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Atomic nuclei exhibit multiple energy scales ranging from hundreds of MeV in binding energies to
fractions of an MeV for low-lying collective excitations. As the limits of nuclear binding are approached
near the neutron and proton drip lines, traditional shell structure starts to melt with an onset of deformation
and an emergence of coexisting shapes. It is a long-standing challenge to describe this multiscale physics
starting from nuclear forces with roots in quantum chromodynamics. Here, we achieve this within a unified
and nonperturbative quantum many-body framework that captures both short- and long-range correlations
starting from modern nucleon-nucleon and three-nucleon forces from chiral effective field theory. The
short-range (dynamic) correlations which account for the bulk of the binding energy are included within a
symmetry-breaking framework, while long-range (static) correlations (and fine details about the collective
structure) are included by employing symmetry projection techniques. Our calculations accurately
reproduce—within theoretical error bars—available experimental data for low-lying collective states
and the electromagnetic quadrupole transitions in 20−30Ne. In addition, we reveal coexisting spherical and
deformed shapes in 30Ne, which indicates the breakdown of the magic neutron number N ¼ 20 as the key
nucleus 28O is approached, and we predict that the drip line nuclei 32;34Ne are strongly deformed and
collective. By developing reduced-order models for symmetry-projected states, we perform a global
sensitivity analysis and find that the subleading singlet S-wave contact and a pion-nucleon coupling
strongly impact nuclear deformation in chiral effective field theory. The techniques developed in this work
clarify how microscopic nuclear forces generate the multiscale physics of nuclei spanning collective
phenomena as well as short-range correlations and allow one to capture emergent and dynamical
phenomena in finite fermion systems such as atom clusters, molecules, and atomic nuclei.

DOI: 10.1103/PhysRevX.15.011028 Subject Areas: Computational Physics,
Nuclear Physics, Quantum Physics

I. INTRODUCTION

Atomic nuclei exhibit emergent symmetry breaking:
Deformation allows rotation and is identified by strong
electromagnetic transitions, i.e., large BðE2Þ values, within
states that belong to a rotational band [1]. While this has
been established knowledge for more than 70 years, the
multiscale description of such phenomena with internu-
cleon forces rooted in quantum chromodynamics has posed
a long-standing challenge [2–16]. The situation is illus-
trated in Fig. 1. Binding energies, i.e., the negative of
ground-state energies, are extensive quantities with about
8 MeV of binding per nucleon for medium-mass nuclei.

The short range of the strong nuclear force implies that the
bulk of the binding energy comes from short-range corre-
lations in the wave function [17]. Furthermore, as nucleons
are fermions that interact via two- and three-nucleon forces,
these short-range correlations are dominated by two-
particle–two-hole and three-particle–three-hole excitations.
Such dynamical correlations can be captured efficiently by
various methods, and the numerical cost grows polyno-
mially with increasing mass number [18–22]. The recent
ab initio [23] computation of the heavy nucleus 208Pb [24],
for instance, is impressive because of the computational
size of the problem. However, this doubly magic nucleus
has closed proton and neutron shells and, therefore,
exhibits a simple spherical structure. One needs “only”
to capture dynamical correlations when computing its
ground state. In contrast, open-shell nuclei are deformed
and exhibit rotations. These introduce the lowest energy
scale in atomic nuclei and range from hundreds of keV
in medium-mass nuclei to tens of keV in heavy ones [1];
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see also Fig. 1. In the nucleus 34Mg, for instance, the lowest
rotational excitation is only 0.26% of the total binding
energy [25]. This is a minuscule effect on the scale of
nuclear energies that has a significant impact on the physics
and shape of nuclei [26]. These collective modes involve
long-range correlations that consist of many-particle–
many-hole excitations. Such static correlations are difficult
to capture.
It is no surprise then that the computation of deformed

nuclei is more challenging and so far limited to light- and
medium-mass nuclei [2–5,8–10,12,13,15]. The recent com-
putations of deformed p-shell nuclei [4,5,12] and neon
nuclei [9] underscore the importance of emergent sym-
metry breaking. However, these studies do not account for
three-nucleon forces and—for neon—account for only a
fraction of the binding energy. The calculations by Miyagi
et al. [10] include three-nucleon forces but did not
reproduce the strong electric quadrupole transitions within

a rotational band. The calculations by Yao et al. [8] for 48Ti
reproduce BðE2Þ values but at the expense of somewhat
too stretched energy spectra. The computations by Frosini
et al. [13] focus first on the static correlations and include
dynamic correlations in a second step via perturbation
theory. The latter accurately captures the binding energy
only for sufficiently soft Hamiltonians (produced via a
renormalization group transformation [29]), but that trans-
formation changes the moment of inertia and thereby the
collective properties; see Fig. 15 in Ref. [14].
In this work, we overcome these problems and demon-

strate how to accurately capture multiscale physics of
atomic nuclei starting from nuclear interactions rooted in
quantum chromodynamics. We use the coupled-cluster
[20,30] method for the nonperturbative inclusion of
dynamical correlations and symmetry-projection tech-
niques to capture static correlations. As we see, this
approach also correctly reproduces the electromagnetic
transitions in a rotational band. We employ the accurate
chiral interaction 1.8=2.0ðEMÞ of Ref. [31], which includes
nucleon-nucleon forces at next-to-next-to-next-to-leading
order (N3LO) and three-nucleon forces at next-to-next-to-
leading order (NNLO). To better quantify our uncertainties
in the predictions, we also employ an ensemble of posterior
interaction samples from chiral effective field theory
with explicit delta degrees of freedom at NNLO. This
ensemble was obtained in a recent study of 28O [32]. These
interactions are described in detail in Sec. II A. In order to
capture deformation, we start from an axially deformed
Hartree-Fock reference state and include short-range cor-
relations using the coupled-cluster method [20,30,33].
In a final step, we include long-range correlations by
projecting the symmetry-broken coupled-cluster states on
good angular momentum. Our projection is inspired by the
disentangled approach by Qiu et al. [34] but avoids its
shortcomings (i.e., asymmetric kernels) and extends it to
electromagnetic transition matrix elements.
This work addresses the question—“what drives nuclear

deformation?”—which has captivated generations of
nuclear physicists [35–41]. Let us briefly summarize some
milestones in the description of nuclear deformation: In the
1950s, Bohr [42], Bohr and Mottelson [43], and Nilsson
[44] explained deformations as the surface vibrations of a
liquid drop and the motion of independent nucleons
confined inside [1]. In an alternative approach, Elliott
and Cockcroft [45,46] explained how deformed intrinsic
states can be understood within the spherical shell model.
Dufour and Zuker [39] revisited deformation in the nuclear
shell model and found it useful to decompose the
Hamiltonian into monopole and multipole parts [47,48].
Here, the monopole essentially is the one-body normal-
ordered term of the shell-model interaction, while the
multipole terms are two-body operators; they contain the
residual pairing and quadrupole interactions. These results
have been succinctly summarized by Zuker’s “multipole

FIG. 1. Energy scales and relevant degrees of freedom in
nuclear physics, adapted from Ref. [27] with permission from
Witek Nazarewicz; see also Ref. [28]. Also shown are the tools
employed in this work: We use chiral effective field theory to
relate interactions between nucleons to quantum chromodynam-
ics and coupled-cluster theory as an ab initio method for the
computation of binding energies and collective excitations at the
highest resolution scale [23].
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proposes, monopole disposes” [40]; i.e., the competition
between pairing and quadrupole-quadrupole interactions
might suggest deformation, while the monopole—the
effective spherical mean field—acts as a referee. We also
note that the shell model uses phenomenological “effective
charges” to reproduce electric quadrupole transitions [49].
Nuclear density functional approaches confirmed the
important role of the proton-neutron quadrupole-quadru-
pole interactions [50,51]; these approaches accurately
describe deformation across the nuclear chart [52–55].
While we have a good understanding of nuclear defor-

mation at low resolution scales, we lack insights how the
high-resolution interactions from effective field theories
of quantum chromodynamics cause it to emerge. While
the pairing interaction can readily be identified with the
nucleon-nucleon interaction in the 1S0 partial wave, the
origin of the quadrupole-quadrupole interaction is opaque
at best or a pure shell-model concept at worst. With a view
on Ref. [37], one might be tempted to identify the quadru-
pole interaction with the isoscalar 3D2 partial wave (which
is attractive). However, the quadrupole-quadrupole inter-
action is long range—in contrast to the short-range
nucleon-nucleon interaction—and it is applicable only in
model spaces consisting of one-to-two shells [35]. Thus,
our understanding of nuclear deformation is still limited to
a low-resolution shell-model picture. The ab initio com-
putations [4,9,13,15,56,57] reproduced deformed nuclei
but did not investigate how they are shaped by the under-
lying forces. In this work, we seek to understand what
impacts deformation at the highest resolution scale possible
today, i.e., based on chiral effective field theory [58–60].
To that aim, we conduct a global sensitivity analysis [61]
of collective nuclear properties and quantify how much
individual terms in the chiral effective field theory inter-
action impact nuclear deformation. This global analysis is
made possible using eigenvector continuation [62].
Specifically, we develop a reduced-order model [63] for
emulating [64,65] ab initio calculations of deformed nuclei
across millions of values for the low-energy constants in the
chiral interaction. Our results are currently as close as we
can get in tying low-energy nuclear structure to quantum
chromodynamics without actually solving that non-Abelian
gauge theory at low energies.
Finally, we address a challenging problem regarding

