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Although the similarity between nonstabilizer states—also known as magic states—in discrete-variable
systems and non-Gaussian states in continuous-variable systems has widely been recognized, the precise
connections between these two notions have still been unclear. We establish a fundamental link between
these two quantum resources via the Gottesman-Kitaev-Preskill (GKP) encoding. We show that the neg-
ativity of the continuous-variable Wigner function for an encoded GKP state coincides with a magic
measure we introduce, which matches the negativity of the discrete Wigner function for odd dimensions.
We also provide a continuous-variable representation of the stabilizer Rényi entropy—a recent proposal
for a magic measure for multiqubit states. We further provide the magic measure with an operational
interpretation as a runtime of a classical simulation algorithm. In addition, we employ our results to prove
that implementing a multiqubit logical non-Clifford operation in the GKP code subspace requires a non-
Gaussian operation even at the limit of perfect encoding, despite the fact that the ideal GKP states already
come with a large amount of non-Gaussianity.

DOI: 10.1103/PRXQuantum.6.010330

I. INTRODUCTION

The difference between what constitutes quantum and
classical physics is often hard to grasp. The hope is to
leverage quantum mechanics in order to get a computa-
tional speedup when using quantum computing compared
to classical computation. Finding and pinpointing the ori-
gins of the speedup or what property allows for such a phe-
nomenon is still an open problem. Aside from an academic
interest, this undertaking would allow us to identify and
quantify what resources are required to do a certain compu-
tational task. This fact becomes even more important, as in
reality every quantum information-processing task will be
restricted in a certain way given that it will be implemented
in a physical system, subjected to experimental constraints.

One of the promising paradigms for quantum infor-
mation processing assumes infinite-dimensional Hilbert
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spaces associated with observable possessing a continuous-
variable spectrum. Such a model can be implemented
using for example quantum optical systems [1], as well
as microwave cavities coupled to superconducting sys-
tems [2,3] or trapped ions [4,5], among others. In such
systems, non-Gaussian components have been identified
as necessary resources for quantum computational advan-
tages, as computation solely run by Gaussian resources
can be efficiently simulated classically [6–9]. Such non-
Gaussian features in, e.g., quantum states can be quantified
by several measures of non-Gaussianity [10–16], among
which the negativity of Wigner function [12,13,17] has
been known as a computable measure that is necessary for
exponential quantum advantage [7].

The other paradigm for quantum information process-
ing assumes discrete-variable systems, in which quan-
tum information is encoded in finite-dimensional Hilbert
spaces, and can be implemented in a vast amount of
platforms [18]. Among many relevant quantum resources
needed for efficient quantum information processing in
discrete-variable systems, one peculiar quantity necessary
for quantum speedup is the nonstabilizerness [19], also
known as quantum magic, which stems from the fact that
quantum circuits only consisting of stabilizer states and
Clifford operations can be efficiently simulable by classi-
cal computers [20]. Interestingly, for odd dimensions the
magicness of discrete-variable states can also be studied

2691-3399/25/6(1)/010330(30) 010330-1 Published by the American Physical Society

https://orcid.org/0000-0003-1677-8696
https://orcid.org/0000-0002-7130-6723
https://orcid.org/0000-0003-3837-8159
https://ror.org/040wg7k59
https://ror.org/057zh3y96
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.6.010330&domain=pdf&date_stamp=2025-02-18
http://dx.doi.org/10.1103/PRXQuantum.6.010330
mailto:oliver{_}hahn@posteo.de
mailto:oliver{_}hahn@posteo.de
https://creativecommons.org/licenses/by/4.0/


HAHN, FERRINI, and TAKAGI PRX QUANTUM 6, 010330 (2025)

by looking at a discrete version of the Wigner function
[21,22] analogously to the case of continuous-variable sys-
tems. Indeed, the negativity of the discrete Wigner function
[23,24] has been shown to be a valid magic measure
when the underlying Hilbert space has odd dimensions.
For even dimensions, one needs to consider other measures
[25–38], as there is no known quasiprobability distribution
that easily connects to magic.

Although some conceptual similarities between non-
Gaussianity and magic resources have been observed [22,
38–40], the direct quantitative connection between these
two resources has still been elusive. In particular, con-
structing a map between magic and non-Gaussianity would
strengthen the relation between two main operational
frameworks that are important for quantum computing and
provide a novel approach where one resource could be
analyzed by employing tools developed for analyzing the
other.

In this work, we accomplish this mapping by finding a
fundamental relation between the discrete and continuous-
variable systems via the Gottesman-Kitaev-Preskill (GKP)
encoding [41], which is one of the most promising error-
correcting codes for continuous-variable systems. We
introduce a family of distributions for discrete-variable
systems and show that their lp -norm exactly corresponds
to that of the continuous-variable Wigner function for the
GKP state encoding the original discrete-variable qudit.
Specifically for odd dimension, the l1-norm of the qudit
distributions yields the negativity of the associated Wigner
function for both discrete and continuous-variable settings.
The connection is even stronger as the continuous Wigner
function can be directly represented using the discrete
Wigner function of the encoded state. On the other hand,
our distributions yield a magic measure for all dimen-
sions, which encompasses the negativity of the discrete
Wigner function defined for odd dimensions and the sta-
bilizer Rényi entropy [33] defined for multiqubit systems
in a unified manner. These results allow us to provide a
fundamental and quantitative relation between magic and
non-Gaussianity. Our results, therefore, allow for recover-
ing and significantly extending a recent finding of the rela-
tion between multiqubit systems and continuous-variable
systems [34].

In addition to the Wigner function, we also find that
the lp -norm of the discrete-variable characteristic func-
tion (which corresponds to the coefficients of the gen-
eralized Pauli operators) exactly corresponds to the one
of continuous-variable characteristic functions of GKP-
encoded states. This provides a new interpretation of the
stabilizer Rényi entropy—which is precisely defined by
the lp -norm of the Pauli coefficients—in terms of GKP
encoding, and naturally extends it to all dimensions.

Furthermore, we obtain operational insights from our
framework. We first show that our magic measure—which
naturally emerges as the quantity corresponding to

non-Gaussianity—is equipped with an operational mean-
ing as a runtime of a classical simulation algorithm,
extending the previous approaches of classical simula-
tion based on quasiprobability distributions [42,43] to
all dimensions. Furthermore, we introduce a simulation
algorithm for GKP circuits that allows for all Gaussian uni-
taries as well as arbitrary qudit states encoded in GKP. In
addition, we apply our results to prove that the determinis-
tic implementation of a logical non-Clifford operation with
the same input and output systems in the GKP code sub-
space requires a non-Gaussian operation even in the limit
of ideal GKP input state. Since ideal GKP states have
unbounded non-Gaussianity, it is not a priori obvious that
more non-Gaussianity is needed to apply a logical non-
Clifford operation. Our result shows that this is actually
the case in general, extending an observation for specific
non-Clifford gates in multiqubit systems [44] to the general
class of non-Clifford gates on all dimensions.

II. PRELIMINARIES

Here we briefly review the relevant formalism for
discrete- and continuous-variable quantum computing.

A. Discrete variables

Qubits are ubiquitous in quantum information process-
ing and are d = 2 level systems. Qudits are an intuitive
generalizations to d dimensions. A general pure qudit state
is defined as

|ψ〉 =
d−1∑

i=0

αi |i〉 (1)

with normalization condition
∑d−1

i=0 |αi|2 = 1 and |i〉 a
computational basis state. The Pauli group can be defined
for arbitrary dimensions in analogy to the qubit case as
Pd = {ωu

DX v
d Zw

d : v, w ∈ Zd, u ∈ ZD
}
, where ωd = e2π i/d

is the dth root of unity and

D =
{

d : for d odd
2d : for d even

, (2)

with Zd being the integers modulo d. The d-dimensional
Pauli operators Zd, Xd, sometimes also called clock and
shift operators, are a way to generalize the qubit Pauli
operators Z2, X2 and are defined as

Xd =
d−1∑

j =0

|j + 1〉 〈j | , (3)

Zd =
d−1∑

j =0

ω
j
d |j 〉 〈j | , (4)

with the property X d
d = Zd

d = 1 [45].
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We use the generalized Pauli operators Xd, Zd to define
the d-dimensional Heisenberg-Weyl operators as [21,22]

Pd(a, b) = ω
1
2 ab
d X a

d Zb
d , (5)

with a, b ∈ Zd. Note here that for odd dimensions 1
2 = 2−1

is the multiplicative inverse on Zd while for even dimen-

sions it means ω
1
2
d = eiπ/d, as there is no multiplicative

inverse of 2. Note that if we write ei(π/d)ab, the product
ab is taken in Z rather than Zd. Then, the commutation
relations are

Pd(a, b)Pd(c, d) = ω
(a,b)�(c,d)T
d Pd(c, d)Pd(a, b), (6)

where

� =
(

0 −1
1 0

)
(7)

is the symplectic form.
For n-qudit systems, the Heisenberg-Weyl operators are

written by

Pd(u) = ⊗n
i=1Pd(ai, bi) (8)

with u = (a, b) ∈ Z2n
d , which satisfy the orthogonality

relation

Tr
[
Pd(u)P

†
d(v)

]
= dnδu,v. (9)

The d-dimensional n qudit Clifford group is generated by
the following unitary operations:

R =
d−1∑

j ,s=0

ω
js
d |s〉 〈j | ,

P =
d−1∑

j =0

ω
j 2/2
d (ωDω

−1
2d )

−j |j 〉 〈j | ,

SUM =
d−1∑

i,j =0

|i〉 〈i| ⊗ |i + j 〉 〈j | .

(10)

For d = 2, these operators reduce to the Hadamard, Phase,
and CNOT gate [45], respectively. A Clifford unitary UC
acts on the Heisenberg-Weyl operator in a simple way

UCPd(u)U
†
C = eiφPd(Su), (11)

where S ∈ SP(2n,ZD) is a symplectic matrix [45] associ-
ated with the Clifford unitary UC, and eiφ is some phase
factor.

Using the discrete Heisenberg-Weyl operators, we
define the characteristic function [22]

χDV
ρ (u) = d−nTr

[
ρPd(u)†

]
. (12)

Odd-dimensional systems allow for a simple way to define
the discrete Wigner function WDV

ρ : Z2n
d → R as the dis-

crete symplectic Fourier transform of the characteristic
function

WDV
ρ (u) = d−n

∑

v∈Z2n
d

ω
−uT�nv
d χDV

ρ (v) (13)

= d−nTr [A(u)ρ] , (14)

where �n now takes the form

� =
(

0 −1n
1n 0

)
(15)

and 1n is the n × n identity matrix. The phase-space point
operator in Eq. (14) can be written as

A(u) = d−n
∑

v∈Z2n
d

ω
−uT�nv
d Pd(v)†. (16)

The discrete Wigner function Wρ(u) in odd dimensions
has many useful properties. It is covariant under Clifford
unitaries UC meaning that

WDV
UCρU†

C
(u) = WDV

ρ (Su) (17)

with S ∈ Sp(2n,Zd) being the symplectic matrix asso-
ciated with the Clifford unitary UC. Although it is a
quasiprobability distribution and is thus not necessarily
positive, Wρ(u) yields a valid probability distribution for
an arbitrary stabilizer state. A pure stabilizer state is a
state that is uniquely defined by a set of dn commut-
ing Heisenberg-Weyl operators—the stabilizer group—of
which the state is in the +1 eigenspace of all operators in
the stabilizer group. A mixed stabilizer state is a convex
sum of pure stabilizer states. This property was utilized to
introduce a magic measure—a measure for nonstabilizer-
ness—given by the l1-norm of the discrete Wigner function
WDV
ρ , as

‖WDV
ρ ‖1 =

∑

u

∣∣WDV
ρ (u)

∣∣ . (18)

This quantity is therefore the negativity of the Wigner
function Eq. (17) [24]. This is a monotone under Clifford
operations in the sense of resource theories [46], i.e., it
is monotonically nonincreasing under stabilizer protocols
[24], which consist of (1) Clifford unitaries, (2) compo-
sition with stabilizer states, (3) Pauli measurements, (4)
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partial trace, (5) the above operations conditioned on the
outcomes of Pauli measurements or classical randomness.
Moreover, it is faithful for pure states, i.e., ‖WDV

ψ ‖1 = 1 if
and only if ψ is a stabilizer state for an arbitrary pure state
ψ [22].

In the following, we also consider the lp -norm of a
function f : Z2n

d → C defined by

‖f ‖p =

⎛

⎜⎝
∑

u∈Z2n
d

|f (u)|p
⎞

⎟⎠

1/p

(19)

for a real number p > 0, therefore yielding a generalization
of the negativity.

B. Continuous variables

The continuous-variable paradigm in quantum infor-
mation processing uses infinite-dimensional systems. The
central observables in these systems are commonly called
position Q and momentum P and that fulfill the canonical
commutation relations

[Q, P] = i. (20)

These operators have continuous spectra, which is why
this type of quantum information processing is often called
continuous variables, in contrast to the discrete-variable
systems described in the previous section. For a n-mode
system, the infinite-dimensional Heisenberg-Weyl opera-
tors, also known as displacement operators, are defined by

D(r) =
n∏

j =1

eirpj rqj /2e−irqj Pj eirpj Qj , (21)

where r = (rp1 , . . . , rpn , rq1 , . . . , rqn) = (rp, rq) and Qj , Pj
are position and momentum operators for the j th mode.
Displacement operators fulfill the commutation relation

D(r)D(r′) = e−irT�nr′
D(r′)D(r). (22)

Similarly to the discrete case, we can use the continu-
ous Heisenberg-Weyl operators to define the characteristic
function

χCV
ρ (r) = Tr [ρD(−r)] (23)

and the Wigner function as its symplectic Fourier trans-
form

WCV
ρ (r) = 1

(2π)n

∫
dr′eir�nr′

χρ(r′)

= 1
(2π)n

∫ ∞

−∞
dnxeirpx

〈
Q = rq + x

2

∣∣∣ ρ

×
∣∣∣Q = rq − x

2

〉
. (24)

The continuous Wigner function is a quasiprobability dis-
tribution and the Wigner negativity [17]

‖WCV
ρ ‖1 =

∫
dr
∣∣WCV

ρ (r)
∣∣ (25)

can be used as a valid measure for non-Gaussianity [12,
13]. Similarly to the case of discrete variables, we also
consider a lp -norm for a function f : R2n → C defined by

‖f ‖p =
(∫

dr|f (r)|p
)1/p

, (26)

which for p = 1 gives back the Wigner negativity (25) as
the l1-norm of the Wigner function.

