynamic integration to
calculate free energies. The second-order I4/mcm-to-Pm3̅m phase
transition temperatures are calculated from heating runs (Figure 2).

Figure 4. X-ray diffraction (XRD) pattern evaluated for three BaZrS3
polymorphs. The temperature ranges from 100 to 1150 K in intervals
of 50 K. All simulations are at 0 Pa. A Cu Kα value of 1.5406 Å was
used for the q to θ conversion. Cubic Pm3̅m peaks are indexed.
Superlattice peaks at half integer planes up to the third Brillouin zone
are indicated with vertical lines. The R-, M-, and X-point distortions
are represented with dotted, dashed, and dash-dotted lines,
respectively. For comparison, Figure S11 displays the static structure
factor up to the fifth Brillouin zone. Experimental XRD data for the
orthorhombic (303 K) and tetragonal (923 K) phases from ref 31 are
plotted in black. The peaks in the experimental data at 39° and 46°
are associated with the Pt strip used for heating the sample.
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between the experimental results and our prediction for the
higher-symmetry I4/mcm phase. R-mode activation produces a
doubling of the unit cell along one axis and the appearance of a
superlattice peak at a half-integer plane. This can be seen in
both the experimental and simulation data at 2θ ≈ 29°.

Below 600 K, an abrupt change is observed due to the first-
order phase transition into the orthorhombic phase (Figure
4c). M-point distortions result in the appearance of additional
superlattice peaks at 27° and 33° alongside further peak
splitting. Superlattice peaks associated with X-mode distortions
also appear at 20°, 26°, 32° and 37°. The same behavior is
observed in the experimental XRD data measured at 303 K.31

Decomposition of the XRD intensity (Figure S13) shows that
some X-point peaks are associated with off-centering of the Ba
species. A-site cation off-centering is frequently observed when
R-point and M-point distortions operate in tandem.39

Transitions between structurally similar perovskite phases
are not always discernible in Raman spectra, as the peak
splitting can be less than the peak broadening resulting from
thermal fluctuations or higher-order scattering.69−71 The
spectral energy densities of the I4/mcm and Pm3̅m phases
demonstrate that there is considerable phonon broadening at
elevated temperatures (Figure S7). While Ye et al. reported
that there is no indication of a first-order phase transition
between 10 to 875 K,33 Jaiswal et al. found the number of
Raman peaks to decrease with increasing temperature,
indicative of a phase transition to a higher-symmetry
structure.32 Our simulated Raman spectra in Figure S9 and
Figure S10 demonstrates that there is significant peak overlap
between the Pnma and I4/mcm phases. Our spectra also
reproduces the two most pronounced changes with temper-
ature from Jaiswel et al.: removal of the Ag

6 peak and a
significant shift in the Bg

6 peak position.
Experimental characterization of the high-temperature

Pm3̅m phase is hindered by oxidation which leads to the
formation of BaSO4, ZrO2 and SO2. Differential scanning
calorimetry and thermogravimetric analysis show that BaZrS3
is stable in air up to 920 K, with complete conversion to the
oxidized products at 970 K.32,66

In conclusion, chalcogenide perovskites, in particular BaZr,
show great potential for applications in optoelectronic and
thermoelectric technologies. However, several aspects of
fundamental material behavior, including polymorphic phase
transitions, have not previously been explored in detail. In
addition, experimental characterisations of the structure
through Raman spectroscopy and XRD give conflicting results.
We address this problem by developing a machine learning
interatomic potential for BaZrS3 trained on hybrid DFT
calculations. This is used to run high-accuracy MD simulations
across a wide range of temperatures and pressures.

The structural and thermodynamic properties derived from
heating simulations reveal a series of transitions from
orthorhombic Pnma-to-tetragonal I4/mcm-to-cubic Pm3̅m
with increasing temperature. While this sequence of
structures�from the low-symmetry Pnma phase to the high-
symmetry Pm3̅m phase�is commonly observed in perovskite
materials, to the best of our knowledge this is the first report
for BaZrS3. There is no evidence for additional transitions
beyond these before melting. The predicted character of each
transition�first-order Pnma-to-I4/mcm and second-order I4/
mcm-to-Pm3̅m�is in agreement with those allowed by group-
subgroup relationships.

Both phase transitions occur above 600 K, which agrees with
experimental characterization showing BaZrS3 is stable in the
orthorhombic Pnma phase at ambient temperature and
pressure. In addition, the calculated Raman spectra and
temperature-dependent XRD patterns align well with exper-
imental data, supporting our prediction of an orthorhombic-to-
tetragonal phase transition and validating our overall approach.
The second-order transition at 880 K is more difficult to
characterize due to the concurrent high-temperature oxidation
processes; further experimental studies in an inert atmosphere
are required for confirmation.

It is possible that BaZrS3 samples grown at high temperature
may include mixtures of polymorphs. Future work might more
fully consider polymorph mixing, alongside the impact of
octahedral tilting on the thermal and optoelectronic properties
of BaZrS3. We note that the formation of ternary Ruddlesden−
Popper phases Ban+1ZrnS3n+1 has been considered elsewhere in
the literature.30,72,73 When formed these are likely to have a
greater impact on material properties through disruption of the
3D octahedral framework.
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