the theoretical description of shape coexistence in nuclei
[66–70]. The neutron-rich isotopes of neon and magnesium
exhibit deformation and are a focus of experiments at rare
isotope beam facilities [71–78]. In magnesium (Z ¼ 12),
shape coexistence has been observed in 30Mg [72] and 32Mg
[74,79], and the drip line is thought to be beyond N ¼ 28
[41,71,77,80]. The theoretical description of shape coex-
istence in 32Mg has been a challenge [81–84]. The neon
nuclei (proton number Z ¼ 10) are less known. No shape
coexistence has been observed in 30Ne. The drip line
nucleus is 34Ne [76], and signatures of rigid rotation are

found for 32Ne [73,85]. The structure of 34Ne and the
quadrupole transition strengths of 32;34Ne are unknown.
This is a gap in our understanding in a critical region of the
nuclear chart that extends toward the key nucleus 28O [32].
For these reasons, we focus on neutron-rich isotopes of
neon for discovery and use neutron-rich magnesium nuclei
for validation.
This paper presents ideas, technical implementations,

and predictions for quantities that are targeted in experi-
ments. The main ideas consist of (i) capturing short-range
(dynamic) correlations via a powerful many-body method
and long-range (static) correlations via symmetry projec-
tion; (ii) to investigate how nuclear deformation is tied to
the underlying forces from chiral effective field theory. The
progress in technical implementation is in the symmetry
projection itself and in the construction of a Hartree-Fock
reduced-order model via eigenvector continuation. Finally,
the predictions are about rotational energy levels and BðE2Þ
strengths in neutron-rich neon isotopes and shape coexist-
ence in the N ¼ 20 nucleus 30Ne.
This paper is organized as follows. In Sec. II, we describe

the theoretical framework. We introduce the Hamiltonian
in Sec. II A, describe the computation of reference states in
Sec. II B, and for completeness briefly review the coupled-
cluster method in Sec. II C. Section II D presents a novel
approach to angular-momentum projection within coupled-
cluster theory applied to nuclei. In particular, this approach
guarantees that norm and Hamiltonian kernels exhibit the
correct symmetries. These developments might also be of
interest for researchers in quantum chemistry. The compu-
tation of electromagnetic transition strengths is described in
Sec. II E. In Sec. II F, we develop a reduced-order model for
Hartree-Fock computations. This is a nontrivial extension
of emulators based on eigenvector continuation, because
one has to ensure that only Slater determinants (and not
superpositions thereof) enter. We present results about the
collective properties of neon isotopes (and predictions for
32;24Ne) in Sec. III A. Predictions about the coexistence of a
spherical and deformed shape in 30Ne are presented in
Sec. III B. Results from our global sensitivity analysis
regarding nuclear deformation are presented in Sec. III C.
Finally, we wrap up with a summary and discussion in
Sec. IV. A number of details and supporting material are
presented in the appendixes.

II. THEORETICAL FRAMEWORK

A. Hamiltonian and model space

We use the intrinsic Hamiltonian

H ¼ Tkin − Tc:m: þ VNN þ VNNN: ð1Þ

Here, VNN is the nucleon-nucleon (NN) potential, VNNN
the three-nucleon (NNN) potential, Tkin the total kinetic
energy, and Tc:m: the kinetic energy of the center of mass.
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Using the intrinsic Hamiltonian effectively removes spu-
rious center-of-mass motion [86].
We employ various interactions in this work. For point

predictions, we use the 1.8=2.0ðEMÞ [31] interaction that
yields accurate binding energies and spectra of light-,
medium-, and heavy-mass nuclei [87–92]. It consists of
an NN potential at N3LO from Ref. [93], softened via
similarity renormalization group transformation [29] to a
momentum cutoff of 1.8 fm−1, and a bareNNN potential at
NNLO with a nonlocal regulator and a momentum cutoff
of 2.0 fm−1.
For posterior predictive distributions, incorporating rel-

evant sources of uncertainty, we employ an ensemble of
n ¼ 100 interactions that was calibrated in light-mass
nuclei and recently used for accurate predictions of
nuclei around 28O [32]. These interactions are from chiral
effective field theory at NNLO with explicit delta degrees
of freedom. The NN and NNN potentials have nonlocal
regulators and a momentum cutoff of 394 MeV=c [94,95].
This ensemble was obtained in Ref. [32] and consists
of prior interaction samples filtered out by history
matching [24,96,97] to reproduce (within a nonimplausi-
bility window) scattering phase shifts, deuteron properties,
the binding energies and charge radii of 3H, 4He, and 16O,
and ground and excited states in 22;24;25O. In order to use
this ensemble for posterior predictions, we proceed as
follows: We first assign likelihood weights wi ¼
pðDcaljαiÞ, with the excitation energies of the Jπ ¼ 2þ

and 4þ rotational states in 24Ne as calibration data Dcal and
αi a vector of low-energy constants from the ensemble. For
this, we use a simple normal likelihood that incorporates
uncertainties from method, model space, and effective field
theory truncations (see Appendix C for details). We then
employ importance resampling [98,99] with importance
weights qi ¼ wi=

P
n
j¼1 wj. This allows us to effectively

collect samples from the posterior

pðαijDcalÞ ∝ pðDcaljαiÞpðαiÞ: ð2Þ

Here, we use a prior, pðαiÞ, that is uniform for all low-
energy constants except for c1;2;3;4, where it corresponds to
a Gaussian distribution from a Roy-Steiner analysis of
pion-nucleon scattering [100]. The posterior samples can
then be used to make posterior predictions for rotational
states and electromagnetic transitions in other nuclei (see
Sec. III A). There is a rather large fraction of 59 samples
that have importance weight within one order of magnitude
from the largest one, qmax, and the effective number of
samples is neff ≡P

n
i¼1 qi=qmax ¼ 25.

B. Normal-ordered two-body approximation
and computation of the reference state

The inclusion of full NNN forces in coupled-cluster
computations is possible [101] but expensive. Fortunately,

it is not necessary for accurate computations: Once a
reference state is determined, one can employ the nor-
mal-ordered two-body approximation and discard residual
three-nucleon terms from the Hamiltonian [101–103].
For open-shell nuclei, however, the normal-ordered two-

body Hamiltonian based on a deformed reference state
breaks rotational symmetry. To avoid this problem, we
follow Frosini et al. [104] and first perform a spherical
Hartree-Fock computation based on a uniform occupation
of the partially filled shells. The resulting spherical density
matrix is then used to make the normal-ordered two-body
approximation. The resulting normal-ordered two-body
Hamiltonian is finally transformed back to the harmonic
oscillator basis. This spherical two-body Hamiltonian is the
starting point for our axially symmetric Hartree-Fock
computation, which then yields the deformed reference
state jΦ0i.
Our Hartree-Fock computations use a spherical har-

monic oscillator basis of up to 13 major shells, while
the NNN interaction is further restricted by an energy cut
E3max ¼ 16ℏω. To gauge the convergence of our results,
we vary the harmonic oscillator frequency (ℏω) from 10 to
16 MeV. Because of their computational cost, our angular-
momentum-projected coupled-cluster calculations are
restricted to 8–9 major shells. This is sufficient to obtain
spectra and quadrupole transitions that are converged with
respect to the size of the model space for the nuclei we
compute (see Appendix B for details).
The computation of deformed reference states gives

us the flexibility to study shape coexistence by targeting
different deformations. The simplest approach is to fill the
open shells according to the Nilsson model [44] when
initializing the density matrix for the ensuing Hartree-Fock
computation. This allows one to construct prolate or oblate
references. When computing nuclei with the “magic”
neutron number N ¼ 20, this usually leads to reference
states with a small deformation. Strongly deformed refer-
ences can be obtained by adding the quadrupole constraint
λr2Y20ðr̂Þ to the Hamiltonian and by varying the Lagrange
multiplier λ such that a local energy minimum results (as a
function of the quadrupole expectation value) [105]. Thus,
this is an important tool to study shape coexistence along
the N ¼ 20 line for neutron-rich nuclei.