A family of states playing a major role in this work
are the Gottesman-Kitaev-Preskill (GKP) states [41]. They
were originally introduced as error-correction codes for
bosonic quantum systems. In this work, we employ this
encoding as a platform to map magic and non-Gaussian
resources for general qudit dimensions, extending a prior
result for multiqubit systems [34].

In the following, we use a subscript to denote a
continuous-variable state that encodes a discrete-variable
state. For instance, ρGKP refers to a continuous-variable
state that encodes the qudit state ρ by the GKP encoding.
The computational basis state |j 〉 is encoded in the GKP
code as an infinite superposition of position eigenstates as

|j 〉GKP =
∞∑

s=−∞
|Q = α(j + ds)〉 , (27)

which is analogously described by the Wigner function

WCV
|j 〉〈j |GKP

(rp , rq)

= 1
2π

∫ ∞

−∞
dxeirp xψ j

(
rq + x

2

)∗
ψ j
(

rq − x
2

)

∝
∞∑

s,t=−∞
(−1)stδ

(
rp − π

dα
s
)
δ

(
rq − αj − dα

2
t
)

, (28)

with α = √
2π/d, and where ψ j

(
x) = 〈Q = x |j 〉GKP . A

useful property of the GKP code is that all Clifford uni-
taries on the code subspace can be implemented using
Gaussian unitaries.

As can be seen in Eq. (28), the Wigner function of a
GKP state consists of a collection of δ functions. This
comes with an unbounded negativity, which reflects the
fact that an ideal GKP state is unnormalizable. Neverthe-
less, one can see that the δ peaks are periodically posi-
tioned, with the unit cell having the size

√
2dπ × √

2dπ .
This motivates us to consider the lp -norm of a function f
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considered for a unit cell, defined by

‖f ‖p ,cell :=
(∫

cell
dr|f (r)|p

)1/p

, (29)

where
∫

cell refers to the integral over the domain restricted
to a hypercube rqi ∈ [0,

√
2dπ), rpi ∈ [0,

√
2dπ) in the

phase space.
We also note that there is a subtlety when we com-

pute lp -norm of a function that involves a δ function.
We describe the procedure to perform such integrals in
Appendix A.

III. BRIDGING MAGIC AND NON-GAUSSIANITY

In this section, we present our results that directly con-
nect the resource content of the discrete-variable state
with that of the continuous one, establishing a quantitative
relation between magic and non-Gaussianity.

A. Via Wigner function

The first path to connect magic and non-Gaussianity
uses the continuous Wigner function.

In order to make this connection, we consider an oper-
ator basis for qudit systems. For l, m ∈ Z2d, let Ol,m be an
operator defined by

Ol,m = e−iπml/dMlZm
d , (30)

where

Ml =
∑

u,v∈Zd
u+v=l mod d

|u〉 〈v| . (31)

This is proportional to a variant of the phase-space point
operator studied in Ref. [47]—we will later make this con-
nection more apparent. The operator in Eq. (30) can easily
be extended to n-qudit systems, where we define Ol,m =⊗n

i=1 Oli,mi for l, m ∈ Zn
2d. The operators Ol,m are invo-

lutions that are orthogonal in the Hilbert-Schmidt inner
product and therefore form a basis. Furthermore, they are
closed under Clifford unitaries. We will delve more into the
properties of the operators Ol,m in the next subsection.

Let us now define the distribution

xρ(l, m) := d−nTr(Ol,mρ), (32)

which corresponds to the coefficients for Ol,m when
expanding the state ρ with this operator basis. Although
l, m are elements of Zn

2d in general, the operators Ol,m,
and correspondingly xρ(l, m), can only gain a phase fac-
tor by a translation li → li + d and mi → mi + d for any
i = 1, . . . , n, and that the operators {Ol,m}l,m∈Zn

d
form an

operator basis of a n-qudit system. We consider the lp -
norm for this distribution over the restricted domain l, m ∈
Zn

d, i.e.,

‖xρ‖p =
⎛

⎝
∑

l,m∈Zn
d

|xρ(l, m)|p
⎞

⎠
1/p

. (33)

Its properties as a magic measure depend on whether the
dimension of the discrete-variable systems is even or odd.
Let us make this point explicit for the case of p = 1. We
first introduce the following proposition:

Proposition 1. The quantity ‖xρ‖1 is a magic measure
for pure states, i.e., it satisfies the following properties, in
any dimensions.

(1) Invariance under Clifford unitaries UC:∥∥∥x
UCρU†

C

∥∥∥
1

= ∥∥xρ
∥∥

1.

(2) Multiplicativity:
∥∥xρ⊗σ

∥∥
1 = ∥∥xρ

∥∥
1 ‖xσ‖1.

(3) Pure stabilizer states achieve the minimum value:
‖xφ‖1 = 1 for every pure stabilizer state φ, and
‖xψ‖1 ≥ 1 for every pure state ψ .

The first two properties directly follow from the proper-
ties of Ol,m, which we will address in detail in Sec. III A 1.
We show the third property in Appendix B.

For odd dimensions, ‖xρ‖1 coincides with the discrete
Wigner negativity [22,24]. As such, it can be defined
for general mixed states, and it satisfies the properties
discussed below Eq. (18), namely monotonicity under gen-
eral Clifford protocols, also including Pauli measurements,
along the following property.

Proposition 1. (continued)

(4) Faithfulness: For a pure state φ, ‖xφ‖1 = 1 if and
only if φ is a stabilizer state.

On the other hand, for the case of even dimensions, ‖xρ‖1,
and more generally ‖xρ‖p , do not reduce to known magic
measures in general. As a matter of fact, the definition
of a discrete Wigner function in even dimensions is more
challenging and involves expanding the set of phase-space
point operators to an overcomplete basis [48]. In addition,
the phase-space point operators always have a unit trace
[22,48], while it is not the case for Ol,m in even dimen-
sions, indicating the subtlety of connecting it to Wigner
functions. However, for the special case of d = 2, we will
show in Sec. III B that ‖xρ‖p is proportional to the sta-
bilizer Rényi entropy for α = p/2 [33], as the operators
Ol,m reduce to the Pauli operators. As a consequence, we
recover faithfulness of ‖xψ‖p for pure multiqubit states in
arbitrary p . In addition, it has recently been shown that
the stabilizer Rényi entropy with α ≥ 2 satisfies the mono-
tonicity under stabilizer protocols [49], implying the same
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property for ‖xψ‖p in qubit systems. Stabilizer protocols
include Clifford unitaries, computational basis measure-
ments, addition of computational basis states and feedfor-
ward of the previous operations on measurement outcomes
and classical randomness.

In summary, the major dividing line between even and
odd dimensions for the above magic measures is the
question of monotonicity under Pauli measurement and
the inclusion of mixed states. Broadly speaking, it is an
important problem to find computable magic measures for
multiqudit systems that are nonincreasing under Pauli mea-
surements. Beyond the stabilizer Rényi entropy with α ≥
2, one such measure is known as stabilizer nullity [31],
but it is a highly discontinuous measure unstable under
an infinitesimally small perturbation. Finding such other
computable measures with full monotonicity will make an
interesting future direction.

Having introduced the main ingredients, we are ready
to present the main result. We provide a fundamental and
quantitative relation between magic and non-Gaussianity,
both of which are central quantum resources in the major
operational frameworks for quantum computing. We do so
by directly connecting the magic measure defined above
to the amount of Wigner negativity of the continuous-
variable state encoding the discrete-variable state. More
precisely, we connect the lp -norm of the continuous
Wigner function of a qudit encoded in GKP with the
lp -norm of the distribution defined in Eq. (32).

Theorem 1. For an n-qudit state ρ on a dn-dimensional
space and for an arbitrary real number p > 0, it holds that

dn(1−1/p)‖xρ‖p = ‖WCV
ρGKP

‖p ,cell

‖WCV
STABn,GKP‖p ,cell

, (34)

where

‖WCV
STABn,GKP‖p ,cell := ‖WCV

φGKP
‖p ,cell

= (4d)n/p/(8πd)n/2 (35)

is a quantity that takes the same value for every n-qudit
pure stabilizer state φ. When d is odd, we further have

dn(1−1/p)‖xρ‖p = dn(1−1/p)‖WDV
ρ ‖p = ‖WCV

ρGKP
‖p ,cell

‖WCV
STABn,GKP‖p ,cell

.

(36)

We prove Theorem 1 later in this section using the fol-
lowing general relation between the continuous-variable
Wigner function of the GKP state encoding a state and
the corresponding discrete Wigner function of the encoded
state, which may be of interest on its own.

The peculiar property of the Wigner function of GKP
states is that it comes with an atomic form, where the Dirac
distribution has disjoint support

WCV
ρGKP

(r)

=
√

d
n

√
8π

n

∑

l,m

cρGKP(l, m)δ
(

rp − m
√
π

2d

)
δ

(
rq − l

√
π

2d

)
,

(37)

where cρGKP(l, m) is a coefficient serving as a weight for
each peak in the Wigner function of a GKP state ρGKP. We
show how to derive Eq. (37) from Eq. (28) in Appendix C.
This Wigner function forms a lattice, so we restrict it to one
unit cell and focus on li, mi ∈ [0, 2d − 1] or equivalently
li, mi ∈ Z2d for each i = 1, . . . , n.

The following result shows that the weight cρGKP(l, m)
in the domain l, m ∈ Zn

2d exactly coincides with the distri-
bution defined in Eq. (32).

Proposition 2. For l, m ∈ Zn
2d, it holds that

cρGKP(l, m) = xρ(l, m). (38)

The proof of Proposition 2 can be found in Appendix C.
This establishes the fundamental relation between discrete-
variable and continuous-variable representations of an
arbitrary state ρ. As we will see later in this section, for odd
dimensions, Proposition 2 directly connects the discrete
Wigner function of an arbitrary state ρ and the continuous
Wigner function of the GKP state that encodes ρ.

Theorem 1 relates the lp -norm of GKP Wigner func-
tions to the lp -norm of xρ for a discrete-variable state ρ,
which quantifies the magicness in ρ, and therefore estab-
lishes a direct connection between the Wigner negativity
of a qudit encoded in GKP and a finite-dimensional magic
measure. The case of p = 1 is particularly insightful. In
this case, the 1 norm of the continuous-variable Wigner
function coincides with the continuous-variable Wigner
negativity, which is known to be a valid measure of non-
Gaussianity [12,13]. The quantity in Theorem 1 is then the
amount of non-Gaussianity renormalized by the negativity
of the GKP states encoding stabilizer states. This renor-
malization is necessary, as even stabilizer states encoded
in GKP have nonzero continuous Wigner negativity. In
light of Theorem 1, the properties in Proposition 1 can
be equivalently proven by leveraging on the properties of
continuous Wigner function.

1. Properties of operator basis

Since the operators Ol,m defined in Eq. (30) are of inter-
est in their own way and play a central role in connecting
the continuous-variable and discrete-variable worlds as
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can be seen in Theorem 1 and Proposition 2, let us inves-
tigate their properties. A proof of the properties outlined
here can be found in Appendix D.

Let us consider a single-qudit case, as the extension to
multiqudit case is straightforward. One can see that for
l, m ∈ Zd, the operator Ol,m can also be written as

Ol,m = e−iπml/dRX −l
d Zm

d , (39)

where R |j 〉 = |−j 〉 for j ∈ Zd is the reflection operator for
a computational basis state |j 〉 with |−j 〉 := |d − j 〉. The
form in Eq. (39) implies that our operator basis {Ol,m}l,m
is equivalent to the phase-space point operator introduced
in Ref. [47] up to a constant factor. In the case of odd
d, X −l/2

d and Zm/2
d are well defined (as Zd contains mul-

tiplicative inverse of 2 and thus −l/2, m/2 ∈ Zd), and the
relation between Ol,m and the phase-space point operator
(16) becomes apparent as

Ol,m = e−iπml/dω
lm
2

d X l/2
d Z−m/2

d RZm/2
d X −l/2

d

= (−1)mlPd

(
l
2

, −m
2

)
RPd

(
l
2

, −m
2

)†

= (−1)mlA
(

l
2

, −m
2

)
, (40)

where we used X a
d R = RX −a

d and Zb
dR = RZ−b

d for every
a, b ∈ Zd. We discuss the relation between Ol,m and the
phase-space point operator in detail in Appendix D.

In general, l, m ∈ Z2d are defined over mod 2d. How-
ever, for most applications, one can restrict to Zd. For a
value above d, the operators are periodic in d

Ml = Ml+d (41)

Zm
d = Zm+d

d (42)

but can have different phases

Ol+d,m = (−1)mOl,m

Ol,m+d = (−1)lOl,m

Ol+d,m+d = (−1)l+m+dOl,m.

(43)

Therefore, if one is only interested in the operators inde-
pendent of the sign, one can restrict the domain of l, m.

In general, Ol,m and Zd are unitary, and Ml is Hermitian.
Thus, it holds that

Ol,mO†
l,m = 1. (44)

The operator Ol,m is also Hermitian O = O† and thus

Ol,mOl,m = 1, (45)

implying that the spectrum is ±1.

These operators are orthogonal in the sense of the
Hilbert-Schmidt inner product

Tr
(
Ol,mOl′m′

) = δmm′δll′d. (46)

Furthermore, the action of Clifford unitaries on the opera-
tors Ol,m is equivalent to a symplectic linear transformation
on the coordinates (l, m) and constant shifts. We show
this in Appendix D 2. For d = 2, one recovers the stan-
dard Pauli operators. Therefore, Ol,m can be seen as a
Hermitian generalization of the Pauli operators to arbitrary
dimensions.

Ml contains d 1s for any dimension, but they behave
differently for even and odd dimensions. Whether the oper-
ator is traceless for even dimensions depends on whether l
is even or odd—Ml is traceless for odd l, while it has trace
2 for even l. For odd dimensions, the matrices Ml have
trace 1.

Using the properties of Ml and the known properties of
Zd, we can now give a summary of the properties of Ol,m

Tr[Ol,m] =

⎧
⎪⎨

⎪⎩

1 + (−1)m d, l even
0 d even, l odd
(−1)ml d odd

(47)

Ol,m = O†
l,m (48)

O2
l,m = 1 (49)

Tr
(
Ol,mOl′m′

) = δmm′δll′d. (50)

The properties above extend straightforwardly to the case
of many qudits.

As we have seen that the operators are orthogonal under
the Hilbert-Schmidt norm and form a basis, we can expand
operators in that basis. We restrict to l, m ∈ Zn

d, since the
operators for other l, m are the same modulo a potentially
different sign that can be absorbed in the coefficients.

We can represent every multiqudit quantum state in the
basis of the operators Ol,m such that

ρ =
∑

m,l

Tr
[
ρ

Ol,m

dn

]
Ol,m

=
∑

l,m

xρ(l, m)Ol,m. (51)

Given by the spectrum of Ol,m, we can bound the value of
the coefficients

− 1
dn ≤ xρ(l, m) ≤ 1

dn . (52)
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We can further bound xρ(l, m) using Tr(ρ) = 1 as

Tr (ρ) =
∑

l,m

xρ(l, m)Tr
(
Ol,m

)

=
{∑

l,m(−1)l·mxρ(l, m) = 1 odd∑
l,m:even 2nxρ(l, m) = 1 even

(53)

where l · m =∑n
i=1 limi.

Interestingly, we find the following characterization of
pure stabilizer states, which we prove in Appendix D 3.

Proposition 3. For an arbitrary pure stabilizer state φ,
xφ(l, m) has the same magnitude

∣∣xφ(l, m)
∣∣ = 1/dn with dn

non-zero coefficients over l, m ∈ Zn
d.

We note that, because of the property in Eq. (43), the
nonzero coefficients in the larger domain m, l ∈ Zn

2d for a
pure stabilizer state still solely takes the value d−n, and the
number of nonzero coefficients increases to (4d)n.

We see that xρ(l, m) is not directly a quasiprobability
distribution but can easily be modified to be one for odd
dimensions. In the case of odd dimensions, we can show
a direct connection between the operators Ol,m and the
phase-space operators A(a1, a2). The precise connection is

O2a1,−2a2 = A(a1, a2), (54)

where now the index 2a1, −2a2 ∈ Z2d go over numbers
mod 2d, to get the sign correct. We can make the connec-
tion even more explicit by correcting the trace of Ol,m and
remembering that otherwise the phase-space operators and
Ol,m are reordered versions of each other

(−1)a1a2Oa1,a2 = A(σ [a1, a2]T), (55)

where σ is some permutation matrix over Z2
d. This result

directly connects the discrete Wigner function WDV
ρ with

the distribution xρ via

xρ(a1, a2) = (−1)a1·a2WDV
ρ (σ [a1, a2]T). (56)

2. Proof of Theorem 1

We are now ready to show Theorem 1.

Proof. Using Propositions 2 and 3, we get for an arbi-
trary pure stabilizer state φ that

‖WCV
φGKP

‖p ,cell =
[
(4d)n

{(
d

8π

)n/2

d−n

}p]1/p

= (4d)n/p

(8πd)n/2
. (57)

Proposition 2 gives

‖WCV
ρGKP

‖p ,cell =
⎡

⎣
∑

l,m∈Zn
2d

{(
d

8π

)n/2

|xρ(l, m)|
}p
⎤

⎦
1/p

=
⎡

⎣4n
∑

l,m∈Zn
d

{(
d

8π

)n/2

|xρ(l, m)|
}p
⎤

⎦
1/p

= 4n/p
(

d
8π

)n/2

‖xρ‖p

= dn(1−1/p)‖WCV
φGKP

‖p ,cell‖xρ‖p , (58)

which shows Eq. (34).
For odd-dimensional cases, we can employ Eq. (55) to

get

ρ =
∑

a1,a2

WDV
ρ (a1, a2)A(a1, a2)

=
∑

a1,a2

xρ(a1, a2)Oa1,a2

=
∑

a1,a2

xρ(a1, a2)(−1)a1·a2A(σ [a1, a2]T). (59)

This gives in particular

∥∥WDV
ρ

∥∥
p

=
(
∑

a1,a2

∣∣WDV
ρ (a1, a2)

∣∣p
)1/p

=
(
∑

l,m

∣∣(−1)l·mxρ(l, m)
∣∣p
)1/p

= ‖xρ‖p . (60)

This, together with Eq. (34), shows Eq. (36), completing
the proof. �

This concludes the section on establishing a connec-
tion between magic and non-Gaussianity with Wigner
functions.

B. Via characteristic function

In this section, we use the formalism of characteris-
tic functions to establish a connection between magic and
non-Gaussianity similar to the one found in the previous
section.

The characteristic function of a qudit state ρ =∑
u,v∈Zn

d
ρu,v |u〉 〈v| encoded in GKP can then be written
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as

χCV
ρGKP

(r) =
√

2π
d

∞∑

l,m=−∞
γρGKP(l, m)δ

(
p − m

√
2π
d

)

× δ

(
q − l

√
2π
d

)
, (61)

where γρGKP(l, m) is a coefficient serving as a weight for
each distribution of the characteristic function of a GKP
state ρGKP. We show the derivation in Appendix E.

The following result establishes the fundamental con-
nection between the discrete characteristic function and the
continuous-variable characteristic function of GKP states
that encodes the discrete-variable state.

Theorem 2. Let ρ be an n-qudit state on a dn-
dimensional space. For l, m ∈ Zn

2d, it holds that

γρGKP(l, m) = dne−iπ l·m/dω−l·m/2
d χDV

ρ (l, m)∗. (62)

In particular,

dn(1−1/p)‖χDV
ρ ‖p = ‖χCV

ρGKP
‖p ,cell

‖χCV
STAB,GKP‖p ,cell

, (63)

where

‖χCV
STAB,GKP‖p ,cell := ‖χCV

φGKP
‖p ,cell

=
(

2π
d

)n/2

(4d)n/p (64)

is a quantity that takes the same value for every pure
stabilizer state φ.

The proof can be found in Appendix E. This gives us a
direct connection to the α-stabilizer Rényi entropy defined
for multiqubits [33], which has recently been shown to be a
magic monotone under stabilizer protocols for α ≥ 2 [49].
Our result also provides an immediate generalization to
all dimensions. The natural extension of the α-stabilizer
Rényi entropy to n-qudit state is

Mα(ρ)

= (1 − α)−1 log

⎛

⎝d−nα
∑

P∈P∗
n

|Tr (ρP)|2α
⎞

⎠− n log d

= α(1 − α)−1 log ‖(ρ)‖α − n log d, (65)

where P∗
n is the projective generalized Pauli (Heisenberg-

Weyl) group, which only contains +1 phase, P(ρ) =
1

dn Tr (ρP)2 forms a probability distribution when ρ is pure.

Thus, we see immediately by comparison that we can
write all α-stabilizer Rényi entropies with the l2α norm
of the continuous-variable characteristic function for the
qudit state that the GKP state encodes. Specifically, we
have

Mα(ρ) = 2α
1 − α

log ‖χDV
ρ ‖2α − n log d

= 2α
1 − α

log
‖χCV

ρGKP
‖2α,cell

‖χCV
STAB,GKP‖2α,cell

− α n log d
1 − α

, (66)

where in the second equality we used Theorem 2.
We show the faithfulness property for the case p = 1

in Appendix I. It is straightforward to see that the other
properties include invariance under Clifford unitaries and
multiplicativity.

IV. SIMULATION ALGORITHMS

In this section, we provide simulation algorithms for
qudit circuits that use magic measures based on the con-
nections we established with the Wigner and characteristic
functions. We give the technical details in Appendix F.
Furthermore, we provide a simulator for GKP circuits
that surprisingly resembles the introduced qudit simula-
tors. The details can be found in Appendix J. This provides
an operational interpretation of the magic measures as the
simulation overhead incurred by the nonclassical features.

A. Wigner function

The magic measures that were inspired by the continu-
ous Wigner function allow for an operational interpretation
of the simulation cost of a quantum circuit. Pashayan et al.
[42] introduced a simulation algorithm for quasiprobabil-
ity distributions that strictly resemble the discrete Wigner
functions in odd dimensions. These ideas were used to
adapt the simulator to multiqubit cases by Rall et al. [43].
Using our unified approach that works for all dimensions,
we can extend the simulator by Pashayan et al. to all
dimensions and recover the simulator of Rall et al. for
d = 2 (see Appendix F). Crucial ingredients to do this are
the properties of the operators Ol,m, especially how they
transform under Clifford unitaries. Consult Appendix D
for details. The simulation timescales with the aggregated
l1-norm of the circuit, similarly as for the total forward
Wigner negativity of Ref. [42]:

M→ = ∥∥xρ
∥∥

1

T∏

t=1

max
λt

∥∥xUt(λt)
∥∥

1 max
λT

|x�(λT)| , (67)

where the maximum is taken over all trajectories and

xρ(λ) = Tr
(
ρ

Oλ

dn

)
(68)
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xU(λ
′, λ) = Tr

(
Oλ′

dn UOλU†
)

(69)

x�(λ) = Tr (�Oλ) (70)

are the coefficients related to the input state ρ, the uni-
tary evolution U and the measurement effect � with λ =
(l, m) ∈ Z

2n
d . The number of samples K that achieves

precision ε with a failure probability pf is given by

K ≥ 2M2
→

1
ε2 ln

(
2
pf

)
. (71)

This shows that the number of samples directly scales with
the resourcefulness of the input state

∥∥xρ
∥∥

1 if we evolve
using the free operations of our magic measures like Clif-
ford unitaries and measure in the computational basis. This
result gives an operational interpretation of the measures
discussed in this work, as already noted in the case for the
discrete Wigner negativity [42].

A few comments on the difference between even-
and odd-dimensional systems are in order. For odd-
dimensional systems, it holds

∥∥xρ
∥∥

1 ≥ 1, whereas it is
possible for qubits that

∥∥xρ
∥∥

1 ≤ 1 for specific states, which
reduce the number of samples needed. These qubit states
are discussed in Ref. [43] and are called hyperoctahedral
states. We show that this phenomenon exists in all even
dimensions and call these states hyperpolyhedral states.
See Appendix G for details. However, for pure states, it
holds that

∥∥xρ
∥∥

1 ≥ 1.
Another interesting difference between even and odd

dimensions when Pauli measurements are involved is that
the simulator is less competitive in even dimensions. The
cost of the measurements is taken into account via the term

max
λT

|x�(λT)| . (72)

Since for odd-dimensional systems Ol,m has trace 1, com-
putational basis measurements do not increase the simula-
tion time. This is not the case for even dimensions. In this
case, the measurements increase simulation time, as was
noted by Rall et al. [43].

Let us assume that we would like to measure k qudits
of our n-qudit system in a computational basis state |i〉.
The measurement effect then is given as� = 1n−k ⊗ |i〉〈i|.
Without loss of generality, assume the measurement of the
state |1〉〈1|, the state with all measured qudits in the 1 state.
The expansion of a qudit in the operators Ol,m is |1〉〈1| =
1/d

∑d−1
i=1 O2,i. The cost inferred from the measurement is

then

max
λT

|x�(λt)| = max
l,m

∣∣Tr
[
Ol,m1n−k ⊗ |1〉〈1|]∣∣ (73)

= max
ln−k,mn−k

∣∣Tr
[
Oln−k,mn−k

]∣∣max
lk,mk

∣∣Tr
[
Olk,mk |1〉〈1|]∣∣ .

(74)

The maximum trace
∣∣Tr
[
Olk,mk |1〉〈1|]∣∣ is 1 for both even

and odd dimensions. However, for the first term there is a
big difference between even and odd dimensions. For odd
dimensions the trace of Ol,m is ±1, so unmeasured qudits
do not add to the simulation cost in any way. This is not
the case for even dimensions. In even dimensions the trace
of a single-qudit operator Ol,m is either 0 or 2. Therefore,
the maximum of the first term

∣∣Tr
[
Oln−k,mn−k

]∣∣ is 2n−k, and
thus the number of unmeasured qudits increase the number
of samples required exponentially.

However, this cost only plays a role if not all qudits are
measured. Relevant examples where naturally all qudits
are measured at the end of the computations are variational
algorithms and sampling algorithms. Also, the existence
of hyperoctahedral states admits the simulation of noisy
magic states at the cost of pure stabilizer states (or even
less in some cases), which allows us to use the peculiar
behavior of even-dimensional systems to our advantage.

B. Characteristic function

The same ideas can be used to construct a simulator that
is based on characteristic functions. It will reduce to the
simulator by Rall et al. [43] for d = 2. The simulation cost
scales with a resource quantified using magic measures
based on the connection of the characteristic functions.

Instead of representing the quantum state in the basis
of Ol,m, we use the Heisenberg-Weyl operators Pd(l, m)
defined in Eq. (8) as our basis. Since they are unitary and
traceless (with the exception of the identity operator) a few
small modification are in order. A qudit state ρ and its
characteristic function χDV

ρ can be written as

ρ = 1
d

∑

l,m

χDV
ρ (l, m)Pd(l, m), (75)

with χDV
ρ (0, 0) = 1, since Pd(0, 0) = 1. Furthermore,

since the density operator is Hermitian, it holds that

∑

l,m

χDV
ρ (l, m)Pd(l, m) =

∑

l,m

[
χDV
ρ (l, m)

]∗ Pd(l, m)†.

(76)

Therefore, many coefficients in the decomposition are
redundant. For Heisenberg-Weyl operators it holds that

P†
d(l, m) = ωl·m

d Pd(−l, −m) (77)

and therefore

[
χDV
ρ (l, m)

]∗ = ωl·m
d χDV

ρ (−l, −m). (78)

This implies that we have only (d2 − 1)/2 independent
coefficients in the decomposition. Thus, we can only
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sample from the independent coefficients, since they are
pairwise dependent.