C. Coupled-cluster calculations include
dynamical correlations

Our coupled-cluster computations [20,30,33,106] start
from an axially symmetric Hartree-Fock reference state
jΦ0i with prolate deformation [15,107]. For a nucleus
with mass number A, the coupled-cluster method para-
metrizes the many-nucleon wave function as jΨi ¼
eT jΦ0i, with T ¼ T1 þ T2 þ � � � þ TA being an expansion
in n-particle–n-hole (np–nh) excitations (n ¼ 1;…; A).
To compute observables and transitions consistently,
we use the bivariational coupled-cluster energy
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functional [108,109], where the left coupled-cluster state
is parametrized as hΨ̃j ¼ hΦ0jð1þ ΛÞe−T with Λ con-
taining up to np–nh deexcitations and truncated at the
same order as T. For systems with a well-defined Fermi
surface, the dynamical correlations—accounting for the
bulk of the binding energy—are effectively captured by
truncating T ≈ T1 þ T2, known as the coupled-cluster sin-
gles-and-doubles approximation (CCSD), and including T3

perturbatively [20,33]. This results in a polynomial scaling
of computational cost of the order of N6 (or at most N7),
where N is a measure of the system size [33]. In both
quantum chemistry and nuclear physics applications, CCSD
is found to capture about 90% of the full correlation energy.
The inclusion of triples corrections brings that number up to
about 99% [20,33,110]. In Appendix B, we show that this is
also the case for the deformed 20–34Ne isotopes using the
1.8=2.0ðEMÞ chiral interaction.

D. Angular-momentum projection captures
static correlations

We perform angular-momentum projections of deformed
states computed in the CCSD approximation. For a
more accurate angular-momentum projection than in
Ref. [15], we use the bivariational coupled-cluster energy
functional [108,109]

EðJÞ ¼ hΨ̃jPJHjΨi
hΨ̃jPJjΨi

: ð3Þ

Here, jΨi≡ eT jΦ0i is the right coupled-cluster state and
hΨ̃j≡ hΦ0jð1þ ΛÞe−T is the corresponding left ground
state. PJ is the angular-momentum projection operator

PJ ¼
2J þ 1

2

Zπ

0

dβdJ00ðβÞRðβÞ; ð4Þ

and RðβÞ ¼ e−iβJy is the rotation operator. PJ projects an
axially symmetric state with Jz ¼ 0 onto a state with
angular momentum J. This operator employs the “small”
Wigner dJ00ðβÞ function, and Jy is the y component of the
total angular momentum. To evaluate Eq. (3), we use the
CCSD approximation and build on the disentangled
approach by Qiu et al. [34]. This approach applies the
Thouless theorem [111] to act with the rotation operator
RðβÞ on the symmetry-broken reference state, i.e.,
hΦ0jRðβÞ ¼ hΦ0jRðβÞjΦ0ihΦ0jeVðβÞ, with VðβÞ being a
1p–1h deexcitation operator. Next, one expands

eVðβÞeT ¼ eW0ðβÞþW1ðβÞþW2ðβÞþ���: ð5Þ

The series of np–nh excitation operators Wn does not
truncate (even for T ≈ T1 þ T2) and includes up to Ap–Ah
excitations.

In this work, we keep only the amplitudes W0, W1, and
W2. Qiu et al. [34] proposed to compute the amplitudesW0,
W1, andW2 by taking the derivative of Eq. (5) with respect
to β. This leads to a set of ordinary differential equations
with the initial (β ¼ 0) values W0ð0Þ ¼ 0, W1ð0Þ ¼ T1,
and W2ð0Þ ¼ T2. This approach has two disadvantages:
First, dVðβÞ=dβ can have very large matrix elements in
cases where the rotated state has a small overlap with the
reference state, i.e., for hΦ0jRðβÞjΦ0i ≈ 0. This leads to a
“stiffness” in the set of ordinary differential equations.
Second, as one integrates the differential equations starting
at β ¼ 0, the truncation atW2 may lead to a loss of accuracy
for larger angles. This loss of accuracy manifests itself, for
instance, in a lack of symmetry of norm and Hamiltonian
kernels under β → π − β for even-even nuclei; see Fig. 2
for a numerical demonstration for the case of 20Ne.
To avoid these problems, we propose a new method (see

also Ref. [113]) to solve Eq. (5), where we instead consider
the expression

eλVeT ¼ eW0ðλÞþW1ðλÞþW2ðλÞþ���; ð6Þ

which, for λ ¼ 1, agrees with the previous one. Taking
the derivative of Eq. (6) with respect to λ at fixed angle β
yields a new set of ordinary differential equations. We
integrate over λ from 0 to 1, and the initial values are

FIG. 2. (a) shows the norm kernels for 20Ne computed in the
traditional disentangled approach (red, dash-dotted line) and with
the new method of this work (green, dashed line). (b) shows the
same as (a) but for the Hamiltonian kernel. All calculations used
the NNLOopt interaction [112] with ℏω ¼ 14 MeV in a model
space of Nmax ¼ 8. The kernels (Hβ and N β) are the solutions of
the differential equation when taking the derivative of Eq. (5)
with respect to β, while (Hλ and N λ) are the solutions of the
differential equation when taking the derivative of Eq. (6) with
respect to λ.
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Wnðλ ¼ 0Þ ¼ Tn. These equations are solved at fixed β.
Note that we suppress the dependence of V andWn on β in
Eq. (6). This approach significantly improves the stability
of the numerical integration, keeps kernels symmetric
under β → π − β, and yields more accurate results for
larger angles β. Results are shown in Fig. 2.
Nevertheless, the truncation at W2 implies that the projec-
tion operator PJ is not treated exactly, and angular
momentum is only approximately a good quantum number.

E. Electromagnetic transition strengths

The accurate computation of electromagnetic transitions
strength in nuclei using ab initio methods has been a
long-standing challenge [10,114–116]. In this work, we
overcome this challenge by using symmetry projection
techniques to capture the fine details in the nuclear wave
function that drives quadrupole collectivity.
The electric quadrupole (E2) transition strength

BðE2;↓Þ≡ jh0þjjQ2jj2þij2 ð7Þ

is determined by the reduced matrix element
h0þkQ2k2þi ¼ h0þ; Jz ¼ 0kQ20k2þ; Jz ¼ 0i=C00

2020. Here,

Q20 ¼
P

j eð1=2 − τðjÞz Þ r2jY20ðr̂jÞ is the electric quadru-
pole operator (given in terms of the electric charge e, the

isospin operators τðjÞz , and positions rj of the nucleon
labeled by j, and the spherical harmonics Y20), and C00

2020 is
a Clebsch-Gordan coefficient.
As coupled-cluster theory is based on a bivariational

functional, we need to compute

BðE2;↓Þ ¼ hΨ̃jP0Q20P2jΨihΨ̃jP2Q20P0jΨi
hΨ̃jP0jΨihΨ̃jP2jΨi

¼ hΨ̃jP0Q20jΨihΨ̃jQ20P0jΨi
hΨ̃jP0jΨihΨ̃jP2jΨi

; ð8Þ

where we remove redundant P2 operators in the last
step [117]. We recall that jΨi≡ eT jΦ0i is the right
coupled-cluster state and hΨ̃j≡ hΦ0jð1þ ΛÞe−T is the
corresponding left ground state. Let us consider the
computation of the matrix elements entering the numerator
of Eq. (8). The projector is based on the rotation operator R
(here, we suppress the dependence on β), and we have

hΨ̃jRQ20jΨi ¼ hΦ0jRjΦ0ihΦ0jZ̃Q̄20eW0þW1þW2 jΦ0i; ð9Þ

with

Z̃ ¼ eVR−1ð1þ ΛÞe−TRe−V; ð10Þ

Q̄20 ¼ eVQ20e−V: ð11Þ

Note that Z̃ contains up to 2p–2h deexcitations and that
Q̄20 is a one-body similarity transformed operator. The
second part of the transition matrix element is

hΨ̃jQ20RjΨi¼hΨ̃jRR−1Q20RjΨi
¼hΦ0jRjΦ0ihΦ0jZ̃Q̃20eW0þW1þW2 jΦ0i; ð12Þ

with

Q̃20 ¼ eVR−1Q20Re−V: ð13Þ

In Appendix B, we benchmark our approach with the
symmetry-adapted no-core shell model [11] in 20Ne using
the nucleon-nucleon potential NNLOopt [112] and find
agreement within estimated uncertainties.