The rest of the algorithm works equivalently. In par-
ticular, the simulation time scales with the aggregated
l1-norm:

Mχ
→ = ∥∥χDV

ρ

∥∥
1

∏

t=1

max
λt

∥∥χDV
Ut
(λt)
∥∥

1 max
λT

∣∣χDV
� (λT)

∣∣ ,

(79)

with

χDV
ρ (λ) = Tr

(
ρ

P†
d(λ)

dn

)
(80)

χDV
U (λ′, λ) = Tr

(
P†

d(λ
′)

dn UPd(λ)U†

)
(81)

χDV
� (λ′) = Tr (�Pd(λ)) . (82)

The simulator behaves similarly to the previous one for
even dimensions. The same simulation time increase hap-
pens for unmeasured qudits in this case.

C. Simulating GKP

The connection between the continuous Wigner func-
tion and the introduced discrete distributions can also be
used to simulate the dynamics of GKP states. Here, we
introduce a simulation algorithm for circuits that use ideal
GKP codewords, Gaussian unitary operations, and Gaus-
sian measurements, i.e., homodyne detection. The details
can be found in Appendix J. We remark that the works
[50,51] show a simulator that efficiently simulates GKP
qubit stabilizer states with rational symplectic unitaries
with displacements. On the other hand, our algorithm
works beyond this restricted set of operations, encompass-
ing all Gaussian unitaries and measurements. Instead, our

algorithm only weakly simulates the dynamics, while the
one in Ref. [51] realizes strong simulation.

We want to simulate the run of a quantum circuit, but
in contrast to the previous section, in the end we want
to obtain a sample x of a homodyne measurement. The
sample x is drawn from the probability distribution of
obtaining a certain measurement outcome x given by the
Born probability

P(x) = Tr[�xUGρU†
G], (83)

where �x describes the measurement effect of obtaining
measurement outcome x. However, a few comments are in
order. First, GKP states are not quantum states, since they
are non-normalizable. In consequence, if ρ in the equation
above is such an object, P(x) is not a probability distri-
bution, i.e., the integral over all measurement outcomes is
not 1 but ∞. Even though such a quantity is not properly
defined in a physical context, this idealized case can still
give insights. To differentiate between a probability P(x)
and the quantity we obtain by measuring an ideal GKP
state, we call the latter P̃(x).

We will assume now an ideal GKP codeword encoding
a multiqudit state ρ. We then rewrite the “probability” we
want to sample from as

P̃(x) =
∫

dr WCV
�x
(r)WCV

UGρGKPU†
G
(r) (84)

=
√

d
n

√
8π

n

∞∑

u=−∞
xρ(u)

×
∫

dp δ
(

[p, x]T + Sd −
√
π

2d
Su
)

, (85)

where we used the atomic form defined in Eq. (37).
We use the periodicity of coefficients xρ(u) to simplify

the expression further and obtain

P̃(x) =
√

d
n

√
8π

n

∑

u∈Z2n
2d

sign(xρ(u))
∥∥xρ
∥∥

1

∣∣xρ(u)
∣∣

∥∥xρ
∥∥

1

∑

n∈Z2n

δ

(
x + Trp

[
Sd −

√
π

2d
Su −

√
2πdSn

])
. (86)

Thus to obtain a sample according to the equation above we first sample a u according to
∣∣xρ(u)

∣∣/
∥∥xρ
∥∥

1. Then we

sample uniformly a n ∈ Z2n
2d and return x = Trp

[
−Sd +√ π

2d Su + √
2πdSn

]
as the index of the measurement result.

Here another comment is in order. Sampling from the integers is not possible since the set is not closed. We can however
use the form we derived by just investigating how the first unit cell of the GKP lattice evolves by setting n = 0. Then the
dynamics have the familiar form

P̃(x) =
√

d
n

√
8π

n

∑

u∈Z2n
2d

sign(xρ(u))
∥∥xρ
∥∥

1

∣∣xρ(u)
∣∣

∥∥xρ
∥∥

1

δ

(
x + Trp

[
Sd −

√
π

2d
Su
])

(87)
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and the output sample depends only on the qudit dis-
tribution xρ . Note the resemblance with the simulation
algorithm presented in Sec. IV A.

V. MAGIC NEEDS NON-GAUSSIANITY

It has been known since the original GKP paper [41]
that one can implement the logical T gate and thus get
an H -type magic state by using a cubic phase state or
cubic interaction eicQ3

. However, this is merely one pos-
sibility for implementing a non-Gaussian interaction, and
this does not show the necessity of non-Gaussianity to
implement a non-Clifford operation on the code subspace.
This is a widely held belief based on the correspondence
between a pair of Pauli and displacement operators and that
of Clifford and Gaussian operations, where displacement
operators and Pauli operators are both Heisenberg-Weyl
operators. However, this “belief” has not been proven
in general, beyond specific cases in qubit systems [44],
where the conversion between a computational basis state
and the H state was ruled out. Indeed, GKP states have
large Wigner negativity and thus a priori additional non-
Gaussianity may not be required, making the necessity
of non-Gaussian operation to implement a non-Clifford
operation nontrivial.

Nevertheless, the results established above allow us to
show that non-Gaussian operations are essential to imple-
ment nonstabilizer operations in the GKP code space.
In fact, we find that the Gaussian protocols [12]—a
class of deterministic quantum channels larger than Gaus-
sian operations, which also admits feed-forwarded Gaus-
sian operations conditioned on the outcomes of Gaussian
measurements—are not able to implement nonstabilizer
operations in the GKP code space. Importantly, Gaus-
sian protocols include a gate teleportation circuit involving
a Gaussian measurement and a feedforwarded Gaussian
unitary, which itself is not a Gaussian operation [52].

Theorem 3. Let � be a quantum channel with n-qubit
input and output. If there exists a pure stabilizer state φ
and a pure nonstabilizer state ψ such that �(φ) = ψ , �
cannot be implemented in a GKP code space by a Gaus-
sian protocol. Also, for a quantum channel � with n-qudit
input and output systems with odd local dimensions, the
condition can be relaxed to the existence of a (potentially
mixed) stabilizer state σ and a state ρ with ‖WDV

ρ ‖1 > 1
such that �(σ) = ρ.

Proof. Suppose that � can be implemented in the GKP
code space by a Gaussian protocol G, i.e., G(σGKP) =
ρGKP for qudit states σ and ρ such that �(σ) = ρ. Since
‖WCV

ρGKP
‖1,cell does not increase under Gaussian protocols

[12,13,34], we get

‖WCV
ρGKP

‖1,cell = ‖WCV
G(σGKP)

‖1,cell ≤ ‖WCV
σGKP

‖1,cell. (88)

Because of the assumption that ρ is also an n-qudit state,
Theorem 1 and Eq. (88) imply that

‖xσ‖1 = ‖WCV
σGKP

‖1,cell

‖WCV
STABn,GKP‖1,cell

≥ ‖WCV
ρGKP

‖1,cell

‖WCV
STABn,GKP‖1,cell

= ‖xρ‖1. (89)

Suppose that the input state σ is a pure stabilizer state
denoted by φ and the output state ρ is a pure nonstabilizer
state ψ . Since ‖xφ‖1 is faithful for pure states as shown in
Sec. III A, i.e., for a pure state φ, ‖xφ‖1 = 1 if and only
if φ is a stabilizer state, we get ‖xφ‖1 = 1 and ‖xψ‖1 > 1.
This is a contradiction with Eq. (89), showing that such a
channel � cannot be implemented by a Gaussian protocol.

The statement for odd dimensions follows by the same
argument using the relation (36). �

An immediate consequence is that a Gaussian protocol
cannot implement non-Clifford unitary gates determinis-
tically. This does not contradict the protocol by Bara-
giola et al. [53], which requires many auxiliary GKP
states—making the whole operation involving the prepa-
ration of such auxiliary states highly non-Gaussian—to
apply a single non-Clifford gate. In addition, their proto-
col is probabilistic and, therefore, does not directly fall into
the scope of our result, which is pertinent to deterministic
operations.

We stress that the statement of Theorem 3 directly bene-
fits from the connection between the DV and CV resources
established in this work. In particular, the general connec-
tion between DV and CV resource measures in Theorem
1 and the property of magic measure in Proposition 1 play
crucial roles in the proof of Theorem 3.

VI. CONCLUSION AND OUTLOOK

In this work, we establish a quantitative relation-
ship between magic and non-Gaussianity through the
Gottesman-Kitaev-Preskill encoding, which serve as the
central resources for the key operational frameworks used
to study quantum computation in both discrete and con-
tinuous variables. Furthermore, our work provides a tool
to analyze resources in the setting when qudit systems are
encoded in CV systems. We introduced a family of dis-
tributions for discrete-variable systems and showed that
their lp -norm exactly corresponds to that of the continu-
ous Wigner function that encodes the same qudit states
via GKP encoding. Notably, the discrete-variable distri-
bution coincides with the discrete Wigner function for
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odd dimensions, allowing us to connect the negativity of
Wigner functions of discrete and continuous variables for
p = 1. More generally, our distributions allow for defining
a magic measure for all dimensions and extend the discrete
Wigner negativity defined for odd dimensions and the sta-
bilizer Rényi entropy defined for multiqubit systems in a
unified manner. Furthermore, we showed that the lp -norm
of the discrete-variable characteristic function corresponds
to the characteristic function of a GKP state that encodes
the same qudit state. This provides a new interpretation of
the stabilizer Rényi entropy in terms of the GKP encoding
and naturally extends it to all dimensions. By employing
this framework, we find an operational interpretation of
the magic measures by introducing a classical simulation
algorithm, where the run time scales with the magic con-
tent. The first algorithm is based on the magic measures
connected to the continuous Wigner function and recovers
the simulator in Ref. [42], while the second one is based on
the magic measures connected to the continuous charac-
teristic function. Both algorithms give a strong operational
interpretation to the magic measures we introduced. Then
we presented a weak simulation algorithm for ideal GKP
circuits. This algorithm improves the state of the art by
allowing all Gaussian unitaries as well as all qudit states
encoded in GKP. This algorithm bears many similarities
to the qudit simulators we introduced before. We utilized
our findings to demonstrate that achieving a determin-
istic implementation of a logical non-Clifford operation,
with identical input and output dimensions within the
GKP code subspace, necessitates a non-Gaussian opera-
tion, even when operating at the theoretical limit of the
ideal GKP state input. We conjecture that the faithful-
ness property holds independently of the dimension and
not only for odd-dimensional and multiqubit systems. An
implication is that Theorem 3 would hold for all dimen-
sions, where one could replace multiqubit systems with
any even-dimensional ones. We leave that conjecture for
future work.

Our framework offers a novel approach to analyze non-
Gaussian and magic resources in a mutual way: tools
developed for infinite-dimensional systems can be used
to describe properties of finite-dimensional systems, and
vice versa. We hypothesize that further cross-fertilization
between these two worlds is possible, allowing for inves-
tigating more properties in the light of our approach. Fur-
thermore, we have seen that the magic measures defined in
this work behave differently for even and odd dimensions.
An interesting future direction is to further investigate the
origin of this behavior. Finally, being able to investigate
and see the dependence of the dimensionality could shed
new light on the source of quantum speedups.

Note added.—Recently, a related independent work by
Lingxuan Feng and Shunlong Luo [54] was brought to
our attention, where the authors found a complementary

relation between the description of a single-qudit state and
continuous-variable Wigner function of the corresponding
GKP state.
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APPENDIX A: lp -NORM AND
RENORMALIZATION

In this section, we formalize a way to compute the lp -
norm of the characteristic function as well as the Wigner
function of GKP states. Note here that the l1-norm of the
Wigner function is the Wigner negativity. The lp -norm is
defined as

‖f ‖p =
(∫

dx |f (x)|p
) 1

p

. (A1)

We are interested in computing the lp -norm of characteris-
tic and Wigner functions of GKP states, so we deal with
sums of Dirac distribution, where the distributions have
disjoint support

(∫ ∞

−∞
dx

∣∣∣∣∣
∑

i

fi(x)δ (x − xi)

∣∣∣∣∣

p) 1
p

=
(
∑

i

|fi(xi)|p δ(0)p−1

) 1
p

=
(
∑

i

|fi(xi)|p
) 1

p

δ(0)
p−1

p .

(A2)

This integral evaluates to the same Dirac distribution
δ(0)(p−1)/p for all GKP states, which will be canceled by
dividing it by the lp -norm for another GKP state as in
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Theorems 1 and 2. Therefore, we will define the norm as

(∫ ∞

−∞
dx

∣∣∣∣∣
∑

i

fi(x)δ (x − xi)

∣∣∣∣∣

p) 1
p

=
(∫ ∞

−∞
dx

∣∣∣∣∣
∑

i

fi(x)

∣∣∣∣∣

p

δ (x − xi)

) 1
p

=
(
∑

i

|fi(xi)|p
) 1

p

(A3)

as a kind of regularization.

APPENDIX B: PROOF OF PROPERTY 3 OF ‖xρ‖1

In this section, we prove a property of ‖xρ‖1 among
those listed in Sec. III, specifically that ‖xφ‖1 = 1 for
every pure stabilizer state φ and ‖xψ‖1 ≥ 1 for every pure
state ψ .

We have the requirement for a pure state ψ that

Tr(ψ2) =
∑

l,m

xψ(l, m)2dn = 1, (B1)

which implies

∑

l,m

Tr(Ol,mψ)
2 = dn. (B2)

Recalling that Ol,m has eigenvalues ±1, it holds that
|Tr(Ol,mψ)| ≤ 1, ∀l, m. This gives

∑

l,m

|Tr(Ol,mψ)| ≥
∑

l,m

Tr(Ol,mψ)
2 = dn, (B3)

showing ‖xψ‖1 ≥ 1 for every pure state ψ .
Let φ be an arbitrary pure stabilizer state. Proposition 3

ensures that |xφ(l, m)| = 1/dn for dn elements, leading to

‖xφ‖1 =
∑

l,m

|xφ(l, m)| = 1
dn · dn = 1, (B4)

completing the proof.

APPENDIX C: PROOF OF PROPOSITION 2

In this section, we derive the atomic form of an n-qudit
state encoded in the Gottesman-Kitaev-Preskill code. We
call the representation atomic if each Dirac distribution
with different support appears only once in the summation,
thus all Dirac distributions are distinct. We start deriving
the atomic form for one qudit encoded in GKP and then
generalize it to n-qudit systems.

1. One qudit

For a single qudit, the Wigner function of a computa-
tional basis state |j 〉〈j | encoded in GKP are

WCV
|j 〉〈j |GKP

(rq, rp)

∝
∞∑

s,t=−∞
(−1)stδ

(
rp − π

dα
s
)
δ

(
rq − αj − dα

2
t
)

. (C1)

In order to derive the Wigner function of an arbitrary qudit state ρ =∑u,v∈Zd
ρu,v |u〉 〈v| encoded in the GKP code, we

expand our state in the computational basis

WCV
ρGKP

(rp , rq) =
∑

u,v∈Zd

ρuv
1

2π

∫ ∞

−∞
dxeirp x

[ ∞∑

s=−∞
δ

(
rq + x

2
−
√

2π
d
(u + ds)

)][ ∞∑

t=−∞
δ

(
rq − x

2
−
√

2π
d
(v + dt)

)]
.

(C2)

We then use the linearity of the Wigner function and get cross terms between the computational basis states j and k

WCV
|j 〉〈k|GKP

(rp , rq) = 1
2π

∫ ∞

−∞
dxeirp x

[ ∞∑

s=−∞
δ

(
rq + x

2
−
√

2π
d
(j + ds)

)][ ∞∑

t=−∞
δ

(
rq − x

2
−
√

2π
d
(k + dt)

)]

= 1
π

∑

s,t

e2irp (rq−
√

2π
d (k+dt))

δ

(
2rq −

√
2π
d

[j + k + ds + dt]

)

= 1
2π

∑

s,t

e2irp (rq−
√

2π
d (k+dt))

δ

(
rq −

√
π

2d
[j + k + ds + dt]

)
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= 1
2π

∑

s,t

e2irp (rq−
√

2π
d (k+dt−ds))

δ

(
rq −

√
π

2d
[j + k + dt]

)

= 1
2π

∑

s,t

e2irp

√
2π
d dse2irp (rq−

√
2π
d (k+dt))

δ

(
rq −

√
π

2d
(j + k + dt)

)

= 1
2π

∑

s,t

δ

(√
2d
π

rp − s

)
δ

(
rq −

√
π

2d
(j + k + dt)

)
e2irp (

√
π
2d (j +k+dt)−

√
2π
d (k+dt))

= 1

2
√

2πd

∑

s,t

δ

(
rp − s

√
π

2d

)
δ

(
rq −

√
π

2d
(j + k + dt)

)
eirp

√
2π
d (j −k−dt), (C3)

where in the second last line we used the Poisson resummation formula

∞∑

n=−∞
ei2πnx =

∞∑

k=−∞
δ (x − k) . (C4)

We simplify Eq. (C2) by using Eq. (C3) and arrive at

WCV
ρGKP

(rp , rq) = 1√
8πd

d−1∑

u,v=0

ρu,v

∑

s,t

(−1)s(u−v−dt)/dδ

(
rp − s

√
π

2d

)
δ

(
rq −

√
π

2d
(u + v + dt)

)
. (C5)

We need to find the coefficients cρGKP(l, m) such that

WρGKP(rp , rq)

=
√

d√
8π

∑

l,m

cρGKP(l, m)δ
(

rp − m
√
π

2d

)
δ

(
rq − l

√
π

2d

)

(C6)

only has disjoint support for each Dirac distribution in the
summation.

By inspection of Eq. (C5), we immediately see that
δ
(
rp − s

√
π/2d

)
is already in the correct form and thus

will only contribute a phase with s = m. Furthermore, we
restrict the GKP state to one until the cell of length

√
2dπ ,

so each m, l can have 2d values m, l ∈ {0, 1, . . . , 2d − 1}.
For now, let us consider s = m = 0. Then we get the same
Dirac distribution for q if u + v + dt = l. This requirement
can be simplified if we remember that we consider only
a unit cell and thus u + v mod d = l. Consequently the
matrix element cρGKP(l, 0) will be a sum of ρu,v with u + v

mod d = l. We can write this as

cρGKP(l, 0) = d−1Tr (ρMl) , (C7)

with

Ml =
∑

u,v∈Zd
u+v=l mod d

|u〉 〈v| . (C8)

As an example, if we take qubits d = 2

M0 =
(

1 0
0 1

)
M1 =

(
0 1
1 0

)
(C9)

so we retrieve the identity and Pauli X . For qutrits d = 3
we get

M0 =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ M1 =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠

M2 =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ . (C10)

We now consider the general case with m �= 0. Recalling
l = u + v + dt, the contribution for m �= 0 is given by the
phase factor

∑

m

(−1)m(u−v−dt)/d =
∑

m

(−1)m(2u−l)/d

=
∑

m

eiπm(2u−l)/d = e−iπml/dωmu
d ,

(C11)
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where ωd = e2π i/d is the dth root of unity. This allows us to
obtain the general form of matrix elements in Eq. (C6) as

cρGKP(l, m) = d−1e−iπml/dTr
(
MlZm

d ρ
)

(C12)

= d−1Tr
(
Oρ(l, m)ρ

)
(C13)

= xρ(l, m). (C14)

This shows Proposition 2 in the case of n = 1.

2. n qudits

In this section, we will derive the multiqudit atomic
form of GKP states. The state of an arbitrary n-qudit state
is given as ρ =∑u,v∈Zn

d
ρu,v |u〉 〈v|. The Wigner function

for the GKP state that encodes this n-qudit state is then

WCV
ρGKP

(r)

=
∑

u,v∈Zn
d

ρu,v

n∏

i=1

1
2π

∫ ∞

−∞
drxie

irpi rxi

[ ∞∑

si=−∞
δ

(
rqi + rxi

2
−
√

2π
d
(ui + dsi)

)][ ∞∑

ti=−∞
δ

(
rqi − rxi

2
−
√

2π
d
(vi + dti)

)]

= 1

(
√

8πd)n
∑

u,v∈Zn
d

ρu,v

n∏

i=1

[
∑

si,ti

(−1)
si
d (ui−vi−dti)δ

(
rpi −

√
π

2d
si

)
δ

(
rqi −

√
π

2d
(dti + ui + vi)

)]
. (C15)

We are now ready to show Proposition 2 by confirming that

WCV
ρGKP

(r) =
√

d
n

√
8π

n

∑

l,m

cρGKP(l, m)

× δ

(
rp − m

√
π

2d

)
δ

(
rq − l

√
π

2d

)
(C16)

coincides with Eq. (C15) by taking cρGKP(l, m) = xρ(l, m).
We note that

xρ(l, m)

= d−ne−iπm·l/dTr
(
Ml1 ⊗ · · · ⊗ MlnZm1

d ⊗ · · · ⊗ Zmn
d ρ
)

= d−ne−iπm·l/dTr
(
MlZm

d ρ
)

, (C17)

with

Tr
(
MlZm

d ρ
)

=
∑

u,v∈Zn
d

ρu,v 〈v| Ml1 ⊗ · · · ⊗ MlnZm1
d ⊗ · · · ⊗ Zmn

d |u〉

=
∑

u,v∈Zn
d

ρu,vω
m1u1
d · · ·ωmnun

d 〈v| Ml1 ⊗ · · · ⊗ Mln |u〉 .

(C18)

Note that 〈v| Ml1 ⊗ · · · ⊗ Mln |u〉 = 1 when

ui + vi + dti = li (C19)

and 〈v| Ml1 ⊗ · · · ⊗ Mln |u〉 = 0 otherwise. Consequently, the Wigner function (C16) with the coefficients (C17) becomes

WCV
ρGKP

(r) =
√

d
n

√
8π

n

∑

l,m

xρ(l, m)δ
(

rp − m
√
π

2d

)
δ

(
rq − l

√
π

2d

)

= 1√
8πd

n

∑

l,m

∑

u,v∈Zn
d

ρuve−iπm·l/dωm1u1
d · · ·ωmnun

d 〈v| Ml1 ⊗ · · · ⊗ Mln |u〉
(

rp − m
√
π

2d

)
δ

(
rq − l

√
π

2d

)

= 1√
8πd

n

∑

u,v∈Zn
d

ρuv

n∏

i=1

∑

mi,ti

ω
−mi(ui+vi+dti)/2
d ω

miui
d

(
rpi − mi

√
π

2d

)
δ

(
rqi −

√
π

2d
(ui + vi + dti)

)

= 1√
8πd

n

∑

u,v∈Zn
d

ρuv

n∏

i=1

∑

mi,ti

(−1)mi(ui−vi−dti)/d
(

rpi − mi

√
π

2d

)
δ

(
rqi −

√
π

2d
(ui + vi + dti)

)
, (C20)
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which coincides with Eq. (C15). This completes the proof
of Proposition 2.

APPENDIX D: PROPERTIES OF THE OPERATOR
BASIS

1. Basic properties

In this section, we will show the properties of the
operator

Ol,m = e−iπml/dMlZm
d . (D1)

As mentioned in the main text, the parameters are l, m ∈
Z2d. We will first show a property that involves all l, m ∈
Z2d. It holds that

∑

l,m∈Z2d

Ol,m =
∑

l,m∈Z2d

d−1∑

x=0

ω
−m( l

2 −x)
d |−x + l〉〈x| (D2)

=
∑

l∈Z2d

d−1∑

x=0

∑

m∈Z2d

ω
−m( l

2 −x)
d |−x + l〉〈x| (D3)

=
d−1∑

x=0

∑

l∈Z2d

δl,2x |−x + l〉〈x| (D4)

= 1. (D5)

Thus by summing over all l, m ∈ Z2d we can resolve the
identity using the operators Ol,m.

Using the operators, however, as an operators basis we
do not need all l, m ∈ Z2d. It suffices to restrict to l, m ∈ Zd.
If we now have a value above d, we have

Ml = Ml+d (D6)

Zm
d = Zm+d

d . (D7)

However, the phases can be different

Ol+d,m = e−iπm(l+d)/dMlZm
d

= (−1)mOl,m

Ol,m+d = e−iπ l(m+d)/dMlZm
d

= (−1)lOl,m

Ol+d,m+d = e−iπ(m+d)(l+d)/dMlZm
d

= (−1)l+m+dOl,m. (D8)

So we get the same operators with a different sign.

It is easy to see that Ml is Hermitian. Ml is also an
involution meaning M 2

l = 1 because

MlMl =
∑

u+v=l mod d
u′+v′=l mod d

|u〉 〈v∣∣u′〉 〈v′∣∣ (D9)

=
∑

u+v=l mod d
v+v′=l mod d

|u〉 〈v′∣∣ (D10)

=
∑

u=v′ mod d

|u〉 〈v′∣∣ (D11)

=
∑

u

|u〉〈u| . (D12)

Therefore,

Ol,mO†
l,m = MlZm

d

(
Zm

d

)† M †
l

= MlMl

= 1. (D13)

This confirms that Ol,m is unitary. The operator Ol,m is also
Hermitian

O†
l,m = [e−iπml/dMlZm

d

]†

=
[

e−iπml/d
∑

u+v=l mod d

ωvm
d |u〉 〈v|

]†

= eiπml/d
∑

u+v=l mod d

ω−vm
d |v〉 〈u|

= e−iπml/d
∑

u+v=l mod d

ω
m(l−v)
d |v〉 〈u|

= e−iπml/d
∑

u+v=l mod d

ωum
d |v〉 〈u|

= Ol,m (D14)

and thus also an involution

Ol,mOl,m = 1 (D15)

because of Eq. (D13). This implies that its eigenvalues are
±1.
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The operators are orthogonal under the Hilbert-Schmidt
inner product

Tr
(
Ol,mOl′,m′

) = e−iπml/de−iπm′l′/dTr
(

MlZm
d Ml′Zm′

d

)

=
∑

u+v=l mod d
v′+v mod d=l′

ωmv
d ωm′v′

d e−iπml/de−iπm′l′/d

× Tr
(|u〉 〈v′∣∣)

=
∑

u+v=l mod d
u+v=l′ mod d

ωmv+m′u
d e−iπml/de−iπm′l′/d.

(D16)

This is 0 if l �= l′ because l, l′ ∈ [0, d − 1]. For l = l′, we
get

Tr
(
Ol,mOl,m′

) =
∑

u+v=l mod d

ωmv
d ωm′u

d e−iπml/de−iπm′l/d

=
∑

u+v=l mod d

eiπ(m−m′)(v−u)/d

=
∑

v∈Zd

ωm̃v
d e−iπm̃l/d

= e−iπm̃l/d
∑

v∈Zd

ωm̃v
d , (D17)

where we set m̃ := m − m′. This is 0 if m̃ �= 0, i.e., m �= m′
because a sum over roots of unity is 0. On the other hand,
when l = l′ and m = m′ we get

Tr
(
Ol,mOl,m

) =
∑

v∈Zd

1 = d. (D18)

In conclusion, we have

Tr
(
Ol,mOl′,m′

) = δmm′δll′d. (D19)

As we have seen earlier, Ol,m are the standard Pauli oper-
ators for d = 2. So for d > 2 the operators Ol,m are a gen-
eralization of the Pauli operators to arbitrary dimensions
with the property of being an involution and Hermitian. In
general, Ml and Ol,m behave differently for even and odd
dimensions, so we will separate the discussion.

a. Odd dimensions

In this section, we assume that the dimension d is odd.
Then, the trace is

Tr
(
Ol,m

) =
∑

2x=l mod d

e−iπml/dωmx
d . (D20)

When l is even, the solution for 2x = l mod d is x = l/2
and gives Tr(Ol,m) = 1. When l is odd, the solution for

2x = l mod d is x = (d + l)/2, which gives Tr(Ol,m) =
(−1)m. These can concisely be written as

Tr
(
Ol,m

) = (−1)ml. (D21)

The operator Ml has more structure, as seen in Eq. (31),
which we report here for convenience

Ml =
∑

u+v=l mod d

|u〉 〈v| . (D22)

There are d possibilities to fulfill this equation, so the
matrix representation of Ml in computational basis will
have d ones and the rest 0. Furthermore, the diagonal
entries 2u mod d = l have only one solution for every l.
Therefore, the matrix Ml has one diagonal term 1 and is
zero otherwise. Consequently Tr (Ml) = 1.