F. A reduced-order model for projection-after-variation
Hartree-Fock

We utilize eigenvector continuation [62] to construct a
reduced-order model [63] of Hartree-Fock. This enables
us to develop fast and accurate emulators [64,65]
necessary for performing the sensitivity analyses presented
in Sec. III C. We begin by exploiting that the delta-full
NNLO Hamiltonian with NN and NNN interactions is a
sum of terms with a linear dependence on the 17 low-
energy constants ðαÞ of interest, i.e.,

HðαÞ ¼ H0 þ
X17
i¼1

αiHi: ð14Þ

Here, Hi denote the respective Hamiltonian terms, and
H0 ¼ Tkin þ V0 is the intrinsic kinetic energy Tkin and V0

denotes α-independent potential contributions such as one-
pion exchange, leading two-pion exchange, and the Fujita-
Miyazawa [118] NNN interaction.
Let us consider a Hartree-Fock state jϕii≡ jϕðαiÞi, with

corresponding energy EHFðαiÞ for some vector of values αi.
Clearly, the corresponding Hartree-Fock Hamiltonian is a
one-body operator HHFðαiÞ that fulfills

HHFðαiÞjϕii ¼ EHFðαiÞjϕii: ð15Þ

In general, given any Slater determinant jϕi, we can
normal-order the Hamiltonian (14) with respect to jϕi
and obtain

HðαÞ ¼ EϕðαÞ þ FϕðαÞ þWϕðαÞ; ð16Þ

where EϕðαÞ ¼ hϕjHðαÞjϕi, FϕðαÞ is the normal-ordered
one-body Fock operator, andWϕðαÞ denotes any remaining
terms. We have, in particular,

HHFðαiÞ ¼ Eϕi
ðαiÞ þ Fϕi

ðαiÞ: ð17Þ
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We now seek to emulate the exact Hartree-Fock
energy EHFðα⊚Þ for some target value α ¼ α⊚ of the
low-energy constants. To that end, we use eigenvector
continuation [62] and expand the target wave function in a
small set of Hartree-Fock states jϕii, i.e., a so-called
snapshot basis, such that

jϕ⊚i ≈
XNtrain

i¼1

cijϕii: ð18Þ

The snapshot basis spans a low-dimensional subspace into
which the Hartree-Fock Hamiltonian can be projected,
thereby achieving a model-order reduction. We use the
decomposition in Eq. (14) to project the individual inter-
action terms of the Hartree-Fock Hamiltonian to the sub-
space independently of α. This enables fast and accurate
emulation of the Hartree-Fock energy EHFðα⊚Þ in the
subspace for any target value α⊚ by solving the generalized
eigenvalue problem

X
ij

hϕijHHFðα⊚Þjϕjicj ¼ E⊚

X
ij

hϕijϕjicj: ð19Þ

In our applications (see Sec. III C), we find E⊚ ≈ EHFðα⊚Þ
with very high accuracy and precision using a very small
basis of Ntrain ¼ 68 snapshots.
It is important to recognize that the exact states, i.e.,

the snapshots, must be product states. Thus, one must not
replace HHF in Eq. (19) with the full Hamiltonian, because
this would correspond to the generator coordinate method
(GCM) [119,120] with the low-energy constants α as
continuous parameters. In the GCM case, one would not
reproduce the Hartree-Fock snapshots for α⊚ ¼ αi but
rather obtain states corresponding to a lower energy from
superpositions of product states.
To construct the Hartree-Fock Hamiltonian HHFðα⊚Þ in

the subspace spanned by the snapshot basis, we proceed as
follows. We write the Hartree-Fock solution jϕii for the
snapshot value αi as jϕii ¼ UijΦ0i, where jΦ0i is a
reference state in the underlying harmonic-oscillator basis.
The norm and Hamiltonian kernels for the generalized
eigenvalue problem in the subspace (19) are

hϕijϕji ¼ hΦ0jOijjΦ0i; ð20Þ

hϕijHHFðα⊚Þjϕji ¼ hΦ0jOijhjðα⊚ÞjΦ0i: ð21Þ

Here, Oij ¼ U†
i Uj is a unitary matrix, and hjðα⊚Þ ¼

U†
jHHFðα⊚ÞUj. With a view on Eq. (17), we now define

HHFðα⊚Þ ¼ Eϕj
ðα⊚Þ þ Fϕj

ðα⊚Þ; ð22Þ

i.e., the Hartree-Fock Hamiltonian at the target value
consists of the zero-body and one-body terms of the target

Hamiltonian normal ordered with respect to the Hartree-
Fock state at snapshot value αj.
We note that the Hamiltonian kernel in Eq. (21) is not

symmetric, and the Fock matrix Fϕj
ðα⊚Þ is not diagonal for

α⊚ ≠ αj. This is an important point, and it ensures that—at
a snapshot value—the solution of the generalized eigen-
value problem is indeed an eigenstate of the Hartree-Fock
Hamiltonian (and not a GCM solution that is lower in
energy). The norm kernel for nonorthogonal reference
states is given by [121]

hΦ0jOijjΦ0i ¼ detðOhh
ij Þ; ð23Þ

where Ohh
ij is the matrix of overlaps between occupied

(hole) states in hϕij and jϕji. To evaluate the Hamiltonian
kernel, we utilize the Thouless theorem [111] and write

hΦ0jOij ¼ hΦ0jOijjΦ0ihΦ0jeV; ð24Þ

with V being a 1p–1h deexcitation operator. The matrix
elements of V in the hole-particle (hp) space is given by the
matrix product [34]

Vhp ¼ ðOhh
ij Þ−1Ohp

ij : ð25Þ

Inserting Eq. (24) into Eq. (21), we obtain the algebraic
equation

hϕijHHFðα⊚Þjϕji ¼ hϕijϕji
�
EHF þ

X
hp

Vh
pF

p
h

�
: ð26Þ

Here, EHF and F are the vacuum energy and one-body
normal ordered terms, respectively, of HHFðα⊚Þ with
respect to jϕji.
The norm and Hamiltonian Hartree-Fock kernels

can also be evaluated using a generalized Wick’s theorem
[121–124]. We verified that this alternative approach gives
results that agree with the one used in this work. Having
obtained the reduced-order model for the target Hartree-
Fock state by diagonalizing the generalized nonsymmetric
eigenvalue problem in Eq. (19), we evaluate the projected
target Hartree-Fock energies from

EðJÞ
⊚ ¼ hϕ⊚jPJHðα⊚Þjϕ⊚i

hϕ⊚jPJjϕ⊚i
: ð27Þ

Here, the full target Hamiltonian in Eq. (14) enters, and
PJ is the projection operator.

III. RESULTS

Ab initio computations of realistic ground-state
energies for spherical light- and medium-mass nuclei are
demanding calculations but can nowadays be performed
routinely [125]. In this work, however, we focus on our
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novel results for deformation and shape coexistence
emerging in a multiscale setting encompassing both small
excitation energies and large total binding energies.

A. Multiscale physics of neutron-rich neon nuclei

Let us study first the collective properties of neon nuclei.
The results for even-mass isotopes are shown in Fig. 3. The
lower panel shows the excitation energies Eð2þÞ and Eð4þÞ
of the lowest spin-parity Jπ ¼ 2þ and 4þ states, respec-
tively, in the 20–32Ne compared with available experimental
data. The results based on the 1.8=2.0ðEMÞ interaction
are marked by red diamonds and include uncertainty
estimates from method and model-space truncations. The
relative accuracy of our calculations with the interaction
1.8=2.0ðEMÞ is about 2%–3%. The distributions labeled
ΔNNLO are posterior predictive distributions and based on
the results of n ¼ 100 symmetry-projected coupled-cluster
computations (one for each member of the interaction
ensemble). They are given by the set

fykðαÞ þ εMB þ εEFT∶ α ∼ pðαjDcalÞg; ð28Þ

where yk is the ab initio model prediction for observable k
while εMB and εEFT are samples from the stochastic models
for errors due to the many-body method and model-space
truncation and the truncation of the effective field theory
expansion, respectively (see Appendix C for details). When
generating the posterior predictive distributions, we use
10000 samples from the posterior pðαjDcalÞ obtained via
importance resampling (see Sec. II A). We also show 68%
and 90% credible intervals around the median value. These
uncertainty estimates are consistent with data (given the
small number of data points): Out of 14 measured energies,
six and 13 are within the 68% and 90% credible interval,
respectively. It might be, however, that the 68% interval is
slightly underestimated. For the point prediction, one
would interpret the (one-sigma) error bar as indicating
the uncertainty in the results based on the model-space
truncation and method error. We see that eight out of 14
energies are within the uncertainties, although only one of
the 2þ energies is within uncertainties.
Theoretical results are consistent with each other and

accurately reproduce the experimental trend where data
exist. For neon nuclei with neutron number below N ¼ 20,

FIG. 3. (a) shows electric quadrupole transition strengths from the first excited 2þ state to the ground state, while (b) shows
energies of the lowest 2þ and 4þ states in the even nuclei 20–34Ne. Theoretical results are computed using angular-momentum-
projected coupled-cluster. Point predictions using the interaction 1.8=2.0ðEMÞ [31] (red diamonds with one standard deviation
uncertainty estimates from many-body method and model-space truncations) are shown together with full posterior predictive
distributions using the delta-full NNLO interaction ensemble (ΔNNLO), including sampling of method and model errors. For the
latter, 68% and 90% credible intervals are shown as a thick and thin vertical bar, respectively, and the median is marked as a white
circle. The posterior predictive distributions are obtained using importance resampling. Experimental data [126] (and Refs. [73,85]
for 32Ne) are shown as black squares with error bars.
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i.e., 30Ne, the ΔNNLO posterior predictive distributions
indicate somewhat too compressed spectra. For neutron
number N ≥ 20, the excitation energies follow the pattern
EðJÞ ¼ JðJ þ 1Þ=ð2ΘÞ of a rigid rotor, and the relatively
small values reflect a large moment of inertia Θ and a
strong deformation. The computed energy-ratio R42 ≡
Eð4þÞ=Eð2þÞ values of 34Ne are 3.37� 0.13 from the
posterior (68% credible interval) and 3.38� 0.12 for
1.8=2.0ðEMÞ; both are close to the value 10=3 of a rigid
rotor. Results for the drip line nucleus 34Ne are predictions.
The upper panel in Fig. 3 shows the computed electric

quadrupole transition strength from the first excited 2þ
state to the 0þ ground state. Overall, theory agrees with
data, though both theoretical and experimental uncertain-
ties are substantial. Here, all six data points are already
within the 68% credible interval for the ΔNNLO ensemble.
For the point prediction, five out of six data points are
within the one-sigma uncertainty. For 30Ne, theory is as
precise as data, and we make equally precise predictions
for 32;34Ne.
These results demonstrate that the inclusion of short-

and long-range correlations on top of an axially deformed
reference state enables one to accurately capture quadru-
pole collectivity. The resulting picture is simple and well
aligned with ideas from effective field theories where short-
range and long-range correlations are distinguished. The
symmetry-breaking Hartree-Fock state provides us with a
leading-order description of the nucleus and yields the
Fermi momentum as a dividing scale. Short-range (high-
momentum) contributions are included via few-particle–
few-hole excitations within standard coupled-cluster
theory; this yields almost all binding energy. Long-range
correlations enter as a higher-order correction via many-
particle–many-hole excitations and are included by sym-
metry projection of the correlated and symmetry-broken
coupled-cluster state. This contributes little energy to the
binding of the nucleus but is essential for its collective
structure. This combined approach overcomes a long-
standing multiscale challenge in low-energy nuclear
physics [10,68,114,116,127].
We also compute rotational bands for magnesium

isotopes. These nuclei are much better known than the
neon isotopes. For this reason, we limit ourselves to the
1.8=2.0ðEMÞ potential and perform only projected Hartree-
Fock calculations. The result are close to data and shown
for completeness in Appendix D.

B. Shape coexistence in 30Ne and 32Mg

The nuclei 30Ne and 32Mg are particularly interesting,
as they contain 20 neutrons, which is a magic number in
the traditional shell model [128]. Though these nuclei are
deformed in their ground state [129,130], signatures of the
N ¼ 20 magic number can be seen in our calculations
and lead to shape coexistence. While it would be most
interesting to study shape coexistence with the ensemble of

ΔNNLO interactions, the computational cost is beyond the
scope of this work. Therefore, the following calculations
are based on the 1.8=2.0ðEMÞ interaction. This interaction
is known to be most accurate for binding energies and
spectra. For comparison, we briefly present results obtained
for the standard parametrization of the ΔNNLOGOð394Þ
interaction [95].
For 30Ne and 32Mg, we perform constrained quadrupole-

moment Hartree-Fock calculations, as described in
Sec. II B, starting from a spherical harmonic oscillator
basis with oscillator frequency ℏω ¼ 14 MeV. In both
nuclei, we find one minimum corresponding to a more
spherical shape plus a second one with strong deformation;
see Figs. 4(a) and 5(a). The near-spherical configurations
are close in energy to the well-deformed ones. This
suggests that the shape coexistence, observed for N ¼ 20

in 32Mg [74], remains present when two protons are
removed from that nucleus. We note that the more spherical
and well-deformed Hartree-Fock states exhibit different
occupations of Nilsson orbitals. The more spherical states
reflect the N ¼ 20 subshell closure for neutrons. For the
deformed states, two intruder orbitals with jz ¼ �1=2 from
the pf shell are occupied. As we work in a single-reference
framework (and do not break particle numbers as in
Hartree-Fock Bogoliubov), there is no continuous con-
nection between the two different Hartree-Fock energy
“surfaces.” One can relate the quadrupole expectation
values q20 to the quadrupole deformation parameter β2
via β2 ¼

ffiffiffiffiffiffi
5π

p
q20=ð3AR2

0Þ, where R0 ¼ 1.2A1=3 fm [131].
Using this relation, one gets β2 ¼ 0.10 and 0.44 for the
near-spherical and deformed minimum in 30Ne, respec-
tively. For 32Mg, the corresponding values are β ¼ 0.11
and 0.43.
Figures 4(b), 4(c), 5(b), and 5(c) demonstrate the vast

difference of scales of the computed binding energies E and
the rotational excitation energies E�. Both scales simulta-
neously emerge in our calculations. The main contribution
to the ground-state energy comes from short-range corre-
lations in the wave function. Two-particle–two-hole exci-
tations, included via CCSD, give the main contribution
to the correlation energy [i.e., the energy in excess of the
Hartree-Fock energy shown in Figs. 4(a) and 5(a)]. Here,
the triples estimates are taken as 10% of the CCSD
correlation energy, which was confirmed in benchmark
calculations; see Appendix B. We see that the more
spherical 0þ ground state in 30Ne resides about 1.8 MeV
above the prolate 0þ ground state. Binding energies are
reproduced within about 3%, and angular-momentum
projection would further reduce the small discrepancy. In
contrast to 30Ne, the energy difference between the com-
peting spherical and prolate minima in 32Mg is only a
few tens of keV after angular-momentum projection.
Thus, from our computations we cannot conclusively
decide which state corresponds to the ground state in this
nucleus. In addition, we do not study any level mixing
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and—at this moment—cannot compute the Hamiltonian
matrix element between correlated states belonging to
different deformations.
We also compute the energies for the near-spherical

and the well-deformed minimum-energy configurations in
30Ne and 32Mg with the ΔNNLOGOð394Þ interaction and
use a model space with Nmax ¼ 12 and ℏω ¼ 14 MeV.

We find unprojected CCSD ground-state energies of
−195.9 and −196.0 MeV for the near-spherical and
deformed configurations in 30Ne, respectively, and
−233.5 and −232.1 MeV for the corresponding states
in 32Mg. Thus, we also find shape coexistence with this
interaction. We also see that the computed energies are
close to those of the 1.8=2.0ðEMÞ interaction that are

FIG. 4. (a) shows the Hartree-Fock energy for 30Ne as a function of the quadrupole deformation q20 for the more spherical (left, red
curves) and deformed (right, blue curves) states for increasingly larger model spaces (labeled by Nmax) with an oscillator frequency of
ℏω ¼ 14 MeV. (b) demonstrates the convergence of the ground-state energy from symmetry-breaking coupled cluster with singles and
doubles (CCSD) and triples estimates [CCSD þ ðTÞ]. These deformed states are superpositions of states with good angular momentum.
(c) shows the rotational bands obtained from angular-momentum-projected coupled-cluster computations of the deformed states in a
model space Nmax ¼ 8. All calculations are based the interaction 1.8=2.0ðEMÞ.

FIG. 5. The same as Fig. 4 but for 32Mg.
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shown in Figs. 4(b) and 5(b). By adding the energy gain
from projected Hartree-Fock, we find that the deformed
configurations are the ground states in these nuclei.

C. Global sensitivity analysis of deformation

The ab initio computations presented in this work have a
high resolution that allows one to study how individual
terms corresponding to the 17 low-energy constants of a
delta-full chiral interaction at NNLO [95], with regulator
cutoff 394 MeV=c, impact nuclear deformation. To quan-
tify this, we perform a variance-based global sensitivity
analysis [61] of the Eð4þÞ=Eð2þÞ ratio R42 in 20;32Ne and
34Mg. This dimensionless quantity signifies nuclear defor-
mation [132] and emergent breaking of rotational sym-
metry [133]. It is sufficiently accurate to solve for the
excited-state energies Eð2þÞ and Eð4þÞ in 20;32Ne and 34Mg
using projection-after-variation Hartree-Fock, because the
R42 values from Hartree-Fock and coupled-cluster theory
are within 7% of each other (see Refs. [13,15] and
Appendix B). However, the Monte Carlo sampling in a
global sensitivity analysis requires prohibitively many
projected Hartree-Fock computations. Indeed, we find it
necessary to use one million samples to keep sampling
uncertainties under control. To overcome this computa-
tional barrier, we develop fast and accurate emulators for
the excitation energies using the method described in
Sec. II F.
The strategy for training the emulator is similar to