Recall that we introduced the operators Ol,m as the ones
that connect the GKP state to the qudit state it encodes.
Remarkably, we can establish a direct connection between
this and the phase-space point operators in odd dimen-
sions, which a priori may not have anything to do with the
operators Ol,m. The phase-space point operators are defined
as

A(a1, a2) = d−1
d−1∑

b1,b2=0

e−2i πd (a1,a2)�d(b1,b2)
T
ω

b1b2/2
d

×
(

X †
d

)b1
(

Z†
d

)b2

= d−1
∑

b1,b2

ω
a1b2
d ω

b1(
1
2 b2−a2)

d

(
X †

d

)b1
(

Z†
d

)b2
.

(D23)

Using the expansion of Zd and Xd in the computational
basis

Zb
d =

∑

x

ωbx
d |x〉〈x|

Zb,†
d =

∑

x

ω−bx
d |x〉〈x| = Z(−b)

X b
d =

∑

x

|x + b〉 〈x|

X b†
d =

∑

x

|x〉 〈x + b| = X (−b)

(D24)

we can write the phase-space point operator as

A(a1, a2) = d−1
∑

x

∑

b1b2

ω
b2(a1+ 1

2 b1)

d ω
−a2b1
d X −b1

d Z−b2
d

= d−1
∑

x

∑

b1b2

ω
b2(a1−x+ 1

2 b1)

d ω
−a2b1
d |x − b1〉 〈x| .

(D25)
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In order to further simplify, we need the discrete resumma-
tion formula

1
d

d−1∑

k=0

e2iπ kn
d = δ0,n. (D26)

The phase-space point operators can then be simplified to

A(a1, a2)

= d−1
∑

x

∑

b1b2

ω
b2(a1−x+ 1

2 b1)

d ω
−a2b1
d |x − b1〉 〈x|

=
∑

x

∑

b1

δ0,a1−x+ 1
2 b1
ω

−a2b1
d |x − b1〉 〈x|

=
∑

x

∑

b1

δb1,2(x−a1)ω
−a2b1
d |x − b1〉 〈x|

=
∑

x

ω
−2a2(x−a1)
d |x − 2(x − a1)〉 〈x|

=
∑

x

ω
2a1a2
d ω

−2a2x
d |−x + 2a1〉 〈x| . (D27)

Using the following substitutions

u = −x + 2a1

v = x

u + v = 2a1 = l

, (D28)

we rewrite the phase-space point operators as

A(l, a2) =
∑

u+v mod d=l

ω
−a2l
d ω

−2a2v
d |u〉 〈v|

=
∑

u+v mod d=l

ω
a2l
d ω

−2a2u
d |u〉 〈v| . (D29)

By comparing this equation with the definition of Ol,m, we
can identify m = −2a2 and we get

A(a1, a2) = O2a1,−2a2 . (D30)

This shows that the operator basis {Ol,m}l,m∈Zd is equiva-
lent to the phase-space point operators {A(a1, a2)}a1,a2∈Zd
up to permutation and phase factors. Indeed, the odd-
ness of d and Eq. (D8) ensure that there is a one-to-one
correspondence between a1, a2 ∈ Zd and l, m ∈ Zd such
that A(a1, a2) = O2a1,−2a2 ∝ Ol,m up to phase, as 2a2 and
−2a1, respectively, takes all values in Zd by changing
a1, a2 ∈ Zd, and Ol1,m1 and Ol2,m2 coincide up to phase if
l1 = l2 mod d and m1 = m2 mod d.

b. Even dimensions

Now we investigate the operators Ol,m for the case of
even-dimensional systems. The trace is

Tr
(
Ol,m

) =
∑

x

e−iπml/d
∑

u+v=l mod d

ωmu 〈x| |u〉 〈v| |x〉

(D31)

=
∑

2x=l mod d

e−iπml/dωmx, (D32)

which vanishes if l is odd. Suppose l is even and write l =
2k. Then we get

Tr
(
Ol,m

) =
∑

2x=l mod d

e−iπml/dωmx (D33)

= ω−mk
(
ωmk + ωm(k+ d

2 )
)

(D34)

= 1 + ωm d
2 (D35)

= 1 + (−1)m. (D36)

We have the same behavior for the operators Ml. For odd
dimensions the equation u + v mod d = l has d solutions.
Therefore, the matrix representation in computational basis
will have d 1’s with the rest being 0. For odd l, the equation
2u mod d = l has no solution, implying Tr (Ml) = 0 for
odd l. For even l, the equation 2u mod d = l has two
solutions, u = l/2 and u = l/2 + d/2. Therefore, we have
Tr (Ml) = 2.

We can make here an interesting observation. It is
known that for odd dimensions the phase-space point
operator at the origin A(0, 0) acts as the parity operation

A(0, 0) |x〉 = |−x〉 (D37)

for a computational basis state |x〉. The operators Ol,m show
the same behavior for even dimensions and thus for all
dimensions

O0,0 |x〉 = M0 |x〉 = |−x〉 . (D38)

2. Clifford covariance

This section investigates how the operators Ol,m trans-
form under Clifford unitaries. We will see that they behave
almost equivalently to the Heisenberg-Weyl operators.

Xd, Zd generate the d-dimensional Heisenberg-Weyl
group and R, P, SUM the d-dimensional Clifford unitaries.
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their action of computational basis state are [45]

Xd : |j 〉 → |j + 1〉 (D39)

Zd : |j 〉 → ω
j
d |j 〉 (D40)

R : |j 〉 →
d−1∑

s=0

ω
js
d |s〉 (D41)

P : |j 〉 → ω
j 2/2
d (ωDω

−1
2d )

−j |j 〉 (D42)

SUM : |i〉 |j 〉 → |i〉 |i + j 〉 . (D43)

A Clifford unitary UC maps the Heisenberg-Weyl operators

Pd(a, b) = ω
1
2 ab
d X a

d Zb
d (D44)

in the following way:

UCPd(u)U
†
C = Pd(Su), (D45)

where S is a 2n × 2n matrix with entries over ZD with
D = d for d odd and D = 2d for d even. Heisenberg-Weyl
operators have the following commutation relations:

(
X a

d Zb
d

) (
X a′

d Zb′
d

)
= ω

(a,b)�(a′,b′)T
d

(
X a′

d Zb′
d

) (
X a

d Zb
d

)
.

(D46)

We are now interested in how Clifford unitaries and Pauli
operators transform

Ol,m =
d−1∑

x=0

e−iπml/dωmx
d |−x + l〉 〈x| (D47)

with l, m ∈ [0, 2d − 1] or equivalently Z2d. The values the
computational basis states can have are mod d and the
operators Zm

d , Ml are repeating for m, l ≥ d. The difference
for m, l ≥ d is the phase factor ω−ml/2

d that repeats after
2d. This phase factor is important for the action of Clifford
unitaries on the operators Ol,m, while it can be essentially
neglected if we only want to use them as a basis. We expect
by our construction through GKP that Clifford unitaries
map Ol,m to another Ol′,m′ .

The QFT gate R transforms the operator Ol,m as

ROl,mR† =
d−1∑

x=0

e−iπml/dωmx
d R |−x + l〉 〈x| R† (D48)

=
∑

s,s′
e−iπml/dωsl

d

∑

x

ω
x(m−s−s′)
d |s〉 〈s′∣∣ (D49)

=
∑

s,s′
e−iπml/dωsl

d δs,m−s′ |s〉
〈
s′∣∣ (D50)

=
∑

s′
e−iπml/dωml

d ω
−ls′
d

∣∣m − s′〉 〈s′∣∣ (D51)

=
∑

x

e−iπml/dω−lx
d |m − x〉 〈x| (D52)

and therefore transforms the coordinates like

m → −l (D53)

l → m. (D54)

The Phase gate P behaves differently for even and odd
dimensions. For odd dimensions, we get

POl,mP† =
∑

x

ω
−ml/2
d ωmx

d ω
(−x+l)(−x+l−1)/2
d ω

−x(x−1)/2
d

× |−x + l〉 〈x|
=
∑

x

ω
−ml/2
d ωmx

d ω
(l2−l)/2
d ω

x(1−l)
d |−x + l〉 〈x|

=
∑

x

ω
−l(m−l+1)/2
d ω

x(m−l+1)
d |−x + l〉 〈x| (D55)

with the coordinates transforming like

m → m − l + 1 (D56)

l → l. (D57)

For even dimensions we nearly get the same result

POl,mP† =
∑

x

e−iπml/dωmx
d eiπ(−x+l)2/de−iπx2/d |−x + l〉 〈x|

(D58)

=
∑

x

e−iπml/dωmx
d eiπ(l2)/dω−xl

d |−x + l〉 〈x|
(D59)

=
∑

x

e−iπ l(m−l)/dω
x(m−l)
d |−x + l〉 〈x| (D60)

and

m → m − l (D61)

l → l. (D62)

The action of Zd transform Ol,m as

ZdOl,mZ†
d =

∑

x

e−iπml/dωmx
d ω

−x+l
d ω−x

d |−x + l〉 〈x|
(D63)

=
∑

x

e−iπ l(m−2)/dω
x(m−2)
d |−x + l〉 〈x| (D64)
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with the coordinates transforming as

m → m − 2 (D65)

l → l. (D66)

Similarly for Xd we get

XdOl,mX †
d =

∑

x

e−iπml/dωmx
d |−x + l + 1〉 〈x + 1| (D67)

=
∑

x

e−iπml/dω
m(x−1)
d |−x + l + 2〉 〈x| (D68)

=
∑

x

e−iπm(l+2)/dωmx
d |−x + l + 2〉 〈x| (D69)

and

m → m (D70)

l → l + 2. (D71)

The missing gate for the full Clifford group is the SUM
gate

SUMOl,m ⊗ Ol′,m′SUM† =
∑

x,y

e−iπml/de−iπm′l′/dωmx
d ω

m′y
d

∣∣−x + l, −y − x + l′
〉 〈x, y + x| (D72)

=
∑

x,y ′
e−iπml/de−iπm′l′/dωmx

d ω
m′(y ′−x)
d

∣∣−x + l, −y ′ + l′ + l
〉 〈

x, y ′∣∣ (D73)

=
∑

x,y ′
e−iπml/de−iπm′l′/dωx(m−m′)

d ω
m′y ′
d

∣∣−x + l, −y ′ + l′ + l
〉 〈

x, y ′∣∣ (D74)

and

m → m − m′ (D75)

l → l (D76)

m′ → m′ (D77)

l′ → l′ + l. (D78)

So we can write down the matrices that transform the coor-
dinates under the action of Clifford unitaries UCOl,mU†

C =
OMUC [l,l′,m,m′]T . The matrices have the basis (l, m) or
l, l′, m, m′, without the constant shifts and are given as

P :
(

1 0
−1 1

)
(D79)

R :
(

0 1
−1 0

)
(D80)

SUM :

⎛

⎜⎝

1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1

⎞

⎟⎠ . (D81)

These matrices are all symplectic and therefore they fulfill
the relation

M T�M = � (D82)

� =
(

0 1

−1 0

)
. (D83)

Interestingly, Clifford unitaries act on the Heisenberg-Weyl
operators in a very similar way. The matrices S in the basis
a, b and a1, a2, b1, b2 are given as [45]

P′ :
(

1 0
1 1

)
(D84)

R′ :
(

0 −1
1 0

)
(D85)

SUM :

⎛

⎜⎝

1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1

⎞

⎟⎠ , (D86)

where these matrices are over ZD (D = d for odd D = 2d
for even). It was shown that these matrices generate the
symplectic group over ZD. We can connect our matrices
(up to constant shifts) to these matrices

R3 = R′ =
(

0 −1
1 0

)
(D87)

Pd−1 = P′ =
(

1 0
1 1

)
(D88)

while the SUM gate is already in the correct form. So the
action of a Clifford unitary on Ol,m is a symplectic trans-
formation over Z2d of l, m. There is, however, a constant
shift for P in the odd-dimensional case.
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3. Stabilizer states (proof of Proposition 3)

This section shows that pure stabilizer states are flat
when decomposing in the operators Ol,m meaning all oper-
ators have the same weight modulo signs. We can write the
zero state in all dimensions as

|0〉〈0| = |0〉〈0| + 1
d

∑

j

∑

u+v=0 mod d
v �= 0

wj v
d |u〉 〈v|

= 1
d

d−1∑

j =0

O0,j

= 1
d

∑

j

M0Zj
d

= 1
d

∑

j

∑

u+v mod d=0

ω
j v
d |u〉 〈v| , (D89)

where in the first line we used that

d−1∑

j =0

ω
j v
d = 0 (D90)

for v �= 0. We see that all nonzero Ol,m have the same
weight. Using that the operators Ol,m are covariant under
Clifford unitaries as shown in Appendix D 2, we see that
every pure stabilizer state has a flat weight.