Ref. [64]. We generate 68 snapshots of the first excited
2þ and 4þ states, in the Hartree-Fock approximation,
using values for the 17 low-energy constants according
to a space-filling Latin hypercube design encompassing
20%–30% variation of their ΔNNLOGOð394Þ values [95].
Figure 6 shows the accuracy of the resulting emulator for
R42 as quantified by comparison with 400 exact projected
Hartree-Fock calculations. The standard deviation of the
differences indicates a relative precision of 1% (at the one-
sigma level) for the interval of R42 values relevant to the
global sensitivity analysis presented below. The excitation
energies using our reduced-order model are accurate on the
10 keV level.
In the global sensitivity analysis, we numerically quan-

tify, and decompose, the variances of the excitation
energies for the 20;32Ne and 34Mg isotopes due to sampling
one million different values of the low-energy constants at
NNLO. The variances are decomposed in terms of the

leading S-wave contacts C̃3S1 and C̃
ðτÞ
1S0

with τ ¼ nn; np; pp

denoting the isospin projections, the subleading contacts
C1S0 , C3S1 , C3P0

, C1P1
, C3P1

, and C3P2
(acting in a partial

wave as indicated by the subscript), and CE1
acting in the

off-diagonal triplet S −D channel. We also include the four
subleading pion-nucleon couplings c1;2;3;4, as well as the
cD and cE couplings governing the strengths of the short-
range three-nucleon potential. The variance integrals

underlying the sensitivity analysis are evaluated on a
hypercubic domain centered on the ΔNNLOGOð394Þ
parametrization [95]. The size of the domain is based on
recent Bayesian analyses [134,135] and naturalness argu-
ments from effective field theory. In detail, we use
�0.05 GeV−1 as the relevant range for each of the pion-
nucleon couplings ci and �0.05 × 104 GeV−4 for the
subleading constants Ci. The leading-order contact cou-
plings C̃i are somewhat small, and their intervals are limited
to �0.005 × 104 GeV−2. We examine our results for
robustness by rescaling all side lengths of the hypercube
by factors of 1=2 and 2. Even larger domains result in
noticeable higher-order sensitivities which we do not
analyze further.
A majority of the samples in all three nuclei have

R42 ≈ 10=3 within 5%. This indicates that an axially
deformed rigid rotor and emergent symmetry breaking is
a robust feature of the effective field theory description of
these nuclei. The variance of the conditional mean of R42,
with respect to a low-energy constant, divided by the total
variance is a dimensionless ratio called the main effect.
Overall, we find that more than 90% of the variance in R42

FIG. 6. Accuracy of R42 emulators as measured by the differ-
ence with respect to 400 exact Hartree-Fock calculations, on the y
axis, as a function of R42 on the x axis. Shown are the subsets of
results for which R42 ∈ ½2; 4�, i.e., the range relevant to the global
sensitivity analysis. The horizontal dashed lines indicate preci-
sion, as they are spaced by two standard deviations of the
projected histograms (shown in side panels).
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is explained via main effects. Figure 7 shows the main
effects for R42 in 20;32Ne and 34Mg in terms of groups
of low-energy constants proportional to medium-range
two-pion exchange, short-range nucleon-nucleon contact
interactions in the S and Pwaves, and the short-range three-
nucleon interactions consisting of a contact interaction and
pion exchange plus contact interaction. A greater value of
the main effect indicates a larger sensitivity of R42 to the
corresponding component of the chiral interaction. For all
three nuclei, more than 50% of the deformation is driven by
the S-wave contact part of the interaction. Adding short-
range repulsion appears to increase deformation, probably
by reducing pairing. Medium-range two-pion exchange is
also important. Increasing its strength increases deforma-
tion, presumably by adding attraction in higher partial
waves. The pion-nucleon couplings c1, c2, and c3 enter
prominently in the central potential of the two-pion
exchange [136].
Figure 8 shows the main effects for R42 in 20;32Ne and

34Mg in more detail. For all three nuclei, about 40% of the
deformation is driven by the subleading pion-nucleon
coupling c3 and the subleading singlet S-wave contact
C1S0 . The c3 coupling enters the attractive central part
from the medium-range two-pion exchange in the nucleon-
nucleon potential and also in the three-nucleon potential
[136]. For 32Ne and 34Mg, with many more neutrons than
20Ne, deformation becomes more sensitive to the isospin-
breaking S-wave contact in the neutron-neutron channel.

For 34Mg, the ratio R42 appears to become more sensitive
to the pion-nucleon coupling c2. See Appendix E for the
sensitivities of Hartree-Fock energies, including ground-
state energies.
We can also use the posterior samples employed in Fig. 3

to probe what impacts deformation. The most relevant parts
of the nuclear interaction can then be identified by studying
correlations between the observable R42 in 32Ne and
individual low-energy constants. We find that the correla-
tion is strongest for the S-wave contact term (with a
correlation coefficient r ¼ 0.73; i.e., an increase in the
repulsive low-energy constant increases deformation), but
it is also sizable for the three-nucleon contact interaction
(see Appendix E for details). Comparing these results with
the conditional variances from the global sensitivity analy-
sis confirms the importance of pairing via the 1S0 channel.
We note that the domain of low-energy constants used in
the global sensitivity analysis is smaller than the region
spanned by the Bayesian posterior interaction ensemble.
Our sensitivity analysis is a first step, and the emerging

picture is still incomplete. Indeed, we do not gauge
the sensitivities of tensor and spin-orbit terms in the
Hamiltonian that are independent of the low-energy con-
stants. We also remind the reader that our potential lacks
D-wave contacts beyond the off-diagonal triplet S −D
coupling, because these enter only at the next higher order.
It will be interesting to compare more complete results
with shell-model pictures about what drives nuclear defor-
mation [37,38,48,137,138].

IV. SUMMARY AND DISCUSSION

In summary, we demonstrated how ab initio computa-
tions of nuclei can accurately describe binding energies,
rotational bands, and collective electromagnetic transition
strengths. These results were obtained in a nonperturbative
framework where dynamical correlations were included via
coupled-cluster theory and static correlations via angular-
momentum projection. These advances allowed us to
explore how collective nuclear properties are sensitive to
specific terms in effective Hamiltonians of low-energy
quantum chromodynamics that include nucleon-nucleon
and three-nucleon forces. We found that the contacts in the

FIG. 8. Main effects for the R42 deformation measure in 20;32Ne and 34Mg from the low-energy constants as obtained in a global
sensitivity analysis of 106 emulations of projected Hartree-Fock computations using delta-full chiral effective field theory at next-to-
next-to-leading order. Distributions of R42 for 20Ne, 32Ne, and 34Mg are also shown.

FIG. 7. Global sensitivity analysis of 106 emulations of
projected Hartree-Fock computations in 20;32Ne and 34Mg using
delta-full chiral effective field theory at next-to-next-to-leading
order.
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1S0 partial wave and the three-body contact play a major
role in shaping nuclei. Using an ensemble of calibrated
interactions, we made predictions with quantified uncer-
tainties in neutron-rich neon nuclei. The uncertainties—
while still considerable—are on par with experiment for the
neon isotopes close to the neutron drip line. In particular,
we predict shape coexistence in 30Ne.
This work points to a conceptually simple and attractive

multiscale picture of nuclei where the symmetry-breaking
reference state contains the relevant physics aspects. Size-
extensive methods then yield the lion’s share of the binding
energy, while symmetry-projection methods account for
important collective components in the wave function that,
however, contribute comparatively little to the binding
energy.
Our computations demonstrate the predictive power of

ab initio methods. This reductionist approach combines
ever-increasing computational modeling capabilities and
heuristic techniques to capture dynamical and emergent
properties of complex systems. Other collective degrees of
freedom (besides rotations) such as vibrations or competing
shapes can be added in the same framework, because they
can be realized as exponentiated one-body operators.
Our sensitivity analysis provided first insights to the link
between microscopic nuclear forces and complex nuclear
phenomenology. The ab initiomethods, and accompanying
emulator techniques, developed in this work open for
computational statistics analyses to identify principal com-
ponents that drive emergent phenomena in finite systems.
While we focused on an important problem in nuclear
physics, similar challenges exist in quantum chemistry.
Thus, we expect the novel symmetry-projection techniques
of correlated states to be useful in many other applications.
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APPENDIX A: OVERVIEW

The appendixes contain a number of details that support
and further illuminate the results presented in the main
text. Appendix B presents benchmarks and details about
model-space dependencies for neon nuclei. We state our
assumptions about various uncertainties in Appendix C.
Appendix D presents details regarding results in magne-
sium isotopes. Finally, we give many more details about our
global sensitivity analysis in Appendix E.

APPENDIX B: BENCHMARKS, MODEL-SPACE
DEPENDENCE, AND GROUND-STATE
ENERGIES FOR NEON ISOTOPES

For the computation of the ground-state energies of the
20–34Ne isotopes, we use the 1.8=2.0ðEMÞ interaction and
follow the approach in Ref. [107] and use a natural orbital
basis and the coupled cluster with singles-doubles and
leading-order triples excitations, known as the CCSDT-1
approximation [140,141]. The use of natural orbitals allows
for converged CCSDT-1 calculations by imposing a cut on
the product of occupation numbers for three particles above
the Fermi surface and for three holes below the Fermi
surface [107]. We use a model-space of 13 major oscillator
shells with the oscillator frequency ℏω ¼ 14 MeV.
Figure 9 shows that binding energies are reproduced

within about 3%. Angular-momentum projection is
expected to further reduce the small discrepancy. We note
that the triples correlation energy for all neon isotopes
amounts to about 10% of the correlation energy from
CCSD. This is consistent with findings for coupled-cluster
computations of closed-shell spherical nuclei [20] and in
quantum chemistry [33]. This justifies the triples estimates
presented in Figs. 4 and 5 in the main text.
We turn to benchmarks with the symmetry-adapted no-

core shell model (SA-NCSM) [9,11,16]. These are based
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on the NNLOopt nucleon-nucleon interaction [112] and the
20Ne nucleus. Figure 10 shows the 2þ and 4þ rotational
states as a function of the oscillator frequency ℏω for
model spaces consisting of Nmax þ 1 shells. We compare
projection-after-variation results from Hartree-Fock with
those from a “naive” (i.e., the left state is simply the adjoint
of the reference state) and the bivariational coupled-cluster
ansatz in Eq. (3), respectively. We see that both excited
states are well converged with respect to the model-space
size for Hartree-Fock. The coupled-cluster results exhibit a
bit more model-space dependence. This might be because
the disentangled coupled-cluster approach does not restore
the broken symmetry exactly [15,34]. We also see that
projected Hartree-Fock and the projected bivariational

coupled-cluster are close to each other and to the SA-
NCSM results. The “naive” coupled-cluster approach
yields more compressed spectra. The agreement between
Hartree-Fock and the much more expensive SA-NCSM and
projected coupled-cluster results show how simple the
physics behind rotational bands can be. This justifies the
usage of a Hartree-Fock-based reduced-order model in
the global sensitivity analysis of the ratio R42. The accuracy
of Hartree-Fock rotational bands is presumably limited to
light nuclei, where superfluidity and pairing correlations
are less important.
We also compare R42 ratios from projected Hartree-Fock

and coupled-cluster theory. Figure 10 shows that these are
close in 20Ne. For 32Ne, using the 1.8=2.0ðEMÞ interaction,
we find R42 ¼ 3.49 from Hartree-Fock and 3.25 from
coupled-cluster theory. For 34Ne, the corresponding values
are R42 ¼ 3.46 and 3.38, respectively.
We also want to benchmark the electric quadrupole

transition strength. Our calculations are based on projected
coupled-cluster theory, as described in Sec. II E. Figure 11
compares our computation of the BðE2Þ strength in 20Ne
with the SA-NCSM results from Ref. [11], again for the
nucleon-nucleon interaction NNLOopt. Both results agree
within uncertainties from finite model spaces. The bench-
marks with the SA-NCSM give us confidence in the
accuracy of our computations.
We turn to details regarding the results shown in Fig. 3 in

the main text and focus on the interaction 1.8=2.0ðEMÞ.
Figure 12 shows the energies of the 2þ and 4þ excited
states in 20–34Ne and compares them to data for different
model spaces (parametrized by the oscillator frequency ℏω
and the number of shells Nmaxþ1). We find that the states
are well converged with respect to model-space size. The
variation of the results with respect to the model space is
shown as an uncertainty in Fig. 3 in the main text. Our
results for 20Ne agree with those by Frosini et al. [14] using
the same interaction.

FIG. 9. Energies from the Hartree-Fock, CCSD, and CCSDT-1
approximations using the interaction 1.8=2.0ðEMÞ from chiral
effective field theory [31]. Results are based on a natural orbital
basis built from 13 major oscillator shells with a frequency of
ℏω ¼ 14 MeV. The triples correction amounts to about 10% of
the correlation energy from CCSD (ΔE).

FIG. 10. Comparison between projection-after-variation
Hartree-Fock (HF), naive projected coupled-cluster (naive
CCSD), and projected coupled-cluster method (CCSD) for the
excited 2þ and 4þ in 20Ne using the NNLOopt nucleon-nucleon
interaction. The dashed lines show benchmark results from the
SA-NCSM [11].

FIG. 11. Results from projected coupled-cluster method
(CCSD) using the NNLOopt nucleon-nucleon interaction [112]
for different model-space sizes (Nmax) and oscillator frequencies
(ℏω) and compared with the symmetry-adapted no-core shell
model (red band) [11].
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Figure 13 shows the BðE2;↓Þ for the transition between
the first excited 2þ state and the ground state in 20–34Ne
obtained with the interaction 1.8=2.0ðEMÞ and compared to
available data for different model spaces (parametrized by
the oscillator frequency ℏω and the number of shells
Nmaxþ1). We find that the BðE2;↓Þ is well converged with
respect to model-space size for isotopes with N ≥ 20 while
less so for neon nuclei with N < 20. The variation of the
results with respect to the model space is shown as an
uncertainty in the upper panel in Fig. 3 in the main text.

APPENDIX C: UNCERTAINTY ESTIMATES

The results based on the 1.8=2.0ðEMÞ interaction
include estimates of the method uncertainty coming from
the use of method and model-space truncations. To estimate
the latter, we considered the spread of results obtained for
Nmax ¼ 6–8 and ℏω ¼ 10–16 MeV (see Figs. 13 and 12).
We assign (one-sigma) errors based on model-space

truncations and on limitations of our method on our point
predictions. This estimate is based on the spread of results
from model-space truncations and from benchmarks with
the no-core shell model. We find that model-space trunca-
tion errors are smaller than the estimated method truncation
errors (see below).
For the delta-full NNLO interaction model, we

employ the ensemble of Bayesian posterior samples and
quantify both method and model uncertainties for predicted
observables. We employ a fixed model space of Nmax ¼ 7
and ℏω ¼ 14 MeV and assign normally distributed
method errors with relative (one-sigma) errors of 10%
(5%) for 2þ (4þ) excitation energies (corresponding to
about 100–150 keV). For the BðE2;↓Þ, we assign a 15%
(one-sigma) method error from our benchmark with the
symmetry adapted no-core shell model [9] in 20Ne; see
Fig. 11. Moreover, we assign 10% (one-sigma) relative
EFT truncation errors for all excitation energies and all
transition strengths obtained with the ensemble of delta-full

FIG. 12. Energies E of the lowest 2þ and 4þ states in even nuclei 20–34Ne, computed with the interaction 1.8=2.0ðEMÞ from chiral
effective field theory [31], shown as a function of the oscillator frequency and for various model spaces, and compared to data.

FIG. 13. BðE2;↓Þ computed with the interaction 1.8=2.0ðEMÞ from chiral effective field theory [31] as a function of the oscillator
frequency (ℏω) for various model-space sizes (Nmax). Results are compared with available data (black dotted lines with gray uncertainty
bands), taken from Ref. [131] for 20;24–28Ne, from Ref. [115] for 22Ne, and from Ref. [130] for 30Ne.
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NNLO interactions. We use experimental values to trans-
late relative errors to absolute ones, and we use reference
values of 1.0 and 2.5 MeV for 2þ and 4þ excitation
energies, respectively (because these are the energy scales
for the corresponding excitations), and 50 e2fm4 for
BðE2;↓Þ to get absolute errors for 32;34Ne where exper-
imental data are not available [because this is an estimate
for BðE2;↓Þ in neon nuclei]. All errors are described by
independent normal distributions.

APPENDIX D: DETAILS TO MAGNESIUM
NUCLEI

Our studies of heavier magnesium nuclei are limited
to using projection after variation of Hartree-Fock states.
This simplification is justified based on Ref. [15] and the
comparison of the rotational bands obtained from Hartree-
Fock and coupled-cluster theory in the 20Ne, as shown in
Appendix B.
Figure 14 shows projected Hartree-Fock results for the

energies Eð2þÞ and Eð4þÞ in 32–40Mg computed with the
1.8=2.0ðEMÞ interaction as a function of the oscillator
frequency ℏω in model spaces consisting of Nmax þ 1
shells. The results exhibit only a small model-space
dependence and are close to data.
For 32Mg, the Hartree-Fock results already confirm the

shape coexistence in this nucleus [74]. While the spherical
Hartree-Fock state is about 1 MeV lower in energy than the
deformed one, the inclusion of short-range correlations via
coupled-cluster theory reduces this difference.

Similarly, we see shape coexistence in 40Mg, confirming
the experimental [77] and theoretical results [41]. Our
calculations of the drip line nucleus 40Mg include couplings
to the particle continuum via a Woods-Saxon basis con-
sisting of bound and scattering states for the neutron p3=2

partial wave, following Ref. [142].
One expects an inversion of the p3=2 and f7=2 single-

particle orbitals close to the magnesium drip line. This is
supported by the observation that 37Mg is a deformed
p-wave halo nucleus [143] and mean-field computations
accounting for deformation and continuum coupling
[144,145]. Indeed, our calculations for 38;40Mg show an
inversion of the Kπ ¼ 7=2− and Kπ ¼ 1=2− single-particle
orbitals (where K denotes the single-particle angular-
momentum component along the axial symmetry axis).
We find that 34–40Mg are all prolate in their ground state,
and the computed rotational bands are close to data.
Interestingly, for 40Mg, we also find an oblate Hartree-

Fock state that is close in energy to the prolate ground state.
Performing coupled-cluster calculations for these two
references, we find that the oblate band head is about
3 MeV above the prolate ground state, indicating an onset
of shape coexistence and a possible interpretation of the
third observed state [77]. This picture is also consistent
with the Monte Carlo shell-model computations of
Tsunoda et al. [41]. Figure 14 shows both the prolate
and oblate 2þ and 4þ states, and we observe that the
rotational structure of these two bands are very similar and
close to that of a rigid rotor.