APPENDIX E: PROOF OF THEOREM 2

We compute the characteristic function for a qudit state
ρ encoded in a GKP state. We need to use the following
property of the displacement operator:

D(r) =
n∏

j =1

eirqj rpj /2eirqj Pj e−irpj Qj . (E1)

Then, the characteristic function of a qudit encoded in a GKP state is given as

χCV
ρGKP

(r) = Tr [ρD(−r)]

=
∑

u,v∈Zd

ρu,v 〈u| D(−r) |v〉

=
∑

u,v∈Zd

ρu,v

∞∑

s,t=−∞

〈√
2π
d
(u + ds)

∣∣∣∣∣D(−r)

∣∣∣∣∣

√
2π
d
(v + dt)

〉

q

=
∑

u,v

∑

s,t

ρu,veirqrp/2eirp

√
2π
d (v+dt)

〈√
2π
d
(u + ds)

∣∣∣∣∣

√
2π
d
(v + dt)+ rq

〉

q

=
∑

u,v

∑

s,t

ρu,veirqrp/2eirp

√
2π
d (v+dt)

δ

(
rq −

√
2π
d
(u − v − d(t − s))

)

=
∑

u,v

∑

s,t

ρu,ve
i2πs(rp

√
d

2π )ei
rp
2 (rq+2

√
2π
d (v+dt))

δ

(
rq −

√
2π
d
(u − v − dt)

)

=
√

2π
d

∑

u,v

∑

s,t

ρu,vδ

(
rp −

√
2π
d

s

)
δ

(
rq −

√
2π
d
(u − v − dt)

)
ei

rp
2 (rq+2

√
2π
d (v+dt))

=
√

2π
d

∑

u,v

∑

s,t

ρu,vei πd s(u+v+dt)δ

(
rp −

√
2π
d

s

)
δ

(
rq −

√
2π
d
(u − v − dt)

)
. (E2)

With this expression, we aim at finding the coefficient γρGKP(l, m) for l, m ∈ Zd such that

χCV
ρGKP

(r) =
√

2π
d

∞∑

l,m=−∞
γρGKP(l, m)δ

(
rp − m

√
2π
d

)
δ

(
rq − l

√
2π
d

)
. (E3)
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Similarly to the case for the Wigner function, we restrict to
one unit cell. Thus, the requirement for l is

u − v − dt = l (E4)

u − v = l mod d (E5)

and therefore

γρGKP(l, 0) =
∑

u−v=l mod d

〈v| ρ |u〉 = Tr
[
X l

dρ
]

. (E6)

By simplifying the phase factor

ei πd s(v+u+dt) = ei πd s(−l+2u) = e−iπsl/dωsu
d (E7)

we can write the coefficients as

γρGKP(l, m) = e−iπsl/dTr
[
ρX l

dZm
d

]
. (E8)

Therefore, the coefficients are given by the trace over the
Pauli operators in d dimensions. This can be generalized to
n qudits as

γρGKP(l, m) = e−iπ l·m/dTr
[
ρX lZm]

= dne−iπ l·m/dω−l·m/2
d χDV

ρ (l, m)∗, (E9)

which shows Eq. (62).
Using Eq. (62) and the fact that |χDV

φ (l, m)| = d−n for
(4d)n elements in l, m ∈ Zn

2d and zero otherwise, we can
get for a pure qudit state φ that

‖χCV
φGKP

‖p ,cell = (4d)n/p
(

2π
d

)n/2

. (E10)

We then get, again by using Eq. (62), that

‖χCV
ρGKP

‖p ,cell =
⎡

⎣
∑

l,m∈Zn
2d

{(
2π
d

)n/2

dn|χDV
ρ (l, m)|

}p
⎤

⎦
1/p

=
⎡

⎣4n
∑

l,m∈Zn
d

{
(2πd)n/2 |χDV

ρ (l, m)|}p

⎤

⎦
1/p

= 4n/p(2πd)n/2‖χDV
ρ ‖p

= dn(1−1/p)‖χDV
ρ ‖p , (E11)

completing the proof.

APPENDIX F: SIMULATION ALGORITHM

For the convenience of the reader we will use the frame
notation from the works of Ref. [42]

F(λ) = Oλ

dn (F1)

G(λ) = Oλ (F2)

ρ =
∑

λ

Tr
(
ρ

Oλ

dn

)
Oλ =

∑

λ

G(λ)Tr (ρF(λ)) . (F3)

Unitary evolution of a state can be rewritten in this nota-
tion as

UρU† =
∑

λ

UG(λ)U†Tr (ρF(λ)) (F4)

=
∑

λ,λ′
G(λ′)Tr

(
F(λ′)UG(λ)U†)Tr (ρF(λ)) (F5)

and the output of a measurement � is

Tr
(
�UρU†) =

∑

λ,λ′
x�(λ′)xU(λ

′, λ)xρ(λ) (F6)

with

xρ(λ) = Tr (ρF(λ)) (F7)

xU(λ
′, λ) = Tr

(
F(λ′)UG(λ)U†) (F8)

x�(λ) = Tr (�G(λ)) . (F9)

Out of these quantities we can define the following proba-
bility distributions:

P(λ|ρ) =
∣∣xρ(λ)

∣∣
∥∥xρ
∥∥

1

(F10)

P(λ′|U, λ) =
∣∣xU(λ

′, λ)
∣∣

‖xU(λ)‖1
(F11)

‖xU(λ)‖1 =
∑

λ′

∣∣xU(λ
′, λ)
∣∣ (F12)

∥∥xρ
∥∥

1 =
∑

λ

∣∣xρ(λ)
∣∣ . (F13)

Thus we can rewrite the Born rule probability as

P(�|UρU†) =
∑

λ,λ′
x�(λ′)xU(λ

′, λ)xρ(λ) (F14)

=
∑

λ,λ′
Mλ,λ′P(λ′|U, λ)P(λ|ρ) (F15)

with Mλ,λ′ = sign
(
xρ(λ)xU(λ

′, λ)
)

x�(λ′) ‖xU(λ)‖1

∥∥xρ
∥∥

1.
The simulation strategy is to sample λ from P(λ|ρ) and
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then consider a possible transition to λ′ from P(λ′|U, λ).
This can easily be generalized to a sequence of unitaries of
length T as well. We then define a random variable as

M�λ = x�(λT)sign(xρ(λ0))
∥∥xρ
∥∥

1 (F16)

×
T∏

t=1

sign(xUt(λt, λt−1))
∥∥xUt(λt−1)

∥∥
1 . (F17)

The expectation value of this random variable is

E(M�λ) =
∑

�λ
P(λ0|ρ)

T∏

t=1

P(λt|Ut, λt−1)M�λ (F18)

=
∑

�λ
x�(λT)

T∏

t=1

xUt(λt, λt−1)xρ(λ0), (F19)

which is exactly the Born probability we want to estimate.
The random variable output from our sampling algorithm
is an unbiased estimator for the Born probability. The
number of samples needed to achieve a given precision
can be computed using the Hoeffding inequality Given
a sequence of K iid random variables Xj bounded by∣∣Xj
∣∣ ≤ b and expected mean E(X ), the probability that∑K

j =1 Xj /K deviates from the mean by more than ε is
upper bounded by

P

⎛

⎝

∣∣∣∣∣∣
E(X )−

K∑

j =1

Xj

K

∣∣∣∣∣∣
≥ ε

⎞

⎠ ≤ 2 exp
(

−Kε2

2b2

)
(F20)

or equivalently we can achieve precision
∣∣∣E(X )−

∑K
j =1

Xj
K

∣∣∣ ≤ ε with probability at least (1 − pf ) by setting
the number of samples as

K =
⌈

2b2 1
ε2 ln

(
2

pf

)⌉
. (F21)

We then define the aggregated l1-norm as

M→ = ∥∥xρ
∥∥

1

∏

t=1

max
λt

∥∥xUt(λt)
∥∥

1 max
λT

|x�(λT)| (F22)

so it is the maximum l1-norm over all trajectories. This
bounds the random variable from above, so we need at
least

K ≥ 2M2
→

1
ε2 ln

(
2
pf

)
(F23)

samples.

APPENDIX G: HYPERPOLYHEDRAL STATES

In this section, we investigate the phenomena of hyper-
polyhedral states. In Ref. [43] the authors encounter hyper-
octahedral states for qubit systems. They define these states
as the states that have the stabilizer norm smaller than 1
or in our formulation

∑
l,m

∣∣xl,m
∣∣ < 1. For odd-dimensional

states these states are equivalent to Wigner positive states∑
l,m

∣∣xl,m
∣∣ = 1. This set is strictly bigger than the set of

stabilizer states.
For even dimensions, the question of a Wigner func-

tion is more difficult, especially related to computability,
even though one can define such a quantity [48,55,56].
We define the hyperpolyhedral states similarly to the qubit
case for all even dimensions with

∑
l,m

∣∣xl,m
∣∣ ≤ 1. Here

we show that hyperpolyhedral states exist for all even
dimensions and that they are not equivalent to stabilizer
states.

The computational basis states can be expanded in the
operators Ol,m as

|0〉〈0| = 1
d

d−1∑

i=0

O0,i (G1)

|1〉〈1| = Xd |0〉〈0| X †
d = 1

d

d−1∑

i=0

O2,i (G2)

· · · (G3)
∣∣∣∣
d
2

〉 〈
d
2

∣∣∣∣ = X
d
2

d |0〉〈0| X
d
2 †

d (G4)

= 1
d

d−1∑

i=0

O(d, i) = 1
d

d−1∑

i=0

(−1)iO0,i (G5)

· · · (G6)

|d − 1〉〈d − 1| = X d−1
d |0〉〈0| X d−1†

d (G7)

= 1
d

d−1∑

i=0

(−1)iOd−1,i. (G8)

Thus, we can reorder them to pairs in the following way

|0〉〈0| +
∣∣∣∣
d
2

〉 〈
d
2

∣∣∣∣ =
1
d

d−1∑

i=0

(1 + (−1)i)O0,i (G9)

· · · (G10)

|k〉 〈k| +
∣∣∣∣k + d

2

〉 〈
k + d

2

∣∣∣∣ =
1
d

d−1∑

i=0

(1 + (−1)i)Ok,i.

(G11)
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The maximally mixed state is 1/d = 1/d
∑d−1

i=0 |i〉 〈i|.
Therefore, if we compute

d−1∑

l,m=0

∣∣∣∣Tr
[
1

d
Ol,m

]∣∣∣∣ =
1
d

, (G12)

we get a value that is smaller than the one for a pure sta-
bilizer state. Therefore, one can “hide” magic in a product
state of a magic state and the maximally mixed state or
similarly including Clifford equivalent states. Since this
quantity goes directly into the simulator cost, we see that
the hyperpolyhedral states are easier to simulate than pure
stabilizer states.

APPENDIX H: DECOMPOSITIONS OF
STABILIZER STATES

In this section, we show how to obtain the decompo-
sitions of stabilizer states in the basis of Ol,m given their
stabilizers.

Every stabilizer state with a dn-dimensional stabilizer
group S fulfills the following eigenvalue equations [21]:

ωv�mT

d Pd(m) |MS, v〉 = |MS, v〉 , (H1)

where MS is the space of coordinates associated with the
stabilizer group and v is the coordinate of one Heisenberg-
Weyl operator. Note that m ∈ Z2n

d and that the phases are
taken care of by the phase factor ωv�mT

d . This v takes care
of the phase in front of the Heisenberg-Weyl operator. The
stabilizer group S and in turn the set of coordinates are gen-
erated by n Heisenberg-Weyl operators S = 〈S1, . . . , Sn〉 or
n coordinates MS = 〈s1, . . . , sn〉, respectively. The set MS
includes a linear combinations involving the n generators
si with coefficients ki ∈ Zd. The characteristic function of
a stabilizer state |φ〉 〈φ| can be represented as [22]

χDV
|φ〉〈φ|(a) = 1

dnω
vT�a
d δMS (a), (H2)

where δMS (a) is the indicator function that δMS (a) = 1, if
and only if a ∈ MS and 0 otherwise.

For odd dimensions, the phase space point operators
A(a1, a2) had a one-to-one correspondence with the opera-
tors Ol,m. Something similar holds for even dimensions as
well. In that case, the operators Ol,m are directly connected
with operators Ã(a1, a2) that are identically defined as the
phase-space point operators but do not fulfill the same set
of properties.

In the proof to show the connection between the phase-
space point operators in odd dimensions and the operators

Ol,m, we used the resummation formula

1
d

d−1∑

k=0

e2π i kn
d = δ0,n. (H3)

For even dimensions, the sums appear with 2d instead of
just d and then

1
d

d−1∑

k=0

e2π i kn
2d �= δ0,n, (H4)

so one cannot easily use the discrete resummation for-
mula. However, the equation can be modified to hold in
all dimensions. In even dimensions, it holds that

1
2d

2d−1∑

k=0

e2π i kn
2d = 1

d̃

d̃−1∑

k=0

e2π i kn
d̃ = δ0,n. (H5)

We see that by doubling the domain of the sum, we
recover the discrete resummation formula. So we can use
the discrete resummation formula in all dimensions by
considering

1
D

D−1∑

k=0

e2π i kn
D = δ0,n, (H6)

where D is the quantity defined in Eq. (2) and in conse-
quence

1
Dn

∑

x∈Z2n
D

ω
−(u+v)�xT

D = δ0,u+v. (H7)

We define the symplectic Fourier transform as

(F f )(a) = 1
Dn

∑

b∈Z2n
D

ω−aT�b
D f (b). (H8)

We see here again that the parameters a are not over
Z2n

d but over Z2n
D as mentioned before. In order to dif-

ferentiate between the phase-space point operators in
odd dimensions A(a) = 1/dn∑

b∈Z2n
d
ω−a�bT

d P†
d(b) with

their intimate relation with the discrete Wigner func-
tion, we define the equivalently defined operator Ã(a) =
1/Dn∑

b∈Z2n
D
ω−a�bT

D P†(b) for even dimensions.
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Then consequently for even dimension, we can rewrite
Ã(a) as

Ã(a) = 1
D

∑

b∈Z2n
D

ω−aT�b
D P†

d(b) (H9)

= 1
D

∑

b∈Z2n
D ,x∈Zn

d

ω
b2(

a1
2 + b1

2 −x)
d ω

−a2b1
D |x − b1〉 〈x|

(H10)

= 1
D

∑

b1∈Z2n
D ,x∈Zn

d

δb1,2x−a1ω
−a2b1
D |x − b1〉 〈x| (H11)

= 1
D

∑

x∈Zn
d

ω
a1a2/2
d ω

−a2x
d |a1 − x〉 〈x| , (H12)

which is equivalent to Ol,m for l = a1, m = −a2.
We transform the characteristic function to get the coef-

ficients x|φ〉〈φ| corresponding to the operators Ol,m for a
stabilizer state φ as

F(χDV
|φ〉〈φ|)(a) = 1

(2d)n
1
dn

∑

b∈Z2n
2d

ω−aT�b
2d δMs(b)ω

v�bT

d

(H13)

= 1
(2d)n

1
dn

∑

b∈MS∪MS+d

ω
−(a−2v)T�b
2d . (H14)

We used that MS was defined on Z2n
d , but the sum goes

over Z2n
2d so we need to take this into account when dealing

with the phase factors. We write MS ∪ MS + d as the exten-
sion from Z2n

d to Z2n
2d. This set is generated by the same

generators si but includes now linear combinations with
coefficients ki ∈ Z2d. We can simplify the sum by using
the generators of the coordinate space MS = 〈s1, . . . , sn〉 to

F(χDV
|φ〉〈φ|)(a) = 1

(2d)n
1
dn

∑

b∈MS∪MS+d

ω
−(a−2v)T�b
2d (H15)

= 1
(2d)n

1
dn

n∏

i=1

⎛

⎝
2d−1∑

ki=0

ω
−(a−2v)T�[kisi]
2d

⎞

⎠

(H16)

= 1
(2d)n

1
dn

n∏

i=1

⎛

⎝
2d−1∑

ki=0

ω
−ki(a−2v)T�si
2d

⎞

⎠

(H17)

= 1
dn δMS+2v(a). (H18)

From the first to the second line we decomposed the ele-
ments b ∈ MS ∪ MS + d using the generators MS ∪ MS +

d. Each element b can be decomposed into a linear combi-
nation of the generators si and coefficients ki ∈ Z2d. In the
last line, we used the resummation formula (H7) and saw
that the sum is 0 except in the case where (a − 2v)�bT = 0
and thus the Pauli operators in the stabilizer group com-
mute with Pauli operators with coordinates a − 2v. This
implies that a − 2v ∈ MS since S is a stabilizer group with
the maximal number of commuting Pauli operators. As
shown in Eq. (H12), the expression in Eq. (H18) coin-
cides with x|φ〉〈φ|(l = a1, m = −a2). A few comments are
in order. We have shown that we can write every pure sta-
bilizer state using dn operators Ol,m that all have the phase
+1

|φ〉 〈φ| =
∑

(l,m)∈Z2n
2d

x|φ〉〈φ|(l, m)Ol,m (H19)

= 1
dn

∑

(l,−m)∈Ms+2v

Ol,m. (H20)

Note that the sums go over D and not d, which makes a
difference in even dimensions. As we know, the operators
Ol,m repeat with period d with the opposite sign. Let us take
the example of qubits Z2 = O0,1 while −Z2 = O2,1. So if
we constrain (l, m) ∈ Z2n

d we can get phases ±1, while if
we allow for all (l, m) ∈ Z2n

D we get decompositions with
only +1 signs.