FIG. 14. Energies as a function of the oscillator frequency (ℏω) and for various model spaces (Nmax), computed using projected
Hartree-Fock with the chiral interaction 1.8=2.0ðEMÞ [31] and compared to data (dashed horizontal lines). For 40Mg, we show both the
prolate and oblate rotational bands; the latter band head is about 3 MeV above the prolate ground state. The pictures show spherical,
prolate deformed, and oblate deformed ellipsoids.
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APPENDIX E: SENSITIVITY STUDY
FOR NEON NUCLEI

Figure 15 shows the results from the sensitivity analysis
of the energies Eð0þÞ, Eð2þÞ, and Eð4þÞ in 20;32Ne and
34Mg. There are three main trends to observe. First, the
variance of Eð0þÞ, i.e., the energy of the ground state, is
explained to a great extent by the subleading pion-nucleon
coupling c2 and the leading S-wave contact C̃3S1 in all three
nuclei. The latter coupling is directly proportional to the
deuteron binding energy. Second, the ground- and excited-
state energies exhibit different main effect patterns, and this
indicates that the structures of their respective wave
functions likely differ. Third, for the energies, we also

show the total effects [146] (white bars on top of colored
bars of the main effects). They are nearly identical to the
main effects, with some differences observed in 32Ne, and
this indicates that the (sum of) higher-order sensitivities are
very small in the present domain.
Figure 16 shows the three strongest correlations between

the low-energy constants of the delta-full NNLO
Hamiltonian and the observables R42 and Eð2þÞ of 32Ne
for the ensemble of Bayesian posterior interactions. We
remind the reader that cE is the low-energy constant of the
three-body contact, while C̃1S0np and C1S0 are low-energy
coefficients at (isospin-breaking) leading and next-to-
leading order in the 1S0 partial wave (the former acts in
the neutron-proton channel of this partial wave).

FIG. 15. Results of the global sensitivity analysis for the structure of 20;32Ne and 34Mg (top, center, and bottom). All Monte Carlo samples
obtained as in the main text. Left: the main effects (colored bars) for R42 ground-state energy (Egs) and excited 2þ and 4þ states. The
vertical black bars indicate the respective 95% confidence intervals of the sensitivity indices as obtained using bootstrapped sampling. Here,
we also include total effects (white bars on top). Groups of right four panels: histograms displaying the variation of the 1 179 648 samples
for each output. All energies are obtained using an emulator based on eigenvector continuation of projected Hartree-Fock.
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many-body perturbation theory for nuclei: II. Ab initio
study of neon isotopes via PGCM and IM-NCSM calcu-
lations, Eur. Phys. J. A 58, 63 (2022).

[14] M. Frosini, T. Duguet, J. P. Ebran, B. Bally, H. Hergert,
T. R. Rodríguez, R. Roth, J. M. Yao, and V. Somà, Multi-
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J. P. Ebran, and V. Somà, In-medium k-body reduction
of n-body operators: A flexible symmetry-conserving
approach based on the sole one-body density matrix,
Eur. Phys. J. A 57, 151 (2021).

[105] A. Staszczak, M. Stoitsov, A. Baran, and W. Nazarewicz,
Augmented Lagrangian method for constrained nuclear
density functional theory, Eur. Phys. J. A 46, 85 (2010).

[106] R. F. Bishop, An overview of coupled cluster theory and
its applications in physics, Theor. Chim. Acta 80, 95
(1991).

[107] S. J. Novario, G. Hagen, G. R. Jansen, and T. Papenbrock,
Charge radii of exotic neon and magnesium isotopes,
Phys. Rev. C 102, 051303(R) (2020).

[108] J. Arponen, The method of stationary cluster amplitudes
and the phase transition in the Lipkin pseudospin model,
J. Phys. G 8, L129 (1982).

[109] J. Arponen, Variational principles and linked-cluster exp S
expansions for static and dynamic many-body problems,
Ann. Phys. (N.Y.) 151, 311 (1983).

[110] G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen,
and B. Velamur Asokan, Ab initio computation of
neutron-rich oxygen isotopes, Phys. Rev. C 80,
021306(R) (2009).

[111] D. J. Thouless, Stability conditions and nuclear rotations
in the Hartree-Fock theory, Nucl. Phys. 21, 225 (1960).

[112] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-
Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T.
Papenbrock, J. Sarich, and S.M. Wild, Optimized chiral
nucleon-nucleon interaction at next-to-next-to-leading or-
der, Phys. Rev. Lett. 110, 192502 (2013).

[113] B. Bally and T. Duguet, Norm overlap between many-body
states: Uncorrelated overlap between arbitrary Bogoliu-
bov product states, Phys. Rev. C 97, 024304 (2018).

[114] N. M. Parzuchowski, S. R. Stroberg, P. Navrátil, H.
Hergert, and S. K. Bogner, Ab initio electromagnetic
observables with the in-medium similarity renormalization
group, Phys. Rev. C 96, 034324 (2017).

[115] J. Henderson et al., Testing microscopically derived
descriptions of nuclear collectivity: Coulomb excitation
of 22Mg, Phys. Lett. B 782, 468 (2018).

[116] S. R. Stroberg, J. Henderson, G. Hackman, P.
Ruotsalainen, G. Hagen, and J. D. Holt, Systematics of
E2 strength in the sd shell with the valence-space
in-medium similarity renormalization group, Phys. Rev.
C 105, 034333 (2022).

[117] B. Bally and M. Bender, Projection on particle number
and angular momentum: Example of triaxial Bogoliubov
quasiparticle states, Phys. Rev. C 103, 024315 (2021).

[118] J. Fujita and H. Miyazawa, Pion theory of three-body
forces, Prog. Theor. Phys. 17, 360 (1957).

[119] D. L. Hill and J. A. Wheeler, Nuclear constitution and the
interpretation of fission phenomena, Phys. Rev. 89, 1102
(1953).

MULTISCALE PHYSICS OF ATOMIC NUCLEI FROM FIRST … PHYS. REV. X 15, 011028 (2025)

011028-21

https://doi.org/10.1038/nphys3529
https://doi.org/10.1103/PhysRevLett.117.172501
https://doi.org/10.1103/PhysRevLett.117.172501
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevLett.120.152503
https://doi.org/10.1038/s41567-019-0450-7
https://doi.org/10.1103/PhysRevC.107.024310
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.97.024332
https://doi.org/10.1103/PhysRevC.102.054301
https://doi.org/10.1214/10-BA524
https://doi.org/10.1214/10-BA524
https://doi.org/10.1186/s12918-017-0484-3
https://doi.org/10.1186/s12918-017-0484-3
https://doi.org/10.2307/2684170
https://doi.org/10.2307/2684170
https://doi.org/10.3389/fphy.2022.1058809
https://doi.org/10.1016/j.physletb.2017.04.039
https://doi.org/10.1103/PhysRevC.76.034302
https://doi.org/10.1103/PhysRevC.76.034302
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevC.88.054319
https://doi.org/10.1103/PhysRevC.88.054319
https://doi.org/10.1140/epja/s10050-021-00458-z
https://doi.org/10.1140/epja/i2010-11018-9
https://doi.org/10.1007/BF01119617
https://doi.org/10.1007/BF01119617
https://doi.org/10.1103/PhysRevC.102.051303
https://doi.org/10.1088/0305-4616/8/8/004
https://doi.org/10.1016/0003-4916(83)90284-1
https://doi.org/10.1103/PhysRevC.80.021306
https://doi.org/10.1103/PhysRevC.80.021306
https://doi.org/10.1016/0029-5582(60)90048-1
https://doi.org/10.1103/PhysRevLett.110.192502
https://doi.org/10.1103/PhysRevC.97.024304
https://doi.org/10.1103/PhysRevC.96.034324
https://doi.org/10.1016/j.physletb.2018.05.064
https://doi.org/10.1103/PhysRevC.105.034333
https://doi.org/10.1103/PhysRevC.105.034333
https://doi.org/10.1103/PhysRevC.103.024315
https://doi.org/10.1143/PTP.17.360
https://doi.org/10.1103/PhysRev.89.1102
https://doi.org/10.1103/PhysRev.89.1102


[120] J. J. Griffin and J. A. Wheeler, Collective motions in nuclei
by the method of generator coordinates, Phys. Rev. 108,
311 (1957).

[121] P.-O. Löwdin, Quantum theory of many-particle systems.
II. Study of the ordinary Hartree-Fock approximation,
Phys. Rev. 97, 1490 (1955).
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