APPENDIX I: CHARACTERISTIC FUNCTION:
FAITHFULNESS

In this section, we will prove the faithfulness property
for the 1 norm of the characteristic function

∥∥∥χDV
|φ〉〈φ|

∥∥∥
1
.

The characteristic function of a state returns the coeffi-
cients of that state expanded in the Pauli basis. A pure
stabilizer state is by definition stabilized by dn commuting
Pauli operators and thus can be represented with dn equally
weighted Pauli operators. Thus if |ψ〉 〈ψ | is a stabilizer
state then

∥∥∥χDV
|φ〉〈φ|

∥∥∥
1

= 1.
We need to show the other direction as well namely that

if
∥∥∥χDV

|φ〉〈φ|
∥∥∥

1
= 1 then |φ〉 〈φ| is a stabilizer state. We will

use the purity of the states we are considering. The pure
state has to have purity 1 and can be written using the
characteristic function as

Tr
[|φ〉 〈φ|2] = 1

dn

∑

a∈Z2n
d

∣∣χDV
|φ〉〈φ|(a)

∣∣2 = 1. (I1)

The characteristic function is bounded by
∣∣∣χDV

|φ〉〈φ|(a)
∣∣∣ ≤ 1.

The magic measure we are considering is the 1 norm of the
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discrete characteristic function

∥∥χDV
|φ〉〈φ|

∥∥
1

= 1
dn

∑

a∈Z2n
d

∣∣χDV
|φ〉〈φ|(a)

∣∣ . (I2)

As we have seen,
∣∣∣χDV

|φ〉〈φ|
∣∣∣ is 1 for dn values corresponding

to the stabilizer group and is 0 otherwise. By observ-
ing the purity condition we see that

∣∣∣χDV
|φ〉〈φ|

∣∣∣ needs to be
nonzero for at least dn values. Assume now a state |ψ〉
has a decomposition including dn Pauli operators with
coefficients ±1/dn. Such a state satisfies 〈ψ | Pd |ψ〉 = 1
for every Pd in the decomposition. |φ〉 = Pd |ψ〉 is also a
proper pure quantum state so it has to hold that |φ〉 = |ψ〉,
which immediately implies Pd |ψ〉 = |ψ〉. This means |ψ〉
is a simultaneous +1 eigenstate of all dn Pauli operators,
which implies that the Pauli operators are commuting. This
is precisely the definition of a stabilizer state. Thus if the
characteristic function is nonzero for exactly dn values, it is
a stabilizer state. Now let us assume a state that is nonzero
for more than dn values. This set of values we call R. The
purity condition is then

Tr
[|φ〉 〈φ|2] = 1

dn

∑

a∈R

∣∣χDV
|φ〉〈φ|(a)

∣∣2 = 1 (I3)

with card(R) > dn. Since card(R) > dn it has to hold that
at
∣∣∣χDV

|φ〉〈φ|(a)
∣∣∣ < 1 for at least two a1, a2. Assume for sim-

plicity now that card(R) = dn + 1 and two
∣∣∣χDV

|φ〉〈φ|(a)
∣∣∣ < 1.

Then it has to hold that

Tr
[|φ〉 〈φ|2]

= 1
dn

∑

a∈R

∣∣χDV
|φ〉〈φ|(a)

∣∣2

= 1
dn

(
dn − 1 + ∣∣χDV

|φ〉〈φ|(a1)
∣∣2 + ∣∣χDV

|φ〉〈φ|(a2)
∣∣2
)

= 1 (I4)

and in consequence

∣∣χDV
|φ〉〈φ|(a1)

∣∣2 + ∣∣χDV
|φ〉〈φ|(a2)

∣∣2 = 1. (I5)

As long as
∣∣∣χDV

|φ〉〈φ|(a1)

∣∣∣ �= 0 and
∣∣∣χDV

|φ〉〈φ|(a1)

∣∣∣ �= 0, which
would violate our assumption of card(R) > dn, it holds that

∣∣χDV
|φ〉〈φ|(a1)

∣∣+ ∣∣χDV
|φ〉〈φ|(a2)

∣∣ > 1, (I6)

since x > x2 for every positive real number x < 1. In
consequence, the 1 norm is then

∥∥χDV
|φ〉〈φ|

∥∥
1

= 1
dn

∑

a∈R

∣∣χDV
|φ〉〈φ|(a)

∣∣ (I7)

= 1
dn

(
dn + ∣∣χDV

|φ〉〈φ|(a1)
∣∣+ ∣∣χDV

|φ〉〈φ|(a2)
∣∣) > 1.

(I8)

The same argument applies to any increase in cardinality
above dn but is easiest to see for two coefficients < 1. This
immediately gives us faithfulness for the discrete charac-
teristic function if restricted to pure states.

∥∥∥χDV
|φ〉〈φ|

∥∥∥
1

= 1
if and only if |φ〉 〈φ| is a pure stabilizer state.

APPENDIX J: SIMULATING GKP

In this section, we provide additional details on the
simulation algorithm for circuits that use ideal GKP code-
words, Gaussian unitary operations, and Gaussian mea-
surements, i.e., homodyne detection, that we introduced in
the main text.

We want to simulate the run of a quantum circuit, where
we in the end obtain a sample x of a homodyne mea-
surement. The sample x is drawn from the probability
distribution of obtaining a certain measurement outcome x

P(x) = Tr[�xUGρU†
G], (J1)

where �x describes the measurement effect of obtaining
measurement outcome x. However, GKP states are not
quantum states, since they are non-normalizable. To dif-
ferentiate between a probability P(x) and the quantity we
obtain by measuring an ideal GKP state, we call the latter
P̃(x).

We will assume now an ideal GKP codeword encoding
a multiqudit state ρ. We then rewrite the “probability” we
want to sample from as

P̃(x) =
∫

dr WCV
�x
(r)WCV

UGρGKPU†
G
(r) (J2)

=
∫

dr WCV
�x
(r)WCV

ρGKP
(S−1r + d) (J3)

=
∫

dp WCV
ρGKP

(S−1[p, x]T + d). (J4)
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We then insert the atomic form defined in Eq. (37)

P̃(x) =
√

d
n

√
8π

n

∞∑

u=−∞
xρ(u)

×
∫

dp δ
(

S−1[p, x]T + d −
√
π

2d
u
)

(J5)

=
√

d
n

√
8π

n

∞∑

u=−∞
xρ(u)

×
∫

dp δ
(

[p, x]T + Sd −
√
π

2d
Su
)

. (J6)

We used the following property of Dirac distributions. It
holds for Dirac distributions composed with a function g :
R2n → R2n that

δ
(
g([p, x]T)

) =
∑

i

δ
(
[p, x]T − [xi,0, pi,0]T

)
∣∣det
[
g′([xi,0, pi,0]T)

]∣∣ , (J7)

where g′ is the first derivative and [xi,0, pi,0]T are
the roots of g. In our case g is linear and thus∣∣det
[
g′([xi,0, pi,0]T)

]∣∣ = ∣∣det
[
S−1
]∣∣ = 1, since all symplec-

tic matrices have det[S] = 1.
The coefficients xρ(u) repeat with a period of 2d. So we

write

P̃(x) =
√

d
n

√
8π

n

∞∑

u=−∞
xρ(u)

∫
dp δ

(
[p, x]T + Sd −

√
π

2d
Su
)

(J8)

=
√

d
n

√
8π

n

∑

u∈Z2n
2d

xρ(u)
∑

n∈Z2n

∫
dp δ

(
[p, x]T + Sd −

√
π

2d
Su −

√
2πdSn

)
. (J9)

Let us investigate the last integral

∑

n∈Z2n

∫
dp δ

(
[p, x]T + Sd −

√
π

2d
Su −

√
2πdSn

)
. (J10)

This is only �= 0 if and only if

[p, x]T =
√
π

2d
Su +

√
2πdSn − Sd. (J11)

Integration over p removes the Dirac distributions over p

∑

n∈Z2n

δ

(
x + Trp

[
Sd −

√
π

2d
Su −

√
2πdSn

])
. (J12)

To conclude

P̃(x) =
√

d
n

√
8π

n

∑

u∈Z2n
2d

xρ(u)
∑

n∈Z2n

δ

(
x + Trp

[
Sd −

√
π

2d
Su −

√
2πdSn

])
. (J13)

To get a sample x drawn for the distribution we first sample a u according to
∣∣xρ
∣∣/
∥∥xρ
∥∥

1, which leads to the expression

P̃(x) =
√

d
n

√
8π

n

∑

u∈Z2n
2d

sign(xρ(u))
∥∥xρ
∥∥

1

∣∣xρ
∣∣ (u)∥∥xρ
∥∥

1

∑

n∈Z2n

δ

(
x + Trp

[
Sd −

√
π

2d
Su −

√
2πdSn

])
. (J14)

Then we sample uniformly a n ∈ Z2n
2d and return x = Trp

[
−Sd +√ π

2d Su + √
2πdSn

]
as the index of the measurement

result.

010330-28



BRIDGING MAGIC AND NON-GAUSSIAN RESOURCES. . . PRX QUANTUM 6, 010330 (2025)

[1] S. Konno, W. Asavanant, F. Hanamura, H. Nagayoshi, K.
Fukui, A. Sakaguchi, R. Ide, F. China, M. Yabuno, S. Miki,
H. Terai, K. Takase, M. Endo, P. Marek, R. Filip, P. van
Loock, and A. Furusawa, Logical states for fault-tolerant
quantum computation with propagating light, Science 383,
289 (2024).

[2] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-
Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri, S.
Shankar, and R. J. Schoelkopf et al., Quantum error correc-
tion of a qubit encoded in grid states of an oscillator, Nature
584, 368 (2020).

[3] V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios,
S. Ganjam, A. Miano, B. Brock, A. Ding, and L. Frunzio
et al., Real-time quantum error correction beyond break-
even, Nature 616, 50 (2023).

[4] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky,
K. Mehta, and J. P. Home, Encoding a qubit in a trapped-ion
mechanical oscillator, Nature 566, 513 (2019).

[5] B. De Neeve, T.-L. Nguyen, T. Behrle, and J. P. Home,
Error correction of a logical grid state qubit by dissipative
pumping, Nat. Phys. 18, 296 (2022).

[6] A. Mari and J. Eisert, Positive Wigner functions ren-
der classical simulation of quantum computation efficient,
Phys. Rev. Lett. 109, 230503 (2012).

[7] V. Veitch, N. Wiebe, C. Ferrie, and J. Emerson, Efficient
simulation scheme for a class of quantum optics exper-
iments with non-negative Wigner representation, New J.
Phys. 15, 013037 (2013).

[8] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K.
Nemoto, Efficient classical simulation of continuous vari-
able quantum information processes, Phys. Rev. Lett. 88,
097904 (2002).

[9] S. Rahimi-Keshari, T. C. Ralph, and C. M. Caves, Sufficient
conditions for efficient classical simulation of quantum
optics, Phys. Rev. X 6, 021039 (2016).

[10] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Measure of
the non-Gaussian character of a quantum state, Phys. Rev.
A 76, 042327 (2007).

[11] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Quan-
tifying the non-Gaussian character of a quantum state
by quantum relative entropy, Phys. Rev. A 78, 060303
(2008).

[12] R. Takagi and Q. Zhuang, Convex resource theory of non-
Gaussianity, Phys. Rev. A 97, 062337 (2018).

[13] F. Albarelli, M. G. Genoni, M. G. A. Paris, and A. Ferraro,
Resource theory of quantum non-Gaussianity and Wigner
negativity, Phys. Rev. A 98, 052350 (2018).

[14] U. Chabaud, D. Markham, and F. Grosshans, Stellar repre-
sentation of non-Gaussian quantum states, Phys. Rev. Lett.
124, 063605 (2020).

[15] B. Regula, L. Lami, G. Ferrari, and R. Takagi, Operational
quantification of continuous-variable quantum resources,
Phys. Rev. Lett. 126, 110403 (2021).

[16] L. Lami, B. Regula, R. Takagi, and G. Ferrari, Framework
for resource quantification in infinite-dimensional general
probabilistic theories, Phys. Rev. A 103, 032424 (2021).
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